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The Role of the Selenoprotein Glutathione Peroxidase-1 in T Cell Activation and Differentiation 

Abstract: Glutathione peroxidase-1 (GPx-1) is an antioxidant enzyme that plays an important role 

in reducing cellular oxidative stress. The expression of GPX1 has previously been shown to be 

upregulated upon T cell activation in vitro and CD4+ T cells that lack GPx-1 have also been shown 

to preferentially differentiate into the TH1 effector subtype. These observations suggest that the 

activity of GPx-1 may play a role in T cell activation and differentiation. In order to determine the 

relationship between GPx-1 expression and T cell activation, we used a combination of in vitro 

and in vivo experiments to correlate GPx-1 expression with the activation marker CD44 and to 

address whether inhibition of GPx-1 impacts the differentiation of induced regulatory T cells. Gene 

expression analysis done on naïve CD4+ T cells stimulated in vitro reveals that the number of 

GPX1 transcripts is reduced in cells cultured in the presence of recombinant PD-L1 when 

compared to cells cultured in the presence of control human Ig-Fc. In contrast to these data, flow 

cytometry data does not reveal any significant differences between the overall abundance of 

intracellular GPx-1 over the course of 72 hours when comparing CD4+ T cells cultured in the 

presence and absence of recombinant PD-L1. Using in vivo immunization and tumor models, we 

demonstrate that the overall expression of GPx-1 is higher both in CD44+ T cells derived from the 

draining lymph node and tumor infiltrating lymphocytes when compared to CD44- T cells from 

each microenvironment. To assess the role of GPx-1 during activation and differentiation of naïve 

CD4+ T cells in vitro, we used a small molecule inhibitor of GPx-1, mercaptosuccinate (MS). Our 

data reveal that the addition of MS reduces the overall number of CD44+ T cells and that the 

presence of MS increases the oxidative state of CD4+ T cells in a dose dependent manner. These 
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data support the role of GPx-1 as an important cytosolic and mitochondrial antioxidant enzyme. 

Our data also reveal that the presence of MS in cell culture media induces the expression of the 

transcription factor Forkhead box P3 (FoxP3) in a dose-dependent manner that is independent of 

the presence of TGF-β. Overall, these data suggest that GPx-1 is an important antioxidant enzyme 

that may play a role in regulating T cell activation and differentiation. Additionally, we provide 

preliminary evidence to support the idea that the redox tone of the cell may be important for fate 

determination. Further work is needed to assess the functionality and durability of these FoxP3 

expressing T cells, and to address whether or not these cells exhibit the typical characteristics of 

induced regulatory T cells. 
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Figures 

Figure 1.1: Selenoprotein synthesis. The SECIS element in the 3' untranslated region of the 

mRNA (stem loop) recruits SBP (green), which in turn recruits Elongation Factor Selenocysteine 

(EFSec) (blue) and tRNASec (yellow and red). The complex interacts with the ribosome to decode 

the UGA stop codon as selenocysteine. Selenoproteins are represented as light blue chains, where 

selenocysteine is magenta. Figure adapted from Berry et al., 2005 (Berry, 2005). 

Figure 1.2: Naïve CD4+ T cell differentiation. Naïve CD4+ T cells (labeled as TH0 cell) can 

differentiate into several T helper (TH) cell subsets. The legend for the molecular cartoons 

represented on each cell can be found in the lower left corner. The diagram above shows the 

cytokines required for T cell polarization in vitro. Polarized cells (center) are labeled by helper 

cell subtype (TH1, TH2, TH17, and Treg) and by the canonical transcription factors (TBET, Gata-3, 

RORγt, and Foxp3) that drive their differentiation and effector functions. Additionally, the 

cytokines produced and their immunological functions are listed on the right for each subset. 

Adapted from Tato and O’Shea, 2006 (Tato and O'Shea, 2006). 

Figure 1.3: Glutathione peroxidase-1 and proposed catalytic mechanism. (A) Ribbon 

representation of the monomeric unit of bovine glutathione peroxidase-1 (PDB ID: 1GP1)(Epp et 

al., 1983). The catalytic triad is conserved in selenocysteine-containing glutathione peroxidases 

and is composed of a tryptophan, glutamine, and selenocysteine residue. The catalytic triad is 

represented as sticks and labeled as trp158 (W158), gln80 (Q80), and sec45 (U45). (B) Inactivation 

of peroxides by GPx-1 involves the formation of a several stable intermediary modifications that 

are made directly to the active-site selenocysteine. Active GPx-SeH reacts with peroxides (ROOH 

or H2O2) to form selenic acid (SeOH) (no. 1 in figure). One molecule of glutathione (GSH) reduces 
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GPx-SeOH to GPX-Se-SG and releases water (no. 2 in figure). An additional molecule of GSH 

reacts with GPx-Se-SG to further reduce the enzyme back to GPx-SeH and release oxidized 

glutathione (GSSG) (no. 3 in figure). The net reaction is shown in the lower part of the figure. 

Figure adapted from Lubos et al 2011 (Lubos et al., 2011). 

Figure 3.1: CD4+ T cells cultured in the presence of PD-L1-Fc express lower levels of genes 

that encode for the selenoproteins GPx-1, Sep15, and TR3. CD4+ T cells were activated with 4 

µg/mL of each αCD3 and αCD28 in the presence of 5 µg/mL of hIg-Fc or 10 µg/mL of PD-L1-

Fc. Cells were harvested after 24 and 48 hrs. Total RNA was isolated and gene expression analysis 

was performed using quantitative PCR. (A) Expression analysis of genes that encode for 

selenoproteins using Rpl13a as a reference gene. (B) Expression analysis of genes involved in 

selenoprotein synthesis. Statistical analysis was performed on triplicates for each condition. (∗p < 

0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005).	

Figure 3.2: CD4+ T cells upregulate expression of GPx-1 upon stimulation with anti-CD3 and 

anti-CD28. MACS purified CD4+ T cells were isolated and cultured CD4+ T cells were activated 

with 4 µg/mL of each αCD3 and αCD28 in the presence of 5 µg/mL of hIg-Fc or 10 µg/mL of PD-

L1-Fc (A) Shown here is the gating strategy to isolate live, single CD4+ T cells. (B) Histograms 

of GPx-1 expression in live CD4+ T cells after 24 hrs of stimulation. CD4+ T cells cultured in the 

presence of recombinant hIg-Fc or PD-L1-Fc are shown in green and red, respectively. Untreated 

cells (black) are reported after 24 hrs only because cell death was so significant in the untreated 

controls for 48 and 72 hrs. (C) Data generated from the same experiment after 48 and 72 hrs of 

stimulation.  
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Figures 3.3: Activated T cells derived from the dLN express higher levels of GPx-1 in two in 

vivo models. (A) Gating strategy to isolate CD4+ live-single cells for FACS analysis. (B) 

Representative plots for CD4+ T cells plotted for the expression of GPx-1 vs. CD44 in LN of four 

control mice (left) and nine mice immunized with NP-Ova (center).  Quantitative analysis was 

performed on the percentages of CD44+ CD4+ T cells from control mice and immunized mice 

(Right). (C) Shown on the left is a representative flow plot of CD4+ T cells from the dLN of 

immunized mice showing the expression of CD44 and GPx-1. In the center panel, CD44+ T cells 

from the dLN of mice immunized with NP-Ova (purple) were compared to CD44- T cells (cyan) 

from the same dLN. The MFI for GPx-1 expression of CD4+ T cells from the dLN of nine mice 

are quantified on the right. (D) Shown on the left is a representative flow plot for CD4+ T cells 

harvested from the dLN of mice challenged with MC38 tumor 24 days after s.c. implantation. 

Histograms of CD44+ (purple) and CD44- (cyan) from the same tumor are shown in the middle 

panel. The MFI for GPx-1 expression of CD4+ T cells that were derived from the dLN of four mice 

are quantified on the right (∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005). 

Figure 3.4: GPx-1 correlates with CD44 expression but not with the expression of CD62L or 

FoxP3. Shown here are representative plots of CD4+ T cells from the dLN of mice implanted with 

MC38 cells. (A) Expression of GPx-1 in activated versus naïve CD4 T cells from the dLN. On the 

left, CD4+ T cells are plotted for the expression of CD44 vs. CD62L. CD44+ CD62L- cells are 

considered activated. A histogram for each quadrant is plotted in the center panel to compare the 

relative expression of GPx-1 in each population. The isotype control shown is for bulk CD4+ T 

cells. The results are quantified on the right. (B) Expression of GPx-1 in FoxP3+ versus FoxP3- 

CD4+ T cells derived from the dLN of mice implanted with MC38 cells. On the left, CD4+ T cells 

are plotted for CD44 vs. FoxP3 expression. A histogram for each quadrant is plotted in the center 
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panel to compare the relative expression of GPx-1 in each population. The results are quantified 

on the right. The data presented here are representative of two individual experiments (∗p < 0.05, 

∗∗p < 0.005, ∗∗∗p < 0.0005). 

Figure 3.5: Tumor infiltrating CD4+ T cells express higher levels of GPx-1 than CD4+ T cells 

from the draining lymph node. Representative histograms of CD4+ T cells from the dLN and 

tumors of mice implanted s.c. with MC38 tumor cells. (A) On the left, bulk CD4+ from the dLN 

(blue) and tumor (red) are compared for GPx-1 expression in a histogram. In the right panel, the 

geometric mean fluorescence intensity (MFI) for each sample is quantified. (B) CD44+ T cells 

harvested from the dLN and tumor are compared for their expression of GPx-1. On the left, a 

representative histogram of CD44+ CD4+ T cells from the dLN (blue) and tumor (red) are 

compared for expression of GPx-1. On the right, the geometric mean fluorescence intensity (MFI) 

for each sample is quantified. (C) CD44+ FoxP3+ T cells harvested from the dLN and tumor are 

compared for their expression of GPx-1. On the left, a representative histogram of CD44+ FoxP3+ 

CD4+ T cells from the dLN (blue) and tumor (red) are compared for expression of GPx-1. On the 

right, the geometric mean fluorescence intensity (MFI) for each sample is quantified. The MFI for 

GPx-1 expression for each isotype control is reported for every population (∗p < 0.05, ∗∗p < 0.005, 

∗∗∗p < 0.0005). 	

Figure 3.6: Naïve CD4+ T cells cultured in the presence of the GPx-1 inhibitor, 

mercaptosuccinate, induces FoxP3 in naïve CD4+ T cells in a dose dependent manner that is 

independent of TGF-β. Naïve CD44- CD62L+ FoxP3- CD4+ T cells were sorted from FoxP3.GFP 

reporter mice and stimulated with αCD3 and αCD28 in the presence or absence of hIG-Fc or PD-

L1-Fc and plus or minus 2 ng/mL of TGF-β. T cell activation was measured in the presence and 

absence of the GPx-1 inhibitor, mercaptosuccinate (MS) at concentrations of 0, 1, 5, and 10 mM 
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at time zero (A) CD4+ T cells activation was assessed by quantifying the number of Live CD4+ T 

cells/sample. (B) CD4+ T cell activation was measured by the percentage of CD44+ CD4+ live T 

cells. (C) Oxidative stress was measured using cellROX deep red reagent and quantified by 

reporting the mean geometric fluorescence intensity for each condition and plotted in a bar graph 

(D) Representative plots of live CD4+ T cells cultured in the presence of PD-L1-Fc or hIg-Fc plus 

or minus the addition of TGF-β. FoxP3 expression is represented on the y-axis and CD4 expression 

is represented on the x-axis. In the bar graphs on the right, the percentage of FoxP3+ T cells are 

reported as percentage of live-CD4+ T cells (top panel). The MFI of FoxP3 of live-CD4+ FoxP3+ 

T cells is quantified (bottom panel). (E) The percentage of live-CD4+ CD25+ T cells is quantified 

(left) and the MFI for CD25 is quantified (right) for each condition.	
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Tables 

Table 1.1: List of known human selenoproteins. *Selenoproteins documented to be expressed in 

T cells at the level of mRNA. **Selenoproteins documented to be expressed at the protein level. 

Table and information adapted from Labunsky et al., 2014 and Carlson et al., 2010 (Carlson et al., 

2010; Labunskyy et al., 2014) 
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Chapter 1: Background 

1.1. Introduction:  

 The intersection between nutrition and human health has been studied for decades. 

Technological advances in bioinformatics, metabolomics, and epidemiology have helped elucidate 

the role that nutrient availability and processing plays in a plethora of human disease-states and 

conditions (Astarita and Langridge, 2013; Boeing, 2013; Mayne et al., 2016). Unlike most tissues 

that assume a more rigid metabolic status, the immune system is enriched for cells that not only 

exhibit diverse metabolic profiles but also extraordinary plasticity in their ability to redirect 

nutrient metabolism and adapt to their local environments (Green, 2012; Verbist et al., 2012). The 

goal of this thesis was to determine how T lymphocytes (T cells) regulate selenium metabolism 

during their initial activation. Microarray analysis of T cells activated in the presence of ligands 

for the surface protein programmed cell death-1 (PD-1) could modulate pathways involved in 

selenium metabolism during T cell activation in vitro. These microarray analyses suggested 

changes in pathways modulating selenium metabolism in T cells when PD-1 was engaged by its 

ligands under conditions that induced naïve CD4+ T cells to become FoxP3+ regulatory T cells. 

Thus, we tested the hypothesis that the PD-1 pathway regulates the expression of selenoprotein 

genes. One selenoprotein gene that appeared to be highly regulated during differentiation in vitro 

was the GPX1 gene, which encodes for the selenoprotein glutathione peroxidase-1 (GPx-1). Our 

results led us to investigate the relationship between the selenoprotein glutathione peroxidase-1 

and T cell activation. We focused on determining the expression of GPx-1 in different models of 

T cell activation and correlated its expression with the activation marker CD44. Additionally, we 

asked what impact GPx-1 inhibition would have on T cells during activation in vitro. To provide 

a context for these studies, the background will be divided into eight sections. First, I will introduce 
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selenoproteins (Section 1.2) and highlight key aspects of the immune system that pertain to my 

research (Section 1.3). Additionally, I will provide information on costimulatory and coinhibitory 

receptors (e.g. PD-1) that regulate T cell activation (Section 1.4) and I will review what is already 

known about selenoproteins and GPx-1 in the context of T cell biology (Sections 1.5 and 1.6, 

respectively). Finally, I will close the introduction with a summary of the questions that are 

addressed in this thesis (Section 1.7).  

1.2. Selenoproteins 

 Selenium is an essential trace element for a number of organisms, including humans. 

Selenium is important for both proper mammalian development (Kohrle, 2000) and immune 

function (Huang et al., 2012), and its deficiency has been correlated with a number of 

pathophysiological conditions such as heart disease (Benstoem et al., 2015), cancer (Fernandes 

and Gandin, 2015; Wrobel et al., 2016), and inflammation (Huang et al., 2012). Its biological 

function is mediated by the amino acid selenocysteine, which is incorporated into a discrete set of 

proteins, known as selenoproteins, that perform a number of functions essential to the cell and the 

organism. Selenoproteins are present in all three evolutionary domains of life: Eukarya, archea, 

and eubacteria. The pathway for the biosynthesis of selenocysteine was resolved only a decade 

ago thanks to technological advances in genomics and comparative biology (Barrett et al., 2013; 

Yuan et al., 2006). Selenocysteine is the only amino acid whose synthesis occurs on its own tRNA, 

Sec tRNA[Ser]Sec (Xu et al., 2007). Sec tRNA[Ser]Sec is encoded by the trsp gene. As its shorthand 

notation implies, Sec tRNA[Ser]Sec is initially aminoacylated with serine and is subsequently 

converted into selenocysteyl-tRNA by the enzyme selenocysteine synthase, which replaces the 

hydroxyl group of serine with selenophosphate to form selenocysteyl-tRNA (sec-tRNA). In 

addition to its unique biosynthesis, selenocysteine is alternatively encoded by an in-frame UGA 
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stop codon in a manner that is dependent on the presence of a cis-acting element known as the 

located in the 3’ untranslated region of the Selenocysteine Insertion Sequence (SECIS) 

selenoprotein mRNA (Berry et al., 1991; Grundner-Culemann et al., 1999). In addition to the 

SECIS element, successful 

incorporation of selenocysteine 

into the growing peptide strand is 

dependent on the expression of 

SECIS-binding proteins 

(SBP1/2), Sec-specific elongation 

factor (EFsec), and for a number 

of additional elongation factors, 

accessory proteins, and regulatory 

mechanisms that are unique to 

each selenoprotein (Figure 1.1) 

(Labunskyy et al., 2014). The 

synthesis of several selenoproteins is regulated by selenium availability, thereby resulting in the 

hierarchal expression of different selenoproteins in the context of selenium deficiency, where 

housekeeping selenoproteins are preferentially translated over stress-related selenoproteins (i.e. a 

selenoproteins whose function is not absolutely necessary for viability or survival but help reduce 

cellular stress) (Carlson et al., 2007).  

 There are more than 50 known families of selenoproteins and their distribution varies 

greatly between species. Although selenoproteins can be found in all three domains of life, a 

number of organisms have lost selenoproteins from their genomes altogether (Lobanov et al., 

Figure 1.1: Selenoprotein synthesis. The SECIS element in the 3' 
untranslated region of the mRNA (stem loop) recruits SBP (green), which 
in turn recruits Elongation Factor Selenocysteine (EFSec) (blue) and 
tRNASec (yellow and red). The complex interacts with the ribosome to 
decode the UGA stop codon as selenocysteine. Selenoproteins are 
represented as light blue chains, where selenocysteine is magenta. Figure 
adapted from Berry et al., 2005 (Berry, 2005). 
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2008). The selenoproteome of humans is composed of 25 proteins (24 in mice). The majority of 

these selenoproteins serve to catalyze redox reactions (Labunskyy et al., 2014). Despite this 

singular functionality, selenoproteins serve a variety of important biological roles (Table 1.1). 

The selenoproteome of different tissue types varies by patterns of gene expression and how their 

expression is regulated (Labunskyy et al., 2014; Reeves and Hoffmann, 2009).  In mammals, the 

selenoprotein iodothyronine deodinases are absolutely necessary for the activation and 

deactivation of the thyroid hormones, thyroxine and 3,5,3’-triiodothyronine (Labunskyy et al., 

2014). Furthermore, the selenoproteins glutathione peroxidase and thioredoxin enzymes are 

responsible for mitigating oxidative stress at the cellular and organismal level(Arnér and 

Holmgren, 2000; de Haan et al., 1998). Given the diverse roles of known selenoproteins, our goal 

was to determine the role of selenoproteins in the immune system. 

1.3 T Lymphocytes and their Effector Subtypes 

 The immune system serves to both protect organisms from foreign invaders and 

transformed cells as well as to promote tolerance to self and commensal organisms. These dual 

functions are regulated at the systemic and local level via the efforts of both immune and non-

immune cells using diverse mechanisms of communication (e.g. cell-to-cell contact and the 

secretion of soluble factors). The immune system is divided into the innate and adaptive branches, 

where both work together to eliminate pathogens, transformed cells, or dying tissue. Innate 

immune cells are primarily derived from the myeloid progenitor cells and consist of macrophages, 

dendritic cells, and granulocytes (e.g. basophils and neutrophils). In contrast, adaptive immune 

cells are derived from lymphoid progenitors and are composed only of T lymphocytes (T cells) 

and B lymphocytes (B cells). Notable exceptions include the lymphoid natural killer (NK) cells, 

which function as innate immune cells that help clear infected and transformed cells  (Zúñiga-
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Pflücker, 2004). If a pathogen cannot be cleared by innate defenses, innate immune cells will elicit 

an inflammatory response that activates dendritic cells that are equipped to present antigen to cells 

of the adaptive immune system and are thus named antigen-presenting cells (APCs). Dendritic 

cells convey important information to the adaptive immune system (such as the location of the 

infection and the type of pathogen) and are important regulators of the adaptive immune response. 

B cells, macrophages, and some stromal cells also act as APCs in important biological contexts 

(e.g. T cell-dependent B cell activation and thymic selection of T cells). When activated by antigen,  
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T and B cells give rise to antigen-specific clones, which differentiate into both effector cells and 

memory cells. The induction of memory lymphocytes distinguishes the adaptive immune system 

from the innate immune system, in that memory lymphocytes are capable of responding more 

quickly when re-challenged with the same pathogen.  

 T and B cells evolved mechanisms to produce variable-antigen receptors, known as the T 

cell receptor (TCR) and B cell receptor (BCR), respectively. T cells are integral players of the 

adaptive immune system. They directly mediate cellular immunity and enhance humoral immunity 

by optimizing B cell responses. Unlike B cells, which mature in the bone marrow, precursor T 

cells migrate from the bone marrow to the thymus where they complete development. T cell 

development is a complex process that culminates with the successful rearrangement of a set of 

genes that encode for the TCR and commitment to either the CD4+ or CD8+ lineage. This process 

is orchestrated by a number of receptor-ligand interactions that occur between T cells and the 

thymic stroma, where the latter present self-antigen in the form of peptide fragments via Major 

Histocompatibility Complex (MHC) proteins I and II. Successful signaling through the rearranged 

TCR by ligation with MHC-I or -II expressed on thymic stromal cells is necessary for survival 

(Zúñiga-Pflücker, 2004). T cell selection occurs via both positive and negative selection, where 

positive selection occurs when the TCR recognizes MHC and peptide (pMHC). Commitment to 

either the CD8+ or CD4+ lineage occurs during positive selection and depends on the ability of the 

TCR to recognize MHC-I or MHC-II, respectively. Negative selection occurs when the TCR 

interacts too strongly with pMHC, thereby inducing cell death. This is an important process by 

which the thymus eliminates T cells that react against self-antigens. T cells that survive both 

positive and negative selection and receive the proper survival factors enter the periphery as naïve 

T cells, where they circulate between lymphoid organs surveying for their cognate pMHC.  
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T cell activation occurs when a T cell interacts with an APC (e.g. dendritic cells) in the 

context of inflammation. T cell activation requires at least two signals. The first signal occurs when 

the T cell engages with pMHC on the surface of an APC via its TCR. During an infection, APCs 

will take up foreign antigen and present it on their MHC-I and -II as peptide fragments. TCR 

ligation with its cognate pMHC induces T cell intrinsic signal cascades, which promote clonal 

expansion and survival (Langhoff and Steinman, 1989). Additional signals through the co-

stimulatory receptor CD28 are also necessary for proper T cell activation, and link innate and 

adaptive immunity by providing the essential second signal. Activation of innate immune cells 

during inflammation results in the up-regulation of ligands for CD28, such as CD80/B7-1 and 

CD86/B7-2. Signaling through CD28 provides important survival signals to T cells and promotes 

their function. Additionally, this second signal or “danger signal” is a pivotal checkpoint that helps 

reduce the chance that auto-reactive T cells will get activated in the periphery. in part by inducing 

T cell anergy (Matzinger, 2002; Medzhitov and Janeway, 2000). T cells that receive only signal 

one are desensitized to antigen and considered anergic (Schwartz, 2003). Some activated T cells 

will differentiate into effector T (Teff) cells, which directly assist with pathogen clearance, whereas 

others will differentiation into memory cells, which are major drivers of immunological memory 

and a characteristic feature of the adaptive immune response.  

 Seeing as CD8+ and CD4+ T cells respond to different pMHCs, and that they exhibit unique 

transcriptomes, activation induces distinct responses and effector functions in each lineage. 

Activated CD8+ T cells are called cytotoxic T cells (CTLs) and their primary function is to mediate 

cellular immunity by targeting infected or transformed cells for cell death. In contrast, activated 

CD4+ T cells or T helper (TH) cells help orchestrate the immune response so that it can most 

optimally clear and resolve infection. TH cells promote cytotoxic cellular immunity, enhance 
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antibody production, and produce cytokines that serve to polarize the immune response so that the 

least amount of collateral damage is done at the site of infection and to the organism at large. 

Cytokines are a broad category of secreted proteins that are produced by immune and non-immune 

cells to maintain cellular homeostasis and to help coordinate immune responses. Binding of 

cytokines with their cognate membrane bound receptors provides signals to cells that alter their 

behavior (e.g. modulate gene expression, alter cell morphology and mobility, and can promote 

survival). T cells both produce and respond to cytokines during their lifetime. During an infection, 

many cytokines work in a positive feedback loop by which they promote the differentiation of TH 

cells into particular TH cell subsets (e.g. TH1, TH2, TH17, etc). Each TH cell subset perpetuates this 

signal by producing the same cytokine and/or similarly functioning cytokines that polarize the 

immune response against specific types of pathogens (Figure 1.2). For example, TH1 cells promote 

the clearance of intracellular pathogens by producing cytokines that activate macrophages and 

CTLs. In contrast, TH2 and TH17 cells promote the clearance of extracellular pathogens by 

secreting cytokines that enhance barrier functions and promote tissue inflammation, respectively 

(Hirahara and Nakayama, 2016). Each TH cell subset is characterized by a canonical transcription 

factor as shown in Figure 1.2. However, TH cells exhibit a certain level of transcriptional plasticity 

that allows them to adapt to an infection over the course of time (Bluestone et al., 2009). TH cells 

are necessary for the proper clearance of a number of infections and their depletion results in severe 

immunodeficiency (Okoye and Picker, 2013). Importantly, when the activity of TH cells is left 

unchecked, severe immunopathology and even autoimmunity can ensue, which can lead to 

irreversible tissue damage and compromise organ function (Hirahara and Nakayama, 2016). 

 Regulatory T (Tregs) cells are a distinct subset of CD4+ T cells that directly counter these 

pro-inflammatory immune responses. There are several types of Tregs cells, but most are CD4+ cells 
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that produce the anti-inflammatory cytokine, interleukin-10 (IL-10) (Fontenot et al., 2003; 

Fontenot et al., 2005; Rubtsov et al., 2008). They inhibit both CTL and TH cell responses directly 

by suppressing their activity and indirectly by suppressing the activity of APCs (Fontenot et al., 

2005; Hou et al., 2015). Treg cells are necessary not only for contracting immune responses after 

an infection is cleared but also for promoting tolerance to self and commensal organisms. The 

transcription factor forkhead box P3 (FoxP3) drives the immunoregulatory phenotype of Treg cells, 

and its deficiency causes the severe immune pathology observed in immunodysregulation 

Figure 1.2: Naïve CD4+ T cell differentiation. Naïve CD4+ T cells (labeled as TH0 cell) can differentiate into several 
T helper (TH) cell subsets. The legend for the molecular cartoons represented on each cell can be found in the lower 
left corner. The diagram above shows the cytokines required for T cell polarization in vitro. Polarized cells (center) 
are labeled by helper cell subtype (TH1, TH2, TH17, and Treg) and by the canonical transcription factors (TBET, Gata-
3, RORγt, and Foxp3) that drive their differentiation and effector functions. Additionally, the cytokines produced and 
their immunological functions are listed on the right for each subset. Adapted from Tato and O’Shea, 2006 (Tato and 
O'Shea, 2006). 

CD4+ T Cell Differentiation 
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polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a fatal autoimmune syndrome that 

normally presents during infancy and is caused by mutant FoxP3 or aberrantly expressed FoxP3 

(Bennett et al., 2000; Brunkow et al., 2001). It is characterized by lymphocytic infiltrate in the 

small intestine and inflammation of the kidneys, liver, or pancreas (Wildin et al., 2002). This 

phenotype highlights the functional role that Treg cells play in modulating immune responses. 

FoxP3 expressing Treg cells can originate directly from the thymus (cTreg) or they can be derived 

from FoxP3- naïve CD4+ T cells in the periphery (pTreg). While all of the mechanisms responsible 

for the induction of Treg cells in vivo are not resolved, the in vitro differentiation of naïve CD4+ T 

cells into FoxP3 expressing Treg cells requires the growth factor transforming growth factor-β 

(TGF-β). Signaling through the TGF-β receptor activates both the transcription factors nuclear 

factor of activated T cells (NFAT) and SMAD-3, which work together to stabilize and promote 

histone acetylation in the the FoxP3 enhancer region (Tone et al., 2008).	

1.4. Costimulatory and Coinhibitory Receptors in T lymphocytes 

 One key mechanism by which immune homeostasis is achieved is through the activity of 

T cell costimulatory and coinhibitory pathways. A number of costimulatory and coinhibitory 

receptors have been characterized, many of which exhibit synergistic functions that either promote 

T cell activation, survival, and inflammation or attenuate T cell function by suppressing activation, 

effector function, and by promoting cell death (Gergely et al., 1999; Unkeless and Jin, 1997). In 

addition to the costimulatory receptor CD28, inducible T cell costimulator (ICOS) is another 

example of a costimulatory receptor that is important for maintaining both the TH1 and TH2 cell 

phenotype (Khayyamian et al., 2002). Additionally, there are a number of coinhibitory receptors 

that help dampen the immune response in the context of systemic or chronic infection (Greenwald 

et al., 2002; Leibson, 2004; Wang and Chen, 2004). Cytotoxic T-cell-associated protein 4 
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(CTLA4), programmed cell death 1 (PD-1), and lymphocyte activation gene-3 (LAG3) are all 

examples of coinhibitory receptors that function as important immunoregulatory checkpoints that 

serve to limit T cell activation, proliferation, and inflammation. In addition to coinhibitory 

pathways being essential to the resolution of immune responses, they also mediate T cell tolerance 

towards self-antigen and restore immune homeostasis. Importantly, these immunoregulatory 

checkpoints can be exploited by microbes and tumors to evade immune eradication (Frazier et al., 

2010; Spranger, 2016; Ye et al., 2015). Temporal and differential patterns of expression of both 

costimulatory and coinhibitory receptors on the surfaces of both Teff cells and Treg cells is essential 

for modulating the immune response so that the organism as a whole endures the least amount of 

tissue damage during the course of an infection (Liu et al., 2015; Zhou et al., 2008).  

 The coinhibitory molecule Programmed Cell Death-1 (PD-1) plays an important 

immunoregulatory role by reducing T cell activation and effector function (Bennett et al., 2000; 

Bennett et al., 2003; Freeman et al., 2000). Inhibitory signals through the PD-1 pathway control 

induction and maintenance of tolerance to self-antigens (Nishimura et al., 2001; Sharpe et al., 

2007). The inhibitory effect of PD-1 is mediated by engagement with its ligands PD-L1 and PD-

L2 (Latchman et al., 2001; Yamazaki et al., 2002). which can be expressed by immune and non-

immune cells. The pro-inflammatory cytokine, interferon-γ is a powerful driver of PD-L1 

expression (Freeman et al., 2000). Importantly, the PD-1 pathway has been shown to induce Treg 

cells from naïve CD4+ T cells and TH1 cells in vitro and in vivo (Francisco et al., 2009). The PD-

1 pathway exerts important immunoregulatory effects during infection, cancer, and autoimmunity 

and this knowledge has been translated to therapy to treat some forms of cancer. While clinical 

outcomes have been promising, the basic science behind how PD-1 regulates T cell activation, 

differentiation, and effector function is only beginning to be elucidated. Recent evidence suggests 
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that PD-1 may regulate T cell responses in part by altering various aspects of cellular metabolism 

(Parry et al., 2005; Patsoukis et al., 2015; Tkachev et al., 2015). 

1.5. Selenoproteins and T Lymphocytes 

 As mentioned earlier, activation of T cells in the periphery requires both ligation of the 

TCR with its cognate pMHC and co-stimulatory signals. Successful signaling through the TCR 

requires the production of reactive oxygen species (ROS) (e.g. H2O2 and NO), where both under 

and over-production of ROS can limit T cell activation, function, and viability. (Hildeman, 2004; 

Kwon et al., 2003; Williams and Kwon, 2004). Seeing as a number of selenoproteins are important 

antioxidant enzymes, it is possible that these enzymes may function to not only protect T cells 

from oxidative stress but also modulate T cell responses. A number of cell-specific and germline 

deficient mouse models have been used to determine the role that selenoproteins and ROS play in 

T cell responses, as summarized below (Carlson et al., 2010; Shrimali et al., 2008). 

 Studies of T cell specific ablation of the trsp gene (the gene that encodes for Sec 

tRNA[Ser]Sec) demonstrate that the selenoproteome is important for T cell development and 

activation in vivo (11). Trsp deficient mice exhibit decreased pools of mature T cells, a smaller 

fraction of circulating CD8+ T cells, and defective T cell-dependent antibody responses (Shrimali 

et al., 2008). Trsp deficient T cells have abrogated proliferation potential, produce higher levels of 

ROS, and exhibit higher levels of oxidative stress (i.e., ROS-induced damage to proteins, 

membrane lipids, etc.) at basal states (11). These data illustrate the role of selenoproteins as 

antioxidant enzymes and support the notion that ROS levels may impact both T cell viability and 

function (Labunskyy et al., 2014; Wrobel et al., 2016). Importantly, the addition of the antioxidant 

N-acetylcysteine to cell media rescued the ability for trsp deficient T cells to proliferate in a dose-
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dependent manner, thereby demonstrating the importance of the antioxidant function of 

selenoproteins in regulating T cell responses.  

 Murine T cells express twenty of the 24 selenoprotein genes encoded by the mouse 

genome; however, only a handful can be detected at the protein level (Carlson et al., 2010; 

Gladyshev et al., 1999). Among the selenoproteins detected at both mRNA and protein levels are 

glutathione peroxidase-1 (GPx-1), 15 kDa selenoprotein (Sep15), glutathione peroxidase-4, 

selenoprotein P, selenoprotein K, selenoprotein T, and selenoprotein H (Carlson et al., 2010). GPx-

1 is both transcribed and translated at high levels of expression in T cells (Gladyshev et al., 1999). 

Given its expression pattern in T cells, we focused on investigating the function of GPx-1 in T cell 

activation.  

1.6. Glutathione Peroxidase-1 

 GPx-1 is a member of the glutathione peroxidase family of enzymes, which are responsible 

for catalyzing the reduction of H2O2 or organic peroxides to water or alcohol. Mammalian GPx-1 

exists as a homotetramer with a molecular mass between 83 and 95 kDa, where each monomer 

hovers around 200 amino acids depending on the species and allelic variant (Lubos et al., 2011). 

GPx-1 is a crucial antioxidant enzyme that localizes both to the cytosol and mitochondria 

(Esworthy et al., 1997; Singh et al., 1994). In selenocysteine-containing GPx enzymes, the redox 

cycle involves interconversion between selenol (GPx-SeH), selenic acid (GPx-SeOH), and 

selenenyl sulfide (GPx-SeSG) intermediates, where GPx-SeH is the active form of the enzyme 

(Figure 1.3). It is important to note that GPx-1 activity depends on the availability of glutathione 

(GSH) in the cell, whereby GSH acts as the reducing agent to restore the oxidized GPx-SeSG 

intermediate back into the active GPx-SeH form (Amir Aslani and Ghobadi, 2016).  
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 GPx-1 expression and activity is regulated at the transcriptional, post-transcriptional, 

translational, and post-translational levels (Lubos et al., 2011). For example, oxygen tension and 

ROS can induce the transcription of GPx-1 via pathways dependent on the presence of oxygen 

response elements (ORE) and the transcription factor nuclear factor κB (NFκB), respectively 

(Cowan et al., 1993; Zhou et al., 2001). Furthermore, inhibition of the nutrient-sensing signaling 

protein, mammalian target of rapamycin (mTOR) can increase GPx-1 protein levels in 

lymphocytes (Reinke et al., 2014). 

1.7. Glutathione Peroxidase-1 and T Lymphocyes 

 There are few publications that address the impact of germline GPx-1 deficiency on T cells. 

Homozygous null GPx-1 deficient (-/-) mice are viable, exhibit no gross phenotypic differences 

when compared to their wild-type counterparts, but they are sensitized to oxidative stress-inducing 

Figure 1.3: Glutathione peroxidase-1 and proposed catalytic mechanism. (A) Ribbon representation of the 
monomeric unit of bovine glutathione peroxidase-1 (PDB ID: 1GP1)(Epp et al., 1983). The catalytic triad is conserved 
in selenocysteine-containing glutathione peroxidases and is composed of a tryptophan, glutamine, and selenocysteine 
residue. The catalytic triad is represented as sticks and labeled as trp158 (W158), gln80 (Q80), and sec45 (U45). (B) 
Inactivation of peroxides by GPx-1 involves the formation of a several stable intermediary modifications that are made 
directly to the active-site selenocysteine. Active GPx-SeH reacts with peroxides (ROOH or H2O2) to form selenic acid 
(SeOH) (no. 1 in figure). One molecule of glutathione (GSH) reduces GPx-SeOH to GPX-Se-SG and releases water (no. 
2 in figure). An additional molecule of GSH reacts with GPx-Se-SG to further reduce the enzyme back to GPx-SeH and 
release oxidized glutathione (GSSG) (no. 3 in figure). The net reaction is shown in the lower part of the figure. Figure 
adapted from Lubos et al 2011 (Lubos et al., 2011). 

A B 
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agents such as paraquat or hydrogen peroxide (de Haan et al., 1998). Importantly, GPx-1-/- mice 

exhibit altered immune responses (Kim et al., 2014a; Kim et al., 2014b; Won et al., 2010). For 

example, GPx-1 deficient mice are protected from ovalbumin-induced allergic asthma. Eosinophil 

infiltration, goblet cell hyperplasia, collagen deposition, and airway hyperresponsiveness are all 

attenuated in the lungs of the GPx1 deficient mice when challenged with intranasal injections of 

ovalbumin when compared to wild-type mice (Won et al., 2010). After in vitro stimulation with 

anti-CD3 and anti-CD28, GPx-1 deficient CD4+ T cells exhibit a hyperoxidative state, produce 

higher levels of the cytokine interleukin-2 (IL-2), and proliferate more quickly than wild-type cells. 

Additionally, GPx-1 deficient CD4+ T cells cultured in TH17 or TH2 skewing conditions produce 

less subtype specific cytokines (e.g. interleukin-17 or interleukin-4) and exhibit a TH1-like 

phenotype. Taken together, these data suggest that GPx-1-dependent regulation of intracellular 

ROS is important not only for regulation of CD4+ T cell viability and proliferation but also for 

modulating differentiation into T cell effector subtypes (Won et al., 2010). 

 In addition, GPx-1 deficient mice exhibit attenuated disease in several autoimmune models 

(Kim et al., 2014a; Kim et al., 2014b). Double knockout mice lacking both GPx-1 and the 

glutathione-independent antioxidant enzyme Catalase (Cat) show an attenuated response to 

dextran sodium sulfate (DSS)-induced colitis and exhibit hyperfunctional Treg cells. Interestingly, 

administration of the antioxidant, N-acetylcysteine (NAC) aggravated DSS-induced colitis and 

decreased Treg cell function in double knockout mice, thereby supporting a role for ROS as an 

important mediator of T cell effector function (Kim et al., 2014b). Similarly, in the imiquimod-

induced psoriatic dermatitis model GPx-1-/- mice also exhibit hyperfunctional Treg cell responses. 

Consistent with the DSS-induced colitis model, Treg cell function was enhanced in GPx-1-/- mice 

as measured by their ability to suppress CD8+ T cell responses (Kim et al., 2014a).  
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Section 1.8: Questions Addressed in this Thesis 

 In this thesis, we investigated the role that the PD-1 pathway plays in regulating the 

expression and function of selenoproteins. Microarray data generated in our lab from in vitro 

induced into Treg cells suggested that engagement of PD-1 on naïve CD4+ T cells modulates the 

expression of pathways involved in selenoprotein synthesis. Thus, we sought to determine more 

specifically whether PD-1 engagement on naïve T cells impacts the expression of both 

selenoprotein genes and genes involved in selenium metabolism. We focused on GPx-1 because it 

is one of the top selenoprotein genes expressed upon T cell activation. We first compared the 

expression pattern of GPx-1 at the protein level during T cell activation and differentiation in vitro 

in both the presence and absence of the PD-1 ligand PD-L1. Additionally, we sought to determine 

GPx-1 expression in vivo using two models of T cell mediated immunity. Our results led us to 

assess the role that GPx-1 plays in T cell activation and differentiation, thus we employed a GPx-

1 inhibitor to determine the effect that GPx-1 inhibition has on T cell activation and differentiation 

in vitro.  
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Chapter 2: Materials & Methods 

Section 2.1: Mice. Six to 12-week-old wild-type C57BL/6 mice or Foxp3.GFP reporter C57BL/6 

mice were used for in vitro experiments (Bettelli et al., 2006). Wild-type C57BL/6 mice were used 

for MC38 tumor experiments and C57BL/6-Tg OT-II (TcraTcrb) mice were used for the 

immunization studies. The genotypes of the mice were verified by PCR and flow cytometry. 

Harvard Medical School is accredited by the American Association of Accreditation of Laboratory 

Animal Care. Mice were maintained in a pathogen-free facility and used according to the Harvard 

Medical School Standing Committee on Animals and National Institutes of Health Animal Care 

Guidelines. Animal protocols were approved by the Harvard Medical School Standing Committee 

on Animals. 

Section 2.2: Cell Purification. CD4+ T cells were isolated from the spleens of C57BL/6 male or 

female mice by magnetic-activated cell sorting (MACS). Single cell suspensions were made by 

mechanical dissociation in FACS Buffer (1% FCS, PBS, 2 mM EDTA; Invitrogen). Cells were 

washed and isolated by incubation with 25 µl of CD4 microbeads per spleen and positively selected 

through LS columns (Miltenyi Biotec) according to the manufacturer’s instructions. When 

indicated, naïve CD4+CD62L+CD44- Foxp3.GFP- T cells were purified from the spleens of male 

or female C57BL/6 Foxp3.GFP reporter mice by sorting on the FACSaria Cell Sorter after staining 

with anti- CD4+ Brilliant Violet 510 (clone RM4-5; BioLegend), anti-CD62L PE (clone MEL-14; 

BioLegend), and anti-CD44 APC (clone IM7; BioLegend). Naïve CD4+CD62L+CD44- 

Foxp3.GFP- T cells were always >99% pure. When staining, approximately 1 µg of antibody was 

used per 106 cells. 
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Section 2.3: In Vitro Stimulation. Twenty-four well or 96-well flat-bottom tissue culture plates 

(Falcon) were coated with 4 µg/ml of each anti-CD3 (clone 2C11) and anti-CD28 (clone 37.51) 

and molar equivalents of recombinant Human IgG1-Fc (R&D Systems) and PD-L1-Fc (R&D 

Systems) (5 µg/ml and 10 µg/ml, respectively) in phosphate buffered saline (PBS; Invitrogen) 

overnight at 4°Celsius. Before plating the purified CD4+ T cells, the coated tissue culture plates 

were washed once with sterile PBS. The purified CD4+ T cells were plated at 106/ml in the coated 

24-well or 96-well flat-bottom tissue culture plates in complete media consisting of RPMI-1640 

with L-glutamine (Invitrogen) supplemented with 10% FCS (Sigma-Aldrich), penicillin-

streptomycin (100 U penicillin and 100 µg streptomycin (Invitrogen), 12 mM HEPES (Invitrogen), 

and 50 µM β-mercaptoethanol (Sigma-Aldrich) for 1, 2, 3, or 4 days at 37°C with 5% CO2. 

Triplicates for each condition were plated unless otherwise indicated. When indicated, 

recombinant TGF-β (R&D Systems) was supplemented into the media at a final concentration of 

2 ng/mL. 

Section 2.4: Quantitative PCR. Total RNA was isolated using the RNEasy Mini Plus kit 

(QIAGEN) according to the manufacturer’s instructions and quantified using a NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific). cDNA was synthesized by reverse transcription 

with random hexamer primers using the High Capacity cDNA Synthesis kit (Applied Biosystems). 

Real-time qPCR was performed using SYBR Green chemistry (Roche) on a LightCycler 480 

instrument. All samples were run as triplicates. Please see appendix II for primer sequences. 

Section 2.5: Flow Cytometry. Cell surface staining was performed in the dark at 4°C in FACS 

Buffer (1% FCS, PBS, 2 mM EDTA; Invitrogen). The following anti–mouse antibodies were used 

for cell surface staining: anti-CD16/CD32 (Fc Block), anti-CD4 Brilliant Violet 510 (clone RM4-

5; BioLegend), anti-CD62L PE (clone MEL-14; BioLegend), anti-CD25 PE (clone PC61; 
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BioLegend), anti-CD44 APC (clone IM7; BioLegend), and anti-PD-1 PE-Cy7 (clone RMPI-30; 

BioLegend). For intracellular detection of reactive oxygen species (ROS), cells were stained in 2.5 

µM of CellROX deep red or CellROX green (Thermo Fisher) in complete media for 30 minutes at 

37°C with 5% CO2 before staining for surface markers. If the cells were subsequently going to be 

fixed and permeabilized for intracellular staining, cellROX green was used. Intracellular staining 

for FoxP3 and/or GPx-1 was performed using the following antibodies: anti-FoxP3 APC or anti-

FoxP3 FITC (clone FJK-16s; BioLegend), anti-GPx-1 (polyclonal; PA5-26323; Thermo Fischer), 

and donkey anti-rabbit Brilliant Violet 421 (polyclonal; Poly4064; BioLegend). Cells were fixed 

and permeabilized using the FoxP3 fix/perm kit (eBioscience) according to the manufacturer’s 

instructions. Flow cytometry was performed on an LSR II instrument (BD Biosciences) and data 

were analyzed using FlowJo v10.1 (FlowJo, LLC). 

Section 2.6: Mouse Immunization. Six to twelve-week-old C57BL/6-Tg OTII (TcraTcrb) mice 

were immunized with 100 µg NP16-OVA (Biosearch Technologies) in a 1:1 H37RA CFA (DIFCO) 

emulsion. The emulsion was prepared manually at room temperature and stored at 4°C. The 

emulsion was injected subcutaneously into the left and right flank of each experimental mouse. 

The draining lymph nodes from each mouse were harvested seven days later. The tissue was then 

disaggregated in complete media, passed through a cell strainer (70 µm), and assessed for the 

expression of GPx-1 using flow cytometry. All samples were processed on ice and were kept 

protected from light while staining for extracellular and intracellular molecules. The data presented 

are representative of two independent experiments. 

Section 2.7: MC38 Tumor Experiments. On day 0, WT mice were injected subcutaneously on 

the flank with 100,000 MC38 adenocarcinoma cells. After seven days, mice were monitored every 

three days for tumor growth. On the day of harvest (~20 days post-injection), both the tumor and 
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the corresponding draining lymph node were dissected. Tumor samples were subjected to 

collagenase type I (400 U/ml; Worthington Biochemical) digestion for 30 to 45 min at 37°C, after 

which they were passed through a cell strainer (70 µm). The draining lymph nodes were 

disaggregated in complete media and passed through a cell trainer (70 µm). Mononuclear cells 

from each tumor were isolated by centrifugation through a Percoll gradient (30 and 70%). The 

interface was removed, washed and re-suspended in culture medium for analysis. Cells were 

subsequently moved into FACS buffer and stained for both ROS and GPx-1 as described above 

(Section 2.5). 

Section 2.8: GPx-1 Inhibition Assay. We used used mercaptosuccinate to inhibit GPx-1 in vitro. 

96-well tissue culture plates were coated with 4 µg/mL of anti-CD3 and anti-CD28 and either 5 

µg/mL of recombinant Human IgG1-Fc or 10 µg/mL of recombinant PD-L1-Fc. We duplicated 

these conditions and added TGF-β up to a final concentration of 2 ng/mL to assess the impact that 

TGF-β has on T cell activation during GPx-1 inhibition. Thus, there were a total of four different 

culture conditions, anti-CD3, anti-CD28, and Human IgG1-Fc (+/- TGF-β) and CD3, anti-CD28, 

and PD-L1-Fc (+/- TGF-β). Naïve CD4+ T cells (CD4+CD44-CD62L+) were isolated from the 

spleens of 8-12 week old Foxp3.GFP reporter C57BL/6 mice using the previously described cell 

sorting protocol (Section 2.2). The isolated naïve cells were diluted in complete media with or 

without TGF-β at final concentration of 2 ng/mL. Cells were diluted to a concentration of 106 

cells/mL in complete media and 100 µL was added to each well to obtain 100,000 cells/well. A 

stock solution of 1mM of mercaptosuccinate (MS) was prepared in complete media and the pH 

was adjusted to 7.2 using concentrated sodium hydroxide. The MS preparation was then filtered 

through a 40-micron filter using a 10-mL syringe. The filtered stock solution was then used to 

make a dilution series two-fold the desired final concentration. To obtain the desired 1X 
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concentration of MS, 100 µl of the appropriate MS dilution was added to each well for a final 

volume of 200 µl/well. The final concentrations of MS used to treat cells were 0, 1, 5, and 10 mM. 

Cells were cultured for three days at 37°C with 5% CO2 before staining for ROS and surface 

markers. 

Section 2.9: Statistical Analysis. Statistical analysis was performed using Prism 6. Unpaired 

Student’s t test was used for all comparisons, unless otherwise indicated in the figure legends. Data 

are represented as mean ± SD or SE. p Values <0.05 were considered statistically significant (∗p < 

0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005). 
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Chapter 3: Results 

Section 3.1: CD4+ T cells cultured in the presence of PD-L1 express lower levels of genes 

encoding the selenoproteins GPx-1, Sep15, and TR3. In order to assess the impact of PD-1 

engagement on selenoprotein expression, we stimulated CD4+ T cells with anti-CD3/CD28 in the 

presence or absence of recombinant PD-L1-Fc and harvested cells for gene expression analysis at 

24 and 48 hours. Bulk splenic CD4+ T cells were isolated using MACs purification. Untreated 

cells were processed on the day of the harvest and the experimental groups were treated with anti-

CD3, anti-CD28, and human Ig-Fc or anti-CD3, anti-CD28, and PD-L1-Fc. We found that genes 

encoding the T cell specific selenoproteins were upregulated less in CD4+ T cells cultured with 

PD-L1-Fc compared to those cultured with control human Ig-Fc. This difference was observed 

primarily within the first 48 hours. The expression level of some genes, such as GPx-1 and sep15, 

appeared to be more highly influenced by the presence of PD-L1-Fc than other selenoprotein genes 

such as GPx-4 and TR1 (Figure 3.1A). Given the complexity of selenoprotein synthesis, we also 

assessed the expression of genes involved in seleno-amino acid metabolism and protein elongation. 

The expression level of CTH2 (an enzyme involved in both cysteine and selenocysteine 

metabolism) was notably downregulated in the presence of PD-L1 at 48 hours, while other genes 

involved solely in selenium metabolism, such as SECIS-binding protein-2 (SBP2) and 

selenophosphate synthetase-2 (SPS2) were less directly affected by the presence of PD-L1-Fc 

(Figure 3.1B).  

Section 3.2: CD4+ T cells upregulate expression of GPx-1 upon stimulation with anti-CD3 

and anti-CD28. Given our gene expression analysis and previously published data on 

selenoprotein expression in bulk T cells (Carlson et al., 2010), we  next examined GPx-1 protein 

expression in vitro to validate the results that we obtained from our gene expression analysis. We  
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Figure 3.1: CD4+ T cells cultured in the presence of PD-L1-Fc express lower levels of genes that encode for the 
selenoproteins GPx-1, Sep15, and TR3. CD4+ T cells were activated with 4 µg/mL of each αCD3 and αCD28 in the 
presence of 5 µg/mL of hIg-Fc or 10 µg/mL of PD-L1-Fc. Cells were harvested after 24 and 48 hrs. Total RNA was 
isolated and gene expression analysis was performed using quantitative PCR. (A) Expression analysis of genes that 
encode for selenoproteins using Rpl13a as a reference gene. (B) Expression analysis of genes involved in selenoprotein 
synthesis. Statistical analysis was performed on triplicates for each condition. (∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005).	
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analyzed the expression of GPx-1 every 24 hours for three days using flow cytometry. To detect 

the expression of GPx-1, we used a polyclonal antibody against the C-terminus of GPx-1 that has 

been reported by the manufacturer to detect GPx-1 in flow cytometry. We found that the level of 

GPx-1 expression increased upon stimulation with anti-CD3 and anti-CD28 compared to untreated 

control cells (Figure 3.2B). However, we observed little difference in the expression level of GPx-

1 in cells cultured with PD-L1-Fc or control human Ig-Fc after 48 hrs (Figure 3.2C) and 72 hrs 

(Figure 3.2D).  

Section 3.3: Activated T cells express higher levels of GPx-1 in two models of immunity. 

Given the observation that GPx-1 expression in CD4+ T cells appeared to be higher in cells treated  

 

Figure 3.2: CD4+ T cells 
upregulate expression of GPx-1 
upon stimulation with anti-CD3 
and anti-CD28. MACS purified 
CD4+ T cells were isolated and 
cultured CD4+ T cells were 
activated with 4 µg/mL of each 
αCD3 and αCD28 in the presence 
of 5 µg/mL of hIg-Fc or 10 µg/mL 
of PD-L1-Fc (A) Shown here is 
the gating strategy to isolate live, 
single CD4+ T cells. (B) 
Histograms of GPx-1 expression 
in live CD4+ T cells after 24 hrs of 
stimulation. CD4+ T cells cultured 
in the presence of recombinant 
hIg-Fc or PD-L1-Fc are shown in 
green and red, respectively. 
Untreated cells (black) are 
reported after 24 hrs only because 
cell death was so significant in the 
untreated controls for 48 and 72 
hrs. (C) Data generated from the 
same experiment after 48 and 72 
hrs of stimulation.  
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with anti-CD3 and anti-CD28 compared to the untreated controls, we next assessed whether GPx-

1 expression correlated with an activation phenotype in vivo. We examined the co-expression of 

GPx-1 and CD44 in CD4+ T cells derived from the dLN of OTII transgenic mice immunized with 

NP-Ova. CD44 is a well-studied marker of T cells activation and its expression is tied to both 

Figures 3.3: Activated T cells derived from the dLN express higher levels of GPx-1 in two in vivo models. (A) 
Gating strategy to isolate CD4+ live-single cells for FACS analysis. (B) Representative plots for CD4+ T cells plotted 
for the expression of GPx-1 vs. CD44 in LN of four control mice (left) and nine mice immunized with NP-Ova 
(center).  Quantitative analysis was performed on the percentages of CD44+ CD4+ T cells from control mice and 
immunized mice (Right). (C) Shown on the left is a representative flow plot of CD4+ T cells from the dLN of 
immunized mice showing the expression of CD44 and GPx-1. In the center panel, CD44+ T cells from the dLN of 
mice immunized with NP-Ova (purple) were compared to CD44- T cells (cyan) from the same dLN. The MFI for 
GPx-1 expression of CD4+ T cells from the dLN of nine mice are quantified on the right. (D) Shown on the left is a 
representative flow plot for CD4+ T cells harvested from the dLN of mice challenged with MC38 tumor 24 days after 
s.c. implantation. Histograms of CD44+ (purple) and CD44- (cyan) from the same tumor are shown in the middle 
panel. The MFI for GPx-1 expression of CD4+ T cells that were derived from the dLN of four mice are quantified 
on the right (∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005). 
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effector and memory-like phenotypes (Baaten et al., 2010a; Baaten et al., 2010b; Shimizu et al., 

1989). Mice immunized with NP-Ova when compared to control mice exhibited a higher 

percentage of CD44+ T cells in the dLN (Figure 3.3A). In terms of GPx-1 expression, when we 

compared CD44+ to CD44- cells we see that CD44+ T cells derived from the lymph nodes of both 

control and immunized mice express higher levels of GPx-1 when compared to CD44- T cells 

(Figure 3.3B). We also challenged mice with subcutaneous injections of MC38 tumor.  In 

agreement with our immunization data, activated CD44+ CD4+ T cells derived from the dLN near 

the tumor injection site expressed higher levels of GPx-1 when compared to CD44- cells (Figure 

3.3C).  

Section 3.4: GPx-1 expression correlates with CD44 expression and does not correlate with 

the expression of CD62L or FoxP3. Seeing as there are a number of CD44+ T cells that do not 

express high levels of GPx-1, we further characterized the GPx-1hi population of cells using 

additional markers. We examined whether the downregulation of CD62L or the expression of 

FoxP3 correlated with increased expression of GPx-1. We gated on double negative, single 

positive, and double positive populations (CD44 vs. CD62L or CD44 vs. FoxP3) and assessed 

GPx-1 expression. When we examined activated CD4+ T cells in the dLN, we observe that GPx-1 

expression correlates with the expression of CD44 and not with the downregulation of CD62L 

(Figure 3.4A). Next, we examined the expression of GPx-1 in Treg cells. Again, we observe that 

GPx-1 expression correlates only with CD44 expression and does not correspond with the 

expression of FoxP3 (Figure 3.4B). Taken together, these data suggest that GPx-1 expression 

correlates most directly with the upregulation of CD44 upon T cell activation. However, the 

upregulation of CD44 does not necessarily predict high levels of GPx-1 expression.  
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Section 3.5: Tumor-infiltrating CD4+ T cells express higher levels of GPx-1. To further 

investigate the functional role of GPx-1, we compared its expression in CD4+ T cells taken from 

the dLN and the tumor microenvironment of mice implanted with MC38 tumor cells. GPx-1 

expression was higher in tumor infiltrating lymphocytes (TILs) than T cells derived from the dLN 

(Figure 3.5A). Furthermore, when we gated on CD44+ CD4+ T cells, the difference in GPx-1 

expression decreased between T cells derived from the tumor microenvironment and the dLN, 

albeit only slightly (Figure 3.5B). We also evaluated FoxP3+ CD44+ T cells for GPx-1 expression. 

Figure 3.4: GPx-1 correlates with CD44 expression but not with the expression of CD62L or FoxP3. Shown 
here are representative plots of CD4+ T cells from the dLN of mice implanted with MC38 cells. (A) Expression of 
GPx-1 in activated versus naïve CD4 T cells from the dLN. On the left, CD4+ T cells are plotted for the expression 
of CD44 vs. CD62L. CD44+ CD62L- cells are considered activated. A histogram for each quadrant is plotted in the 
center panel to compare the relative expression of GPx-1 in each population. The isotype control shown is for bulk 
CD4+ T cells. The results are quantified on the right. (B) Expression of GPx-1 in FoxP3+ versus FoxP3- CD4+ T 
cells derived from the dLN of mice implanted with MC38 cells. On the left, CD4+ T cells are plotted for CD44 vs. 
FoxP3 expression. A histogram for each quadrant is plotted in the center panel to compare the relative expression 
of GPx-1 in each population. The results are quantified on the right. The data presented here are representative of 
two individual experiments (∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005). 
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There was greater expression of GPx-1 in FoxP3+ T cells derived from tumor microenvironment 

when compared to FoxP3+ T cells from dLN (Figure 2.5C).  These data suggest that although 

GPx-1 expression may correlate with the expression of CD44, there are additional factors that 

regulate GPx-1 expression. These data suggest that the local environment may influence GPx-1 

expression.  

Section 2.6: Naïve CD4+ T cells cultured in the presence of the GPx-1 inhibitor, 

mercaptosuccinate, express FoxP3 in a dose dependent manner that is independent of TGF-

β. Although the effect GPx-1 deficiency on T cell differentiation into TH cell subsets has been 

examined (Won et al., 2010), whether GPx-1 deficiency affects the differentiation of naïve CD4+ 

T cells into Tregs cells is not known. Since we do not have access to germline or cell specific GPx-

1 deficient mice, we used a well-studied inhibitor of GPx-1 to examine whether GPx-1 can 

modulate the differentiation of naïve T cells into Treg cells in vitro. Mercaptosuccinic acid (2-

sulfanylbutanedioic acid) is a dicarboxylic acid that contains a thiol functional group. At 

physiological pH, it primarily exists as the conjugate base mercaptosuccinate (MS). MS has been 

used extensively to inhibit GPx-1 function (Baud et al., 2004; Chaudiere et al., 1984; Zhang et al., 

2005) and irreversibly binds to the selenocysteinyl residue harbored in the active site of GPx-1 

(Hall et al., 2014). In this in vitro stimulation assay, we analyzed cells after 72 hours of stimulation 

with anti-CD3, anti-CD28, and Human IgG1-Fc (+/- TGF-β) and anti-CD3, anti-CD28, and PD-

L1-Fc (+/- TGF-β). Cells treated with MS exhibited a reduced proliferation potential as measured 

by cell count per sample (Figure 3.6A) and fewer cells were CD44+ when compared to control 

conditions without the addition of MS (Figure 3.6B). Predictably, the cellular oxidative stress 

increased with the concentration of MS in a dose-dependent manner (Figure 3.6C). Interestingly, 

the addition of MS increased the percentage of FoxP3 expressing cells and the MFI of FoxP3 in a 
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dose-dependent manner independent of the addition of TGF-β (Figure 3.6D). The percentage of 

CD25+ T cells was higher in T cells cultured in the absence of TGF-β. Additionally, cells cultured 

in the presence of MS and/or TGF-β exhibited lower MFIs for CD25 when compared to cells 

cultured in the absence of both MS and TGF-β. (Figure 3.6E). These results suggest that GPx-1 

may play an important immunoregulatory role in Treg cell induction, possibly by modulating 

signaling through ROS. 

 	 Figure 3.5: Tumor infiltrating CD4+ 
T cells express higher levels of GPx-1 
than CD4+ T cells from the draining 
lymph node. Representative 
histograms of CD4+ T cells from the 
dLN and tumors of mice implanted s.c. 
with MC38 tumor cells. (A) On the left, 
bulk CD4+ from the dLN (blue) and 
tumor (red) are compared for GPx-1 
expression in a histogram. In the right 
panel, the geometric mean fluorescence 
intensity (MFI) for each sample is 
quantified. (B) CD44+ T cells harvested 
from the dLN and tumor are compared 
for their expression of GPx-1. On the 
left, a representative histogram of 
CD44+ CD4+ T cells from the dLN 
(blue) and tumor (red) are compared for 
expression of GPx-1. On the right, the 
geometric mean fluorescence intensity 
(MFI) for each sample is quantified. (C) 
CD44+ FoxP3+ T cells harvested from 
the dLN and tumor are compared for 
their expression of GPx-1. On the left, a 
representative histogram of CD44+ 
FoxP3+ CD4+ T cells from the dLN 
(blue) and tumor (red) are compared for 
expression of GPx-1. On the right, the 
geometric mean fluorescence intensity 
(MFI) for each sample is quantified. 
The MFI for GPx-1 expression for each 
isotype control is reported for every 
population (∗p < 0.05, ∗∗p < 0.005, 
∗∗∗p < 0.0005). 	
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Chapter 4: Discussion 

 In this thesis, we investigated the impact that the PD-1 pathway has on the expression of 

selenoprotein genes and genes involved in selenium metabolism. We found that T cells activated 

in the presence of recombinant PD-L1 express lower levels of some selenoprotein genes, while the 

expression of others did not change. Additionally, we determined that few genes involved in 

selenium metabolism were also downregulated in the presence of PD-L1. Seeing as GPx-1 was 

one of the selenoprotein genes that was most highly expressed upon T cell activation in vitro gene 

expression analysis, we sought to determine its expression profile at the protein level using flow 

cytometry. We found that GPx-1 expression increases upon T cell activation in vitro and that 

activated T cells derived from in vivo models of immunity also expressed high levels of GPx-1. 

Lastly, using a GPx-1 inhibitor, we discovered a novel role for GPx-1 in regulating the expression 

of FoxP3 during T cell activation.  

 Using an in vitro activation assay, we activated T cells using anti-CD3 and anti-CD28 in 

the presence of recombinant human IgG1-Fc or PD-L1-Fc. We determined the expression of a 

number of selenoprotein genes that have been previously shown to be expressed by T cells 

(Carlson et al., 2010). We performed our gene expression analysis after 24 and 48 hours of 

activation in vitro after isolating total cellular RNA and performing quantitative PCR. We 

discovered that T cells cultured in the presence of PD-L1-Fc, express lower levels of the 

selenoprotein genes GPx-1, sep15, and TR3 when compared to those activated in the presence of 

the human IgG1-Fc. Additionally, we examined the expression of genes involved in selenium 

metabolism during T cell activation in the presence and absence of PD-L1-Fc. The T cells cultured 

in the presence of PD-L1-Fc did not significantly downregulate genes involved in selenium  
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Figure 3.6: Naïve CD4+ T cells cultured in the presence of the GPx-1 inhibitor, mercaptosuccinate, induces 
FoxP3 in naïve CD4+ T cells in a dose dependent manner that is independent of TGF-β. Naïve CD44- CD62L+ 
FoxP3- CD4+ T cells were sorted from FoxP3.GFP reporter mice and stimulated with αCD3 and αCD28 in the presence 
or absence of hIG-Fc or PD-L1-Fc and plus or minus 2 ng/mL of TGF-β. T cell activation was measured in the 
presence and absence of the GPx-1 inhibitor, mercaptosuccinate (MS) at concentrations of 0, 1, 5, and 10 mM at time 
zero (A) CD4+ T cells activation was assessed by quantifying the number of Live CD4+ T cells/sample. (B) CD4+ T 
cell activation was measured by the percentage of CD44+ CD4+ live T cells. (C) Oxidative stress was measured using 
cellROX deep red reagent and quantified by reporting the mean geometric fluorescence intensity for each condition 
and plotted in a bar graph (D) Representative plots of live CD4+ T cells cultured in the presence of PD-L1-Fc or hIg-
Fc plus or minus the addition of TGF-β. FoxP3 expression is represented on the y-axis and CD4 expression is 
represented on the x-axis. In the bar graphs on the right, the percentage of FoxP3+ T cells are reported as percentage 
of live-CD4+ T cells (top panel). The MFI of FoxP3 of live-CD4+ FoxP3+ T cells is quantified (bottom panel). (E) 
The percentage of live-CD4+ CD25+ T cells is quantified (left) and the MFI for CD25 is quantified (right) for each 
condition.	
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synthesis, with the exception of cystathione gamma-lyase-2 or CTH2 (an enzyme that is involved 

in both the metabolism of organic sulfur and selenium compounds). While our data suggest that 

the PD-1 pathway may regulate the expression of some selenoprotein genes, it is difficult to 

determine whether this downregulation is mediated directly by signaling through PD-1 or is 

secondary to the reduced activation state due to PD-1 immunoinhibitory signals. Further work is 

needed to better assess whether the PD-1 pathway directly regulates selenoprotein gene expression 

and protein synthesis. Since GPx-1 is one of the most highly expressed selenoprotein genes in T 

cells, we focused on its expression in T cells during activation.  

 We observed reduced transcript levels of GPX1 in cells stimulated in the presence of PD-

L1-Fc, but did not observe differences in GPx-1 protein expression. Since selenoprotein synthesis 

is highly regulated at the levels of transcription and translation, it is premature to draw conclusions 

about the effects of PD-1 signaling on selenoprotein synthesis, specifically GPx-1 expression and 

synthesis. Further work is needed to better assess whether PD-1 signaling directly impacts 

selenoprotein synthesis and metabolism. One approach that could be used to examine whether 

signaling through PD-1 impacts selenoprotein gene expression would be to stimulate T cells using 

different types of activation stimuli (e.g. PMA + Ionomycin or PHA). For example, PMA + 

Ionomycin activate T cells downstream proximal T cell signaling by activating Protein Kinase C 

and inducing Ca2+ efflux from the ER. Thus, if engagement of PD-1 counters proximal T cell 

signaling it is plausible that selenoprotein gene expression may not change in T cells cultured with 

PMA + Ionomycin in the presence of PD-1 ligands. This experiment may help elucidate if T cell 

signaling pathways are necessary for changes in selenoprotein gene expression and whether 

signaling through PD-1 interferes with multiple pathways of activation or just one.  
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 When translating the observation that GPx-1 expression increases upon T cell activation 

from in vitro to in vivo models, we examined whether its expression correlated with markers of 

activation. We determined the relationship between GPx-1 and the known marker of activation 

CD44. The fact that GPx-1 expression correlates with CD44 expression, suggests that it may serve 

a functional role in activated T cells. Our data show that some CD44+ cells express higher levels 

of GPx-1 than CD44- cells. This observation, led us to better define the population of cells that 

upregulate the expression of GPx-1. Using the downregulation of L-selection (CD62L) as an 

additional marker of activation and the expression of FoxP3+ to differentiate between Teff cells and 

Treg cells, we further characterized the cells that increase GPx-1 expression after activation. Our 

data revealed that the only marker of activation that correlates with GPx-1 expression is CD44. It 

is possible that the upregulation of GPx-1 in CD44+ T cells is transient, regulated by intrinsic or 

extrinsic stimuli (e.g. excess peroxide signaling or the presence of pro-oxidants, respectively), or 

both. Thus, identifying a stable population of T cells (as defined by the expression of canonical 

transcription factors and/or surface markers) that express hi levels of GPx-1 may be futile.  

 Support for the argument that the local microenvironment impacts GPx-1 expression comes 

from our in vivo experiments where we observed that CD4+ T cells from the tumor 

microenvironment (TILs) express higher levels of GPx-1 than CD4+ T cells isolated from the dLN. 

Additionally, GPx-1 expression was enriched in CD44+ TILs. These observations suggest a role 

for GPx-1 in T cell effector function. As GPx-1 expression is induced and upregulated in the 

context of various environmental stimuli (e.g. oxidative stress, nutrient deprivation, etc.) (Cowan 

et al., 1993; Lubos et al., 2011), it is reasonable to hypothesize that the increase of GPx-1 

expression observed in TILs was induced in part by environmental stressors characteristic of the 
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tumor microenvironment (e.g. in the presence of activated cancer associated fibroblasts or 

macrophages, hypoxia, etc.) (Fiaschi and Chiarugi, 2012; Policastro et al., 2013).  

 While there is evidence that the selenoproteome of T cells is necessary for their proper 

development and function, the exact roles and mechanisms by which these unique proteins 

contribute to T cell development, activation, and effector function are not thoroughly understood. 

The T cell selenoproteome functions in part by mitigating oxidative stress (Shrimali et al., 2008). 

Since GPx-1 is an important antioxidant enzyme, we hypothesized that it functions in T cells to 

reduce oxidative stress. The findings that CD4+ T cells derived from GPx-1 deficient mice exhibit 

increased levels of ROS and a reduced proliferation potential in vitro support this hypothesis. 

However, GPx-1 deficient CD4+ T cells also exhibit a skewed TH cell differentiation potential, 

suggesting that GPx-1 may impact CD4+ T cell responses and differentiation. GPx-1 has 

previously been described to modulate ROS signaling by neutralizing H2O2 (Veal et al., 2007). 

Additionally, GPx-1 activity in platelets has been shown to indirectly modulate phospholipase Cγ2 

activity by regulating the oxidation state of the src homology 2 domain-containing tyrosine 

phosphatase 2 (SHP2) in an redox dependent manner (Jang et al., 2014). Thus, it is possible that 

GPx-1 may serve to modulate ROS signaling downstream TCR signaling in T cells.   

 Data from our GPx-1 inhibition assay provide additional support for the role that ROS play 

in modulating T cell activation and differentiation potential. In our GPx-1 inhibition assay, we 

observed lower cell counts and reduced expression of activation markers in cells that were treated 

with MS. Additionally, the level of ROS detected in each condition increases in a manner that is 

dependent on the concentration of MS. These data support the role of GPx-1 as an antioxidant 

enzyme that acts to reduce oxidative stress. However, we observed also that the addition of MS 

during T cell activation induced the expression of FoxP3 in a dose-dependent manner that was 
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independent of the presence of TGF-β. Although preliminary, these data suggest that GPx-1 

activity may either directly or indirectly impact T cell activation or differentiation. GPx-1 may act 

to modulate T cell activation and/or differentiation rather than acting as a switch that when turned 

on or off determines T cell fate. This idea is supported by the findings that T cells derived from 

GPx-1 deficient mice are viable and respond to activating stimuli (e.g. treatment with anti-CD3 

and anti-CD28). However, they exhibit both a limited ability to differentiate into TH cell subtypes 

and preferentially exhibit a TH1 cell-like effector phenotype in vivo models of allergy (Won et al., 

2010). Additionally, GPx-1 deficient mice exhibit attenuated autoimmune disease and 

hyperfunctional Treg cells in models of autoimmunity and inflammatory disease (Kim et al., 2014a; 

Kim et al., 2014b). Taken together, these data support a role for GPx-1 in modulating T cell 

responses. Seeing as peroxide signaling is an important signaling molecule downstream TCR 

activation, it is tempting to speculate that GPx-1 may play a role in modulating this signal cascade. 

Strong TCR signaling in the periphery is associated with the induction of pTreg cells (Delpoux et 

al., 2014; Gabrysova and Wraith, 2010). If ROS signaling is an important measure of TCR signal 

strength, it fits with our data that by inhibiting the activity of GPx-1 in T cells that are stimulated 

in vitro, more ROS would accumulate during activation and thereby recapitulate a strong TCR 

signal. Interestingly, TGF-β signaling has been shown to induce mitochondrial ROS production 

and mitochondria-targeted antioxidants have been shown to inhibit TGF-β mediated gene 

transcription downstream Smad3 (Jain et al., 2013; Liu and Gaston Pravia, 2010). Seeing as Smad3 

both stabilizes and promotes histone acetylation in the enhancer region of Foxp3, it is tempting to 

speculate that local ROS production may be an important player in regulating FoxP3 expression 

downstream TGF-β signaling (Jana et al., 2009; Tone et al., 2008). Further work is needed to 
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validate the role that GPx-1 and its substrates (e.g. H2O2) play in modulating T cell responses and 

whether this mechanism of action can induce the expression of FoxP3.  
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Chapter 5: Limitations & Perspectives 

 Our data suggest that selenoprotein gene expression and metabolism may be 

downregulated in the presence of PD-L1-Fc, but it is hard to draw definite conclusions about the 

magnitude of this regulation, and whether it is due to abrogated TCR signaling in the presence of 

PD-L1 or directly due to signaling through PD-1. Since selenoprotein synthesis is a highly 

regulated process, protein expression analysis using Western Blot and mass spectrometry could be 

employed to more carefully assess the expression and regulation of these proteins during T cell 

activation, and better resolve patterns of expression in the presence and absence of co-stimulation 

through PD-1. 

 Likewise, since GPx-1 activity is highly regulated at levels of transcription and translation, 

further work is needed to assess whether GPx-1 activity is regulated by T cell activation and 

whether PD-1 impacts GPx-1 activity. Although we measured a significant increase in the MFI for 

GPx-1 in cells treated with anti-CD3 and anti-CD28 compared to untreated control cells, we did 

not determine if GPx-1 activity increases upon T cell activation. We need to assess the activity of 

GPx-1 in a controlled experiment. At present we can only conclude that there is a change in the 

number of protein copies in the cell upon T cell activation. A number of GPx-1 activity assays 

have been developed to measure the reductive capacity of cell lysate. Employing one of these 

assays might provide us with a better understanding of whether GPx-1 activity is regulated at the 

post-translational level downstream T cell activation as well as whether PD-1 engagement alters 

GPx-1 activity.  

 Our results suggest that increases in GPx-1 expression correlate with CD44 expression in 

CD4+ T cells. These data are congruent across two in vivo models of T cell activation. However, 
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it is important to recognize that the immunological response seven days after immunization with 

NP-Ova is considerably different than the immune response four-weeks post-transplantation with 

a subcutaneous tumor cells. When comparing CD4+ T cells from the dLN and tumor 

microenvironment (TILs) of the same animal, we found differences in the expression level of GPx-

1, where TILs expressed higher levels of GPx-1 than those derived from the dLN. Higher 

expression of GPx-1 in TILs might suggest a functional role for GPx-1 in mitigating oxidative 

stress. Further work is needed to clarify whether this increase in expression is due to cell intrinsic 

or environmental factors. Future work using models of infection (e.g. LCMV) may serve to better 

resolve the function of GPx-1 in newly activated CD4+ T cells and effector cells. Importantly, 

these models would provide larger numbers of cells that could be isolated for ex vivo 

characterization and GPx-1 activity assays.  

 There remain a number of unanswered questions regarding how inhibiting GPx-1 induces 

the expression of FoxP3. As GPx-1 is a well-described antioxidant enzyme and previously 

published research supports the role for the selenoproteome of T cells to reduce oxidative stress, 

it is tempting to speculate that inhibiting GPx-1 and thereby increasing ROS is in part responsible 

for inducing Treg cells in vitro. However, it is possible that the inhibition of GPx-1 induces FoxP3 

expression through a different mechanism of action. One way to address whether ROS directly 

induces the expression of FoxP3 is to perform in vitro GPx-1 inhibition assays in the presence of 

increasing concentrations of membrane permeable antioxidants, such as N-acetylcysteine. Data 

from such experiments would help better resolve whether the induction of FoxP3 is ROS 

dependent or if GPx-1 inhibition induces FoxP3 via a novel mechanism of action. Additional 

experiments that employ inhibitors of other antioxidant enzymes could also be employed to both 

test the hypothesis that ROS play a role in inducing FoxP3 expression and whether the subcellular 
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location of ROS production is important. Seeing as GPx-1 localizes both to the cytoplasm and the 

mitochondria, studies that examine antioxidant enzymes that localize to the cytoplasm (e.g. 

peroxiredoxin I or II) or to the mitochondria (e.g. peroxiredoxins III) may shed light upon the 

mechanism by which ROS induces FoxP3 expression. Resolving the location of ROS 

accumulation in the cell may narrow down the number of pathways that could potentially be 

involved in inducing FoxP3 expression in CD4+ T cells.  

 Furthermore, it is important to consider how the temporal inhibition of GPx-1 could impact 

FoxP3 expression. For example, does inhibiting GPx-1 before or after T cell activation change the 

induction of FoxP3, if at all? Answering these questions may help elucidate the role that GPx-1 

plays in T cell activation and what aspects of T cell activation are important for inducing Treg cells 

in vivo (i.e. is the concentration of ROS an important determinant of TCR signal strength?). 

Resolving the mechanism of action by which inhibiting GPx-1 induces Treg cells may provide 

insight into how and why CD4+ T cells can be induced to express FoxP3 and effectively 

differentiate into Treg cells. 

 While elucidating the mechanism by which GPx-1 inhibition induces FoxP3 may prove 

valuable and insightful, it is also important for us to assess the functionality of FoxP3+ T cells 

induced via GPx-1 inhibition. Using naïve CD4+ T cells derived from C57BL/6 Foxp3.GFP 

reporter mice, in vitro differentiated FoxP3+ T cells could be sorted after stimulation with TGF-β 

or MS and subsequently analyzed for IL-10 production and CTLA4 expression. Additionally, 

sorted cells could also be used in an in vitro suppression assay with Teff cells, such as CTLs. CTL 

effector function could then be measured by cytokine production or staining for granzyme after 

incubation with the sorted FoxP3+ T cells for a given period of time. Such an experiment might 

shed light on the viability and functionality of the FoxP3+ CD4+ T cells derived from GPx-1 
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inhibition. These data would inform future experiments aimed at assessing the role of GPx-1 in T 

cell activation and differentiation. 
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Concluding statements:  

In this thesis, we tested the hypothesis that the PD-1 pathway regulates the expression of 

selenoprotein genes. We found that T cells activated in the presence of ligands for PD-1 express 

lower levels of several selenoproteins, including GPx-1. Upon further examination of GPx-1 

expression in vitro, we found little difference between GPx-1 expression at the protein level in 

naïve T cells activated in the presence or absence of PD-L1 over the course of three days. When 

we examined GPx-1 expression in vivo models of immunity (e.g. NP-Ova immunization and 

MC38 tumor injection), we found that some, but not all, CD44+ T cells express high levels of GPx-

1. We also observed that the expression of GPx-1 varies between cells derived from different tissue 

environments (i.e. the draining lymph node versus the tumor microenvironment). Interestingly, we 

discovered that inhibiting GPx-1 in vitro induces the expression of FoxP3 in naïve CD4+ T cells, 

suggesting that GPx-1 may be involved in modulating T cell activation and effector responses. 

Further work needs to be done to address the mechanism by which GPx-1 inhibition induces FoxP3 

expression in naïve T cells and whether these are functional Treg cells. While a number of questions 

remain, our findings give impetus to more thoroughly investigate the role of selenoproteins in T 

cell responses.  
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Appendix 

Table A: Primer list for qPCR
Name Abbreviation Sense Anti-Sense
Cystathionine gamma-lyase CTH GGCTTCCTGCCTAGTTTCCAG AGTCCTGCTTAAATGTGGTGG
Selenophosphate Synthetase 1 SPS1 GAGAGTCCTTTAACCCGGAGA CATCCCAATGCCAAGTCGTG
Selenophosphate Synthetase 2 SPS2 GATAGTGCCGTGGTAGGAGA CTCTGGAAACCACCATCTTG
SECIS Binding Protein 2 SBP2 GCTGATGTCAAACCATTCGTCC GCCATGTCTTCGGGATACATTT
glutathione peroxidase 1 GPX1 CAGGAGAATGGCAAGAATGA GAAGGTAAAGAGCGGGTGAG
glutathione peroxidase 4 GPX4 GCAGGAGCCAGGAAGTAATC GGCTGGACTTTCATCCATTTT
thioredoxin reductase 1 TR1 CTACAGACCATTGCCTTGCT ACCTCCTACCCACAAGATCC
thioredoxin reductase 3 TR3 TCACTGGAATTGGACTGGAT ACACAGCCTTTCAGGAACTG
15 kDa selenoprotein Sep15 CTGGCGACTGCGTTTCAAG CTGTCCAAGAAGATCGCAAGAG  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


