
Annow: BLAST Based Analytical
Sequence Annotation Software

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Bigdeli, Ashkan. 2017. Annow: BLAST Based Analytical Sequence
Annotation Software. Master's thesis, Harvard Extension School.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33825849

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154882505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Annow:%20BLAST%20Based%20Analytical%20Sequence%20Annotation%20Software&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=1138a51667430258c30285e5e456684d&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33825849
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Annow: BLAST Based Analytical Sequence Annotation Software

Ashkan Bigdeli

A Thesis in the Field of Biotechnology

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

November 2016

Abstract

 As gene sequencing becomes more common the annotations that give meaning to

biological data change. The large quantity of –omics data generated by these projects

maintain static linkages to annotations that change as experimental evidence accumulates.

The validity of data across several biological disciplines relies on the accuracy of these

static linkages. This raises an informatics challenge as data sets large and small require

diligent curation costing valuable resources. Annow was developed to be agile software

to meet this challenge; updating data sets, while providing relevant alignment data,

analysis metrics, and resource updating. Incredibly user friendly and operating offline

Annow brings large data analysis capabilities to the personal computer and can update

thousands of annotations in addition to more granular analysis in short time frames that

are not possible with web-based solutions. The result of which is more a cost effective

manner to produce reliable, accurate results applicable to any field utilizing biological

data and annotations derived from gene sequencing.

iv

Dedication

To those affiliated with the Dana Farber Harvard Cancer Center and the Harvard

Community for fostering my career in informatics.

v

Acknowledgements

 I would like thank Li Chan for actively encouraging me to pursue bioinformatics,

the professors at the Harvard University Extension School for providing me the tools

necessary to follow through on that pursuit, and to the Harvard Medical School

community who turned my enthusiasm into ability.

 I would also like to thank my family and friends, who accepted and supported

someone focused on both work and school unconditionally. In particular I would like to

thank my older brother, Afsheen Bigdeli, who to this day somehow answers all of my

computer science questions and has provided invaluable guidance as I traded my pipette

for lines of code.

vi

Table of Contents

Dedication .. iv

Acknowledgements ..v

List of Tables .. vii

List of Figures and Graphs ... ix

I. Introduction ..1

Gene Sequencing ...2

Impact of Technological Advances ...3

Utilization of Reference Sequences ...5

RefSeq Meta-Analysis ...8

Turning Static Annotations Dynamic ..12

II. Materials and Methods ..15

Development Tools ..15

Design Considerations ...16

Programmatic Flow ..17

Runtime Options ..21

PlasmID Datasets ...23

III. Results ..25

vii

DF/HCC Annotation Curation .. 25

cDNA Analysis ..25

ORF Analysis ..29

shRNA Analysis ..30

IV. Discussion ..33

Appendix ..36

A. User Manual ...36

B. Graphical User Interface ..39

C. Data Processing ..49

Bibliography ..57

viii

List of Tables

Table 1 Annow Runtime Options ...21

ix

List of Figures and Graphs

Figure 1. Cost per base sequenced over time ..5

Figure 2. NCBI’s annotation pipeline ...7

Figure 3. RefSeq Record Changes ..10

Figure 4. RefSeq Predicted RNA Record Changes ..11

Figure 5. FTP directory structure ..18

Figure 6. Annow GUI ...20

Figure 7. All cDNA Analysis..26

Figure 8. MGC Analysis ...28

Figure 9. ORF Analysis ..30

Figure 10. shRNA Anatomy ...31

1

Chapter 1

Introduction

The general study of –omics, primarily considered to be genomics, proteomics

and metabolomics, has an impact that exceeds the field in both research and clinical

settings. The increased understanding of genes and gene models has revolutionized

biology and enabled a greater potential to shape the fields within. –Omics helps us better

understand cancers, reproduction and disease, unlocking the potential to change

medicine, agriculture, ecology, and even organisms themselves; the effect of which can

be seen in a broad range from populations to individuals.

To effectively utilize –omics information, biological molecules must be linked to

identifiers referred to as annotations. Annotations provide information on biological and

biochemical function as well on gene regulation and interactions. As such the accuracy of

the gene annotation mechanism becomes critical and maintaining this accuracy is a

constant challenge. Inaccuracies arise from a fundamental limitation in –omics: only a

small minority of genes in any sequenced genome have been characterized in

experiments and the vast majority of annotations of other genes and proteins are inferred

through these experiments on sequence similarity alone (NCBI, 2013).

As sequencing and experimental data accumulates, inferred annotations may shift

to be match experimental evidence. The primary challenge then becomes updating static

annotations and sequences to match the latest information. The pace of sequencing output

2

suggests a method should be available to group and individual researchers so that

dynamic annotations are easily achieved using fewer resources. It is the goal of the

outlined work herein to provide an efficient, accurate and easy to operate method of

overcoming this challenge. Annow, a program to update gene annotations, can be used on

a large or small scale to service biologists and clinicians across fields.

Gene Sequencing

The catalyst for the -omics revolution has been, and continues to be, gene

sequencing. The ability to sequence genetically meaningful information has gone through

many iterations. The first iteration resembling modern day uses is considered to be

Sanger sequencing, developed in 1977 and still used today. This technology allowed for

the reading of relatively small genetic sequences utilizing the chain-termination (Sanger,

1977). This meant that genetic sequences at the base level could be now easily interpreted

and correlated to biological observations.

In order to utilize available technology to cover larger sequences scientists

developed a technique commonly referred to as “shotgun-sequencing”. Shotgun-

sequencing is a process where randomly-fragmented DNA is cloned into phage-vectors

thereby creating libraries for random clone selection. The fragment containing clones

then serve as a template for DNA sequencing (Anderson, 1981). Randomly-fragmented

regions of DNA create overlapping sequences which could then be used to assemble long

3

contiguous sequences (contig) by previously established computational methods (Staden,

1979).

By 1987 automated capillary instruments were introduced allowing this

computational biology approach to be conducted at higher throughput. These high

throughput machines were able to analyze several sequences at a time producing reads

that reached up to 1 kilobase (Kb) and through contig assembly allowed for analysis of

larger genomic regions. This “first-generation” approach allowed for projects of a larger

scale such as the National Institute of Health (NIH) led Human Genome Project which

resulted in the sequencing of the first human genome, an initiative that launched in 1990

and was declared complete in 2003 (Lander, 2001). The sequencing of the human

genome led to many of the reference sequences utilized today to identify genetic

alterations.

The technology used in the Human Genome Project was able to sequence 84 Kb

per run at capacity and took 15 years and 3 billion dollars to complete. With the Human

Genome containing over 3 billion base pairs the need for increased capacity in gene

sequencing was clear. This lead to the introduction of a new method of sequencing in

2005 often referred to as “next-generation sequencing” (NGS). Reading many short reads

in parallel on a massive scale, NGS increased capacity from 84 Kb to 1 gigabase (Gb) per

run (Heather, 2016). What once took years, may now take a day. In fact in 2015 an entire

human genome was sequenced for an actionable, clinical diagnosis in as little as 26 hours

(Miller, 2015).

4

Impact of Technological Advances

As the technology for sequencing has advanced, the cost per base has decreased,

making more projects and objectives possible. In contrast to the Human Genome Project,

today a single NGS machine is capable of over 45 human genomes a day at roughly

$1000.00 dollars a genome (Figure 1). This makes population, personalized medicine and

gene model studies much more possible in many more labs and hospitals. The data

generated, especially transcriptome data, directly effects the representation of gene

models. Previously established locations for introns, exons, gene boundaries and start and

stop loci of transcription can all shift as cumulative data helps establish a more accurate

gene representation. While the wealth of information provided by these technologies is

clear, the ability to apply this information faces two major challenges. The management

of data generated, and the correlation of this data to biological meaning.

Independent of the technology employed, sequencing generates massive amounts

of data. Moore’s law is often projected to Biocomputing and when applied states that the

amount of data generated will double yearly. Illumina™, a leader in NGS, shows that

sequencing has significantly passed this threshold (Figure 1). With so much data

generation, storage of only relevant sequences as it pertains to an objective is essential for

most groups in terms of cost management. In practice this means most applications will

involve storing data generated by sequencers, and reaching to an outside source for

validation or reference comparisons. An example of this is the National Center for

Biotechnology Information’s (NCBI) BLAST tool. A commonly used informatics tool to

align sequences against references (Altschul, 1990).

5

Figure 1. Illumina representation of cost per Gb and output over time (Illumina,

2016).

Tools like NCBI’s BLAST assist –omics in a two-fold manner. A dynamically

stored reference is provided and sequences will then be matched with an annotation.

Annotations vary, not only by groups curating data, but within the datasets themselves. A

given gene sequence can have several annotations matched depending on the application

and annotation provider. To further complicate this data enrichment, annotations

necessarily change over time so that their attachment to an accurate reference is

maintained.

Utilization of Reference Sequences

Indeed the progression of the field of –omics hinges on the fidelity of information

that is used as reference. As large-scale DNA libraries and sequence databases become

more common it is important that the genes contained therein are accurately represented.

The recent affordability of sequencing, the increased use of GWA (genome wide

6

association) studies, and independent research frequently changes the scientific

community’s consensus representation of a gene. This can include refinement of introns,

exons, splice sites and other relevant regions. It is for this reason the most popular

resources for gene sequences provide frequent updates to their databases.

NCBI has become a common resource regarding the latest genetic information for

several species from human to bacteria. Two initiatives are in place that allow researchers

to utilize the latest reference genomes. The first, and most widely utilized is NCBI’s

Reference Sequence (RefSeq) project. The Reference Sequence collection is a

comprehensive database containing the latest consensus for genomic sequences,

transcripts, and proteins. This downloadable database provides the latest non-redundant

annotation framework for research in expressive, comparative and gene characterization

studies (NCBI, 2002). The second resource NCBI provides is the Consensus Coding

Sequence (CCDS) project, a branch of NCBI that aims to identify core genes in human

and mouse species responsible for protein coding (Pruitt, 2009).

7

Figure 2. NCBI’s annotation pipeline to validate and annotate sequences shows

how many different resources are pooled to develop a single consensus sequence

and corresponding annotation (NCBI, 2016).

NCBI’s annotations to gene sequences are generated by compiling and curating

internal sequencing projects and independent sequence submissions from the global

scientific community. These sequence are then run through an in-house annotation

pipeline prior to publication (Figure 2). Upon intake sequences are aligned to previous

RefSeq entries and ranked based upon likely hood. This ranking system scrutinizes

reference sequences, and therefore their annotations. Discrepancies can lead to a

8

suppression, replacement, or removal of a given reference sequence or annotation. It is

this process, which every annotation provider undertakes in some manner that brings the

necessity for a mechanism to update previously recorded gene annotations.

An action of genome annotation was undertaken by NCBI’s European

counterpart, the European Institute of Bioinformatics (EIP). The goal of the EIP was to

collaborate with genome sequencing groups to provide a frequently annotated library of

genomes distributed through a web portal called Ensembl (Zerbino, 2015). While the

EIP’s initiative and aim is nearly identical to NCBI’s, it sought to pool more institutions

and research groups to compile consensus sequence releases. There are several other

annotation mechanisms beyond NCBI and Ensembl, but each serve as a mechanism for –

omics researchers to reliably pull information regarding their gene, or genome, of interest

from a centralized database.

RefSeq Meta-Analysis

 An analysis of overall fluctuation of NCBI’s RefSeq annotations illuminates the

need for an efficient, automated, annotation mechanism. All RefSeq annotations spanning

all available organisms from a period of 2008 to 2015 were retrieved from NCBI’s FTP

change log and were clustered based upon record manipulation.

 An attempt was made to retrieve species specific previous RefSeq releases, but as

the releases are rather large, only the current release is available for download. As such

only changes in yearly time points across all organisms was able to be mined effectively.

9

A tool like Annow can now be used to complete the change in species specific releases

efficiently overtime, but presently only a broad overview of changes across all organisms

and all releases is possible.

In analysis of NCBI’s ReSeq change three types of record manipulations were

observed. Removed records, referred to in change logs as “permanently suppressed”,

which are removed from the collection entirely. Records under review, referred to as

“temporarily suppressed”, which may later shift to permanently suppressed or replaced.

And lastly, replaced values which are instances when an annotation is given a new

identifier, or in rare cases, merged or linked to an existing identifier.

In total over 11 million records were manipulated in some fashion over a 7 year

span, with the largest contributor being removed records. Over a 7 years span 6,523,212

ReSeq records were removed across 6 domains with a significant trend upward in 2015

(Figure 3). This data considered in the context of decreased sequencing cost at higher

throughput is logical. However, so much of this data has been generated within the past

12 months it is hard to say if a year like 2015, in which 3,309,116 records were removed,

is result of technological advances or a onetime curation measurement. Preliminary data

of the same assessment for 2016 (not shown) showed a continuation of the upward trend,

so it is reasonable to think that with more sequencers in more labs this upward tick is

closer to the norm than an aberration.

10

Figure 3. Logarithmic display of record manipulation over time shows

replacements remain steady, while removals and reviews trend in opposing

directions.

One would suspect that with such a large number of records removed, many

would also be replaced. A replacement occurs in the event that contrary evidence is

shown, and as shown previously, more data being generated presents a greater

opportunity to affirm or refute existing genetic models. However, what we see is that

replacement records remain fairly consistent over the 7 years span and are a relatively

small number comparative to the whole data set comprising only 1.3 % of the total. This

means that perhaps an annotation mechanism’s greatest feature would be identifying

sequences that are no longer relevant rather than those that require updating.

The above data was subset into only predicted coding and non-coding RNA

annotations. This was done to try and use NCBI’s predicted gene model, which takes into

account a variety of datasets to determine the most likely transcript. While data is

1

10

100

1000

10000

100000

1000000

10000000

2008 2009 2010 2011 2012 2013 2014 2015

R

ec
o

rd
s

RefSeq Record Alteration

Total Replaced Total Removed Total Under Review

11

theoretical, this was thought to be more stable and therefore more representative of an

overall trend in gene information.

When we look at this data again we see similar trends on a smaller scale.

Predicted RNA RefSeq records across 6 domains contained a total of 1,951,871

annotation manipulations. Of this nearly 2 million; 1,729,525 or 88.6 % of total

annotation change resided in removal. Only 64,110, or 3.2 %, records were replaced

(Figure 4).

Figure 4. Logarithmic display of record manipulation over time shows

replacements removals as the largest factor in record change. XR Under Review

data showed no result.

1

10

100

1000

10000

100000

1000000

2008 2009 2010 2011 2012 2013 2014 2015

R

ec
o

rd
s

Change in RefSeq Predicted RNA Annotations

XM Replaced XM Removed XM Under Review

XR Replaced XR Removed XR Under Review

12

There is also the nature of a record being “Under Review”, or temporarily

suppressed. An attempt was made to correlate reviews to removal or replacement to

identify what is the most likely course of action post review, but no trend was identified.

This suggest an internal mechanism at NCBI (i.e, availability, curation) that causes the

relationship of removal or replacement to be in at least some fashion separate from the

review process.

With so many record manipulations the question then becomes, how can we

utilize this information in an efficient, high impact manner to cross-reference our own

records, experiments, or databases to ensure we have the latest consensus data and

maintain concordance with our reference and annotations of choice?

Turning Static Annotations Dynamic

Annotating existing genetic data sets so that they reflect current genome

information is a problem that many who work in the –omics field face and is often solved

through custom one-off solutions that can be both costly, and time consuming. You may

find an annotation tool on a research group’s website and typically these are low

throughput tools specific to the group’s objective. Several open source annotation tools

are also available, but focus mainly on specific gene alterations leaving a broader of view

of genes absent. It is Annow’s aim to provide a mechanism to automate much of the

process of in-house gene annotation and make the alignment with consensus gene data

easily attainable whether the research involves a thousand records or several hundred

13

thousand. The application of which can be utilized with NCBI’s, Ensembl’s, or other

resources available information and applied to data types such as amino acid, nucleotide

or ribonucleotide sequences.

 This project provides researchers around the globe with a free, downloadable

program with which to compare local databases to a NCBI, Ensembl, or a reference

database of their choice in a highly efficient manner. Users may find this tool most useful

for curating large sequence databases yielding more accurate starting materials and

references and minimizing costly hours spent doing sequence analysis. This tool will also

prove useful for those with query heavy projects that run over a longer period of time

than is possible on the web.

The need for this arises because online sources such as NBCI and Ensembl

implement query restrictions to prevent any one user from making too many requests and

possibly overloading the system. For example, NCBI imposes a queue system when a user

is interacting with their web interface. A simple request of five sequences will take no less

than four minutes. This is done so that all users may use the shared resource without

bogging down the framework on which it runs. When a researcher chooses to build a

custom solution that interacts with NCBI’s web portal in an XML or REST manner these

limits are increased to three URL pings per second, and it is requested that large jobs be

run during non-peak hours 9PM to 5AM EST (Sayers, 2010). Surpassing these limits will

result in a ban for the user making the request.

By bringing the database off the web and into the local environment we eliminate

web based limits to the number of queries performed on a database and eliminate an

obstacle common to large scale analysis. Further, combining an offline approach with

14

NCBI’s available local tools means that we can achieve higher query limits while

maintaining the same algorithms commonly used in analysis. This means users can not

only identify database discrepancies on a larger scale, but track changes overtime as it

pertains to their personal research. This may assist in the identification of error patterns

and will certainly make large scale sequence validation more advantageous; the

implications of which can correspond with wherever research that utilizes sequencing is

present.

15

Chapter II

Materials and Methods

The programmatic design, dependencies, flow, run-options, data utilizations and

algorithms are outlined within this section. All source code and external utilities used to

develop source code will be provided in the appendix. Software development practices

were followed, though by nature implementations are constantly undergoing additions

and refinements. The project can be followed live on github

(https://github.com/ashbig/Annow).

Development Tools

Annow was developed using the Python programming language version 2.7 coded

in the Enthought Canopy Integrated Development Environment (IDE). Coding and style

conventions were followed according to the accepted PEP 8 Style Guide for Python Code

(Brandl, 2016). Annow’s Graphical User Interface (GUI) was developed in the same

IDE using the open source module wxPython. NCBI’s BLAST version 2.2.30 was

utilized for the compilation of BLAST databases (module makeblastdb) as well as local

alignments (module blastn, blastp). All associated libraries and imports used in Annow

can be found in the appendix. PyInstaller version 3.2 was used to bundle required

dependencies (blastn, blastp, makeblastdb, Python libraries, wxPython) into a single

16

executable file for distribution, and source code is available on github.com at

(https://github.com/ashbig/Annow).

Design Considerations

 Large scale sequence alignment and annotation modifications are most often done

on high performance computing clusters (HPC) that allow for faster computational

operations. This is because reading large files containing genetic sequences and

performing analysis, such as sequence alignments, can be computationally taxing and

therefore easiest to accomplish on systems typically much stronger than personal

computers. It was the goal of this project to allow users to run Annow without any prior

computational expertise. As such, it was designed on personal computer, and can be run

on a personal computer with no specific requirements.

 To achieve this goal programmatic functions used in Annow are conscious of the

amount of computational memory consumed so as not to overload a system. Input and

output files are read line by line, rather than reading entire files into computer memory, a

resource that when unavailable will halt systems. This process was made possible by

heavy use of Python 2.7 data structures, mainly dictionaries. Dictionaries provide a key

and value system where new, or previous, annotations, or sequences can serve as the key

or values. This enables only a small fraction of the total data (the annotation or sequence)

to be housed in a computer’s memory as oppose to most available tools which will

process the annotation and sequence relying on computational power over algorithmic

17

implementation. Annow leverages this capability to retrieve relevant sequences only

when needed, bringing gene annotation to the personal computer.

Programmatic Flow

Reference sequences and their corresponding annotations are made available by

NCBI, Ensembl and other groups through what is referred to as a File Transfer Protocol

site (FTP). Researchers can then access and download compressed files containing gene

sequences. In most instances the sequences will be too large to be contained in a single

file. As such, they split into several files containing a common file suffix (Figure 5). Each

file is in the common format type FASTA, which uses the “>” character to distinguish

sequence meta-data from the sequence itself.

18

Figure 5. Example of common directory and file structure containing the latest

RefSeq release. File suffixes remain consistent while prefixes denote the file.

 Annow requires that the user provide the location to this FTP site, the directory on

the ftp site in which the sequences are stored, as well as the file suffix (Figure 5). Using

the Python library for FTP transfers Annow downloads all files in the given FTP

directory to a user specified directory. Utilizing the Python library for file compression

and decompression Annow proceeds to decompress all downloaded files and begins

concatenating them into a single file. After concatenation is complete, all downloaded

files are removed from the system to maintain only the required storage volume.

 Should the user only wish to use Annow for its BLAST and annotation updating

capabilities, they are given the option of providing a local FASTA format file.

19

Additionally, users are required to give the operation a name (Figure 6). This name will

be used to segregate various runs of Annow and will be placed in a directory that’s

contains the operation name, date, hour and minute to allow users to track various

operations.

 Once the sequences that will be queried upon are ready, Annow performs a

system call using Python’s OS library to NCBI’s makeblastdb module which generates

BLAST databases from FASTA files specific to the method of analysis selected by the

user (protein or nucleotide). Upon completion the user is provided with a summary, both

printed in the GUI and maintained in a small local file residing in the user specified

directory. The summary information includes what type of database was created, the

name of the database, number of sequences in the database, as well as the total duration

in seconds the BLAST database took to be built.

20

Figure 6. Annow GUI. Instructions and specifications are contained within the appendix.

The user has several options for output which are parameter dependent. Annow

will always output a summary of the annotations it has found that require updating.

Additionally the user can chose to have a file containing alignments, which displays a

base by base local alignment graphic, as well as generate an updated FASTA file

containing only sequences which meet update criteria set by the user. Additional

parameters and specifications can be found in the appendix and are further described

below.

21

Runtime Options

Table 1. Annow Runtime Options

The various parameters a user can select and a brief explanation.

 In Annow analyses are separated by a name input by the user. The name of the

run is used to create a directory in the location designated by the user. The directory

created is appended with month, day, hour and minute to ensure that analyses are kept

separated (i.g, orf_protein-09-17-23-00). If either options is absent the program will halt

and prompt the user to enter a name appropriately.

 Query sequences can be either downloaded from a remote source, or input as a

local source. For remote downloads the user is asked to provide the ftp site (i.g,

Parameter Purpose

Subject The set of sequences to serve as the database. Local or Remote Source

Query The set of sequences to update annotations. Local source.

E-value The rate to reduce randomness of observed sequences.

% Match The cut-off value for which to display results.

Hits The number if possible matches to return for query sequences.

Protein Switches the method of analyses from nucleotide to protein.

Short Alters the program to accommodate sequences less than 30bp.

Alignments Displays molecule by molecule alignment.

22

ftp.ncbi.nlm.nih.gov/), the directory (i.g, /refseq/H_sapiens/mRNA_Prot/) and the file

suffix (i.g, rna.fna.gz). For local sequences, either subject or query, the expectation is that

the input will be in the FASTA format. Absent of all required query or a local sources the

program will halt and prompt the user to enter a name appropriately.

 Analyses can be evaluated with three parameters presented to the user. The first,

e-value, is a measure of randomness. For example, an e-value of 0.001 states that there is

a hundredth of a chance that the sequence shown is random. The second evaluation

operator is a cut-off percentage. This value is used to remove unwanted results from the

final output summary, as well as the updated FASTA and represents the overall

percentage identity of a given sequence. For example, if the user requests a cut-off of

99%, only results greater than 99% alignment match will appear in the summary and the

updated FASTA should the user request it. The last option is a value for the number of

results per sequence to display, if the user selects a value of 5, up to 5 matches in a given

database will be displayed.

 Annow provides two additional methods of analysis beyond the default of

nucleotide, as well as one additional method of viewing beyond a simple summary. This

first method is protein analysis, which leverages NCBI’s blastp program. If selected,

Annow will translate the established subject and query from nucleotide sequences to

amino acid sequences. This enables the user to determine if there is a possible change in

the coding region itself. The second method of analysis is referred to as “short” and

leverages NCBI’s ability to alter its internal algorithm to blast short sequences, which is

especially valuable for shRNA or crisper/cas9 analysis. The additional method of analysis

23

viewing is an alignment file which displays the molecule by molecule alignment allowing

the user to view alterations with more granularity.

PlasmID Datasets

 To validate Annow’s performance and future applications data from 243,151

plasmid sequences were retrieved from The Dana Farber/Harvard Cancer Center DNA

Resource Core (DF/HCC) PlasmID Database (Zu, 2007). The DF/HCC DNA Resource

Core is plasmid storage and distribution facility that intakes bacterial plasmids from

various genome projects and publications. Their catalog has grown over time to provide

several iterations of most protein coding human genes as well as their corresponding

RNA interference (RNAi) constructs and currently houses data on over 378,406

constructs.

The plasmid sequences retrieved from the DF/HCC correspond to cDNA, short

hairpin RNA (shRNA), and Human ORFeome constructs (ORF) and are limited to only

those that are regard human genes and are currently available for distribution. The

sequences provided with these constructs are derived at the time of publication or intake.

Verification is done by the depositing group prior to intake and distribution by the

DF/HCC and carried out by end read sequencing. Prior to distribution a plasmid leaving

the DF/HCC will be sequenced once more and compared to the depositor provided

sequence to ensure integrity. Should a construct fail this comparative sequencing

analysis it is removed from circulation. This process does verify that the sequence

24

matches depositor information. However, as this sequencing data is derived at intake, it

may or may not accurately reflect the genes current day representation.

As constructs distributed by the DF/HCC undergo sequencing when arriving and

prior to leaving the facility, it is believed that only a small amount of constructs relative

to the entirety of the collection will require additional review. However, if only a small

fraction of constructs across the collection can undergo annotation update or removal

form circulation the non-profit organization can save time and labor hours and meet their

global missions more effectively.

As the DF/HCC’s data spans many years, releases, and a variety of annotations, it

serves as an ideal test case. Overall programmatic performance can be assessed by

viewing run times for alignments, database creation and various methods of analyses.

Most sequencing, alignment, or even small lab projects will fall well below a plasmid

distribution center’s needs providing Annow with an excellent stress test. Further a

successful demonstration of Annow can show justification for its application beyond just

the tested datasets.

25

Chapter III

Results

DF/HCC data shows a majority of sequences maintain their annotation, but many

should be reviewed or entirely removed. The datasets used provide validation of the

given method be it nucleotide, protein or short sequence analyses and is described in

detail below.

DF/HCC Annotation Curation

 Constructs from various depositors were aggregated from the DF/HCC DNA

Resource Core PlasmID database and analyzed for nucleotide similarity. Each deposit

was analyzed so that it may be assessed against the correct reference distribution and

concordance can then be returned to the DF/HCC to make an evaluation on construct

distribution and curation.

cDNA Analysis

The DF/HCC currently has 57, 031 human cDNA constructs, of which 41,217 are

available for distribution. The remaining 15, 604 are likely to have been removed after

failed distribution attempt with errors discovered by either the DF/HCC or the receiver.

To correlate the cDNA plasmid sequences to current annotations the latest CCDS

26

sequence release was downloaded using Annow from the CCDS FTP server. The

collection contains 31,394 sequences and the FASTA files were downloaded in just under

1 minute and 30 seconds and the BLAST database compiled in approximately 1.3

seconds. BLAST analysis with the DF/HCC dataset was completed with a summary in

just over 50 seconds.

Of the 41,217 nucleotide analyzed sequences 38,988 showed a greater than 99 %

match to a reference sequence in the CCDS. 814 matched at greater than 95%, 236

matched between 90-95%, 103 matched between 85-90%, 69 matched between 80-85%,

11 matched between 75-80%, 13 fell below 75% matches and 1,013 matched no records

in the CCDS (Figure 7).

Figure 7. 41,217 cDNA sequences aligned to the latest CCDS release 18.

Percentage of sequences aligned was high, while 5.5 % of the DF/HCC

collection showed significant deviation.

0

10

20

30

40

50

60

70

80

90

100

> 99 99-95 95-90 90-85 85-8 80-75 <75 No Match

%
 O

f
A

n
al

yz
ed

 S
eq

u
en

ce
s

% Match to CCDS

cDNA % Match To CCDS 18

27

The steady decrease in sequence affinity is logical considering some clones from

this collection are over a decade in age. To assess if the majority of constructs producing

no match reside in these older distributions a smaller subset from a single source, The

Mammalian Gene Collection (MGC), which was deposited over a decade ago.

Over half of the DF/HCC cDNA constructs, 24,065 are MGC and represent some

of the earliest DF/HCC distributions. The MGC’s goal, a trans-National Institute of

Health initiative, is to provide researchers with sequences validated full length cDNA’s

(MGC, 2004). The DF/HCC DNA Resource Core’s goal is to distribute these constructs

for as long as they remain accuracy. All 24, 065 MGC constructs were assessed by

Annow for nucleotide concordance against the latest CCDS distribution (Figure 8). More

than 80 % of these constructs aligned at greater than 99%, over 13% fewer than the total

collection. Over 14 % MGC constructs showed no match to the current CCDS, an

anticipated result due to the age of the collection.

28

Figure 8. While 83.1 % of MGC constructs maintained their nucleotide integrity,

less than 3 percent maintained alignment to the latest coding sequences.

Accounting for matches below 90% Annow has shown that approximately 6% of

the available stock should be immediately sequestered from circulation as a result of the

cDNA analysis alone. This prospective analysis will prevent the core from having to

retrieve, validate and remove constructs manually. Further, the more constructs are

handled the greater the opportunity for contamination rises via bench errors.

Preemptively removing constructs that are no longer accurate gene representations

reduces this risk and the stress of freezing and thawing constructs increasing their

longevity.

0

10

20

30

40

50

60

70

80

90

> 99 99-95 95-90 90-85 85-8 80-75 <75 No Match

%
 O

f
A

n
al

yz
ed

 S
eq

u
en

ce
s

% Match to CCDS

MGC Nucleotide % Match To CCDS

29

ORF Analysis

The ORFeome Collaboration is a collection of many groups including the MGC,

DF/HCC Resource Core, Wellcome Trust Sanger Institute, Dana Farber Cancer Institute-

Center for Cancer Systems Biology and several others whose goal is to provide

constructs that house the protein-coding region of genes only. Unlike the MGC

collection, 5’ and 3’ untranslated regions (UTR) are purposefully omitted so that

constructs are expression ready.

In their recent publication the ORFeome collaboration details their latest 8.1

release which houses 12,692 sequences covering 11,149 genes and the data set was

retrieved from http://www.orfeomecollaboration.org (Wiemann, 2016). This release then

serves as the best set to update annotations regarding DF/HCC’s previous ORF deposits

using codon analysis (blastp). The ORFeom collaboration has deposited a total of 49,791

Human ORF constructs, of which 5,701 have been removed from distribution. The

remaining 44, 090 were correlated to the latest Human ORFeome release, 8.1 (Tools and

Data, 2016).

Only 1.76% of all constructs analyzed in the DF/HCC ORF collection aligned at a

percentage below 99.0. This includes the range from 98.99 to 0.0, with a total of 727 total

constructs. 178 of this 727 showed an affinity greater than 95, while only 52 fellow

below a 75% match to the current ORF release (Figure 9). 4,131 did fail to match entirely

and as the DF/HCC maintains all collections form the ORF, this number likely reflects

the number of discontinued sequences across all ORF distributions.

30

Figure 9. 44, 090 DF/HCC ORF constructs aligned to ORF 8.1. Almost

all constructs analyzed showed significant matches at the protein level, or

failed to match entirely with only 1.76% falling out of these two

categories.

As query and subject sequences were translated prior to analyses the database

compiled in an increased time of 3 minutes. The number of sequences analyzed by

BLAST was the largest of the group and with translation of input sequences total

analyses completed in 1 hour and 3 minutes.

shRNA Analysis

 The DF/HCC distributes over 155, 000 shRNA constructs, 79,960 have

human targets and 77,884 are mouse. shRNA, or RNAi, constructs are utilized heavily in

the characterization of gene functions through post-translation silencing and by nature are

significantly smaller than most cDNA’s and ORF’s averaging only 21 base pairs in

0

10

20

30

40

50

60

70

80

90

100

> 99 99-95 95-90 90-85 85-8 80-75 <75 NoMatch

%
 O

f
A

n
al

yz
ed

 S
eq

u
en

ce
s

% Match to Orf 8.1

ORF Constructs % Match To ORF 8.1

31

length. This means the RNAi must have a high affinity to be effective and leaves little

room for error during Sanger sequencing validation. Sequencing hairpin regions is

notoriously difficult (Kieleczawa, 2005) and could be the contributing factor for such a

large number of unavailable constructs (13,613). As such in vivo methods may provide

the DF/HCC with a more reasonable method of annotation update.

Figure 10. Illustration of the hairpin structure seen in shRNA constructs. For

sequence verification flanking sequences are removed, with only the loop (C)

remaining.

To verify the distributed number of constructs, human and mouse shRNA’s target

regions (Figure 8, C) were aligned to the their respective NCBI RefSeq mRNA release. It

was hoped that Annow would be able to effectively analyze these short fragments to

determine sequence similarity percentage. However, only those sequences which

matched the reference at 100% were able to be identified and at a greatly increased

32

runtime. The extended run time is due to the algorithmic change in NCBI’s alignment of

short sequences, requiring each sequence to be aligned many times before an eventual

exact match is selected. This increased run time may not be advantageous for analyzing

the integrity of smaller data sets as a mechanism for shRNA biological reagent analysis

exists in the form of UP-TORR (Yu, 2013).

Of the 79,960 human shRNA target regions analyzed 27, 303 showed perfect

matches and maintained 100% affinity to their target. Of the 77, 884 mouse constructs

analyzed 43,770 maintained their perfect target affinity over time. As this analyses only

determines if the target is 100% accurate, 65.85 and 43.8 % of human and mouse

constructs respectively should be further analyzed for data integrity to determine deposit

accuracy and if the constructs still hold a high enough value of concordance to be

effective.

While Annow cannot quickly and effectively assess non-perfect matches at this

time, the observations derived from this shRNA analysis will inform future algorithmic

development. As previously mentioned, Sanger analysis of hairpin constructs can require

special protocols to separate the pinned structure making their verification and analyses

more time consuming than longer constructs distributed by the core facility. A fast and

accurate desktop method for technicians to quickly verify a targets validity post

sequencing and prior to distribution would represent a cost and labor savings for the

facility and with further refinement Annow could effectively meet this need.

33

Chapter IV

Discussion

It was Annow’s aim to provide a mechanism to automate much of the process of

in house gene annotation and make the alignment with consensus gene data easily

attainable whether the research involves a thousand records or several hundred thousand.

The results shown have verified not only the performance viability, but the ability of

Annow to analyze and update sequences of nucleotides and proteins independent of

sequence length. The application of which can be utilized with NCBI’s, Ensembl’s, or

other resources available information and applied to data types such as amino acid,

nucleotide or ribonucleotide sequences.

As shown by the DF/HCC’s cDNA data set, Annow can handle the common

project of nucleotide sequence alignment on a large scale at high speeds. It’s easy to use

and offline nature can provide researchers with a common blast utility on their personal

computers. The cDNA analysis of both MGC and other cDNA clones demonstrates

Annow’s ability to unify sequence annotations regardless of origin. Aside from providing

immediate gene verification with the latest annotation across a variety of sources, Annow

can also be used to segregate legitimate sequencing results from faulty reads. The

formatting of results in both the summary, and updated FASTA will save countless file

manipulation operations that can be very quick for those with programming knowledge,

but incredibly time consuming through manual manipulations.

34

The ORF dataset demonstrates Annow’s ability to analyze protein sequences

effectively and even large dataset analyses can be accomplished in just over an hour

allowing users more focused on protein interactions to easily visualize their sequences

similarity at the amino acid level. This will also help organizations like the DF/HCC

determine CDS percentage matches allowing the end user of their distribution network to

shop their catalog more effectively. Further, Annow’s translation of nucleotide sequences

can serve as a utility in its own right. Rather than copy and paste many sequences into a

web source to convert nucleotide to amino acid sequences, a user could simply run

Annow and the translated sequence file is provided to the user.

Annow’s ability to analyze short sequences was shown to be inadequate using

shRNA constructs, but these observations have helped decide future development

directions. Once implanted accurately the ability to analyze short sequences can be

expanded to other applications such as primer alignment, crisper/cas9 and analysis of off

target NGS results. If this implementation is achieved using simple string matching,

rather than NCBI’s short-blast method it could dramatically reduce the runtime for these

types of analyses.

The inclusion of sequence alignments in Annow was done so that in addition to

annotation updating, the tool could also serve as an entirely offline version of BLAST.

Easily distributed via a zip file and runnable by a simple double-click users have grown

accustom to. This paired with the ability to easily segregate results in a straight forward

manner allows for a wide range of users and it is the hope that many beyond the

repository this tool was initially intended for will find Annow useful.

35

The development of Annow will contribute to the curation of over 170,000

plasmid sequences already in distribution by the DF/HCC. This will directly result in a

cost and time resource saving in addition to providing their end users with a more reliable

distribution center.

In all this project provides researchers around the globe with a free, downloadable

program with which to compare local databases to a NCBI, Ensembl, or a reference

database of their choice in a highly efficient manner. Users may find this tool most useful

for curating large sequence databases yielding more accurate starting materials and

references and minimizing costly hours spent doing sequence analysis. This tool will also

prove useful for those with query heavy projects that run over a longer period of time

than is possible on the web.

Perhaps the most exciting part of Annow will be its open source, heavily

documented, easy to modify nature. While designed to be a tool for all users, by making

all sources available online it is expected that the user community will find several more

applications and modify source code as need. This methodology has help many programs

blossom from single developer operations such as Annow, to large community driven

projects that meet many needs beyond original intentions. For now Annow fills a very

necessary gap in the informatics community, but with continued development has the

potential to fill many more.

36

Appendix A

Annow User Manual

Annow version 1.0 Usage Manual

This software is intended to create NCBI BLAST nucleotide databases

from Local and Remote Sources for local querying.

This software can be used to update FASTA files with new

annotations, extract alignment metrics, and view alignments.

USAGE:

Run Name - Used for file and directory naming (i.e FASTA files,

results). Spaces will be replaced by '_'.

Additionally, the current Month, Day, Hour, and Minute will be added

to your run name to further distinguish experiments.

example usage: "all_plamids_2013"

Run Directory - Select a local root directory to deposit results. A

new directory containing your run name and date will

be created within and output will be directed here.

prompted usage example: C:\Users\name\Desktop

FTP Site - If using a remote site enter the ftp url.

example usage: ftp.ncbi.nlm.nih.gov

FTP Directory - If using a remote site, enter the directory which

the files you wish to download are located.

example usage: /refseq/H_sapiens/RefSeqGene/

FTP Suffix - If using a remote site a file suffix is required. The

extension of this file should .gz and all

files ending in the provided suffix will be downloaded, be specific.

example usage for a single file: refseqgene1.genomic.fna.gz

example usage for multiple files: .genomic.fna.gz

example usage for all files: .gz

Local FASTA (subject) - You may use a local .FASTA rather than

remote. The file must be conventionally formatted

to build correctly and will serve as your BLAST database (subject).

37

prompted usage example: C:\Users\name\Desktop\mysubject.fasta

Local FASTA (query) - A fasta file that you would like to compare

is required and must be conventionally formatted.

prompted usage example: C:\Users\name\Desktop\myquery.fasta

E-Value - This describes the number of hits one can expect to see by

chance. Any decimal value can be entered,

the higher values increase runtime.

default value = 0.001

usage: 0.0002

% Match - This must be a % value and will be used in conjunction

with the following Update FASTA parameter.

Any values BELOW this threshold will have annotation updated.

default value = 99.00

usage : 75.00

Hits - This must be an whole number and will determine how many

results to return while running BLAST.

A greater number of hits requested increases run time.

default value = 1

usage = 2

Protein - When checked will translated subject and query sequences

prior to run, analyzing amino acid

sequences rather than nucleotide.

Short - Will run blast on short sequences (<30 bp).

Update FASTA - When this box is checked a FASTA file containing only

updated sequences will be generated

in the results directory. They will be annotated by > OLD ANNOTATION

| NEW ANNOTATION

default = unchecked

Alignments - This process will run blast again, this time generating

a text file with local sequence alignments.

Selecting this will increase run by 2 fold.

default = unchecked

38

RUNNING Annow:

When all parameters are entered correctly press RUN to begin. This

process is done concurrently

and the UI may become unresponsive during data processing. However

any errors will be reported in screen,

and absent of this you may assume the process is ongoing. Depending

on usage operations may take several hours or longer.

Version 1.0 is a stable release and new version can be found at

https://github.com/ashbig/Annow/

Copyright (C) <2016> <Ashkan Bigdeli>

<ashbigdeli@gmail.com>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General

Public License as published by the Free Software Foundation, either

version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

See <http://www.gnu.org/licenses/>

39

Append B

Graphical User Interface

1. # Created by Ashkan Bigdeli 2016
2. # Annow.py
3. # Main UI and calls for data processing
4.
5. # wx is external UI module
6. import wx, os
7. from src import pid_etr
8. from time import strftime
9.
10.
11. class ManualWindow(wx.Frame):
12. #for manual page display
13. def __init__(self):
14. """Constructor"""
15. wx.Frame.__init__(self, None, title="Annow User Manual", size=(720, 5

00))
16. panel = wx.Panel(self)
17. txt =wx.TextCtrl(panel, size=(700,450), style=wx.TE_MULTILINE | wx.TE

_READONLY |wx.EXPAND)
18. man = pid_etr.resource_path("README.TXT")
19. with open(man) as readme:
20. for line in readme:
21. txt.AppendText(line)
22.
23. class MainWindow(wx.Frame):
24.
25. def __init__(self,parent, title):
26. wx.Frame.__init__(self,parent,title = title, size = (1300,650))

27.
28. panel = wx.Panel(self, -1)
29. panel.SetBackgroundColour('#ABABAB')
30.
31. #set up standard menu options
32. filemenu= wx.Menu()
33. menuManual= filemenu.Append(wx.NewId(), "Manual"," Usage Guide")
34. menuAbout= filemenu.Append(wx.ID_ABOUT, "&About"," Information about thi

s program")
35. menuExit = filemenu.Append(wx.ID_EXIT,"E&xit"," Terminate the program")

36.
37. #creating and binding the menu
38. menuBar = wx.MenuBar()
39. menuBar.Append(filemenu,"&Menu") # Adding the "filemenu" to the MenuBar

40. self.SetMenuBar(menuBar)
41.
42. self.Bind(wx.EVT_MENU, self.OnManual, menuManual)
43. self.Bind(wx.EVT_MENU, self.OnExit, menuExit)
44. self.Bind(wx.EVT_MENU, self.OnAbout, menuAbout)

40

45.
46. #fonts
47. entry_font = wx.Font(12, wx.MODERN, wx.NORMAL, wx.NORMAL)
48. header_font = wx.Font(12,wx.MODERN, wx.NORMAL, wx.BOLD)
49.
50.
51. #set up UI for all run information including event binding, sizing
52. run_info = wx.StaticText(panel, label = "Enter Your Run Information")
53. run_info.SetFont(header_font)
54.
55. #run name layout and bindings
56. lblrun = wx.StaticText(panel, label = "Run Name: ", size=(175, -1))
57. lblrun.SetFont(entry_font)
58. self.editrun = wx.TextCtrl(panel, value="", size=(326, -1))
59. ri_sizer = wx.BoxSizer(wx.HORIZONTAL)
60. ri_sizer.AddSpacer(10)
61. ri_sizer.Add(lblrun)
62. ri_sizer.Add(self.editrun)
63.
64. #run directory layout and bindings
65. lblrun_dir = wx.StaticText(panel, label = "Run Directory: ", size=(175,

-1))
66. lblrun_dir.SetFont(entry_font)
67. self.editrun_dir = wx.TextCtrl(panel, value = "", size=(326, -1))
68. self.dir_button = wx.Button(panel, label="Directory")
69. self.dir_button.Bind(wx.EVT_BUTTON, self.opendir)
70. rd_sizer=wx.BoxSizer(wx.HORIZONTAL)
71. rd_sizer.AddSpacer(10)
72. rd_sizer.Add(lblrun_dir)
73. rd_sizer.Add(self.editrun_dir)
74. rd_sizer.AddSpacer(10)
75. rd_sizer.Add(self.dir_button)
76.
77. #ftp layout and bindings
78. ftp_info = wx.StaticText(panel, label = "Enter FTP Information")
79. ftp_info.SetFont(header_font)
80.
81. self.ftp_site = wx.StaticText(panel, label = "FTP Site: ", size=(175, -

1))
82. self.ftp_site.SetFont(entry_font)
83. self.edit_ftp = wx.TextCtrl(panel, value = "", size=(326, -1))
84. ftp_sizer=wx.BoxSizer(wx.HORIZONTAL)
85. ftp_sizer.AddSpacer(10)
86. ftp_sizer.Add(self.ftp_site)
87. ftp_sizer.Add(self.edit_ftp)
88.
89. ftp_dir = wx.StaticText(panel, label = "FTP Directory: ", size=(175, -

1))
90. ftp_dir.SetFont(entry_font)
91. self.edit_ftp_dir = wx.TextCtrl(panel, value = "", size=(326, -1))
92. ftp_dir_sizer=wx.BoxSizer(wx.HORIZONTAL)
93. ftp_dir_sizer.AddSpacer(10)
94. ftp_dir_sizer.Add(ftp_dir)
95. ftp_dir_sizer.Add(self.edit_ftp_dir)
96.
97. ftp_suffix = wx.StaticText(panel, label = "FASTA Suffix: ", size=(175, -

1))
98. ftp_suffix.SetFont(entry_font)
99. self.edit_suffix = wx.TextCtrl(panel, value = "", size=(326, -1))
100. ftp_suffix_sizer=wx.BoxSizer(wx.HORIZONTAL)
101. ftp_suffix_sizer.AddSpacer(10)

41

102. ftp_suffix_sizer.Add(ftp_suffix)
103. ftp_suffix_sizer.Add(self.edit_suffix)
104.
105.
106. #local fasta layout and bindings
107. fasta_info = wx.StaticText(panel, label = "Or Select a Subject D

atabase")
108. fasta_info.SetFont(header_font)
109. local_fasta = wx.StaticText(panel, label = "Local FASTA: ", size

=(175, -1))
110. local_fasta.SetFont(entry_font)
111. self.edit_fasta = wx.TextCtrl(panel, value = "", size=(326, -

1))
112. self.subject_button = wx.Button(panel, label="Subject")

113. self.subject_button.Bind(wx.EVT_BUTTON, self.openfile)
114.
115.
116. local_fasta_sizer=wx.BoxSizer(wx.HORIZONTAL)
117. local_fasta_sizer.AddSpacer(5)
118. local_fasta_sizer.Add(local_fasta)
119. local_fasta_sizer.Add(self.edit_fasta)
120. local_fasta_sizer.AddSpacer(10)
121. local_fasta_sizer.Add(self.subject_button)
122.
123.
124. # query fasta layout and bindings
125. query_info = wx.StaticText(panel, label = "Local Query Database"

)
126. query_info.SetFont(header_font)
127. query = wx.StaticText(panel, label = "Local FASTA: ", size=(175,

 -1))
128. query.SetFont(entry_font)
129. self.edit_query = wx.TextCtrl(panel, value = "", size=(326, -

1))
130. self.query_button = wx.Button(panel, label="Query")
131. self.query_button.Bind(wx.EVT_BUTTON, self.openfile)
132. query_sizer=wx.BoxSizer(wx.HORIZONTAL)
133. query_sizer.AddSpacer(5)
134. query_sizer.Add(query)
135. query_sizer.Add(self.edit_query)
136. query_sizer.AddSpacer(10)
137. query_sizer.Add(self.query_button)
138. query_sizer.AddSpacer(5)
139.
140.
141.
142. #add all run, ftp, local/remote, query to a single sizer for UI

143. info_sizer=wx.BoxSizer(wx.VERTICAL)
144. info_sizer.Add(run_info)
145. info_sizer.AddSpacer(10)
146. info_sizer.Add(ri_sizer)
147. info_sizer.AddSpacer(10)
148. info_sizer.Add(rd_sizer)
149. info_sizer.Add(ftp_info)
150. info_sizer.AddSpacer(10)
151. info_sizer.Add(ftp_sizer)
152. info_sizer.AddSpacer(10)
153. info_sizer.Add(ftp_dir_sizer)
154. info_sizer.AddSpacer(10)

42

155. info_sizer.Add(ftp_suffix_sizer)
156. info_sizer.AddSpacer(10)
157. info_sizer.Add(fasta_info)
158. info_sizer.Add(local_fasta_sizer)
159.
160. sbox = wx.StaticBox(panel, -1, 'Query Info:')
161. sboxSizer = wx.StaticBoxSizer(sbox, wx.VERTICAL)
162. sboxSizer.Add(info_sizer,0,wx.EXPAND, 200)
163.
164.
165. # set up run options including sizing, event bindings
166. eval_in = wx.StaticText(panel,label ='E-Value:')
167. self.edit_eval= wx.TextCtrl(panel,value="0.001",size=(45,-1))
168. eval_box = wx.BoxSizer(wx.HORIZONTAL)
169. eval_box.AddSpacer(5)
170. eval_box.Add(eval_in)
171. eval_box.Add(self.edit_eval)
172.
173. self.num_hits = wx.StaticText(panel,label ='# Hits:')
174. self.hits = wx.SpinCtrl(panel, 1, min=1, max = 5,size=(45,-1))
175. self.hits.SetValue(1)
176. hits_box = wx.BoxSizer(wx.HORIZONTAL)
177. hits_box.AddSpacer(5)
178. hits_box.Add(self.num_hits)
179. hits_box.Add(self.hits)
180.
181. self.percent_match = wx.StaticText(panel,label ='% Match:')
182. self.match= wx.TextCtrl(panel,value="0.001",size=(45,-1))
183. self.match.SetValue("99.0")
184. match_box = wx.BoxSizer(wx.HORIZONTAL)
185. match_box.AddSpacer(5)
186. match_box.Add(self.percent_match)
187. match_box.Add(self.match)
188.
189. self.update = wx.CheckBox(panel, -1, 'Update FASTA')
190. self.show_align= wx.CheckBox(panel,-1, 'Alignments')
191. self.show_align.Bind(wx.EVT_CHECKBOX, self.alignment_warning)
192.
193.
194. self.pblast = wx.CheckBox(panel, -1, 'Protein')
195. self.short = wx.CheckBox(panel, -1, 'Short')
196.
197.
198. # add run options to a sizer for layout managment

199. options = wx.BoxSizer(wx.HORIZONTAL)
200. options.AddSpacer(2)
201. options.Add(eval_box)
202. options.AddSpacer(11)
203. options.Add(match_box)
204. options.AddSpacer(11)
205. options.Add(hits_box)
206. options.AddSpacer(11)
207. options.Add(self.pblast)
208. options.AddSpacer(11)
209. options.Add(self.short)
210. options.AddSpacer(11)
211. options.Add(self.update)
212. options.AddSpacer(10)
213. options.Add(self.show_align)
214.

43

215. #aggreagate query info and options into one sizer for layout man
agment

216. sbox2 = wx.StaticBox(panel, -1, 'Subject Info:')
217. sboxSizer2 = wx.StaticBoxSizer(sbox2, wx.VERTICAL)
218. sboxSizer2.Add(query_info)
219. sboxSizer2.AddSpacer(10)
220. sboxSizer2.Add(query_sizer)
221. sboxSizer2.AddSpacer(20)
222.
223.
224. sbox3 = wx.StaticBox(panel, -1, 'Options:')
225. sboxSizer3 = wx.StaticBoxSizer(sbox3, wx.HORIZONTAL)
226. sboxSizer3.Add(options)
227. #aggregate all run panels and results panel and options into sin

gle panel
228.
229. run_sizer= wx.BoxSizer(wx.VERTICAL)
230. run_sizer.Add(sboxSizer, wx.ALIGN_CENTER)
231. run_sizer.AddSpacer(10)
232. run_sizer.Add(sboxSizer2)
233. run_sizer.AddSpacer(10)
234. run_sizer.Add(sboxSizer3)
235. run_sizer.AddSpacer(20)
236. self.run_button = wx.Button(panel, label="Run",size=(100,50))
237. self.run_button.Bind(wx.EVT_BUTTON,self.run)
238. run_sizer.Add(self.run_button,0,wx.ALIGN_CENTRE)
239. self.result_box = wx.TextCtrl(panel, size=(600,500), style=wx.TE

_MULTILINE | wx.TE_READONLY |wx.HSCROLL)
240.
241.
242. #set layout for run and result panels
243. main_sizer=wx.BoxSizer(wx.HORIZONTAL)
244. main_sizer.AddSpacer(25)
245. main_sizer.Add(run_sizer,0,wx.ALIGN_LEFT,wx.EXPAND)
246. main_sizer.AddSpacer(25)
247. main_sizer.Add(self.result_box,0,wx.ALIGN_RIGHT,wx.EXPAND)
248.
249.
250. layout_sizer=wx.BoxSizer(wx.VERTICAL)
251. layout_sizer.AddSpacer(50)
252. layout_sizer.Add(main_sizer,1,wx.EXPAND)
253. layout_sizer.AddSpacer(50)
254.
255.
256. #set layout and display UI
257. self.SetSizer(layout_sizer)
258. self.Centre()
259. self.Show()
260.
261. # Menu Item events
262. def OnAbout(self,e):
263. # Create a message dialog box
264. dlg = wx.MessageDialog(self, "Annow version 1.0 Gene Annotation

Software\nCreated and maintained by Ashkan Bigdeli\nFree to use and distribute\n
Source code and the latest version can be found on Github\nhttps://github.com/as
hbig/Annow/", "Annow", wx.OK)

265. dlg.ShowModal() # Shows it
266. dlg.Destroy() # finally destroy it when finished.
267.
268. def OnManual(self,e):
269. # Create a message dialog box

44

270. man_page = ManualWindow()
271. man_page.Show()
272.
273.
274. def OnExit(self,e):
275. self.Close(True) # Close the frame.
276.
277. # GUI Events
278. def openfile(self, event):
279. dlg = wx.FileDialog(self, "Choose a file", os.getcwd(), "", "*.*"

, wx.OPEN)
280. label = event.GetEventObject().GetLabel()
281. if dlg.ShowModal() == wx.ID_OK:
282. path = dlg.GetPath()
283. if label == "Subject":
284. self.edit_fasta.SetValue(path)
285. if label == "Query":
286. self.edit_query.SetValue(path)
287. dlg.Destroy()
288.
289. def opendir(self, event):
290. dlg = wx.DirDialog(self, "Choose a directory:", style=wx.DD_DEFA

ULT_STYLE | wx.DD_NEW_DIR_BUTTON)
291. label = event.GetEventObject().GetLabel()
292. if dlg.ShowModal() == wx.ID_OK:
293. if label == "Directory":
294. self.editrun_dir.SetValue(dlg.GetPath())
295. dlg.Destroy()
296.
297.
298. def alignment_warning(self,e):
299. if self.show_align.IsChecked():
300. dlg = wx.MessageDialog(self, 'Generating Alignments Will Inc

rease Run Time 2x!', 'Annow 1.0', wx.OK|wx.ICON_INFORMATION)
301. dlg.ShowModal()
302. dlg.Destroy()
303.
304. # Data processing event
305. def run(self, event):
306. run_name = self.editrun.GetValue()
307. run_name = run_name.replace(" ", "_")
308. run_dir = self.editrun_dir.GetValue()
309. ftp_url = self.edit_ftp.GetValue()
310. ftp_dir = self.edit_ftp_dir.GetValue()
311. ftp_suffix = self.edit_suffix.GetValue()
312. local_subject = self.edit_fasta.GetValue()
313. query_db = self.edit_query.GetValue()
314. evalue = self.edit_eval.GetValue()
315. hit_val = self.hits.GetValue()
316. alignments = self.show_align.GetValue()
317. update_fasta = self.update.GetValue()
318. match_val = self.match.GetValue()
319. protein = self.pblast.GetValue()
320. short_blast = self.short.GetValue()
321.
322. #store file name for updating fasta if protein alignments are do

ne
323. query_orig = self.edit_query.GetValue()
324.
325. #check to see if we have input from the user
326. if len(run_name) < 1:

45

327. self.editrun.SetValue("You Must Enter A Run Name!")
328. return
329. if len(run_dir) < 1:
330. self.editrun_dir.SetValue("You Must Enter An Output Director

y!")
331. return
332. if len(ftp_url) <1 or len(ftp_dir) <1 or len(ftp_suffix) < 1:
333. if len(local_subject) < 1:
334. self.edit_ftp.SetValue("You Must Enter Remote or Subject

 Database Completely!")
335. return
336. if len(query_db) < 1:
337. self.edit_query.SetValue("You Must Enter A Query FASTA!")
338. return
339.
340.
341. #display run params for user
342. self.result_box.AppendText("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")   
343.         self.result_box.AppendText("\n\nRUN PARAMETERS:\n")   
344.         self.result_box.AppendText("Run Name: " + run_name +"\n")   
345.         self.result_box.AppendText("Run Directory: " + run_dir +"\n")   
346.         self.result_box.AppendText("FTP Site: " + ftp_url + "\n")   
347.         self.result_box.AppendText("FTP Directory: " + ftp_dir + '\n')   
348.         self.result_box.AppendText("FTP File Suffix: " + ftp_suffix + '\

n')   
349.         self.result_box.AppendText("Local Subject DB: " + local_subject 

+ '\n')   
350.         self.result_box.AppendText("Query Database: " + query_db + '\n')

   
351.         self.result_box.AppendText("Blast E-Value: " + evalue + '\n')   
352.         self.result_box.AppendText("Match Criteria for Updating: " + str

(match_val) + '\n')           
353.         self.result_box.AppendText("Sequence Hits: " + str(hit_val) + '\

n')   
354.         self.result_box.AppendText("Generate Alignments: " + str(alignme

nts) + '\n')                  
355.         self.result_box.AppendText("Update Input Query: " + str(update_f

asta) + '\n\n')           
356.         self.result_box.AppendText("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")   
357.
358. # make run specific directory
359. time = strftime("-%m-%d-%H-%M")
360. new_run_path = os.path.join(run_dir,(run_name + time))
361. os.mkdir(new_run_path, 0755)
362.
363. #if ftp, download, unzip, concatenate and generate a file fasta

file
364. if len(local_subject) < 1:
365.
366. self.result_box.AppendText("Downloading FASTA files...\n")
367. dwnld_msg = pid_etr.download(ftp_suffix, ftp_url, ftp_dir, n

ew_run_path)
368. self.result_box.AppendText(dwnld_msg + "\n")
369. if "error" in dwnld_msg:
370. return
371.
372. self.result_box.AppendText("Unzipping Downloaded FASTA's...\

n")
373. print new_run_path

46

374. unzip_msg = pid_etr.unzip(new_run_path)
375. self.result_box.AppendText(unzip_msg + "\n")
376. if "error" in unzip_msg:
377. return
378.
379. self.result_box.AppendText("Removing Intermmediate Files...\

n")
380. remove_msg = pid_etr.remove(ftp_suffix, new_run_path)
381. self.result_box.AppendText(remove_msg + "\n")
382. if "error" in remove_msg:
383. return
384.
385. self.result_box.AppendText("Concatinating Files...\n")
386. concat = pid_etr.concat_fasta(run_name, new_run_path)
387. concat_msg = concat[0]
388. self.result_box.AppendText(concat_msg + "\n")
389. if "error" in concat_msg:
390. return
391. local_subject= concat[1]
392.
393. self.result_box.AppendText("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")   
394.            
395.         blast_task = ""   
396.         if short_blast:   
397.             blast_task = "-task blastn-short"   
398.         db_type = "nucl"   
399.         blast_type = "blastn"   
400.         if protein:   
401.             db_type = "prot"   
402.             blast_type="blastp"   
403.             if short_blast:   
404.                 blast_task = "-task blastp-short"   
405.             run_name = run_name + '.' + db_type   
406.             self.result_box.AppendText("\n\nTranslating your subject...\

n")    
407.             subject_translate = pid_etr.translate(local_subject,run_dir)

   
408.             translate_msg = subject_translate[0]   
409.             self.result_box.AppendText(translate_msg)   
410.             if "error" in translate_msg:   
411.                 return   
412.             local_subject = subject_translate[1]   
413.                
414.             self.result_box.AppendText("\n\nTranslating your query subje

ct...\n")    
415.             query_translate = pid_etr.translate(query_db, run_dir)   
416.             translate_msg = query_translate[0]   
417.             self.result_box.AppendText(translate_msg)   
418.             if "error" in translate_msg:   
419.                 return   
420.             query_db = query_translate[1]   
421.                
422.                
423.            
424.            
425.         #create blast database and update user   
426.         self.result_box.AppendText("\n\nMaking BLAST Database...\n")    
427.         make_blast_db = pid_etr.create_db(new_run_path, local_subject, r

un_name, db_type)   
428.         blast_db_msg = make_blast_db[0]   



  

47 
 

429.         self.result_box.AppendText(blast_db_msg)   
430.         if "error" in blast_db_msg:   
431.             return   
432.            
433.         blast_db = make_blast_db[1]   
434.         blast_db_summary = make_blast_db[2]   
435.         with open(blast_db_summary) as summary:   
436.             for line in summary:   
437.                 self.result_box.AppendText(line)   
438.                    
439.         self.result_box.AppendText(blast_db_msg)   
440.                    
441.         # perform blast and update user   
442.         self.result_box.AppendText("\n\nPerforming blast...\n\n")   
443.         results_tuple = pid_etr.perform_blast(query_db, blast_db, new_ru

n_path, run_name, evalue, str(hit_val), blast_type, blast_task)   
444.         result_msg = results_tuple[0]   
445.         self.result_box.AppendText(result_msg)   
446.         if "error" in result_msg:   
447.             return   
448.         results = results_tuple[1]   
449.            
450.         if os.path.isfile(results) is False:   
451.              self.result_box.AppendText("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n\n\n")   
452. self.result_box.AppendText("\n\t\tBlast did not generate a

file, there may be no matches, or an issue with the input FASTA!\n\n\n\n")
453. return
454. self.result_box.AppendText("Blast complete! Raw Results are loca

ted in " + results + "\n\n")
455.
456. self.result_box.AppendText("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")   
457.            
458.         # summarize results and update user   
459.         self.result_box.AppendText("\nSummarizing results...")   
460.         summarize_tuple = pid_etr.summarize_results(results, match_val,s

tr(hit_val))   
461.         summarize_msg = summarize_tuple[0]   
462.         self.result_box.AppendText(summarize_msg)   
463.         if "error" in summarize_msg:   
464.             return   
465.         summary = summarize_tuple[1]   
466.         new_annotation = summarize_tuple[2]   
467.         if "Concordance" in new_annotation:   
468.             update_fasta=False   
469.             self.result_box.AppendText("\n" + new_annotation + "\n")   
470.    
471.         # update fasta is asked   
472.         if update_fasta:   
473.                
474.             self.result_box.AppendText("\n\n\nGenerating a new FASTA wit

h updated annotations...\n\n")   
475.             update_tuple = pid_etr.update_fasta(run_dir, run_name, new_a

nnotation, query_orig)   
476.             update_message = update_tuple[0]   
477.             self.result_box.AppendText(update_message)   
478.             if "error" in update_message:   
479.                 return   
480.                    



  

48 
 

481.             self.result_box.AppendText("\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")   

482.
483. # provide alignments if asked
484. if alignments:
485. self.result_box.AppendText("\nGenerating an alignments file.

..")
486. alignments_tuple = pid_etr.perform_blast_align(query_db, bla

st_db, new_run_path, run_name, evalue, str(hit_val), blast_type, blast_task)
487. align_message = alignments_tuple[0]
488. self.result_box.AppendText(align_message)
489. if "error" in align_message:
490. return
491.
492. self.result_box.AppendText("\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")   
493.         self.result_box.AppendText("\n\nYour run is complete! Check " + 

run_dir + " for your results!\n\n\n")   
494.         
495.            
496.            
497. #run app   
498. app = wx.App(False)   
499. frame = MainWindow(None, "Annow 1.0")   
500. app.MainLoop()   

  



  

49 
 

 

Appendix C 

Data Processing 

1. # Created By Ashkan Bigdeli 2016   
2. # pid_etr.py   
3. #   
4. # A repository housing all required methods for updating sequences id's   
5. # with new reference annotations    
6.    
7. import os, gzip, glob, traceback,sys, textwrap   
8. from ftplib import FTP   
9. from collections import OrderedDict   
10.    
11.    
12.    
13. # resource path   
14. #   
15. # @param1 = path of operations   
16. #   
17. #  returns a path for blast executables when running as an application   
18. def resource_path(relative_path):   
19.     """ Get absolute path to resource, works for dev and for PyInstaller """   
20.     if hasattr(sys, '_MEIPASS'):   
21.         return os.path.join(sys._MEIPASS, relative_path)   
22.    
23.     return os.path.join(os.path.abspath("."), relative_path)   
24.    
25. #provide makeblastdb path   
26. makeblastdb = resource_path("makeblastdb")   
27.    
28.    
29. # download   
30. #   
31. # @param1 = file_id: suffix of files ot be downloaded.   
32. # @param2 = ftp_url: ftp from which to download   
33. # @param3 = ftp_dir: directory from ftp to download   
34. # @param4 = run_name: for naming scheme   
35. # @param5 = run_dir: the directory to download to    
36. #   
37. # return = a message that the operation is complete   
38. #   
39. # Will download all specified files to a designated folder.   
40. def download(file_id,ftp_url, ftp_dir, run_dir):   
41.        
42.     try:   
43.         ftp = FTP(ftp_url)   
44.         ftp.login()       
45.         # Change directory in ftp to navigate to desired genome   
46.         ftp.cwd(ftp_dir)   
47.         filenames = ftp.nlst()   
48.        
49.         for filename in filenames:   
50.             if filename.endswith(file_id):   



  

50 
 

51.                 local_filename = os.path.join(run_dir, filename)   
52.                 file = open(local_filename, 'wb')   
53.                 ftp.retrbinary('RETR ' + filename, file.write)   
54.                 file.close()   
55.         return "Downloading Complete!"   
56.     except:   
57.         return "Download Failed! Check the error below.\n" + traceback.format_ex

c()   
58.    
59.    
60. # unzip   
61. #   
62. # @param1 = the directory to find files for decompression   
63. #   
64. # return = a message that the operation is complete   
65. #   
66. # Method will unzip all compressed files in given directory   
67. def unzip(run_dir):   
68.     try:   
69.         # for each file in the directory   
70.         for src_name in glob.glob(os.path.join(run_dir, '*.gz')):   
71.             base = os.path.basename(src_name)   
72.             dest_name = os.path.join(run_dir, base[:-3])   
73.             with gzip.open(src_name, 'rb') as infile:   
74.                 with open(dest_name, 'wb') as outfile:   
75.                   for line in infile:   
76.                      outfile.write(line)   
77.                 os.chmod(dest_name, 0775)   
78.         return "Unzip Complete!"   
79.     except:   
80.         return "The downloaded files could not be decompressed! Check the error 

blow. \n" + traceback.format_exc()   
81.    
82. # remove   
83. #   
84. # @param1 = suffix: file type to be removed.   
85. # @param2 = download_to: folder to remove downloaded files.   
86. #   
87. # return = a message the operation is complete   
88. #   
89. # Removes all given file types from folder.   
90. def remove(suffix, run_dir):   
91.     try:   
92.         files_in_path = run_dir + "/*" + suffix   
93.         files = glob.glob(files_in_path)   
94.         for f in files:   
95.             os.remove(f)   
96.         return "Intermmediate Files Removed!"   
97.     except :   
98.         return "We failed to remove intermmediate files! Check the error below.\

n" + traceback.format_exc()   
99.                             
100. # concat fasta   
101. #   
102. # @param1 = filenames: all files to be concatenated.   
103. # @param2 = download_to: folder to concatenate files.   
104. #   
105. # return = a message the operation is complete   
106. #   
107. # Opens ALL files in folder and writes them to one .fasta file.   
108. def concat_fasta(run_name, run_dir):   



  

51 
 

109.     # create file list of all files to concatenate   
110.     files_in_path = run_dir + '/*'   
111.     filenames = glob.glob(files_in_path)   
112.     fasta_path = os.path.join(run_dir,(run_name + '.fasta'))   
113.     try:   
114.         with open(fasta_path, 'w') as outfile:   
115.             for filename in filenames:   
116.                 with open(filename) as infile:   
117.                     for line in infile:   
118.                         outfile.write(line)   
119.                            
120.                 infile.close()   
121.                 os.remove(filename)           
122.         outfile.close()   
123.         return ("Concatentation Complete! Intermediate Files Removed!", 

fasta_path)   
124.     except:   
125.         return ("FASTA files could not be concatenated! Check the error 

blow. \n" + traceback.format_exc(), "", "")   
126.                
127. # create_db   
128. #   
129. # @param1 = run_dir:  the directory of operation   
130. # @param2 = fasta: the file for database creation   
131. # @param3 = run_name: for file naming the operation   
132. #   
133. # return = tuple = message, summary of database compilation, location of

 blast database   
134. #   
135. # Makes an external call to local blast program and creates desired blas

t database.   
136. def create_db(run_dir, fasta, run_name, db_type):   
137.     try:   
138.         db_summary = os.path.join(run_dir, (run_name + '.db_summary.txt'

))   
139.         db_location = os.path.join(run_dir, run_name)   
140.         os.popen(makeblastdb + ' -in ' + fasta + ' -

dbtype ' + db_type + ' -out ' + db_location+ ' > ' + db_summary)   
141.         files_tuple = ("The database has been created!", db_location, db

_summary)   
142.         return files_tuple   
143.     except:   
144.         return ("The Database could not be created! Check the error belo

w. \n" + traceback.format_exec(), "", "")   
145.        
146. # perform_blast   
147. #   
148. # @param1 = query_db: the fasta used for comparison   
149. # @param2 = blast_db: the blast database   
150. # @param3 = run_dir: the directory of operation   
151. # @param4 = run_name: for file naming operation   
152. # @param5 = evalue: the likely hood of randomness value   
153. # @param6 = hits: the number of hits returned per sequence   
154. # @param7 = blast_type: the type of blast to perform   
155. # @param8 = task: short blast if requested   
156. #    
157. # return = tuple = an operation message, a tab delimited file of hits in

 the subject_db   
158. #   
159. # Performs NCBI local alignment blast and returns a bare tab delimited r

esults file   



  

52 
 

160. def perform_blast(query_db, blast_db, run_dir, run_name, evalue, hits, b
last_type, task):   

161.     try:   
162.         if blast_type == 'blastp':   
163.             blast_type = resource_path("blastp.exe")   
164.         if blast_type == 'blastn':   
165.             blast_type = resource_path("blastn.exe")   
166.    
167.         results = os.path.join(run_dir, (run_name + '.blast.raw.txt'))  

  
168.         os.popen( blast_type + ' -db ' + blast_db + ' -

query ' + query_db + ' -out ' + results +    
169.               ' -max_target_seqs ' + hits + ' -max_hsps ' + hits + ' -

evalue ' + evalue +' ' + task +   
170.               ' -

outfmt "6 qgi qacc qstart qend sseqid sstart send evalue pident nident mismatch 
gapopen"')   

171.         return ("BLAST Results are ready!",results)   
172.     except:   
173.         return ("BLAST Failed to execute! Check the error below.\n" + tr

aceback.format_exc(), "")   
174.        
175. # perform_blast_align   
176. #   
177. # @param1 = query_db: the fasta used for comparison   
178. # @param2 = blast_db: the blast database   
179. # @param3 = run_dir: the directory of operation   
180. # @param4 = run_name: for file naming operation   
181. # @param5 = evalue: the likely hood of randomness value   
182. # @param6 = hits : the number of hits returned per sequence   
183. # @param7 = blast_type: the type of blast to perform   
184. #    
185. # return = tuple = an operation message, a tab delimited file of hits in

 the subject_db   
186. #   
187. # Performs NCBI local alignment blast and returns a file containg alignm

ents   
188. def perform_blast_align(query_db, blast_db, run_dir, run_name, evalue, h

its, blast_type, task):   
189.     results = os.path.join(run_dir, (run_name + '.alignments.txt'))    
190.     try:   
191.         if blast_type == 'blastp':   
192.             blast_type = resource_path("blastp.exe")   
193.         if blast_type == 'blastn':   
194.             blast_type = resource_path("blastn.exe")   
195.    
196.         os.popen(blast_type + ' -db ' + blast_db + ' -

query ' + query_db + ' -out ' + results +    
197.                   ' -num_descriptions ' + hits + ' -

num_alignments ' + hits + ' -evalue ' + evalue  +' ' + task + ' -outfmt 0')   
198.         return (("Your alignments are complete! " + results  + " Has bee

n generated."), results)   
199.     except:   
200.         return ("BLAST Failed to execute. Check the below error!\n" + tr

aceback.format_exc())   
201.     
202.    
203.    
204. # summarize results   
205. #   
206. # @param1 = results: a file of tab delimited blast results   



  

53 
 

207. # @param2 = % criteria: for determining an imperfect match   
208. # @param3 = the number: of hits returned.    
209. #   
210. # return = tuple = a message of operation a summary file of the hits and

 their metrics, dictionary of updated id's   
211. #   
212. # This method takes in the results file from perform_blast and summarize

s the results   
213. def summarize_results(results, cut_off, hits):   
214.     try:   
215.         summary = results.replace('blast.raw.txt', 'blast.summary.tsv') 

  
216.         new_id = {}   
217.         count_below = 1   
218.         count_above = 1   
219.         avg_float = 1   
220.         with open(results, 'r') as results_in:   
221.             with open(summary, 'w+') as summary_out:   
222.                 summary_out.write('Input ID\tUpdated ID\t% Identity\tMat

ch Type\tE-
Value\t# Matches\t# Mismatches\t# Gaps\tReference Start\tReference End\n')   

223.                 for line in results_in:   
224.                     line = line.strip('\n')   
225.                     metrics = line.split('\t')   
226.                     if (float(metrics[8]) < float(cut_off)):   
227.                         count_below +=1   
228.                         continue   
229.                     else:   
230.                         if (float(metrics[8]) == 100.0):   
231.                             match_type="Perfect"   
232.                         elif (float(metrics[8]) > 95.00):   
233.                             match_type="Near-perfect"   
234.                         else:   
235.                             match_type="Imperfect"   
236.                                
237.                         summary_out.write(metrics[1] + '\t' + metrics[4]

 + '\t' + metrics[8] + '\t' + match_type + '\t' + metrics[7]  + '\t' +   
238.                                           metrics[9] + '\t' + metrics[10

] + '\t' + metrics[11] + '\t' + metrics[5] + '\t' + metrics[6] + '\n')   
239.                            
240.                         new_id[metrics[1]] = metrics[4]   
241.                         count_above +=1   
242.                         avg_float = avg_float + float(metrics[8])   
243.         message = ("Summerization Complete!\n" + str(count_below) + " Se

quences require updates\n" + str(count_above) + " exceeded the % match cut off f
or updating.\n" +    

244.                    "Your query had a " + "{0:.2f}".format(avg_float) + "
 % identity to the subject\n" + "Your detailed summary is located in " + summary
)   

245.         if (len(new_id) <1):   
246.             new_id = "There was 100 % Concordance. No Updates Required!"

   
247.         return (message, summary, new_id)   
248.     except:   
249.         return(("Your results could not be summerized! Check the error b

elow.\n" + traceback.format_exc()), "", "")   
250.    
251. # updated_fasta   
252. #   
253. # @param1 = run_dir: the directory of operation   
254. # @param2 = run_name: for file naming operation   



  

54 
 

255. # @param3 = dictionary of updated annotations corresponding to the user 
id's   

256. # @param4 = the user input FASTA file   
257. #   
258. # generates a fasta with only updated sequences   
259. def update_fasta(run_dir, run_name, new_id, query_db):   
260.     try:   
261.         new_fasta_name = run_name + '.updated.hits.only.fasta'   
262.         new_fasta = os.path.join(run_dir, new_fasta_name)   
263.         # This array records annotations that are not updated, it has no

 current use   
264.         # but will be a necessary feature for future development (i.e gl

obal alignment)   
265.         no_anno = []   
266.         with open (query_db, 'r') as query_in:   
267.             with open (new_fasta, 'w+') as fasta_out:   
268.                 updated = False              
269.                 for line in query_in:   
270.                     if line.startswith('>'):   
271.                         def_line = line.strip('>')   
272.                         def_line = def_line.strip('\n')   
273.                         #if this sequence in the user input db has been 

updated, add new annotation, record this information in a dictionary   
274.                         if new_id.has_key(def_line):   
275.                             fasta_out.write('>' + def_line + '|' + new_i

d[def_line] + '\n')   
276.                             updated = True   
277.                             continue   
278.                         #if no match is found, simply record it in a dic

tionary   
279.                         else:   
280.                             no_anno.append(def_line)   
281.                             updated = False   
282.                     if updated:   
283.                         fasta_out.write(textwrap.wrap(line,60))   
284.         return (("A new FASTA file has been generated! It can be found i

n " + new_fasta + "\n"), new_fasta, no_anno)   
285.     except:   
286.         return ("Your results could not be summerized! Check the error b

elow.\n" + traceback.format_exc(), "", "")   
287.    
288. #read_fasta   
289. #   
290. # @param1 = FASTA file to be read   
291. #   
292. # return = dictionary of keys(id line) and values (sequences)   
293. def read_fasta(fastafile):   
294.     sequences = []   
295.     with open(fastafile, "r") as f:   
296.         ls = f.readlines()   
297.         for i in ls:   
298.              sequences.append(i.rstrip("\n"))   
299.     seq_id = []   
300.     for i in sequences:   
301.         if i[0] == ">":   
302.             seq_id.append(i)   
303.     seq_id_index = []   
304.     for i in range(len(seq_id)):   
305.         seq_id_index.append(sequences.index(seq_id[i]))   
306.    
307.     seq_dic = OrderedDict()   



  

55 
 

308.     for i in range(len(seq_id_index)):   
309.         if i == (len(seq_id_index) - 1):   
310.             seq_dic[seq_id[i]] = sequences[seq_id_index[i]+1:]   
311.         else:   
312.             seq_dic[seq_id[i]] = sequences[seq_id_index[i]+1:seq_id_inde

x[i+1]]   
313.    
314.     seq_dic_2 = OrderedDict()   
315.     for keys, values in seq_dic.items():   
316.         seq_dic_2[keys] = "".join(values)   
317.    
318.     return seq_dic_2   
319.    
320. # write_fasta   
321. #   
322. # @param1 = dictionary of sequences to be written to outfile   
323. #   
324. # Write an outfile in fasta format   
325. def write_fasta(dictionary, filename):   
326.     with open(filename, "w") as outfile:   
327.         for key, value in dictionary.items():   
328.             outfile.write(key + "\n")   
329.             outfile.write("\n".join(textwrap.wrap(value, 60)))   
330.             outfile.write("\n")   
331.    
332. # swap_dna   
333. #   
334. # @param1 = dna sequence   
335. #   
336. # return = amino acid sequence   
337. def swap_dna(dnastring):   
338.     table = {   
339.         'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',   
340.         'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',   
341.         'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',   
342.         'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',   
343.         'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',   
344.         'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',   
345.         'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',   
346.         'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',   
347.         'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',   
348.         'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',   
349.         'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',   
350.         'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',   
351.         'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',   
352.         'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',   
353.         'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_',   
354.         'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W',   
355.         }   
356.     protein = []   
357.     end = len(dnastring) - (len(dnastring) %3) - 1   
358.     for i in range(0,end,3):   
359.         codon = dnastring[i:i+3]   
360.         if codon in table:   
361.             aminoacid = table[codon]   
362.             protein.append(aminoacid)   
363.         else:   
364.             protein.append("N")   
365.     return "".join(protein)   
366.        
367. # dna2aa   



  

56 
 

368. #   
369. # @param1 = a dictionary of nucleotide sequences   
370. #   
371. # @return = a dictionary of amino acid sequences   
372. def dna2aa(dna_dict):   
373.     for key, value in dna_dict.items():   
374.          dna_dict[key] = swap_dna(value)   
375.     return dna_dict   
376.    
377.    
378. def translate(fasta, run_dir):   
379.     new_file = fasta.replace('fasta', 'aa.fasta')   
380.     new_file = os.path.join(run_dir, new_file)   
381.     try:   
382.         nuc_dict = read_fasta(fasta)   
383.         aa_dict = dna2aa(nuc_dict)   
384.         write_fasta(aa_dict, new_file)   
385.         return ((fasta + " Has been translated!"),new_file)   
386.     except:   
387.         return (fasta  + "  could not be translated! Check the error bel

ow.\n" + traceback.format_exc(), "", "")   

  



  

57 
 

 

Bibliography 

 

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-

terminating inhibitors. Proceedings of the National Academy of Sciences, 

74(12), 5463-5467. doi:10.1073/pnas.74.12.5463 

Anderson, S. (1981). Shotgun DNA sequencing using cloned DNase I-generated 

fragments. Nucl Acids Res Nucleic Acids Research, 9(13), 3015-3027. 

doi:10.1093/nar/9.13.3015 

Staden, R. (1979). A strategy of DNA sequencing employing computer programs. 

Nucl Acids Res Nucleic Acids Research, 6(7), 2601-2610. 

doi:10.1093/nar/6.7.2601 

Lander, E. S. (2001, February 15). Initial sequencing and analysis of the human 

genome. Nature, 409(6846), 860-921. doi:10.1038/35057062 

Heather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of 

sequencing DNA. Genomics, 107(1), 1-8. 

doi:10.1016/j.ygeno.2015.11.003 

Miller, N. A., Farrow, E. G., Gibson, M., Willig, L. K., & Twist, G. (2015). A 26-

hour system of highly sensitive whole genome sequencing for emergency 

management of genetic diseases. Genome Medicine Genome Med, 7(1). 

doi:10.1186/s13073-015-0221-8 

An Introduction to Next-Generation Sequencing Technology [Advertisement]. 

(2016, May25).Illumina. Retrieved June/July, 2016, from 

http://www.illumina.com/content/dam/illumina-

marketing/documents/products/illumina_sequencing_introduction.pdf 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic 

local alignment search tool." J. Mol. Biol. 215:403-410. 

NCBI. The NCBI Eukaryotic Genome Annotation Pipeline. Retrieved 

March/April, 2016, from 

http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/ 

Hu Y, Roesel C, Flockhart I, Perkins L, Perrimon N, Mohr SE. UP-TORR: online 

tool for accurate and Up-to-Date annotation of RNAi Reagents. Genetics. 

2013 Sep;195(1):37-45. doi: 10.1534/genetics.113.151340. Epub 2013 Jun 

21. PubMed PMID: 23792952; PubMed Central PMCID: PMC3761311. 

Sayers E. A General Introduction to the E-utilities. In: Entrez Programming 

Utilities Help [Internet]. Bethesda (MD): National Center for 



  

58 
 

Biotechnology Information (US); 2010-. Available from: 

http://www.ncbi.nlm.nih.gov/books/NBK25497/ 

The NCBI Handbook [Internet]. 2nd edition. Bethesda (MD): National Center for 

Biotechnology Information (US); 2013-. Available from: 

http://www.ncbi.nlm.nih.gov/books/NBK143764/ 

Zuo D, Mohr SE, Hu Y, Taycher E, Rolfs A, Kramer J, Williamson J, LaBaer 

J. PlasmID: a centralized repository for plasmid clone information and 

distribution. Nucleic Acids Res. 2007 Jan;35(Database issue):D680-4. 

Epub 2006 Nov 28. PubMed PMID: 17132831; PubMed Central PMCID: 

PMC1716714. 

Harte et al. Tracking and coordinating an international curation effort for the 

CCDS Project. Database (Oxford). 2012 Mar 20;2012:bas008. doi: 

10.1093/database/bas008. Print 2012. PubMed PMID: 22434842; PubMed 

Central PMCID: PMC3308164. 

Pruitt et al. The consensus coding sequence (CCDS) project: Identifying a 

common protein-coding gene set for the human and mouse 

genomes. Genome Res. 2009 Jul;19(7):1316-23. doi: 

10.1101/gr.080531.108. Epub 2009 Jun 4. Erratum in: Genome Res. 2009 

Aug;19(8):1506. PubMed PMID: 19498102; PubMed Central PMCID: 

PMC2704439. 

Farrell et al. Current status and new features of the Consensus Coding Sequence 

database. Nucleic Acids Res. 2014 Jan;42(Database issue):D865-72. doi: 

10.1093/nar/gkt1059. Epub 2013 Nov 11. PubMed PMID: 24217909; 

PubMed Central PMCID: PMC3965069. 

Schwartz, R.M. & Dayhoff, M.O. (1978) "Matrices for detecting distant 

relationships." Atlas of Protein Sequence and Structure, vol. 5, suppl. 3. 

M.O. Dayhoff (ed.), pp. 353-358, Natl. Biomed. Res. Found., Washington, 

DC. 

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., & 

Madden T.L. (2008) "BLAST+: architecture and applications." BMC 

Bioinformatics 10:421 

Pruitt et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids 

Res. 2013  

Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I. RefSeq microbial genomes 

database: new representation and annotation strategy. Nucleic Acids Res. 

2014 Jan 1;42(1):D553-9   

OC participants, Dana Farber Cancer Institute for Cancer Systems Biology, 

Mammalian Gene Collection, Welcome Trust Sanger Institute, Virginia G. 



  

59 
 

Piper Center for Personalized Diagnostics at Biodesign Institute of 

Arizona State University, DNA I.M.A.G.E Consortium. 

http://www.orfeomecollaboration.org. Web, Septemeber 15th, 2015. 

Daniel R Zerbino, Steven P Wilder, Nathan Johnson, Thomas Juettemann and 

Paul R Flicek. The Ensembl Regulatory Build. Genome Biology 16:56. 

March, 2015 

Lindo, S. (2013, November 07). XML vs. JSON - A Primer. Retrieved February 

16, 2016, from http://www.programmableweb.com/news/xml-vs.-json-

primer/how-to/2013/11/07 

Python Software Foundation. Python Language Reference, version 2.7. Available 

at http://www.python.org 

Brandle, G. (2016, June 16). PEP 8 -- Style Guide for Python Code. Retrieved 

March 27, 2016, from https://hg.python.org/peps/file/tip/pep-0008.txt 

Python 2.7.12 documentation. Retrieved February 27, 2016, from 

https://docs.python.org/2/  

PyInstaller 3.2 software. Available at http://www.pyinstaller.org/  

Rappin, Noel; Dunn, Robin (March 1, 2006). wxPython in Action. Greenwich: 

Manning     Publications. p. 552. ISBN 978-1-932394-62-7. 

How to Learn wxPython. (n.d.). Retrieved June 27, 2016, from 

https://wiki.wxpython.org/How to Learn wxPython  

Forrest, Boa. Pairwise Alignment In Python (2011). GitHub Repository 

https://github.com/alevchuk/pairwise-alignment-in-

python/blob/master/alignment.py  

P. (2016). Prestevez/dna2proteins. Retrieved August 18, 2016, from 

https://github.com/prestevez/dna2proteins 

Enthought Python Distribution (Version 7.3) [Software]. (2012). Retrieved from 

http://www.enthought.com 

Tools and Data. (n.d.). Retrieved August 05, 2016, from  

http://horfdb.dfci.harvard.edu/index.php?page=toolsdata 

Simone, M. (2004). RNA interference: Learning gene knock-down from cell 

physiology. Journal of Translational Medicine, 2(1), 1479-5876. 

doi:10.1186/1479-5876-2-39 

Kieleczawa, J. (2005). Simple Modifications of the Standard DNA Sequencing 

Protocol Allow for Sequencing Through siRNA Hairpins and Other 

Repeats. Journal of Biomolecular Techniques : JBT, 16(3), 220–223. 

http://www.python.org/
https://docs.python.org/2/
http://www.pyinstaller.org/
https://github.com/alevchuk/pairwise-alignment-in-python/blob/master/alignment.py
https://github.com/alevchuk/pairwise-alignment-in-python/blob/master/alignment.py
http://www.enthought.com/
http://horfdb.dfci.harvard.edu/index.php?page=toolsdata


  

60 
 

MGC Project Team. The status, quality, and expansion of the NIH full-length 

cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 

2004; 14:2121-7 and Supplemental Research Data.  

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15489334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15489334
http://www.genome.org/cgi/content/full/14/10b/2121/DC1

