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Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into 

induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming 

methods, it is unknown whether the genome remains unchanged at the single nucleotide level. 

Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five 

different methods each contained an average of five protein-coding point mutations in the regions 

sampled (an estimated six protein coding point mutations per exome). The majority of these 

mutations were non-synonymous, nonsense, or splice variants, and were enriched in genes 

mutated or having causative effects in cancers. At least half of these reprogramming-associated 

mutations pre-existed in fibroblast progenitors at low frequencies, while the rest were newly 

occurring during or after reprogramming. Thus, hiPS cells acquire genetic modifications in 

addition to epigenetic modifications. Extensive genetic screening should become a standard 

procedure to ensure hiPS safety before clinical use.

Introduction

hiPS cells have the potential to revolutionize personalized medicine by allowing 

immunocompatible stem cell therapies to be developed1,2. However, questions remain 

about hiPS safety. For clinical use, hiPS lines must be reprogrammed from cultured adult 

cells, and could carry a mutational load due to normal in vivo somatic mutation. 

Furthermore, many hiPS reprogramming methods utilize oncogenes that may increase the 

mutation rate. Additionally, some hiPS lines have been observed to contain large-scale 

genomic rearrangements and abnormal karyotypes after reprogramming3. Recent studies 

also revealed that tumor suppressor genes, including those involved in DNA damage 

response, have an inhibitory effect on nuclear reprogramming4-9. These findings suggest 

that the process of reprogramming could lead to an elevated mutational load in hiPS cells.

To probe this issue, we sequenced the majority of the protein-coding exons (exomes) of 

twenty-two hiPS lines and the nine matched fibroblast lines from which they originated 

(Table 1). These lines were reprogrammed in seven laboratories using three integrating 

methods (four-factor retroviral, four-factor lentiviral, and three-factor retroviral) and two 

non-integrating methods (episomal vector and mRNA delivery into fibroblasts). All hiPS 

lines were extensively characterized for pluripotency and had normal karyotypes prior to 

DNA extraction (Supplementary Methods). Protein coding regions in the genome were 

captured and sequenced from the genomic DNA of hiPS lines and their matched progenitor 

fibroblast lines using either padlock probes10,11 or in-solution DNA or RNA baits12,13. 

We searched for single base changes, small insertions/deletions, and alternative splicing 

variants, and identified 12,000 - 18,000 known and novel variants for each cell line that had 

sufficient coverage and consensus quality (Table 1).

hiPS Cell Lines contain a High Level of Mutational Load

We identified sites that showed the gain of a new allele in each hiPS line compared with 

their corresponding matched progenitor fibroblast genome. A total of 124 mutations were 

validated with capillary sequencing (Figure 1, Table 2, Supplementary Figure S1), which 

revealed that each mutation was fixed in heterozygous condition in the hiPS lines. No small 

insertions/deletions were detected. For three hiPS lines (CV-hiPS-B, CV-hiPS-F, PGP1-
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iPS), the donor’s complete genome sequence obtained from whole blood is publicly 

available14,15; we used this information to further confirm that all 27 mutations in these 

lines were bona fide somatic mutations. Because 84% of the expected exomic variants16 

were captured at high depth and quality, the predicted load is approximately 6 coding 

mutations per hiPS genome (see Table 1 for details). The majority of mutations were 

missense (83/124), nonsense (5/124), or splice variants (4/124). Fifty-three missense 

mutations were predicted to alter protein function17 (Supplementary Table S1). Fifty 

mutated genes were previously found to be mutated in some cancers18,19. For example, 

ATM is a well-characterized tumor suppressor gene found mutated in one hiPS line, while 

NTRK1 and NTRK3 (tyrosine kinase receptors) can cause cancers when mutated20 and 

contained damaging mutations in three hiPS lines (CV-hiPS-F, iPS29e, FiPS4F-shpRB4.5) 

reprogrammed in three labs from different donors. Two NEK kinase genes, a family related 

to cell division, were mutated in two independent hiPS lines. In addition to cancer-related 

genes, fourteen of the twenty-two lines contain mutations in genes with known roles in 

human Mendelian disorders21. Three pairs of hiPS lines (iPS17a and iPS17b, dH1F-iPS8 

and dH1F-iPS9, CF-RiPS1.4 and CF-RiPS 1.9) shared three, two, and one mutation 

respectively; these most likely arose in shared common progenitor cells prior to 

reprogramming. However, most hiPS lines derived from the same fibroblast line did not 

share common mutations (Table 2 and Supplementary Table S1).

These data raise the possibility that a significant number of mutations are occurring during 

or shortly after reprogramming and then become fixed during colony picking and expansion. 

An alternative hypothesis is that the mutations we found are simply the result of age-accrued 

biopsy heterogeneity or in vitro fibroblast cell culture. The skin biopsies were collected from 

donors at ages varying from newborn to 82 years old; biopsy heterogeneity therefore does 

not appear to play a primary role, as the mutational load is not correlated (R2 = 0.046) with 

donor age (Supplementary Figure S2). We attempted to grow clonal fibroblasts in order to 

obtain a control for single-cell mutational load, but a direct assessment was not possible due 

to technical difficulties in mimicking the exact culture conditions (Supplementary Methods). 

Assuming the skin biopsy is mutation-free, we can use previously published values for the 

typical mutation rate in culture to obtain an expectation of ten times fewer mutations per 

genome than we observed (p< 1.27 × 10−53; Supplementary Methods), indicating that hiPS 

mutational load is high compared to normal culture mutational load. We define the term 

“reprogramming-associated mutations” to describe mutations observed after 

reprogramming. Reprogramming-associated mutations could be pre-existing at low 

frequencies in the fibroblast population, occurring during the reprogramming process, or 

occurring after reprogramming. All reprogramming-associated mutations have become fixed 

in the hiPS line population.

Reprogramming-Associated Mutations arise through Multiple Mechanisms

To test whether some observed mutations were present in the starting fibroblasts at low 

frequency prior to reprogramming, we developed a new digital quantification assay (DigiQ) 

to quantify the frequencies of 32 mutations in six fibroblast lines using ultra-deep 

sequencing (Supplementary Figure S3-4). We amplified each mutated region from the 

genomic DNA of 100,000 cells with a high-fidelity DNA polymerase and sequenced the 
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pooled amplicons with an Illumina Genome Analyzer at an average coverage of 106. 

Although the raw sequencing error is roughly 0.1-1% with the Illumina sequencing 

platform, detection of rare mutations at a lower frequency is possible with proper quality 

filtering and careful selection of controls22. For each fibroblast line, we included the 

mutation-carrying hiPS DNA as the positive control and another “mutation-free” DNA 

sample as the negative control for sequencing errors (Supplementary Methods). Comparison 

of the allelic counts at the mutation positions between the fibroblast lines and the negative 

controls allowed us to distinguish rare mutations from sequencing errors, and estimate the 

detection limit of the assay. Seventeen of the 32 mutations were found in fibroblasts in a 

range of 0.3-1000 in ten thousand while 15 mutations were not detectable (Supplementary 

Table S2-3). In each fibroblast line with more than one detectable rare mutation, the 

frequency of each mutation was very similar, which suggests that a small sub-population of 

each fibroblast line appeared to contain all pre-existing hiPS mutations, while the rest of the 

cells lacked any of them.

We extended this analysis by asking whether all of the hiPS mutations could have pre-

existed in the fibroblast populations. For the 15 mutations not detected with the DigiQ assay, 

the detection limits can be estimated (Supplementary Methods). The sequencing quality was 

sufficiently high at 7 of the 15 sites such that rare mutations at frequencies of 0.6-5 in 

100,000 should be detectable with our assay (Supplementary Table S3). Since 

30,000-100,000 fibroblast cells were used in the reprogramming experiments, we can rule 

out the presence of two mutated genes (NTRK3 and PLOR1C) in even one cell of the 

starting fibroblast population, while five others were present in no more than 1-2 cells.

As another test of the hypothesis that all of the mutations pre-existed in fibroblasts prior to 

reprogramming, we examined the exomes of two hiPS lines derived from a fibroblast line 

dH1cf16, which was itself clonally derived from the dH1F fibroblast line and passaged the 

minimum amount to generate enough cells for reprogramming. The two hiPS lines derived 

from the non-clonal dH1F fibroblast line contained 8 and 3 new mutations not found in the 

fibroblasts respectively; we observed a very similar independent mutational load in the 

clonal lines (6 new mutations in the hiPS line dH1cf16-iPS1 and 2 new mutations in the 

hiPS line dH1cf16-iPS4). Together, these experiments establish that while some of the 

reprogramming-associated mutations were likely to pre-exist in the starting fibroblast 

cultures, the others occurred during reprogramming and subsequent culture. Specific 

distributions tend to vary across hiPS lines (Supplementary Table S3).

Mutations occurring during reprogramming could be due in part to a significantly elevated 

mutation rate during reprogramming. It is also possible that selection could play an 

important role. We tested the possibility that an elevated mutation rate might occur because 

the reprogramming process might be inducing transient repression of p53, RB1, and other 

tumor suppressor genes, which are known to inhibit reprogramming and are required for 

normal DNA damage responses. SV40 Large-T antigen, which inactivates tumor suppressor 

and DNA damage response genes (including p53 and p105/RB1)23, was expressed during 

reprogramming of three analyzed hiPS lines (DF6-9-9, DF19-11, and iPS4.7).24. Another 

hiPS line (FiPS4F-shpRB4.5) was generated while directly knocking down RB1 

(Supplementary Figure S5). However, the observed mutational load was very similar in 
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these lines compared to the others, indicating that reprogramming-associated mutations 

cannot be explained by an elevated mutation rate caused by p53 or RB1 repression.

We also probed if additional mutations could become fixed during extended passaging by 

extending our analysis of one hiPS line. While most of our hiPS lines were sequenced at 

fairly low passage number (less than 20), to directly measure the effect of post-

reprogramming culture we also sequenced one hiPS line (FiPS4F2) at two passages (p9 and 

p40). We discovered that all seven mutations identified in the passage 9 line remained fixed 

in the passage 40 line, but that four additional mutations were found to be fixed in the 

passage 40 cell line.

To test the possibility that selection is operating during hiPS generation, we performed an 

enrichment analysis to determine if reprogramming-associated mutated genes were more 

likely to be observed in cancer cells than random somatic mutation. We used the COSMIC 

database as a source of genes commonly mutated in cancer. We discovered that the 

reprogramming-associated mutated genes were significantly enriched for genes found 

mutated in cancer (p=0.0019, Supplementary Materials), which implies some mutations 

were selected during reprogramming.

As an alternative test of the selection hypothesis, we asked whether mutations associated 

with reprogramming could be functional based on the nonsynonymous:synonymous (NS:S) 

ratio. Traditionally, the analysis of the NS:S ratio is applied to germline mutations evolved 

over a long period of evolutionary time, which is thus not directly applicable to somatic 

mutations. However, functional mutations are known to be positively selected in cancers, 

allowing us to make a direct comparison to mutation characteristics found in cancer 

genomes. Strikingly the NS:S ratio is very similar between mutations identified in three 

recent cancer genome sequencing projects25,26,27 and the reprogramming-associated 

mutations we found (2.4:1 and 2.6:1, respectively), indicating that a similar degree of 

selection pressure may be present.

We also checked if reprogramming-associated mutations could be providing a common 

functional advantage using a pathway enrichment analysis through Gene Ontology terms28. 

No statistically significant similarity was identified, indicating that mutated genes have 

varied cellular functions. Again, identical results were found when performing the same 

analysis on mutations identified during the genome sequencing of melanoma, breast cancer, 

and lung cancer samples25,26,27. This lack of enrichment in cancer genomes is generally 

thought to be due to the presence of many passenger mutations in cancer cells, which could 

also be true for reprogramming-associated mutations. Nonetheless, these analyses suggest 

that selection of potentially functional mutations could play a role in amplifying rare 

mutation-carrying cells and, when coupled with the single-cell bottleneck in hiPS colony 

picking, could contribute to the fixation of initially low-frequency mutations throughout the 

entire hiPS cell population.
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Discussion

Taken together, our results clearly demonstrate that pre-existing and new mutations during 

and after reprogramming all contribute to the high mutational load we discovered in hiPS 

lines. Although we cannot completely rule out the possibility that reprogramming itself is 

“mutagenic”, our data argue that selection during hiPS reprogramming, colony-picking, and 

subsequent culture may be contributing factors. A corollary is that, if reprogramming 

efficiency is improved to a level such that no colony-picking and clonal expansion is 

necessary, the resulting hiPS cells could potentially be free of mutations.

Despite the power of our experimental approach to accurately identify and characterize 

reprogramming-associated mutations, their functional significance remains to be shown. 

This issue parallels a general problem facing the genomics community: high-throughput 

sequencing technologies have allowed data generation rates to greatly outpace functional 

interpretation. Additionally, when considering the biological significance of 

reprogramming-associated mutations, there are two separate functional aspects to consider: 

whether some of these mutations contributed functionally to the reprogramming of cell fate, 

and whether some of these mutations could increase disease risk when hiPS-derived cells/

tissues are used in the clinic. These two aspects are not necessarily connected. Although the 

functional effects of the 124 mutations remained to be characterized experimentally, it is 

nonetheless striking that the observed reprogramming-associated mutational load shares 

many similarities with that observed in cancer. Furthermore, the observation of mutated 

genes involved in human Mendelian disorders suggests that the risk for diseases other than 

cancer needs to be evaluated for hiPS-based therapeutic methods. Future long-term studies 

must focus on functional characterization of reprogramming-associated mutations in order to 

further aid the creation of clinical safety standards.

Because safe hiPS cells are critical for clinical application, just as previous findings of large-

scale genome rearrangements in hiPS lines led to the introduction of karyotyping as a 

standard post-reprogramming protocol, routine genetic screening of hiPS lines to ensure that 

no obviously deleterious point mutations are present must become a standard procedure. 

Complete exome or genome sequencing of hiPS lines might be an efficient way to screen 

out hiPS lines that have a high mutational load or that have mutations in genes implicated in 

development, disease, or tumorigenesis. Further rigorous work on mutation rates and 

distributions during in vitro culture and reprogramming of hiPS cells, and perhaps human 

embryonic stem cells, will be essential to help establish clinical safety standards for genomic 

integrity.

Methods Summary

CV-hiPS-F and CV-hiPS-B were reprogrammed from CV Fibroblasts using 4-factor 

retroviral vectors. PGP1-iPS cells were reprogrammed by Cellular Dynamics using the same 

four factors in a lentiviral vector from PGP1F fibroblasts29. dH1F-iPS8, dH1F-iPS9, 

dH1cF16-iPS1, dH1cF16-iPS4, dH1cF16, and dH1F cells were obtained from previous 

cultures30 reprogrammed with retroviral vectors containing the same factors31. DF-6-9-9, 

DF-19-11, iPS4.7, and FS cells were obtained from previously existing cultures; the 
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reprogramming process and characterization of lines has been described previously24. 

iPS11a, iPS11b, iPS17a, iPS17b, iPS29A, iPS29e, Hib11, Hib17, and Hib29 cells were 

obtained from previous cultures reprogrammed using retroviral vectors encoding three or 

four factors32. FiPS3F1 and FiPS4F7 were reprogrammed from HFFxF fibroblasts using 

similar protocols33-35. FiPS4F2 and FiPS4F-shpRB4.5 were reprogrammed using the same 

4-factor protocol from IMR90 fibroblasts. The mRNA-derived lines (CF-RiPS1.4, CF-

RiPS1.9, and CF Fibroblasts) were obtained from previous cultures36. All hiPS lines were 

extensively characterized for pluripotency. Fourteen lines were tested for teratoma formation 

and shown to express all embryonic germ layers in vivo. DNA was extracted from each cell 

type using Qiagen’s DNeasy kit.

Exome capture was performed with either a library of padlock probes, commercial 

hybridization capture DNA baits (NimbleGen SeqCap EZ), or RNA baits (Agilent 

SureSelect), and the resulting libraries were sequenced on an Illumina GA IIx sequencer. 

Putative mutations were rejected if they were known polymorphisms or contained any minor 

allele presence in the fibroblast. All candidate mutations were confirmed using capillary 

Sanger sequencing.

For digital quantification, mutations were PCR-amplified and sequenced using an Illumina 

GA IIx. These libraries were sequenced to obtain on average one million independent base 

calls for each location. A binomial test was then used to determine if the observed minor 

allele frequency could be separated from error and estimate the frequency of each mutation.

Detailed methods are available in the Supplementary Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. hiPS acquired protein-coding somatic mutations
Somatic mutations in the gene NTRK3 were found in two independent hiPS lines but were 

not present in their fibroblast progenitors. Detailed information for all mutations is in the 

Supplementary Materials.
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Table 2
List of genes found to be mutated in coding regions in hiPS cells

The full details of each mutation are in Supplementary Table 1.

Cell Line Mutated Genes

Number of
Non-Silent
Mutations

Detectable at Low
Frequency in
Fibroblasts?

CF-RiPS1.4 OR52E8, TEAD4 1 N/A

CF-RiPS1.9
OR52E8, FAM171A1, TMED9,
TEAD4, RASEF 3 N/A

CV-hiPS-B

MMP26, DYNC1H1, VMO1,
DSC3, CELSR1, FLT4,
UBE2CBP, ARHGEF5,
IGF2BP3, DLG3 7 7/8

CV-hiPS-F

IQGAP3, SPEN, TNR, PBLD,
OR6Q1, INTS4, GSG1, NTRK3,
DNAH3, GOLGA4, FAT2,
C6orf25, UBR5, SDR16C5 12 4/7

DF19.11

SPATA21, RGS8, RP4-
788L13.1, KCNJ8, SETBP1,
ZNF471, TMEM40 5 N/A

DF6-9-9
ZZZ3, AKR1C4, NEK5, DAPL1,
ITCH, PPP1R2 5 0/5

dH1CF16-iPS1 IRGQ, TM9SF4 1 N/A

dH1CF16-iPS4
PKP1, MYOG, ABCA3, PTPRM,
RANBP3L, CALN1 4 N/A

dH1F-iPS8

CABC1, C1orf100, OR5AN1,
CACNG3, MYRIP, SLC1A3,
DSP, KLRG2 6 N/A

dH1F-iPS9 SEMA6C, MYRIP, SLC1A3 3 N/A

FiPS3F1
SORCS3, GLRA3, CARM1,
EPB41L1 2 N/A

FiPS4F7 GDF3, ZER1 2 N/A

iPS11A
GTF3C1, SAL1, SLC26A3,
ZNF16 3 1/1

iPS11B

MARCKSL1, PRDM16, ATM,
LRP4, TCF12, SH3PX3,
OSBPL3 5 0/1

iPS17A
HK1, ANKRD12, SCN1A,
IFNGR1 4 N/A

iPS17B
HK1, CCKBR, ANKRD12,
SCN1A, IFT122 5 1/1

iPS29A PRICKLE1, RFX6 2 2/2

iPS29E
C14orf174, NTRK3, VAC14,
ASB3, STX7, POLR1C, LINGO2 6 1/4

iPS4.7
POLE, UBA2, L3MBTL2,
C4orf41 2 N/A

PGP1-iPS C11orf67, OSBPL8, NEK11 1 1/3

FiPS4F2

TMEM57, RANBP6, CTSL1,
SAV1, KRT25, BCL2L12,

LGALS1, TTYH2*, COPA*,

ARSB*, MT1B* 7 N/A

FiPS4F-shpRB4.5

NTRK1, CD1B, LRCH3,
SH3TC1, GPC2, CDK5RAP2,
MYH4, TRMU 5 N/A
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*
Mutation was observed at passage 40 but not at passage 9. FiPS4F2 was sequenced at both passage 9 and passage 40. Six mutations were present 

after reprogramming (FiPS4F2P9), while four more became fixed after extended culture (FiPS4F2P40). All six mutations found after 
reprogramming were also present after extended culture.

Nature. Author manuscript; available in PMC 2011 September 03.


