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Functional characterization of genetic alterations in cancer 

 

Abstract 

The comprehensive identification of genetic alterations is critical to understanding the 

pathophysiology of cancer. Recent advances in sequencing technology have enabled the 

detailed description of cancer genomes. However, to translate these findings into a deeper 

understanding of cancer biology, analyzing the functional impact of cancer-associated genetic 

aberration is essential. Here I investigate how to accelerate the functional characterization of 

two classes of genetic alterations, point mutations and amplifications.  

The wide spectrum of point mutations that arise in cancer makes them challenging to 

study comprehensively. I have developed a scalable systematic method to experimentally infer 

the functional impact of cancer-associated gene variants. I performed pooled in vivo tumor 

formation assays and gene expression profiling using 474 mutant alleles curated from 5,338 

human tumors. I identified 12 transforming alleles including two in genes (PIK3CB, POT1) that 

have not been previously shown to be tumorigenic. One rare KRAS allele, D33E, displayed 

tumorigenicity and constitutive activation of RAS effector pathways. By correlating gene 

expression changes induced upon expression of wild type and mutant alleles, I could infer the 

activity of specific alleles. These approaches enable the interrogation of cancer-associated 

alleles at scale and demonstrate that rare alleles may be functionally important.  

Frequently amplified regions in cancer often harbor oncogenic drivers. However, 

identifying the driver gene among many other amplified genes is challenging. In high-grade 

serous ovarian cancer (HGSOC), 1,825 genes are amplified across 63 amplicons. We 

employed systematic loss-of-function RNAi data to identify amplified genes that were essential 
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in the ovarian lineage. We identified 50 amplified and essential genes and validated FRS2, an 

adaptor protein in FGFR pathway. FRS2-amplified cancer cell lines were dependent on FRS2 

expression and FRS2 overexpression in immortalized cell lines was sufficient to promote 

anchorage independent growth and tumorigenesis in nude mice. This approach demonstrates 

that intersecting structural genomics with functional genomics can facilitate the discovery of 

driver genes in recurrently amplified regions. Collectively, the methods I present here provide a 

framework to study point mutations and amplifications to accelerate the interpretation of the 

cancer genome. 
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1.1 Cataloguing genetic alterations in cancer  

The comprehensive description of genetic alterations in cancer has been a major goal of 

cancer research, with the expectation that identifying these aberrations would elucidate the 

molecular basis of cancer and nominate potential therapeutic targets (1-3). This expectation is 

based on prior triumphs, such as the discovery of the BCR-ABL translocation (4,5), HER2 

amplification (6) and BRAFV600E point mutation (7), which led to the development of efficacious 

targeted cancer therapeutics, imatinib, tratuzumab and vemurafenib (8-10).  

These success stories were preceded by decades of relentless searching for cancer 

causing genes. The hunt for cancer causing genes evolved in parallel with advancements in 

detection methods. As the detection technology became more sophisticated, many more 

genetic aberrations were discovered. The concept of cancer as a disease that evolves from 

somatic genetic alterations originated from the study of cancer-inducing retroviruses in animal 

models. These retroviruses were found to contain oncogenic genes such as Src and Ras 

(11,12). Using transforming retroviruses’ sequences as probes, homologous genes in human 

genome were discovered (13). Progress in gene transfer technology, such as transfection and 

retroviral delivery, enabled the detection of DNA fragments extracted from cancer cells that 

were capable of transforming non-cancer cells; these methods facilitated the discovery of an 

oncogenic point mutation in HRAS, G12V (14,15).  

Conventional cytogenetic analysis using light microscope facilitated the discovery of 

abnormal chromosomal rearrangements (4,5), and genetic amplifications (16). Advancements in 

molecular cytogenetic technologies, such as fluorescent in situ hybridization (FISH) and array 

comparative genomic hybridization (aCGH), have greatly improved the resolution and accuracy 

of detecting chromosomal aberrations. To date, hundreds of translocations and copy number 

alterations have been identified (17).  
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The development of high throughput methods, such as aCGH and gene expression 

microarrays, allowed discovery of novel cancer associated genetic alterations. Indeed, 

analyzing gene expression outliers by microarray identified TMPRSS2-ERG translocation in 

prostate cancer (18). In addition, systematic loss-of-function and gain-of-function screening 

methods have facilitated the identification of genes that contribute to the development and 

progression of human cancers. RNAi screening enabled the identification of several tumor 

suppressor genes (19). A complementary DNA library screen identified EML4-ALK fusion as an 

oncogenic driver in lung cancer (20), and a kinome overexpression screen identified IKBKE as a 

breast cancer oncogene (21).  

After the completion of the Human Genome Project (22), targeted PCR followed by 

Sanger sequencing became the predominant method to discover novel oncogenic point 

mutations in candidate genes. Several BRAF (7), ERBB2 (23), PIK3CA (24,25), JAK2 (26) and 

AKT1 (27) point mutations were discovered in this manner. The number of genes studied 

increased rapidly, and by 2007, such study of exome-scale was performed in breast and 

colorectal cancers (28). These unbiased whole exome studies empowered the discovery of 

unexpected, novel cancer associated genes, such as IDH1 (29). 

Even though the methods described above allowed discovery of many oncogenes and 

tumor suppressor genes, they had two inherent problems: researchers needed some a priori 

knowledge of what they were looking for, and most of these methods did not scale well due to 

their laborious nature and/or high costs. Introduction of the next-generation sequencing in the 

mid 2000s, effectively addressed these issues by driving down the cost of sequencing to orders 

of magnitude lower than that of Sanger sequencing, while maintaining high accuracy (30).  

As sequencing the whole exome and genome became feasible, cancer researchers 

quickly adapted next-generation sequencing technology to comprehensively describe genetic, 

epigenetic, and transcriptomic alterations in cancers. In the past ten years, the detailed 

description of the mutational landscape in many types of cancers was accomplished (31,32). 
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International collaborative efforts, such as The Cancer Genome Atlas (TCGA) and International 

Cancer Genome Consortium (ICGC), have greatly expedited this process by each 

characterizing more than 10,000 tumors of 20 cancer types and more than 25,000 tumors of 50 

types, respectively (1,33). As the cost of sequencing plummeted, it became financially feasible 

for individual investigators to sequence hundreds of matched tumor and normal tissue pairs. 

The exponential increase in the number of tumors sequenced facilitated discovery of not only 

novel cancer-associated genes in previously known pathways, but also entirely new classes of 

genes involved in cellular processes such as epigenetic modifications, splicing regulations and 

protein homeostasis (31). These new findings have introduced exciting new fields of 

investigation to the cancer research community that may hold keys to novel mechanistic 

understanding and therapeutic developments. 

The bulk of sequenced tumors to date have been analyzed by whole-exome sequencing, 

which is limited to sequencing the protein coding part of the genome. However, the coding 

sequence in the human genome accounts for only 1-2% of the total sequence; the rest of the 

genome may hold important information in understanding cancer biology (31). With decreasing 

sequencing costs, whole-genome sequencing is increasingly applied to study genetic alterations 

in cancer, enabling the identification of alterations that cannot be captured in exome 

sequencing. These include point mutations in noncoding regions such as regulatory elements 

and long noncoding RNAs (34), as well as complex genetic rearrangements including multiple 

translocations, chromoplexy (35), and chromothrispsis (36,37). Point mutations in regulatory 

elements may play a significant role in cancer. Recently, point mutations in the telomerase 

reverse transcriptase (TERT) promoter were discovered in melanoma and other cancers, and 

were shown to reactivate telomerase activity in cancer cells (38-40). Whole genome analysis of 

hundreds of human tumors has identified multiple recurrent mutations in the upstream region of 

genes such as PEKHS1, WDR74 and SDHD, which may play a role in cancer initiation and 

progression (41).  
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Along with mutations in noncoding regions, the functional impact of synonymous point 

mutations in coding region is increasingly investigated. Synonymous variants have been shown 

to affect protein expression, conformation and function through distinct mRNA processing, 

mRNA secondary structure, and post-transcriptional regulations (42). Synonymous mutations in 

BCL2L12 can change miRNA-mediated regulation, which results in increased mRNA and 

protein levels in malignant melanoma (43). A recent survey of exome sequencing data from 

more than 3,000 tumors showed that some synonymous variants are indeed under positive 

selection, and these variants are concentrated in oncogenes and 3’UTRs, affecting splice sites 

and mRNA expression levels (44). These discoveries of functional variants in noncoding regions 

and synonymous mutations will increase as more cancer genomes are sequenced and will 

continue to enrich the mechanistic understanding of cancer initiation and progression.  

In this thesis, I focus on the functional characterization of two classes of genetic 

alterations, non-synonymous point mutations and focal amplifications. In the following section, I 

will explore current challenges of investigating these alterations.  

 

1.2 Challenges of translating the cancer genome 

1.2.1 Interpreting non-synonymous point mutations 

These massive cancer genome characterization efforts described above have yielded 

valuable insights on cancer biology, but the amount of data generated has already far 

surpassed our ability to analyze and interpret. As of August 2014, The Catalogue of Somatic 

Mutation in Cancer (COSMIC), a comprehensive cancer mutation repository, has described 

over two million coding mutations curated from more than one million tumors, published in about 

20,000 research papers (45). When only whole exome or whole genome sequencing data were 

considered to remove selection bias for well-known cancer genes, 17,457 tumors with at least 

one non-synonymous point mutation were curated in COSMIC as of April 2016. These tumors 
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harbored 1,706,408 unique non-synonymous point mutations and 1,533,746 of them (~90%) 

were observed only once (Figure 1-1). It is likely that the vast majority of these millions of point 

mutations are “passenger” mutations, mutations that do not confer selective advantage to tumor 

cells (46). On the contrary, when the number of times each allele was mutated was examined, 

there were many alleles with recurrent mutations; for example, 4,211 unique alleles from 1,508 

genes were observed more than 10 times each, implying that these recurrently mutated alleles 

are likely to be functionally important in cancer (Figure 1-1). However, the majority of these 

alleles and genes have not yet been studied in the context of carcinogenesis. The sheer number 

of non-synonymous point mutations found in cancer genome makes in-depth study of every 

allele prohibitively resource demanding.   

 
Figure 1-1. Allele frequencies in COSMIC whole-exome and whole-genome sequencing 

data. 

More than 90% of non-synonymous point mutations reported were observed only once. Alleles 

that were observed three or more times were shown in the inset for easier comparison. 24,983 

unique alleles were observed three times. 4,211 alleles were observed more than ten times. 
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Furthermore, the rarity of specific alleles makes the statistical inference of importance 

based on the incidence impossible to perform. Currently, significantly mutated genes in cancer 

genome sequencing research are calculated by accounting for gene-specific background 

mutation rates, which are determined by considering variables such as gene length, nucleotide 

composition, distance to telomeres and the centromere, mutation rates in the intron sequences, 

gene expression level, and replication timing (47-50). These gene-level significance calculations 

have reduced false positive reports of significantly mutated genes over the years (51-53). While 

variables affecting the gene-specific background mutation rates are being actively investigated, 

there is currently no consensus on how to account for the allele-specific background mutation 

rate (Michael Lawrence, personal communication). Furthermore, the rarity of the majority of 

cancer-associated non-synonymous point mutations makes recurrence-based prioritization 

challenging. Even in well-characterized oncogenes and tumor suppressor genes, the majority of 

rare alleles have not yet been studied (54). To predict the functional impact of these mutations, 

parameters such as evolutionary conservation, biochemical properties of amino acids and 

existence of the allele within a known functional domain have been used to predict the 

functional consequences of the amino acid substitution (50,54,55). Popular in silico methods 

utilizing these parameters include Polyphen2 (56), Mutation Assessor (57), CHASM (58), VEST 

(59) and SIFT (60). Even though these algorithms can provide additional information on the 

functional impact of point mutation, all these methods suffer from two major problems: one is 

inadequate sensitivity and specificity, which were reported to range from 40 to more than 90% 

(50), and the other is limited prediction of functional consequence. These methods assess 

whether the point mutations would affect the function of the protein, but not whether the effect 

would be gain- or loss- or switch- of functions (61). 

 The challenge of abundance and rarity in characterizing cancer-associated point 

mutation is evident even in the most well characterized oncogenes and tumor suppressors. For 

example, KRAS, one of the most commonly mutated oncogenes, has a distinct hot spot 
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mutation site; however, there are also many alleles, including 43 that have been observed only 

once, that have not been studied (Figure 1-2). As KRAS mutation status is already used in 

directing monoclonal antibody therapy against EGFR in metastatic colorectal cancer (62,63), it 

is important to understand whether these alleles affect KRAS function.  

 

Figure 1-2. Allele frequencies in KRAS across the gene length. 

X-axis shows the amino acid position of KRAS. Y-axis shows the incidence of certain alleles. 

1,938 mutations were found, which belong to 77 unique alleles. 43 of these were found only 

once. All alleles were labeled. 

 

The abundance and rarity problem applies to both oncogenes and tumor suppressors, 

but the magnitude of the problem can be greater in tumor suppressor genes because unlike 

oncogenes, which tend to have a concentrated region of higher mutation burden, tumor 

suppressors tend to have mutations scattered across the length of the gene (32). For example, 

when COSMIC data were analyzed, PTEN, a well-known tumor suppressor gene, was found to 

have hundreds of non-synonymous mutations that were observed only once (Figure 1-3). Out 
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of 235 unique mutated alleles in PTEN, 175 were observed only once. Differentiating loss-of-

function mutations from the passenger mutations based on incidence is not possible. PTEN null 

status, along with PIK3CA mutation status, is used for determining eligibility for enrolling in 

clinical trials for agents targeting PI3K/AKT/mTOR pathways (64). In the case of truncating, 

nonsense mutations, determining PTEN status is straightforward; however, the case of point 

mutation needs further investigation.  

 

Figure 1-3. Allele frequencies in PTEN across the gene length. 

X-axis shows the amino acid position of PTEN. Y-axis shows the incidence of certain alleles. 

419 mutations were found, which belong to 235 unique alleles. 175 of these were found only 

once. Mutated alleles with two or higher incidence were labeled. 
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Figure 1-4. New methods are needed in characterizing point mutations in cancer. 

 

1.2.2 Identifying the driver gene in somatic copy number alterations  

 The number of point mutations that have been identified in cancer genomes is 

enormous. Equally daunting is the number of aberrations found in other categories of genetic 

alterations, such as amplification. A recent analysis of 4,934 tumors from TCGA dataset showed 

that there are 152 regions of recurrent somatic copy number alterations (SCNA), 102 of which 

did not harbor known oncogenes or tumor suppressors genes (65).  

Since MYC was identified as an amplified oncogene (66,67), many other amplified 

oncogenes were discovered; discovery of ERBB2 (HER2) amplification in breast cancer (68) led 

to development of an effective targeted therapeutics (10). To credential an amplified gene as a 

bona fide oncogene, several criteria need to be met. These criteria include: evidence of 

recurrent amplification containing the candidate gene, correlation between amplification and 

overexpression of the gene, biological and/or clinical adverse outcomes that are associated with 

overexpression of the gene, and essentiality of the gene in cancer cells harboring the 

amplification (69). The central challenge in identifying the driver genes in amplification regions is 

twofold: as in the case of non-synonymous point mutation, “passenger” amplifications can also 

be fixed in the cell population and “driver” amplifications can harbor thousands of genes (70). 
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Taking into account the frequency and amplitude of amplifications across many tumor samples 

helped distinguish “driver” amplifications from “passenger” amplifications. However, accurately 

estimating background SCNA rate is still under active investigation (70,71). Identifying the driver 

gene among many other amplified genes is another major challenge in characterizing putative 

driver amplifications (32,72). When the number of genes in the amplicon is small or when there 

is already a cancer-associated gene within the amplicon, the identification of driver gene can be 

relatively straightforward by using candidate approach (73-75). However, when many genes are 

located within the same amplicon, identifying the driver gene is more complicated. 

Employing systematic loss- and gain-of-function genetic perturbation can reduce the 

search space by providing orthogonal filters. For example, the recurrent amplification on 

chromosome 22q11.21 was interrogated by utilizing RNAi screening to nominate CRKL as the 

driver gene (76). Subsequent in-depth investigation of CRKL elucidated the mechanism of 

CRKL-mediated transformation and resistance to EGFR inhibitor therapy (77,78). An alternative 

approach in identifying the driver gene of an amplified region is to query every gene in the 

amplicon or set of amplified genes in specific types of cancer. 124 amplified genes in 

hepatocellular carcinoma were screened by cDNA overexpression, and FRF19 and other 17 

genes were nominated as driver oncogenes (79). Hagerstrand and colleagues systematically 

interrogated 20 genes within the amplicon on chromosome 3q26 by shRNA knock-down and 

open reading frame (ORF) overexpression experiments and identified TLOC1 and SKIL to be 

driver genes (80). A genome scale ORF overexpression screen identified MECP2 as a potential 

oncogene (81). These systematic functional genomics screens have greatly increased the 

power to detect the driver genes in the amplified regions. However, many recurrently amplified 

genomic regions remain poorly studied. In this thesis, I integrate structural and functional 

genomics in high-grade serous ovarian cancer cell lines to identify driver genes. 
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1.3 Nomenclature of cancer-associated somatic alterations 

The nomenclature of somatic mutations in cancer is still evolving and it is important to 

specify definitions to facilitate precise description and discussion. In this thesis, following terms 

will be used as described here. “Driver gene/mutation/amplification” refers to a 

gene/mutation/amplification that facilitates the proliferative advantage and consequent positive 

selection of cells harboring that alteration; “passenger gene/mutation/amplification” does not 

confer such advantage (32,46). “Functional mutation” or “functional variant” (used 

interchangeably) refers to a mutation that affects the function of a protein and includes gain, 

loss and switch of function variants (61). “Neutral mutation/variant” indicates a mutation that 

does not change the molecular function of the protein. A functional mutation is not necessarily a 

driver mutation for two reasons: mutations can be biochemically functional but biologically inert, 

and biologically functional mutations may not always confer a selective advantage in the native 

environment of the tumor cells (55). “Functional mutation” is further divided into “gain-of-function 

(GOF) mutation,” “loss-of-function (LOF) mutation” and “change-of-function (COF) mutation” 

based on the functional consequence of such mutation, when the effect is compared to that of 

the wild type (Figure 1-5A). Precisely defining the term “functional” is challenging due to two 

reasons: we currently do not know all the functions of proteins and the functional impact of a 

variant may not be binary.  

For instance, PTEN, a well-known tumor suppressor, plays multiple functions. It is a dual 

function protein and phospholipid phosphatase that homodimerizes to increase its activity (82). 

Many more functions of PTEN are currently known, but in a simplified three-function model, 

“loss-of-function mutation” technically can be a variant that has a decreased activity in any of 

these three functions (Figure 1-5B). Even though the lipid phosphatase function of PTEN is 

known to be important in driving tumorigenesis (83,84), studies on the relevance of other 

function on tumorigenesis are still undergoing; variants affecting its localization to the plasma 
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membrane have recently found to be important for PTEN to impart its lipid phosphatase function 

(85). Pinpointing cancer relevant functions among many known as well as yet-undiscovered 

functions of a single protein is challenging.  

Another challenge of designating non-synonymous point mutation as a “functional 

variant” is that the functional consequences of the amino acid substitution may not always be 

binary. It is common for variants to partially lose its native function or to confer slight activation 

of cancer related molecular pathways. When the lipid phosphatase function of 40 different 

PTEN alleles was interrogated, many alleles exhibited partial LOF (83). When different KRAS 

alleles were tested for downstream pathway activation, they showed gradients of differential 

activation (86,87). These cases demonstrate the difficulty of drawing the cutoff to call variants 

“functional” (Figure 1-5C). Variants with subtle change in their function, in combination with 

other genetic alterations, may be sufficient to drive tumorigenesis, as in the case with other 

complex diseases. In this thesis, I consider alleles with even subtle phenotypic changes to be 

functional. 

 
Figure 1-5. Interpreting functional impacts of non-synonymous point mutations. 

(A) In the single function model, a variant with enhanced native function is called gain-of-

function (GOF) variant. A variant with decreased native function is called loss-of-function (LOF) 

function. A variant that has acquired new function is called change-of-function (COF) variant.  
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Figure 1-5. (Continued). 
(B) In the three-function model, such designation may not be straightforward. Variants with 

decrease in any of the native functions of the wild type protein should be designated as LOF 

variant.  

(C) In many cases, functional impact of allele is not binary but more gradual. Determining the 

cutoff for functional allele is challenging. 

 

 

 

1.4 Experimental methods to interrogate genetic alterations in cancer 

 
1.4.1 In-depth interrogation of a single alteration 

Most of the mechanistic understanding of cancer biology is derived from decades of 

contributions from many researchers studying one genetic alteration in cancer. These efforts 

involve cloning the mutant gene and comparing the effect of the mutant ORF with the wild type 

ORF in various phenotypic assays, such as biochemical properties, molecular pathway 

activation/inhibition, anchorage independent growth, in vivo tumorigenesis, or invasion and 

migration (88). One of the most convincing methods to determine whether a genetic alteration 

contributes to tumorigenesis is to recreate the same genetic lesion in animal models and 

observe latent tumorigenic phenotype (89,90). Since the advent of transgenic, knockout and 

knock-in mice technology, many canonical oncogenes and tumor suppressors have been 

identified and validated using this method (91,92). With the introduction of inducible and tissue-

specific transgenic and knock-in models, more sophisticated control over gene expression has 

been achieved, enabling the assessment of dependency on particular oncogenic alleles for 

tumor maintenance and reversibility of tumor phenotype upon reactivation of tumor suppressors 

(93-96). Crossing mouse strains harboring different genetic alterations has also allowed the 

study of combinatorial effect of these alterations. Subtle effects of single genetic alterations may 
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be potentiated in the presence of additional alterations (97). These models have been 

invaluable not only to elucidate the causal effect of genetic alterations, but also to study the 

evolution of tumors, interaction of tumor cells with their microenvironments, and response to 

putative therapeutic agents (98). The wealth and depth of knowledge gained from in-depth 

studies of a single alteration have contributed immensely to our understanding of cancer and 

this method will undoubtedly continue to be the mainstay of studying novel oncogenic alleles. 

However, as this method of interrogating functional consequence typically requires years of 

effort and multiple researchers, it is not readily scalable. 

  

1.4.2 Investigating many alleles of one gene with phenotypic assays 

Once the function of a canonical allele in an oncogenes or tumor suppressor is studied 

in-depth, many alleles of the same gene can be studied with the phenotypic assay that 

measures the known function. For known cancer associated genes, examining the effect of 

multiple alleles can identify novel functional domains and novel interactions between proteins. 

Importantly, this type of research can be helpful in accurately annotating rare alleles in genes 

that are currently sequenced for clinical purposes. Genes such as BRCA1/2, KRAS, BRAF and 

EGFR are currently being sequenced in clinical setting to guide genetic counseling, clinical trial 

enrollment and therapeutic decisions (99-103). Notably, even in one of the best characterized 

tumor suppressors, BRCA1, whose LOF mutation underlies a hereditary cancer syndrome, 5 to 

20% of the testing results currently report a variant of unknown clinical significance (VUS) (99), 

meaning that the functional consequences of the specific allele have not been characterized. As 

the cost of synthesizing oligonucleotide decreases, cloning multiple alleles of the same gene 

has become increasingly manageable (104). Recent advancements in cloning technology 

enable the efficient construction of expression libraries containing every single possible allele of 

a single gene (105). This approach may address the problem of abundance and rarity in known 
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cancer associated genes; however, it is unable to identify rare but novel cancer associated 

variants. 

 

1.4.3 ORF gain-of-function screen 

Screening putative oncogenes in large scale has facilitated discovery of novel 

oncogenes. When investigating focal amplification harboring multiple genes, systematically 

overexpressing individual genes and assessing the functional consequence can enable the 

identification of driver genes in the amplicon. The same approach can be used to delineate 

driver genes among many other overexpressed genes. Since the construction of human 

ORFeome collection, screening many more genes simultaneously, even at a near genome 

scale, has become feasible (106,107). However, current ORF collections mostly contain wild 

type ORFs, and few altered alleles are included. Constructing ORF collections including many 

alleles with genetic alterations found in cancer could be a powerful way to facilitate the study of 

these alleles at scale.  

  

1.4.4 shRNA loss-of-function screen 

One way to identify cancer specific essential genes is to remove the effect of the genes 

in both cancer and normal settings and to show the specific importance of the gene in cancer. In 

studying focal amplification, knocking down genes in the amplicon systematically can facilitate 

identification of amplified and essential genes. Genome scale shRNA loss-of-function screens 

can also identify genes important in specific lineages or in tumors with specific genetic 

alterations. Genes important for survival in cancer cells with ovarian lineages and genes in 

synthetic lethal relationship with KRAS activating mutation were discovered via this method 

(76,108). Off-target effect of the shRNA, shRNAs targeting mRNAs with incomplete sequence 

match has been well reported, but the mechanism is not completely understood (107,109,110). 



 

 17 

To adjust for such effects, various computational as well as experimental methods have been 

developed. Measuring the consensual effects among multiple shRNAs (111), constructing 

complementary set of shRNAs that share seed sequences with the corresponding shRNA (112), 

and rescuing the effect of shRNA with matched ORF overexpression that are resistant to 

shRNA have all increased the specificity of interpreting shRNA screen data (109). Though 

imperfect, shRNA screening data have provided valuable insights to gene function in cancer.  

 

1.4.5 Gene expression as a readout of functional impact 

Since its introduction in the 1990s, gene expression profiling has been extensively tested 

as a measure for tumor type sub-classification, prediction of response to therapy, prognostic 

correlation and specific pathway activation (113). Recently, gene expression was proposed as a 

generalizable readout of cellular state that is achieved by genetic or pharmacologic 

perturbations, which can be used to detect novel relationships between genes and small 

molecules in specific disease by matching the pattern of gene expression changes induced by 

these agents (114). However, using a genome-scale gene expression array to profile many 

samples is economically infeasible. Peck and colleagues developed L1000 assay, which is a 

Luminex bead based gene expression profiling of 978 landmark genes whose collective gene 

expression signature predicts the expression of all other genes in the genome with high 

accuracy (115,116). Investigating the gene expression change associated with specific genetic 

alterations in cancer may allow understanding the functional impact of those alterations.   

 

1.4.6 Emerging methods – genome editing  

Recent developments in genome editing technologies such as zinc finger nucleases 

(ZNFs), transcription activator-like effector nucleases (TALENs) and clustered regularly 

interspaced short palindromic repeats (CRISPR) are dramatically enhancing our ability to 
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interrogate genetic alterations in cancer by facilitating recreation of these alterations with much 

less efforts and resources (117,118). These technologies harness nucleases that allow 

customizable, precise recognition of target DNA sequences (117). The cut in DNA sequences 

made by these nucleases can be repaired with endogenous cellular DNA repair machinery. 

Random repair can results in loss of function of the gene by introducing frameshift mutations. 

Providing intended repair templates upon cutting can yield repaired DNA sequences with the 

desired sequence alterations incorporated (117). CRISPR technology, which uses guide RNA 

complementary in sequence to the target DNA sequences, has been adapted to generate 

knockout and knock-in mice to study genes involved in tumor development, metastasis and 

resistance to drug treatment (119-123). Introduction of multiple guide RNAs and templates 

allows the generation of mice with compound mutations in a single step, bypassing the labor-

intensive crossbreeding required for conventional compound transgenic mouse generation. It is 

expected that knocking in desired genetic alterations using CRISPR technology will be 

amenable to high throughput adaptation; novel methods to increase the efficiency of CRISPR 

mediated knock-in are being developed (124-126). However, presently, this technology requires 

generating one alteration at a time and screening for the correctly altered clones, making it not 

scalable.  

 

In this thesis, I address the challenges of investigating non-synonymous point mutations 

and focal amplifications in cancer by utilizing a systematic in vivo gain-of-function ORF screen 

(Chapter 2), gene expression analysis (Chapter 3), and loss-of-function shRNA screens 

(Chapter 4).



Chapter 2 

Pooled in vivo screen identifies rare oncogenic alleles 
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2.1 Introduction 

Describing the complete list of genes altered in cancer genomes has been a major goal 

of cancer research, with an expectation that identifying mutated cancer genes would elucidate 

the molecular basis of cancer and nominate potential therapeutic targets (3). Advancements in 

sequencing technologies have facilitated the initial description of mutational landscapes in many 

types of cancers (31,32). Although these efforts have identified oncogenes and tumor 

suppressor genes that occur at high frequency, the majority of somatically altered alleles are 

found at low frequency, making it difficult to differentiate functionally relevant alleles from 

neutral, passenger mutations (31). Computational approaches to predict the functional 

consequences of these low incidence point mutants are informative but require experimental 

and clinical validation (55).  

Increasing numbers of cancers are now being sequenced in clinical settings, and in 

some cases this information is used to direct therapeutic decisions (127-130). Although such 

efforts will facilitate recruitment to clinical trials of molecularly targeted agents, it is already clear 

that such efforts identify many somatically altered but unstudied alleles in known oncogenes 

and tumor suppressor genes as well as in genes not previously implicated in cancer initiation or 

progression (128,131). At present, such alleles are either classified as variants of unknown 

significance (VUS) or are not reported (132,133). 

Although the in-depth study of single genes will eventually provide functional information 

for these cancer-associated alleles, it is now possible to systematically study the consequences 

of expressing mutant alleles at scale. To determine whether the systematic characterization of 

cancer alleles can provide functional insights, we generated a large number of alleles identified 

in cancer genome sequencing studies and assessed the consequences of expressing these 

alleles on tumor formation and gene expression (Figure 2-1). In this chapter, I describe the 

curation of mutated alleles selected for this study, and the results of the pooled in vivo screen. 
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In the Chapter 3, I analyze the gene expression data of these mutated alleles as well as wild 

type and reference alleles with known biological function. These two methods represent a 

scalable approach to characterize and assign function to a large number of alleles identified by 

cancer genome sequencing efforts. 

 

Figure 2-1. Project pipeline.  
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2.2 Results 

2.2.1 Creation of a Pan-Cancer candidate cancer allele panel  

To create a panel of cancer alleles, we first identified candidate cancer genes by running 

MutSig2CV (134,135) on a collection of 5,338 tumors representing 27 cancers that had been 

subjected to whole exome or whole genome sequencing. Specifically, we prioritized genes by 

their p-value calculated from their individualized background mutation rate, which was 

determined by considering covariates such as gene expression level and DNA replication timing 

(134). These analyses identified 381 genes, 220 for which (58%) templates were present in the 

hORFeome 8.1 collection of cDNA clones (106) (Supplementary Table S1). We selected 696 

mutant alleles for reagent generation by considering local mutational density and evolutionary 

conservation (described in Materials and Methods). Of the 220 alleles for which we had 

templates, we generated 187 wild type alleles and 474 of the 696 nominated mutated alleles 

(68%, 178 genes). In addition, we constructed and included a set of 232 ORFs with known 

functions as well as 24 control ORFs. These alleles were introduced into uniquely barcoded 

lentiviral vectors. In total, this collection included 1163 ORFs (Materials and Methods; 

Supplementary Table S2). 

The majority of the 474 mutant alleles were infrequently mutated in human cancers. 

Specifically, 350 (73.8%) of the mutant alleles were found only once, and 12.0%, and 4.9% of 

the alleles were found twice and three times, respectively (Figure 2-2A). We noted that as the 

frequency of an allele increased, that allele was more likely to be found in multiple lineages 

(Figure 2-2B). These observations suggest that testing these alleles in a single cell context may 

provide generalizable information.  
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Figure 2-2. Summary of alleles included in this study. 

(A) Distribution of incidence of the alleles included in the project. 73.8% of the 474 alleles 

included in this study were found to be mutated only once.  

(B) Alleles mutated frequently were also found to be mutated in larger number of lineages. The 

size of dots corresponds to the number of overlapping dots.  
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2.2.2 High-throughput identification of transforming alleles in vivo  

 The assessment of tumor formation potential in mice is a widely used method to assess 

transforming function of specific alleles. We created a high-throughput platform to determine 

whether specific cancer-associated alleles induce tumor formation. We chose genetically 

defined, immortalized human embryonic kidney cell line, HA1E (136), and HA1E cells 

expressing an activated MEK1DD allele (HA1E-M) as model systems. HA1E-M cells are primed 

for cell transformation and have been previously used for somatic genetic screens (21,137). We 

expressed each of the 474 alleles in HA1E-M cells and then used an in vivo pooled strategy to 

assess the tumorigenic potential of each allele (Figure 2-3).  
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Figure 2-3. Pooled in vivo screen design.  

HA1E-M cells were transduced with lentivirus harboring 474 mutant constructs in arrayed 

fashion. These 474 different cell lines were pooled in 14 pools and each pool of cells was 

injected into three sites on four immunocompromised mice. The injection sites were observed 

for five months for tumor development. Allele compositions of the cell pellets and each tumor 

were compared for enrichment and penetrance calculations. 
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 Based on optimization experiments, we placed all 474 alleles into seven different pools  

(Pools 1-7) and segregated known oncogenic alleles into Pool 1, to reduce the possibility that 

known transforming alleles would dominate tumor formation and mask weaker oncogenic 

alleles. Pool 8 is a biological replicate of Pool 1. We scrambled alleles in Pools 2-7 into Pools 9-

14 to create an additional set of pools, to give each allele two different sets of pool neighbors to 

increase sensitivity. The pool composition is described in Supplementary Table S3. We 

transduced each of the alleles into HA1E-M cells in an arrayed format, then pooled and 

expanded cells for tumorigenicity studies (Figure 2-3; Materials and Methods). Barcode 

sequencing of ORFs confirmed that nearly all of the alleles were represented upon implantation, 

although we noted that the representation of the alleles was not equal, likely due to the 

differences in viral titer because of differences in the length of each ORF and nucleotide 

composition (Figure 2-4).  
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Figure 2-4. Distribution of barcode read representation in pre-expansion and pre-

injection samples. 

(A) Allele representation immediately after pooling cells (called “pre-expansion”) according to 

the pool composition (Supplementary Table S3). Each pool contains ~75 alleles. The majority of 

alleles were represented at 0.5-4%. The data for this histogram is available in Supplementary 

Table S4-1.  
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Figure 2-4 (Continued). 

(B) Allele representation after 15-day culture, immediately before the injection into nude mice 

(called “pre-injection”). The majority of alleles were represented at 0.5-4%. The data for this 

histogram is available in Supplementary Table S4-2.  

(C) Percentage of alleles in each pool that was represented at more than 0.01% in pre-

expansion cell pellet.  

(D) Percentage of alleles in each pool that was represented at more than 0.01% in pre-injection 

cell pellet. 

 

 

Pools consisting of known cancer alleles (Pools 1 and 8), formed tumors within 1-2 

weeks (Figure 2-5), and all eight mice in these pools were sacrificed by week 3. Pools 7 and 

14, experimental pools with a total of 110 unique alleles, failed to form any tumors after 18 

weeks, confirming previous work showing that the background rate of tumor formation is low in 

this experimental model (Figure 2-5). We harvested 69 tumors from 168 implantation sites and 

quantified the barcodes associated with each ORF by PCR amplification and sequencing 

(Materials and Methods; Supplementary Table S4).  
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Figure 2-5. Tumor formation over an 18-week timeframe per pool. 

Positive control pools (P1, P8) formed tumors within three weeks of injection. Tumors from other 

pools tended to form tumors around the same time. Tumors from some pools (Pool 6) never 

grew bigger than 0.7cm in the longest dimension. 

 

We observed that tumors derived from pools 1 and 8, which were composed of known 

oncogenic alleles, repeatedly demonstrated a similar pattern of allele representation, mainly 

composed of NRAS and KRAS alleles (Figure 2-6A). In contrast, we found that tumors derived 

from other experimental pools showed a wide diversity of allele representation. Some pools 

contained a single dominant oncogenic allele while others included several oncogenic alleles 

(Figure 2-6B, C, D). Certain alleles, such as KRASD33E, were found enriched in all tumors in 

which they were assessed; we labeled these alleles as highly penetrant (Figure 2-6E). Other 

alleles such as POT1G76V were less penetrant but they were highly enriched in a few tumors 

(Figure 2-6C, E). We noted that the KRASA59G, AKT1L52R, AKT1Q79K, NFE2L2G31R, NFE2L2WT, 

PIK3CBE497D, FAM200AS481N alleles were found at more than 1% in at least two tumors in the 

pooled screen (Figure 2-6E; Figure 2-7).  

The pooled nature of the screen forces competition among alleles in the same pool. For 

example, Pool 1, only eight alleles out of 77 were represented at 1% or higher in tumors and 
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when lower threshold of 0.01% was applied, 24 alleles met the cutoff (Supplementary Table S4-

3). Known oncogenic alleles such as AKT1E17K failed to score due to competition, even though 

this allele is known to transform in this cellular context (137). Nevertheless, these observations 

allowed us to identify a subset of somatically altered alleles that induce tumor formation in this 

context.  
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Figure 2-6. Tumor composition of in vivo pooled screen and summary.  

(A) Pool 1, a positive control pool, showed consistent tumor composition across tumors. Each 

tumor is represented as a bar. The compositions of tumors were shown as different colors.  

(B) KRASD33E induced tumor formation in pool 5.  

(C) NFE2L2G31R and POT1G76V induced tumor formation in pool 4.  

(D) NFE2L2G31R and PIK3CBE497D induced tumor formation in pool 9.  

(E) Summary of the in vivo pooled screen. X-axis shows penetrance, which was calculated to be 

(times each allele was more than 0.01% of tumor reads) / (number of sites the allele was 

implanted). Since mice must be sacrificed when the largest tumor reaches a threshold, not all 

sites were observed for the full length of time. Y-axis shows maximum enrichment, which was 

calculated to be (maximum percentage of allele in any tumor) – (percentage of the allele in pre-

injection cell pellet). Positive controls (colored in grey) had penetrance of around 80%, and low 

maximum enrichment due to competition against each other.
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Figure 2-6. (Continued).  
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Figure 2-7. Tumor composition of in vivo pooled screen  

(A) Tumor composition of pool 2. AKT1L52R and KRASA59G scored.  

(B) Tumor composition of pool 3. AKT1Q79K and MAP2K1L177M scored.  

(C) Tumor composition of pool 6. FAM200AS481N and NFE2L2WT scored.  

(D) Tumor composition of pool 8. Tumor composition was analogous to that of pool 1.  

(E) Tumor composition of pool 10. KRASA59G scored.  

(F) Tumor composition of pool 11. AKT1L52R and FBXW7R465H scored.  

(G) Tumor composition of pool 12. NFE2L2WT scored.  

(H) Tumor composition of pool 13. KRASD33E scored. 
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2.2.3 Validation of rare oncogenic alleles 

To validate the tumor formation of rare alleles, we performed individual tumorigenicity 

experiments with the candidate oncogenic alleles and their allelic series (Figure 2-8, Figure 2-

9). We defined tumorigenic allele in as an allele that formed any tumor larger than 500 mm3 by 

130 days. We validated that AKT1L52R, NFE2L2G31R, POT1G76V, KRASD33E, and KRASA59G were 

tumorigenic. In addition, some alleles that did not score in pooled screen formed tumors in 

individual experiment including KRASE62K, PIK3CBA1048V, NFE2L2G31A, NFE2L2G31V, 

NFE2L2N160S,  AKT1E267G and AKT1R370C (Figure 2-8A, E, H, J).  

We found that the KRASD33E and KRASA59G alleles were potently tumorigenic, while the 

KRASE62K allele induced tumor formation at much longer latencies (Figure 2-8A). When we 

mapped the KRASD33E, KRASE62K, and KRASA59G on the KRAS structure (138) we found that 

these mutations occur in close proximity with known transforming alleles (Figure 2-8B). Cells 

expressing KRASD33E and KRASA59G showed increased activation of the MAP kinase and PI3K 

pathways as assessed by phosphorylation of specific effectors and a RAF binding domain pull 

down assay (Figure 2-8C, D). These observations suggest that these rare KRAS alleles are 

indeed oncogenic.  

When we examined the NFE2L2 allelic series, we found that the G31R, G31V, G31A, 

and T80K alleles robustly formed tumors (Figure 2-8E), while the N160S allele formed small 

tumors at a much later time point. We note that expression of wild type NFE2L2 induced the 

formation of a single tumor formation at long latency. Tumor formation by NFE2L2 wild type 

overexpression was also observed in the pooled screen (Figure 2-7G). In consonance with 

these observations, we found that tumorigenic NFE2L2 mutants were expressed a higher levels, 

likely due to impaired degradation mediated by endogenous KEAP1 (Figure 2-7F, G).  

 In individual tumor assays, PIK3CBE497D showed delayed tumor formation, similar to 

what we observed when we expressed the wild type PIK3CB (Figure 2-7H), implying E497D is 
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a passenger mutation. Wild type PIK3CB was previously shown to induce foci in a foci formation 

assay (139). PIK3CBA1048V, on the other hand, induced tumors in the majority of replicates with 

shorter latency, demonstrating that PIK3CBA1048V is a transforming gain-of-function mutant. In 

the POT1 allelic series, we noted that only POT1G76V formed tumors in individual tumor 

experiments after long latency. POT1 was recently shown to be mutated in familial melanoma 

(140,141), chronic lymphocytic leukemia (142), familial glioma (143), and cardiac angiosarcoma 

(144). In particular, Y89C, Q94E, R273L, Y223C, and S270N alleles were previously shown to 

be loss-of-function, resulting in elongated telomeres and increased genomic instability 

(140,141). These observations suggest that POT1G76V may also contribute to cell transformation 

through a similar mechanism. 

Although some of the alleles that we found induced tumor formation were recurrently 

observed in particular human cancer types, we noted that many of the alleles that we found 

were able to induce tumor formation, including KRASD33E, KRASE62K, NFE2L2G31R, NFE2L2G31V, 

NFE2L2N160S, POT1G76V and PIK3CBA1048V, were found to be mutated only once in our set of 

5,338 tumors. These observations demonstrate that rare alleles may be functionally important in 

tumorigenesis.  
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Figure 2-8. Validation of rare oncogenic alleles in KRAS, NFE2L2, PIK3CB and POT1. 

(A) Individual tumor validation of KRAS alleles. The KRASD33E and KRASA59G alleles formed 

tumors robustly. E62K did not form tumors in the pooled assay but formed tumor in individual 

assays, at a later time point.  

(B) The structure of KRAS (PDB: 4EPV) shows that all four of the mutants are spatially close. 

Mutated residues are shown in red, GDP bound to the substrate pocket is shown in blue.  

(C) Immunoblot of KRAS alleles (including other positive control alleles) shows increased 

phospho-ERK and phospho-AKT1 levels in KRASD33E, and KRASA59G overexpressed cells.  

(D) RAF binding domain pull down assay shows increased GTP bound KRAS in D33E and 

A59G mutants.  

(E) Individual tumor validation of NFE2L2 alleles. In the pooled assay, only G31R scored in 

multiple tumors. In the individual assay, G31V, G31A, T80K formed tumors as well. N160S 

formed tumors at a later time point. NFE2L2 wild type formed one small tumor by the end of the 

experiment.  

(F) Quantitative PCR of NFE2L2 mRNA expression shows all alleles were expressed.  

(G) Immunoblot of NFE2L2 alleles show increased NFE2L2 protein level in G31A, G31R, G31V 

and T80K overexpressed cells. There was no change in phospho-ERK or phospho-AKT1 levels.  

(H) Individual tumor validation of PIK3CB alleles. E497D and the wild type formed tumors after 

long latency. PIK3CBA1048V formed tumors with shorter latency at the majority of injection sites.  

(I) Individual tumor validation of POT1 alleles. The G76V allele formed tumor at a later time 

point. One of the POT1G76V mice died of unknown cause.
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Figure 2-8. (Continued). 
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Figure 2-9. Validation of rare oncogenic alleles in AKT1, ERBB2. 

(A) Individual tumor validation of AKT1 alleles. E17K, L52R, E267G, and R370C formed tumors. 

Q79K did not form tumor. One mouse of AKT1R370C died of unknown reason.  

(B) Individual tumor validation of ERBB2 alleles. InsYVMA mutant was included as a positive 

control, which was described previously (145). Tumor forming alleles formed tumors in a similar 

timeframe to that of the wild type.  

(C) Individual tumor validation of FAM200A alleles. FAM200AS481N formed one small tumor at 

later time point. One mouse of FAM200AS481N died of unknown reason.  

(D) Negative controls in individual tumor validation. Four mice were used in each of uninfected,  
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Figure 2-9. (Continued). 

LacZ-transduced, and Luciferase-transduced groups. One small tumor formed in Luciferase-

transduced groups and regressed spontaneously. One mouse in LacZ-transduced group died of 

unknown reason. 

 

2.3 Discussion 

Cancer genome sequencing projects have identified thousands of variants of unknown 

significance, and this number will likely increase rapidly as more tumors are sequenced. Here 

we report a pilot study to facilitate the functional characterization of these alleles by creating a 

large number of cancer-associated variants and testing them in an in vivo tumorigenesis assay. 

We identified a subset of these variants that exhibit tumorigenic phenotypes. This study 

provides proof of principle evidence that large-scale mutant characterization is both tractable 

and provides new information about the functional relevance of many alleles.  

We recognize that these studies are not exhaustive. For example, we performed all 

experiments using immortalized kidney epithelial cells, thus limiting those genes that are 

potentially transforming in a specific tissue context. In addition, the tumorigenesis assay we 

used here does not assess all tumor-essential functions and this experimental design does not 

permit the discovery of loss-of-function tumor suppressor alleles. For example, alleles involved 

in metastasis, angiogenesis, immune response, and splicing changes may not score in this 

assay. Weaker transforming alleles may be masked by stronger oncogenic alleles in the pooled 

format used in these experiments and it is possible that there are both productive and inhibitory 

interactions between cells harboring different alleles. Furthermore, alleles that affect pathways 

that were already perturbed in our engineered system, which include inhibition of TP53 and RB 

as well as hTERT and MEKDD overexpression, are not likely to be discovered in this context. 
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Also, in cases where presumable mechanisms involve stochastic accumulation of mutations 

over long time periods, as in the case of genes involved in genomic instability such as POT1, 

these genes may not reliably score in this context. However, considering the very low 

background tumor formation rate in this assay, even a single instance of tumor formation lends 

support for future studies. As such, this approach provides a powerful paradigm to discover 

functionally relevant rare alleles that may otherwise not be considered for functional studies due 

to their rarity. Further studies such as those described herein using similar approaches in other 

genetic and lineage contexts will facilitate the comprehensive discovery of transforming alleles. 

Using the in vivo tumorigenesis assay, we identified rare mutants with transforming 

function, such as KRASD33E. As this variant was identified only once in the cohort of 5,338 

tumors, a large number of tumors would need to be sequenced before the frequency of this 

allele reached statistical significance. As KRAS mutational status is already used in directing 

therapeutic decisions (146), this observation demonstrates the importance of studying rare 

alleles for accurate patient stratification. PIK3CBA1048V and POT1G76V were also rare alleles that 

were found only once in our cohort. PIK3CB was recently shown to be mutated in prostate 

cancer (147), and computational analysis using network mutation burden nominated PIK3CB to 

be a significantly mutated gene (Horn et al, submitted). Although further studies are required to 

elucidate the mechanisms by which PIK3CBA1048V and POT1G76V contribute to malignant 

transformation, this study provides evidence that these alleles are indeed transforming alleles.  

In this study, we focused on alleles that have been identified in cancer genome 

sequencing efforts. An alternative approach would be to create a set of alleles where each 

amino acid is substituted to prospectively identify alleles that alter wild type gene function and to 

interrogate the relationship among evolutionary conservation, gene function and prevalence of 

mutations in tumors. Although this type of study is not yet feasible at the scale presented here, 

our studies suggest that expanding the number of alleles in genes will provide useful 

information. We acknowledge that arbitrarily limiting the number of alleles per gene, especially 
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in known cancer genes, excluded some well-studied alleles. Including additional criteria, such 

as 3D spatial clustering (148), may increase the sensitivity of discovering functional alleles. 

Expanding the number of alleles in genes, especially those already used in clinical decision-

making, is also desirable. Furthermore, high throughput adaptation of other functional assays, 

such as experiments that quantify morphologic changes as well as proteomic and epigenetic 

differences will expand our knowledge of the functional consequences of mutant alleles.   

 

2.4 Materials and Methods  

Mutated gene curation 

271 mutated genes were called from the analysis of 5,338 tumor normal pairs by running 

MutSig2CV and setting the q-value cutoff at 0.1. The algorithm was described previously (135). 

13 genes were manually added (PIK3C2G, PIK3R2, PIK3CG, PIK3C2B, PIK3CB, PIK3C2A, 

PIK3R4, BCL2, BCL3, BCL6, BCL9, BCOR, ISX). 49 likely false positive genes (genes with high 

background mutation rate) and 48 randomly chosen, likely neutral genes were added. Total of 

381 genes were selected for the project. 220 of these genes had matching template in the 

hORFeome 8.1 collection and these were used for subsequent steps (Supplementary Table 

S1).  

 

Selection of alleles from significantly mutated genes 

For each missense mutation, "priority" was calculated, which was defined as "density" 

(local concentration of mutations) multiplied by conservation. 

priority = mutation density * conservation 

Mutation density was calculated by counting the number of mutations in 20bp window, with the 

allele of interest at the center of the window. Conservation was calculated by using phyloP 
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(149), which scores evolutionary conservation from an alignment of 46 vertebrates. 

Conservation values were scaled linearly to range from 0 to 100. 

We chose an allele by taking the highest-priority mutated allele.  The same procedure 

was repeated until we selected as many alleles as desired. The number of alleles selected for 

each gene was decided by the number of times the gene was mutated in patients.  

1. If a gene was mutated in 120 patients or more, then 8 alleles were chosen. 

2. If a gene was mutated in 100 patients or more, then 7 alleles were chosen. 

3. If a gene was mutated in 80 patients or more, then 6 alleles were chosen. 

4. If a gene was mutated in 70 patients or more, then 5 alleles were chosen. 

5. If a gene was mutated in 60 patients or more, then 4 alleles were chosen. 

6. If a gene was mutated in 50 patients or more, then 3 alleles were chosen. 

7. If a gene was mutated in 30 patients or more, then 2 alleles were chosen. 

8. Otherwise, one allele per gene was chosen. 

For HRAS, SPOP, MAP2K1, B2M, AKT1, RHOA, IDH1, and IDH2, 8 alleles were chosen. 

For genes with one or two alleles selected, we considered all the mutations as 'experimental' 

alleles. For genes with three or more alleles selected, we selected one allele that we predicted 

to be less likely to be functional as a 'control' allele. The other alleles were considered 

'experimental' alleles. The ‘control’ allele was chosen as an internal control that is less likely 

than the ‘experimental’ alleles to be functional. The ‘control’ alleles were chosen by the following 

criteria.  

1. Remove any positions that were chosen above. 

2. Remove any mutations with conservation above a threshold of 60. 

3. For the remaining mutations, define controlpriority = (100 - conservation) / (# of times that 

exact mutation occurs)^2. 

4. Add a bonus for mutations that are close to the first or second mutations chosen above. If 

distance between first or second experimental allele and the control allele was less than one 
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fifth of the total protein length, bonus of 20 was given. If distance between first or second 

experimental allele and the control allele was less than one third of the total protein length, 

bonus of 10 was given.  

5. Choose the mutated allele with the highest controlpriority + bonus. 

All selected alleles are shown in Supplemental Table S1. 

 

Barcoded mutant allele generation in lentiviral vectors 

We used a previously published method to perform high-throughput mutagenesis (150). 

Briefly, each ORF was PCR amplified by using primers that contain mutated sequence 

incorporated. These fragments were transferred to pDONR223 vector (Invitrogen) through BP 

cloning (Invitrogen) and the constructs were transformed into competent cells. The discontinuity 

at the mutation introduction site was repaired by endogenous bacterial repair mechanism. The 

mutated ORF was transferred to the barcoded destination vector by LR reaction (Invitrogen).   

 

Lentivirus generation 

Virus were prepared according to the RNAi Consortium (TRC) virus protocol 

(http://www.broadinstitute.org/rnai/public/resources/protocols). 

 

Cell lines 

HA1E-M and HA1E cells were previously described (137). Both cell lines were cultured 

in MEM-alpha (Invitrogen) with 10% FBS (Sigma-Aldrich) and 1% penicillin/streptomycin (Gibco) 

supplementation. Both cell lines tested negative for mycoplasma.  

 

Multiplexed in vivo screening 

To determine whether the number of cells transduced with a certain allele in a pool of 

about 80 alleles is sufficient to form tumors, we performed serial dilution and subcutaneous 
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injection with activating KRAS allele, G12V, and found that 1/96 dilution (about 20,000 cells) 

was still sufficient in forming tumors in all injection sites. For the screen, 2,500 HA1E-M cells 

were plated in 100ul of media per well in a 96-well plate on day 1. On day 2, polybrene was 

added to a final concentration of 4ug/ml and 12ul of arrayed viral supernatant was added to the 

target cell plates. Plates were spun at 2,250 rpm for 30 min at room temperature. After 4 hours, 

media was changed. After 18 hours, puromycin was added to a final concentration of 2ug/ml. 

After 48 hours of puromycin selection, cells were trypsinized and pooled. 96 wells were 

combined into one pool per pool composition (Supplementary Table S3). Cell pellets were taken 

immediately after pooling (called “pre-expansion”), and also on day 15 to use as a reference 

points for future analysis. Transduced HA1E-M cells were propagated for 15 days to obtain at 

least 60 million cells per pool. More than 90% of the ORFs in each pool were represented at 

0.01% of the injected cell population (Supplementary Fig S1C, D). We note that alleles with 

even lower representation, such as NFE2L2G31R at 0.0089% in pre-injection cell pellet of Pool4, 

were sufficient in forming multiple tumors.  

On day 15, cells were trypsinized, washed, and counted (called “pre-injection”). Five 

million cells were prepped in 200ul of PBS per injection site, except pools 2 and 11, for which 4 

million cells were prepped per site. Three sites—inter-scapular area, right and left flanks—were 

injected in each mouse and four mice were injected per pool (12 sites per pool). Mice were 

monitored for tumor formation and the longest dimension of each tumor was measured. Tumors 

were harvested when they reached around 2cm. The tumor tissue was finely minced and 

subjected to genomic DNA extraction with Qiagen DNeasy blood and tissue kit. 

1ug of genomic DNA was subjected to PCR amplification for barcode de-multiplexing by 

sequencing. To amplify the barcodes with Illumina sequencing primer integrated, following 

primers were used (different sequence components are demarcated by “<>”):  

P5 ORF primer:  

<P5 flow cell attachment sequence><Illumina sequencing primer><Vector primer binding> 
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<AATGATACGGCGACCACCGAGATCT><ACACTCTTTCCCTACACGACGCTCTTCCGATCT[s]><TCTT

GTGGAAAGGACGA> 

P7 ORF primer:  

<P7 flow cell attachment sequence><Barcode><Illumina sequencing primer><Vector primer 

binding> 

<CAAGCAGAAGACGGCATACGAGAT><NNNNNNNN><GTGACTGGAGTTCAGACGTGTGCTCTTCCG

ATCT><TAAAGCAGCGTATCCACATAGCGT> 

Upon amplification, the PCR products were purified with AMPure beads and subjected to 

Illumina sequencing. On average, 1.6 million reads were obtained per tumor.   

 

In vivo screening analysis 

The barcode reads were de-multiplexed by custom scripts. Less than 1% of 

contaminating reads (barcode reads that do not belong to the specific pool) were found and 

removed. The rest of the reads were normalized by dividing the number of reads by the total 

number of reads from the tumor. Penetrance was calculated by (number of times in which 

specific allele was represented at more than 0.01%) / (number of times that allele was injected). 

Since the mouse needs to be sacrificed when the biggest tumor reaches certain diameter per 

protocol, not all three sites per mouse were observed for full 18 weeks. Maximum enrichment 

was calculated by (maximum percentage of tumor reads each allele accounted for) – 

(percentage of that allele in pre-injection cell pellet). 

 

Stable cell line generation for validation 

For individual validation experiments, the same vector used for the pooled screen was 

used to generate lentiviruses. 80,000 293T cells were plated in one well of 6-well plates. 

Delta8.9 (900ng), vsv-g (100ng), the ORF vectors (1ug) were transfected in 3ul of TransIT-LT1 

Transfection Reagent (Mirus Bio). The viral supernatant was collected after 48 hrs and was 
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frozen at -80C until use. HA1E-M cells were plated in 6-well plate at 100,000 cells per well. 

HA1E-M cells were transduced with 300ul of viral supernatant in 8ul/ml polybrene and were 

spin-infected at 2250rpm for 30minutes. The next day, the media was changed to selection 

media (puromycin 2ug/ml). After 48 hrs of selection, cells were cultured in puromycin free MEM-

alpha complete media (Invitrogen). 

 

Screen validation 

Six-week old male homozygous NCR-Nu mice (Taconic) were used for xenograft 

experiments. HA1E-M cell lines stably expressing individual candidate alleles were injected at 

two million cells per site, except for NFE2L2 alleles, which were injected at one million cells per 

site. Each stable cell line was injected at three sites per animal, and into two animals, with the 

total of six sites per cell line. Tumor formation was monitored using calipers twice weekly for 130 

days (or 106 days for ERBB2 alleles). Tumor volume was calculated as ((tumor length)*(tumor 

width)^2))/2. 

 

KRAS structure analysis 

KRAS mutations of interest were overlaid onto the structure of the protein product (PDB: 

4EPV) and visualized the structure using PyMOL (The PyMOL Molecular Graphics System, 

Version 1.7.4 Schrödinger, LLC.). 

 

Immunoblots 

Protein lysates were resolved on 7.5, 4-12, or 8-16% polyacrylamide SDS gels (Bio-

Rad), transferred onto nitrocellulose membranes (Bio-Rad) using standard wet-transfer 

procedures, and incubated with primary antibodies as indicated. All immunoblot assays were 

visualized using a LI-COR Odyssey infrared imager. The following antibodies were used:  
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KRAS (Proteintech Group 12063-1-AP), RAS (CST 3965), RAS (clone 10, EMD Millipore 05-

516), pERK (CST 4370), ERK (CST 9102), pAKT (S473, CST 4060), a-tubulin (Sigma Aldrich, 

clone DM1A, T9026), NRF2 (CST 12721), and NRF2 (R&D Systems AF3925) (CST: Cell 

Signaling Technologies). Secondary anti-rabbit and anti-mouse IRDye antibodies were from LI-

COR Biosciences. 

 

RAS activation assay 

RAS activation assays were performed according to the manufacturer’s protocol 

(Millipore 17-218). In brief, cells were cultured on 6-well dishes and harvested for lysates. A 

sample of each lysate was saved for input (total RAS load) and the remaining lysate was rocked 

with glutathione-sepharose 1:1 RAF-RBD slurry in lysis buffer for 1 hour at 40C. The beads were 

then washed three times with ice-cold lysis buffer, followed by addition of Laemmli/SDS buffer to 

elute the bound proteins. The RAS-GTP pull-down samples were loaded and resolved on 12% 

polyacrylamide SDS gels (Bio-Rad). 

 

Quantitative real-time PCR (qPCR) 

RNeasy kit (Qiagen) was used to purify total RNA from cells and cDNA was generated 

using Superscript III Vilo (Life Technologies). Quantitative real-time PCR was performed using 

SYBR reagents (Life Technologies) on an ABI-7300 instrument following a two-step cycling 

protocol with the following primers: 

NFE2L2_FWD: CACATCCAGTCAGAAACCAGTGG 

NFE2L2_REV: GGAATGTCTGCGCCAAAAGCTG 

ACTB_FWD: CACCATTGGCAATGAGCGGTTC 

ACTB_REV: AGGTCTTTGCGGATGTCCACGT 

Relative expression was calculated using the ΔΔCt method with ACTB for normalization 

between samples. 
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3.1 Introduction 

In the previous chapter, high throughput in vivo tumorigenesis screening was used to 

identify novel transforming alleles among 474 mutant alleles from significantly mutated genes 

curated from 5,338 tumors. Although this method is powerful in identifying rare transforming 

alleles such as KRASD33E, the numerous limitations discussed in section 2.4, make negative 

results uninterpretable.   

We utilized the L1000 gene expression assay as a generalizable, function-agnostic 

method to interrogate these mutant alleles as well as their wild type counterparts and reference 

alleles of known biological functions. As discussed in 1.4.5, gene expression could be a 

functional readout of a cellular state that can be used to infer novel relationships between 

genetic perturbation and pharmacologic treatments (114). This approach complements the in 

vivo tumorigenesis screen to identify novel functional alleles.  

	
	
3.2 Results 

3.2.1 Gene expression correlation analysis differentiates allele function  

In parallel to testing the tumorigenic potential of each allele in vivo, we created 

expression signatures for each of these alleles by expressing the 1163 constructs in a 

genetically defined, immortalized human embryonic kidney cell line (HA1E) (136). We selected 

this cell line since established cancer cell lines harbor many genetic alterations, which could 

confound the interpretation of expressing each allele. We decided to use HA1E cells, and not 

HA1E-M cells, which was used in the in vivo screen, because we wished to eliminate the 

contribution of the MEKDD allele. We measured transcript levels of 978 landmark genes using 

the L1000 Luminex bead-based gene expression assay (115) (Materials and Methods). Using 

the normalized gene expression change induced by each overexpressed allele, we calculated 
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the pairwise Spearman correlation coefficient of all the alleles included in the study (Figure 3-1). 

We excluded alleles with low infection efficiency (less than 40%), allowing us to assess 1036 

perturbations (Materials and Methods; Supplementary Table S5).  

 

Figure 3-1. Gene expression correlation analysis 

Expression signatures were analyzed by pairwise Spearman correlation to identify similar or 

dissimilar alleles to the allele of interest 

 

Using the pairwise Spearman correlation coefficient between every pair of alleles 

included in the study, we first examined whether known relationships were detected. For 

instance, we found that the expression relationship of KRASG12V, a well-known gain-of-function 

mutant of KRAS, correlated highly with other known oncogenic KRAS and NRAS mutants 

(Figure 3-2A). Other known oncogenic alleles such as AKTE17K did not correlate with the KRAS 

signature, demonstrating that this correlation was not simply the consequence of a pro-survival 

signal induced by an oncogenic allele. Novel alleles of KRAS, D33E and E62K correlated less 

strongly to known KRAS activating mutants but were clearly differentiated from the wild type 

alleles, suggesting they may be activating mutants (Figure 3-2A). In addition, when we 

examined NRASQ61H, known activating mutant of NRAS, we found that this allele was highly 
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correlated with other oncogenic NRAS mutants but that the novel Y64D allele was more similar 

to wild type NRAS allele suggesting that this allele is likely to be a passenger allele (Figure 3-

2B). Indeed, Y64D did not score in pooled in vivo screen.   

 

 

Figure 3-2. Gene expression correlation analysis 

(A) KRASG12V induces similar gene expression changes as other known activating alleles of 

KRAS and NRAS.  

(B) NRASQ61H induces similar gene expression changes as other known activating alleles of 

NRAS. However, the signature from the novel Y64D allele had a lower correlation, similar to 

wild type. 

 

3.2.2 Gene expression allows differentiation between functional and neutral 

variants  

The pattern of gain of function mutants showing higher correlation to other similarly 

activating mutants was also observed in other known oncogenes such as IDH1/2 (Figure 3-3). 

We found that other known gain of function mutants IDH2R172M, IDH1R132C, IDH1R132S, IDH1R132H 

and IDH1R132L were highly correlated to known gain of function mutant IDH2R172K (151). On the 
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other hand, the IDH1 E190K and P33S alleles and the IDH2 G137E, E268D, A416V, A47V, 

T331M, and I138F alleles failed to correlate to known activating mutants, suggesting these 

alleles were more similar to the WT allele (Figure 3-3).  

 

 

Figure 3-3 Gain-of-function mutants of IDH1 and IHD2 are highly correlated.  

IDH1/2 alleles were correlated to known activating mutant IDH2R172K. Other known activating 

alleles of IDH1/2 are highly correlated to IDH2R172K. 

 

 

Next, we investigated PTEN, a commonly mutated tumor suppressor gene, whose loss 

of function leads to constitutive activation of the phosphatidylinositol-3-kinase (PI3K) signaling 

pathway (152). Among the eight PTEN alleles included in this study, F90S, R233Q, K6N, and 

R173H correlated with the signature induced by overexpressing wild type PTEN, suggesting 

that these alleles did not completely inactivate PTEN function (Figure 3-4A). F90S mutant was 

recently shown to retain lipid phosphatase activity, but to be unable to translocate to plasma 

membrane (85). R233Q may also affect localization (153). R173H variant was previously 
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reported to lose phosphoinositide phosphatase activity (83), but its effect was later reported to 

be less severe than that of nonsense mutation (154). Our data supports that R173H retains 

residual PTEN function. In contrast, a known loss-of-function, dominant interfering allele 

(G129E) (82,84) failed to correlate with the wild type allele. We also found that signatures from 

the G129V, G127V and G127R alleles were clearly distinct from the wild type allele and 

moderately correlated to G129E (Figure 3-4B, C), suggesting that these alleles are also likely to 

be loss-of-function variants. Other alleles that activate PI3K signaling (AKT1E17K) were anti-

correlated with wild type PTEN (Figure 3-4A).  
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Figure 3-4. Loss-of-function mutants of PTEN loose correlation to the wild type.  

(A) When correlated to the PTEN wild type, F90S, R233Q, K6N, R173H correlated strongly with 

the wild type PTEN. The known loss-of-function, dominant negative allele G129E showed a 

lower correlation. G127R, G129V, G127V also showed low correlation to the wild type. 

(B) When alleles were correlated to PTENG129E, other likely loss-of-function alleles G12V, 

G129V, and G127R were only moderately correlated.  

(C) When the gene expression changes induced by expression of PTEN allelic series were 

clustered, likely loss-of-function alleles were separated from the likely passenger mutants.  
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We used a similar approach to differentiate several alleles of SPOP, a gene mutated in 

prostate and endometrial cancers (155,156) (Figure 3-5A). Specifically, we found that the 

W131G, F133S, K134N, and W131C alleles strongly correlated with F102C, a known loss-of-

function, dominant negative variant (157,158), but that the WT, K101I, E50K, and E47A did not 

correlate with the F102C allele. Codons F102, W131, F133 and K134 are mutated mostly in 

prostate cancers and E47 and E50 are altered in endometrial cancers (155,156,159). Recently, 

SPOP was shown to induce ubiquitination and degradation of androgen receptor and ERG in 

prostate cancer and estrogen receptor-alpha in endometrial cancer, but the SPOP mutants 

associated with respective cancer were unable to do so (157,158,160,161). When we looked for 

alleles correlated to E50K, loss-of-function allele in endometrial cancer (160), E47A was highly 

correlated, implying that this allele may also be loss-of-function (Figure 3-5B). Gene expression 

signatures of E47 and E50 variants clustered with that of wild type but were distinct from F102, 

W131, F133 and K134 variants (Figure 3-5C). These findings suggest that gene expression 

analysis may allow nuanced interpretation of loss-of-function alleles that are associated with 

specific context. Since missense mutations in tumor suppressor genes tend to occur throughout 

their coding sequences, it is often difficult to differentiate functional from non-functional 

mutations by inspecting of the mutations or their frequency. Examining gene expression 

changes induced by these mutations may facilitate the classification of missense mutant alleles. 
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Figure 3-5. Dominant negative alleles of SPOP are highly correlated.  

(A) When alleles were correlated against SPOPF102C, a loss-of-function, dominant negative 

SPOP allele, other known loss-of-function, dominant negative alleles W131G, F133S, K134N, 

and W131C were highly correlated. On the other hand, E50K, K101I, E47A had lower 

correlation to F102C. 

(B) When alleles were compared to SPOPE50K, other likely loss-of-function allele E47A was 

highly correlated.  

(C) When the gene expression changes induced by expression of SPOP allelic series were  

E47A

E50K

F102C

F133S

K101I

K134N

W131C

W131G

WT
WT

−0.25

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000

rank

S
p
e
a
rm

a
n
 C

o
e
f

SPOP alleles

B

global

0 0.30 1

S
P

O
P

_
p
.E

5
0
K

SP
O

P_
p.

E4
7A

S
P

O
P

_
W

T
_
1
2

S
P

O
P

_
W

T
_
2
2

S
P

O
P

_
p
.K

1
0
1
I

SP
O

P_
p.

F1
33

S

SP
O

P_
p.

W
13

1G
SP

O
P_

p.
F1

02
C

SP
O

P_
p.

W
13

1C
SP

O
P_

p.
K1

34
N

SPOP_p.E50K

SPOP_p.E47A

SPOP_WT_12

SPOP_WT_22

SPOP_p.K101I

SPOP_p.F133S

SPOP_p.W131G

SPOP_p.F102C

SPOP_p.W131C

SPOP_p.K134N

C

E47A

E50K

F102C

F133S

K101I

K134N

W131C

W131G

WT

WT

−0.25

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 1000

rank

S
p
e
a
rm

a
n
 C

o
e
f

SPOP alleles

A



 

 60 

Figure 3-5. (Continued). 

clustered, likely loss-of-function, dominant negative alleles discovered in prostate cancer were 

separated from the wild type and likely loss-of-function alleles found in endometrial cancer. 

  

3.2.3 Negative regulators of transcription factors are identifiable by gene 

expression analysis 

We also examined which of the included alleles correlated with the proto-oncogene 

MYC, a commonly amplified oncogenic transcription factor (162). The most positively correlated 

allele in our dataset was wild type BRD4, which is a transcriptional activator of MYC (Figure 3-

6A) (163). BRD4 has been shown to regulate MYC transcription, and pharmacologic modulation 

of BRD4 inhibited proliferation in MYC-dependent cancers (163). We found that the FBXW7 wild 

type, R658Q, I347M, R689Q, and S462Y alleles were anti-correlated to wild type MYC (Figure 

3-6A).  FBXW7 is the substrate recognition component of the SCF ubiquitin ligase targeting 

MYC (164), suggesting that these four alleles do not affect FBXW7 function. In contrast, we 

found that the known dominant interfering alleles, FBXW7 R505C, R465C, and R465H 

(165,166), were anti-correlated to wild type FBXW7, in consonance with the interpretation that 

these alleles inhibit endogenous wild type FBXW7 (Figure 3-6B).  
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Figure 3-6. MYC and FBXW7 gene expression signatures are anti-correlated and 

dominant negative alleles of FBXW7 are anti-correlated to that of wild type alleles.  

(A) FBXW7 wild type, R658Q, I347M, S462Y, and R689Q, were strongly anti-correlated to 

MYC. Known dominant negative alleles (R505C, R465C, R465H) no longer were anti-correlated 

to MYC. BRD4 wild type was the most closely correlated to MYC. 

(B) When alleles were correlated to the FBXW7 wild type, known dominant interfering alleles 

(R505C, R465C, R465H) were anti-correlated to the wild type. 

	
	

Gene expression analysis of NFE2L2 mutants showed a similar gene expression pattern 

to that of wild type, presumably because overexpression of the wild type allele may induce 

similar gene expression changes as does the overexpression of gain-of-function mutants in the 

short term gene expression assay (Figure 3-7). This is in contrast to the findings in the in vivo 

tumorigenesis in Chapter 2, where the gain-of-function mutants G31R, G31V, G31A and T80K 

exhibited robust tumor formation phenotype when compared to their wild type. These 

observations demonstrate that short term in vitro gene expression assays may not be able to 

differentiate overexpressed wild type and gain-of-function alleles. 
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Figure 3-7. NFE2L2 and KEAP1 gene expression signatures are anti-correlated. 

When alleles were compared to the NFE2L2 wild type, all NFE2L2 alleles were highly correlated 

to the wild type. KEAP1 wild type alleles tended to anti-correlated with NFE2L2 wild type.	

 

 

3.2.4 Experimental characterization complements in silico method  

To investigate whether high throughput functional phenotyping complements in silico 

predictions, we compared our observations pertaining to 71 alleles analyzed herein to four 

different in silico methods, Polyphen2 (56), Mutation Assessor (57), CHASM (58), and VEST 

(59). Each of these methods makes predictions about whether a mutation is likely to affect 

protein function but does not attempt to predict whether the mutation induces gain or loss of 

function. To compare these approaches, we used the term “functional variant” to denote both 

gain-of-function and loss-of-function alleles (61) and “neutral variant” for all other alleles. The 

concordance rates between each of these methods and our approach ranged from 66% to 77% 
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(Supplementary Table S6; Figure 3-8; Materials and Methods), suggesting that gene 

expression comparisons provided additional information about gene function. For example, 

Polyphen2 and CHASM predicted that SPOPK134N was likely to be a functional variant while 

Mutation Assessor and VEST assessed this to be a neutral allele. We found that SPOPK134N 

correlated with SPOPF102C, providing evidence that this allele is a functional variant. Together, 

these observations suggest that the experimental characterization of alleles complements in 

silico methods. 

 

 

Figure 3-8. Comparison to in silico methods. 

(A) Venn diagram of four different methods showing the overlap of the number of alleles called 

“functional” in each method. Please refer to Methods for description.  

(B) Concordance rate of the four different in silico methods to the analysis from this study. The 

concordance rate ranged from 66 – 77%. 
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3.3 Discussion 

Using gene expression signatures generated by expressing wild type or mutant alleles, 

we found that some PTEN, FBXW7, NRAS, IDH1/2, and SPOP alleles resembled the wild type 

alleles or known functional mutants, suggesting that these alleles are functionally similar to 

those alleles. On the other hand, in oncogenes such as NFE2L2, we found that gain-of-function 

mutants induced similar gene expression signatures as the wild type allele. This observation 

suggests that some truly transforming alleles may not score in the short term in vitro gene 

expression assay. Furthermore, for genes whose mechanism of action involves longer-term 

processes such as DNA repair, the acute effect of overexpressing alleles may not be reflected 

in gene expression changes. Combining expression profiling with tumor formation or other 

phenotypic experiments may provide complementary information in these cases.  

In summary, results from Chapter 2 and Chapter 3 demonstrate that systematically 

performing functional assays complements the structural information gathered from the 

sequencing efforts to accelerate the interpretation of cancer associated variants. We anticipate 

that as additional tumors are characterized in both research and clinical settings, additional 

cancer associated genes and alleles will be identified, and the approach described here can be 

useful to ascertain the function of these alleles. Using diverse cellular backgrounds and different 

phenotypic assays will also increase the power to detect functional variants and reduce false 

negatives. As more functional data become available, we may also be able to gain insights on 

empirically improving the accuracy of mutation impact calling algorithms by incorporating 

information from high confidence functional data. This iterative process between functional and 

structural genomics will synergistically facilitate the complete description of cancer-associated 

mutations. 
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3.4 Materials and Methods 

Expression profiling using L1000 

L1000 is a high-throughput, bead-based gene expression assay in which mRNA is 

extracted from cultured human cells treated with various chemical or genomic perturbagens 

(small molecules, gene knockdowns, or gene over-expression constructs). HA1E cells were 

plated at 400 cells per well in 384 well plates.  The next day cells were transduced with 3 µl of 

lentiviral supernatant by spin infection. Infections were performed in 5 replicates, 2 of which 

were used to assess infection efficiency and the remaining 3 for gene expression profiling. 

Following 24-h incubation, media and virus were removed and replaced with complete growth 

media or media containing antibiotics (for infection efficiency calculation). Cell plates used for 

gene expression analysis were not selected to reduce the effect of antibiotics on the gene 

expression. 96 hours after infection, cells were lysed with addition of TCL buffer (Qiagen) and 

incubated for 30 minutes at room temperature. mRNA is reverse-transcribed into first-strand 

cDNA. Gene specific probes containing barcodes and universal primer sites are annealed to the 

first strand cDNA. The probes are ligated to form a template for PCR. The template is PCR 

amplified with biotinylated universal primers. The end products are biotinylated, fixed length, 

barcoded amplicons. The amplicons are then mixed with Luminex beads that contain 

complementary barcodes to those encoded in each of the 978 amplified landmark genes.  

These beads are then stained with fluorescent streptavidin-phycoerythrin (SAPE) and detected 

in 384 well plate format on a Luminex FlexMap flow cytometry-based scanner. The resulting 

readout is a measure of mean fluorescent intensity (MFI) for each landmark gene. The raw 

expression data are log2-scaled, quantile normalized, and z-scored, such that a differential 

expression value is achieved for each gene in each well. These differential expression values 

are collapsed across replicate wells using a weighted average to yield a differential expression 

signature for each perturbagen. Each replicate is weighted according to its correlation with the 
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others. These signatures were used for subsequent analysis. Detailed protocol is available at 

LINCS website (http://support.lincscloud.org/hc/en-us/categories/200155686-Data-Generation-

Protocols). 

 

Gene expression correlation analysis 

Each normalized gene expression data was filtered by infection efficiency, which was 

calculated by dividing cell viability after antibiotic selection with cell viability without antibiotic 

selection by CellTiter-Glo Luminescent Cell Viability Assay (Promega). Viability was assessed 

96h post-infection. 40% infection efficiency was used as cutoff to filter inadequately transduced 

alleles. 1036 gene expression signatures were Spearman correlated with gene expression 

signature of all other ORFs. “cor(method=”spearman”)” function in R was used for Spearman 

correlation coefficient calculation (167). Negative controls (BFP, eGFP, HcRed, LacZ, 

Luciferase), L1000 expression plate controls (NFE2L2, RHEB, NFKB1A, DNMT3A) were also 

included. After pairwise Spearman correlation, alleles at the extreme ends of the spectrum were 

manually curated to find alleles that are consistent with previously known relationship. 

 

Comparison to the in silico methods 

We compared our observations to four different in silico methods, Polyphen2 (56), 

Mutation Assessor (57), CHASM (58), and VEST (59). We used the term “functional variant,” to 

denote both gain and loss of function alleles (61), and “neutral variant” otherwise. For 

PolyPhen2, “possibly damaging” and “probably damaging” categories were considered 

functional. HumDiv-trained Polyphen2 was used. For Mutation Assessor, “high” and “medium” 

were considered functional. For CHASM and VEST, alleles with FDR <0.05 were considered 

functional. Default parameters were used for PolyPhen2 and Mutation Assessor and “cancer 

type: other” was chosen for CHASM analysis. The Venn diagram was drawn with Venny (168). 
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Chapter 4 

Functional genomics approach to identify FRS2 as 

amplified oncogene in high-grade serous ovarian cancer
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4.1 Introduction 

In previous chapters, I characterized the function of non-synonymous point mutations. In 

this chapter, I systematically identify and characterize the driver gene of a recurrent focal 

amplification in ovarian cancer. 

Ovarian cancer is the second most common gynecologic malignancy and the most 

common cause of gynecologic cancer death in the United States (169). Histologically, ovarian 

epithelial carcinomas can be divided into high-grade serous, low-grade serous, endometroid, 

mucinous, and clear cell types. Clinically, high-grade serous ovarian cancer (HGSOC) accounts 

for 70-80% of all ovarian carcinomas and is characterized by its de novo invasive nature and 

initial sensitivity to platinum treatment. The molecular features of HGSOC include BRCA1/2 and 

TP53 mutations and widespread DNA copy number alterations (170). The lack of readily 

targetable mutations found in HGSOC has contributed to slow progress in developing 

molecularly targeted therapies for this subset of ovarian cancers.  

 To catalog the molecular aberrations present in HGSOC, The Cancer Genome Atlas 

(TCGA) network performed a large-scale, multiplatform genomic profiling study of HGSOC 

(170). Analysis of 489 HGSOC primary tumors identified large number of recurrent somatic copy 

number alterations that include 31 focal amplifications. These amplified regions encode 1825 

genes including known oncogenes such as CCNE1 and MYC. However, the driver genes in the 

majority of the recurrently amplified regions remain unidentified. 

In parallel to these genome characterization efforts, we initiated Project Achilles, a 

systematic effort to identify cancer dependencies at genome scale (171,172). Here by 

combining the output of ovarian cancer genome analysis with Project Achilles, we systematically 

interrogated 1825 recurrently amplified genes in ovarian cancer to identify genes that are 

essential in ovarian cancer cell lines that harbor such amplifications and identified FRS2 as an 

amplified and essential gene in HGSOC. 
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4.2 Results 

 
4.2.1 Identification of FRS2 as an amplified and essential gene in ovarian 

cancer 

High-grade serous ovarian cancers are characterized by high frequency, recurrent 

regions of copy number gain and loss. Recent genome-scale effort to characterize structural 

alterations in HGSOC has identified 31 recurrently amplified chromosomal regions containing 

total of 1,825 genes (170). To systematically study previously unknown lineage-specific 

dependencies, we initiated a genome-scale effort (Project Achilles) to identify genes essential 

for proliferation/survival of a large number of well characterized cancer cell lines using loss-of-

function genetics with short hairpin RNAs (shRNA) (172). Although recent studies suggest that 

established ovarian cancer cell lines do not fully recapitulate the genetic alterations found in 

high grade ovarian cancers (173,174), here we have focused on those alterations found by the 

TCGA in human cancers and shared by these ovarian cancer cell lines. Using data from 102 

cell lines of which 25 were from the ovarian lineage, we identified 582 ovarian-lineage specific 

gene dependencies (171). By looking at the intersection of genes involved in regions of 

recurrent copy number and essential in ovarian cancer cell lines, we identified 50 genes (Figure 

4-1). Two of the 50 genes were previously identified as ovarian specific oncogenes (PAX8, 

CCNE1) using similar analytical approaches (171,175).  
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Figure 4-1. Amplified and essential genes in high grade serous ovarian cancer (Leo Luo) 

FRS2 is one of the 50 genes that are recurrently amplified in primary ovarian tumors and 

essential for ovarian cancer cell proliferation and survival.  

 

Among the remaining genes, we focused on fibroblast growth receptor substrate 2 

(FRS2) because FRS2 is (i) adaptor protein in the Fibroblast Growth Factor Receptor (FGFR) 

pathway, (ii) is located on chromosomal region 12q15, which is focally amplified in 12.5% of 559 

primary high-grade serous ovarian cancers characterized by TCGA (Figure 4-2), and (iii) was 

among the top 100 genes that scored by our analysis of Project Achilles and copy number data 

in HGSOC.  
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Figure 4-2. FRS2 is located at the peak of amplified chromosomal region 12q15 (Leo Luo) 

Copy number profile along chromosome 12q of human tumor samples exhibits high level of 

FRS2 amplification in multiple cancer types including ovarian, breast, lung squamous, lung 

adenocarcinoma, stomach, head and neck (H&N), and bladder. Each vertical line represents 

one tumor sample. Red is copy number gain, Blue is copy number loss. 

 

We also found a structurally similar chromosomal region amplification in other cancer 

types such as breast invasive carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, 

head and neck squamous cell carcinoma, gastric adenocarcinoma, and bladder urothelial 

carcinoma. We used Genomic Identification of Significant Targets in Cancer Version 2.0 

(GISTIC 2.0) algorithm to identify the peak of amplification, which corresponds to the highest 

level of copy number gain. In ovarian cancer samples, we observed the overlap between the 

peak of amplification and the location of FRS2 gene. Furthermore, the focal amplification of 

12q15 region in HGSOC is correlated with increased mRNA expression of FRS2, suggesting 

the functional relevance of the copy number gain (Figure 4-3A). In addition, we also observed 

frequent amplification of FGFR family of tyrosine kinase receptor genes in HGSOC. Strikingly, 

HGSOC samples that harbor 12q15 amplifications were often mutually exclusive with HGSOC 

BreastOvarian

Ch
ro

m
os

om
e 

12

Lung 
Squamous

Lung 
AC

Bl
ad

de
r

H&
N

St
om

ac
h

q21.31

q21.2

q13.3

q14.2

q15

q21.1

q13.13

Deletion              Neutral         Amplification



 

 74 

that harbor FGFR1, FGFR2, FGFR3, and FGFR4 amplifications (Fisher’s exact test P=0.028) 

(Figure 4-3B). This pattern of mutations is observed in commonly mutated genes in the same 

pathway, such as KRAS and EGFR mutations or TP53 and MDM2 mutations. These 

observations implicate FGF signaling through amplifications of FGFRs and FRS2 as a common 

event in HGSOCs.  

 

Figure 4-3. FRS2 is located at the peak of amplified chromosomal region 12q15 (Leo Luo) 

(A) Level of FRS2 mRNA expression in primary tumors correlates with the copy number. Copy 

number is divided into 4 categories based on log2 of copy numbers. “Amplification” is defined as 

Log2(Copy number) more than 1; “Gain” is between 0.2 and 1; “Normal” is between -0.2 and 

0.2; “Loss” is less than -0.2. 

(B) FRS2 amplification and FGFR1, FGFR2, FGFR3, and FGFR4 amplifications are mutually 

exclusive in high-grade serous ovarian cancers.   

 

4.2.2 FRS2 is essential in cancer cell lines that harbor 12q15 amplification 

To confirm that FRS2 was essential in FRS2 amplified cancer cell lines, we used two 

independent shRNAs to suppress FRS2 expression in three cell lines with 12q15 amplification 

(CAL120_BREAST, COV644_OVARY, HCC1143_BREAST) and three cancer cell lines that 
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contain normal copies of 12q15 (CAOV3_OVARY, EFO21_OVARY, COV362_OVARY). We 

used both breast and ovarian cancer cell lines since we found focal amplification of 12q15 in a 

large subset of the primary breast cancers (Figure 4-2). Copy number data for these cell lines 

were obtained from the Broad Institute/Novartis Cancer Cell Line Encyclopedia (CCLE) (176) 

(Figure 4-4A). We found that FRS2 suppression by two independent shRNAs significantly 

decreased the proliferation of cancer cell lines that harbor the 12q15 amplification, when 

compared to cells that exhibit diploid copy number at 12q15 or cells infected with control shRNA 

(Figure 4-4B). The degree of FRS2 suppression in 12q15 amplified cell lines was validated by 

quantitative real-time PCR (Figure 4-4C). To demonstrate that FRS2 suppression induced 

apoptotic cell death in 12q15 amplified cell lines, we interrogated poly ADP-ribose polymerase 

(PARP) cleavage after suppression of FRS2 and sub-G1 fraction by flow cytometry. We found 

increased level of cleaved PARP in 12q15 amplified cell lines compared to cell lines without 

12q15 amplification (Figure 4-5A). Similarly, we observed increased sub-G1 fraction upon 

suppression of FRS2 in FRS2 amplified cell lines (Figure 4-5B). Together, these findings 

demonstrate that cancer cells that harbor 12q15 amplification require FRS2 expression for 

proliferation and survival. 
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Figure 4-4. Suppression of FRS2 decreases the proliferation of ovarian and breast cancer 

cells harboring 12q15 amplification.  

(A) SNP array colorgram showing genomic amplification of chromosome 12q15 in ovarian and 

breast cancer cell lines. Red indicates copy number amplification and blue indicates copy 

number deletion. (Leo Luo) 

(B) Proliferation effect of FRS2 suppression on cancer cell lines that either harbor 12q15 

amplification (CAL120, HCC1143, COV644) or normal copy number of 12q15 (CAOV3, 

COV362, EFO21) normalized to cells treated with shLacZ. Red: cell lines treated shFRS2 #1. 

Black: cell lines treated with shFRS2#2. **P < 0.01 compared to control shLacZ, Student’s t test 

was used. (Leo Luo) 

(C) Quantitative RT-PCR of FRS2 expression in FRS2 amplified (red) and non-amplified (black) 

cell lines.  
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Figure 4-5. Suppression of FRS2 increases apoptosis in ovarian and breast cancer cells 

harboring 12q15 amplification.  

(A) Increased apoptosis in FRS2 amplified cell lines (red) upon FRS2 suppression, shown by 

increased PARP cleavage. 

(B) Increased apoptosis in FRS2 amplified cell lines (red) upon FRS2 suppression, shown by 

increased sub G1 fraction population by flow cytometry. 
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4.2.3 FRS2 induces oncogenic transformation 

To determine if FRS2 can contribute to tumorigenesis by inducing transformation, we 

performed anchorage-independent growth assays and tumor xenograft experiments. In our prior 

studies, we have shown that human kidney epithelial cells are immortalized by co-expression of 

the human catalytic subunit of telomerase (hTERT) and the SV40 Early Region (HA1E cell) and 

the expression of oncogenic alleles of RAS confers the ability to grow in anchorage-independent 

manner (136). We also demonstrated the RAS oncogene can be replaced by combination of 

downstream effectors of RAS signaling pathway, such as constitutively-activated MEK1 (MEK-

DD) and AKT1 (myristoylated AKT) (21). In addition, we used the same genetic elements to 

immortalize human ovarian epithelial cells (IOSE) and used this cell line to identify ovarian 

cancer oncogenes such as ID4 (177). The origin of HGSOG is still controversial as there are 

evidences supporting fallopian tube and ovarian surface epithelium hypotheses, but in our 

hands, there was no difference in transformation outcome in either model (137,177-180).  

As previous studies have shown that FRS2 preferentially activates MAPK pathway, we 

overexpressed FRS2 in HA1E cell lines expressing constitutively active myristoylated AKT 

(HA1E-A) to determine whether FRS2-mediated MAPK pathway activation complemented AKT 

pathway activation to induce transformation. We measured anchorage independent growth with 

FRS2 overexpression and found that FRS2 overexpression was sufficient to induce anchorage 

independent colony formation of HA1E-A cells compared to cells expressing the control LacZ 

(Figure 4-6A). The number of colonies formed with FRS2 overexpression is significantly higher 

(P<0.001) compared to constitutively activated MEK, suggesting possible activation of additional 

pathways that contribute to the transformation process. We also conducted the same 

experiment in IOSE cells to show that FRS2 also induced transformation in ovarian epithelial 

cells (Figure 4-6B).  
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Figure 4-6. FRS2 overexpression transforms immortalized cell lines. (Leo Luo) 

(A) FRS2 promotes anchorage-independent growth in HA1E-A cells compared to LacZ control. 

MEK-DD, a constitutively active MEK, is positive control. Right, images of soft agar colonies 

formed by HA1E-A with either FRS2 or control vector overexpression.  

(B) FRS2 promotes anchorage independent growth of IOSE (immortalized human ovarian 

epithelial) cells. GAB2 is a similar adaptor protein known to transform ovarian epithelial cells. 

**P < 0.01, ***P < 0.001 compared to respective control vectors, Student’s t test.  
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by expressing FRS2 in NIH/3T3 mouse fibroblast cells and implanting these cells 

subcutaneously in immunodeficient mice. We also conducted the same experiment in HA1E-A, 

but the result was inconclusive due to high background. At 11 weeks, we observed that tumors 
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formed in 33% (2 out of 6) of the injection sites harboring cells expressing FRS2 but failed to 

observe any tumors in sites harboring control cells (Figure 4-7). We note that since we 

implanted tumors in several sites in each mouse, and we terminated the experiment prior to 

observing tumor growth in all sites, these experiments may underestimate the tumorigenicity of 

these cells. These observations confirm that FRS2 overexpression can induce oncogenic 

transformation in human kidney fibroblasts or mouse fibroblasts by promoting anchorage-

independent growth or in vivo xenograft tumor formation.  

 

Figure 4-7. FRS2 overexpression promotes tumorigensis in vivo.  

FRS2 overexpression in NIH/3T3 promotes in vivo tumorigenesis in immunocompromised mice. 

Tumors from the same mouse are colored with the same color. 

 

 

4.2.4 FRS2 amplification activates the MAPK pathway  

Previous studies have shown that FRS2 is a critical mediator of FGFR signaling and 

plays an important role in activating MAPK and PI3K pathways (Figure 4-8A)(181,182). We 

have confirmed FRS2 overexpression induces activation of MAPK pathway in 293 HEK cells 

and IOSE cells by assessing phospho-Thr202/Tyr204 ERK1/2 levels (Figure 4-8B). Conversely, 
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suppression of FRS2 in FRS2-amplified cancer cell line caused a decrease in phospho-ERK 

levels (Figure 4-8C). In contrast, we failed to observe a change in phospho-AKT when we 

overexpressed FRS2 (Figure 4-8B). These observations suggest that FRS2 overexpression 

preferentially activates MAPK pathway in this context. This finding corroborates the results of 

anchorage-independent growth assays where we observed that FRS2 was able to induce 

increased colony growth when expressed with Myr-AKT as compared to co-expression with 

MEK-DD in HEK cells.  
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Figure 4-8. FRS2 promotes tumorigenesis via activation of MAPK pathway. (Leo Luo) 

(A) FRS2 functions as an adaptor protein in the fibroblast growth factor receptor signaling 

pathway, adapted from Turner and Grose (183). 

(B) Effect of FRS2 overexpression on phosphorylation of ERK in 293T cells and ovarian 

epithelial cells.  

(C) Effect of FRS2 suppression on phosphorylation of ERK in cancer cell line with 12q15 

amplification.  
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4.3 Discussion 

Here we identified FRS2 as one of the 50 genes that are recurrently amplified in high-

grade serous ovarian cancers (HGSOC) and essential to survival in ovarian cancer cell lines. 

FRS2 belongs to the 12q15 genomic region that is focally amplified in 12.5% of HGSOC. Using 

independent shRNAs targeting against FRS2, we showed the expression of FRS2 was essential 

for survival in cancer cells with 12q15 amplification. We also discovered that overexpression of 

FRS2 in immortalized kidney fibroblast or ovarian epithelial cells promoted anchorage 

independent growth and tumorigenesis in mice. Together these observations nominate FRS2 as 

an amplified oncogene in a subset of high-grade serous ovarian cancers. 

In addition to HGSOC, 12q15 amplification containing FRS2 is found in other cancer 

types. 12q15 amplicon containing FRS2 is focally amplified in 9.2% of breast invasive 

carcinomas. Indeed, we found that breast cancer cell lines that harbor 12q15 amplification are 

also sensitive to suppression of FRS2. Furthermore, new evidence has suggested the 

oncogenic role of FRS2 and 12q15 amplification in high-grade liposarcomas through whole-

exome sequencing and demonstrated sensitivity of FRS2-amplified high-grade liposarcoma cell 

lines to FRS2 suppression through shRNAs (184,185). These studies support FRS2 as a bona 

fide oncogene in a variety of cancers and a potential therapeutic target for a subset of cancers 

that harbor such amplification.  

The discovery of FRS2 as an amplified oncogene adds to the family of FGFR signaling 

components that are critical to tumorigenesis in many cancer types. It is known that mutations 

or amplifications of FGFRs are frequent and inhibitor-sensitive in bladder cancer (186), gastric 

cancer (187), endometrial cancer (188), and non-small cell lung cancers (189,190). Large-scale 

genome-wide association studies have also linked breast cancer risk loci to FGFR2 (191). More 

recent studies revealed the importance of FGF ligands, such as FGF19 amplification in liver 

cancer (192) and the therapeutic effect of neutralizing anti-FGF antibodies (193).  
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The 12q15 genomic region contains 15 genes with FRS2 residing at the copy number 

peak of the amplicon (Supplementary Table S7). Prior work in high-grade liposarcoma, which 

has a broader region of amplification (12q13-12q15) than HGSOC, has suggested in addition to 

FRS2, other genes such as CDK4 and MDM2 may be driving events (184). Although neither 

CDK4 nor MDM2 is located within the 12q15 amplified region in HGSOC, we do not preclude 

the possibility that other genes in the genomic region may cooperate to drive various stages of 

tumorigenesis. Indeed, we recently demonstrated that multiple genes resident in a recurrently 

amplified region (3q26) contribute to cell transformation by inducing different cancer associated 

phenotypes, suggesting that further studies involving other assays will be necessary to 

investigate the function of these other genes (194).  

Here we show a new functional class of adaptor proteins as driver oncogene in ovarian 

cancer. The adaptor proteins lack intrinsic enzymatic activities but mediate protein-protein 

interactions that drive protein complex formation. Classic examples of adaptor proteins include 

GRB2 in receptor tyrosine kinase signaling (195) and MYD88 in NF-κB signaling (196). FRS2 

was originally discovered as a docking site for coordinated assembly of a multi-protein complex 

that include GRB2, GAB1, and SOS1, and serves a critical role in the FGFR signaling pathway 

(Figure 4-8A)(181,197). Unlike the signaling-amplifying activity of kinases, adaptor proteins are 

bottlenecks of the signaling pathway due to their stoichiometric relationship with interacting 

partners. Therefore, amplification or overexpression of the adaptor proteins can significantly 

alter the flux of the signal, thus carry important therapeutic implications such as mediating 

resistance to targeted therapy against receptor tyrosine kinase or conferring de novo sensitivity 

to signaling pathway inhibitors. Our laboratory has previously identified CRKL, an adaptor 

protein involved in RAS and RAP signaling, as an amplified oncogene in NSCLC (198). It was 

demonstrated that CRKL overexpression can mediate resistance to EGFR inhibitor in EGFR-

mutant lung cancer cells and its amplification has been observed in gefitinib-resistant lung 

tumors. More recently, through a multiplexed in vivo transformation screen, we found another 
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adaptor protein, GAB2, as an amplified ovarian cancer oncogene that activates PI3K signaling 

(199). Ovarian cancer cells with GAB2 alteration are sensitive to PI3K-pathway inhibition. An 

independent analysis of TCGA datasets across 16 cancer types has generated 75 amplified 

genes with druggable properties, including FRS2 and EGFR family adaptors GRB2 and GRB7 

(200). These findings suggest a new class of targetable oncogenes that are sensitive to 

exhibiting RTK signaling pathway inhibitors and present a new therapeutic opportunity to those 

patients with such genetic alterations.  

 

4.4 Materials and methods	

Analysis of TCGA primary tumor data 

Regions of copy number amplification identified by Genomic Identification of Significant 

Targets in Cancer (GISTIC) analyses were used from the TCGA study on high-grade serous 

ovarian cancer (170). All RefSeq genes within these regions of amplification (n = 1825) were 

identified and cross-referenced with genes interrogated in the Achilles screening library (n = 

582). All primary HGSOC data were downloaded from the TCGA portal (http://tcga-

data.nci.nih.gov/tcga). Genomic characterization data were visualized using the Integrative 

Genome Browser (http://www.broadinstitute.org/igv). Mutual exclusivity analysis was performed 

using the cBio Portal for Cancer Genomics (201,202). 

 

Analysis of shRNA screening data 

Data from genome-scale loss of function screening was processed as described (171). 

Briefly, 54,000 shRNAs were lentivirally delivered to 102 cancer cell lines and the degree of 

representation of each shRNAs in the final cell population was measured by custom Affymetrix 

array. Normalization, variance stabilization and expression score calculation were conducted as 

specified in modified dCHIP method (172). Scores were median-adjusted per cell lines. Ovarian-
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specific gene dependencies were determined with three complementary methods: (i) 150 best 

single shRNA or (ii) 300 second best shRNA or (iii) composite of all shRNAs for the gene using 

KS statistics. 582 genes (5.2%) were selected from the union of three methods above.  

 To identify genes that were both amplified in ovarian tumors and essential in amplified 

cancer cell lines, each gene identified as amplified in primary ovarian tumors (1,825 genes) was 

tested across the entire panel of 102 cell lines screened. Only genes with more than 5 amplified 

cell lines were included in the study. Amplified genes that had mapped shRNAs with a P < 0.05 

were identified as candidate genes. 

 

Cell culture and generation of stable cell lines 

All human cancer cell lines were cultured in previously described media supplemented 

with 10% fetal bovine serum (FBS, Sigma) (171). Immortalized human ovarian surface epithelial 

cells (IOSE) (203) were maintained in 1:1 Medium 199: DMEM supplemented with 10% FBS. 

CAL120, COV644, COV362, and CAOV3 cells were cultured in Dulbecco’s modification of 

Eagle’s medium (Invitrogen) with 10% FBS. HCC1143, EFO21 cells were cultured in RPMI-

1640 medium (Invitrogen) with 10% FBS. NIH/3T3 cells were cultured in DMEM with 10% 

bovine calf serum. Lentiviruses were produced by transfection of 293T packaging cells with a 

three-plasmid system. To generate stable cell lines, cells were seeded into 6-well dishes for 24 

h before infection with 0.3 ml of lentiviruses for 12 h in the presence of 8 µg/ml polybrene. After 

the incubation, medium was replaced with fresh medium for another 24 h before selection in 

media containing 2 µg/ml of puromycin or 10 µg/ml of blasticidin until the control cells were no 

longer viable. 

 

Plasmids 

Human FRS2 (from the CCSB human ORFeome collection (204)) was cloned into 

pLenti6.3-blast (BamHI and BsrGI sites). The pLX304-LacZ was used as a control vector. The 
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human MEKD218, D222 (or MEKDD) fragment was removed from pBabe-puro-MEKDD plasmid 

(21) with BamHI and SalI and inserted into pLX304-Blasticidin. Lentiviral pLKO.1-puro-shRNA 

constructs were obtained from The RNAi Consortium or designed by custom oligo synthesis 

(IDT). The shRNA constructs used are as follows: control shRNA targeting LacZ 

(TRCN0000231710), FRS2-specific shRNAs (shFRS2#1: TRCN0000370440, shFRS2#2: 5’-

CTCTAAATGGCTACCATAATA-3’) 

 

Cell proliferation assay 

CAL120, COV644, HCC1143, EFO21, CAOV3, and COV362 cells (3 X 103) were 

seeded into each well of 96-well plates 24 h prior to infection. Six replicate infections were 

performed for control shRNAs and each gene-specific shRNA in the presence of 8 µg/ml 

polybrene for 24 h followed by selection with 2 µg/ml of puromycin. The ATP content was 

measured at 6 days post-infection by using CellTiter-Glo luminescent cell viability assay 

(Promega). 

 

Anchorage-independent growth assay 

Growth in soft agar was determined by plating 5×104 cells in triplicate in 4 ml of medium 

containing 0.35% Noble agar (BD Biosciences), which was placed on top of 4 ml of solidified 

0.6% agar. Unstained colonies greater than 100 µm in diameter were counted 4 weeks after 

plating using Cell Profiler software (205). 

 

Immunoblotting 

Cell lysates were prepared by scraping cells in lysis buffer (50 mM Tris HCl (pH 8), 150 

mM NaCl, 1% Nonidet P40, 0.5% sodium deoxycholate, and 0.1% SDS) containing complete 

protease inhibitors (Roche) and phosphatase inhibitors (10 mM Sodium Floride and 5 mM 

Sodium Orthovanadate). Protein concentration was measured by using BCA Protein Assay kit 
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(Pierce). An equal amount of protein (20 µg) was separated by NuPAGE Novex Bis-Tris 4-12% 

gradient gels (Invitrogen) and then transferred onto a polyvinylidene difluoride membrane 

(Amersham). Antibodies against FRS2 (sc-8318) were purchased from Santa Cruz 

Biotechnology. Antibodies for PARP (#9532), phospho-ERK1/2 (#9101), ERK1/2(#9102) were 

purchased from Cell Signaling Technology and antibody specific for β-actin was obtained from 

Santa Cruz (sc-8432-HRP). 

After incubation with the appropriate HRP-linked secondary antibodies (Bio-Rad), 

signals were visualized by enhanced chemiluminescence plus Western blotting detection 

reagents (Amersham). Alternatively, membrane was incubated with IRDye fluorescent 

secondary antibodies (LI-COR) and visualized by Odyssey quantitative fluorescence imaging 

system (LI-COR).  

 

Real-time quantitative RT-PCR 

Total RNA was extracted with RNeasy mini kit (Qiagen). Reverse transcription was 

performed using SuperScript III First-Strand Synthesis System (Invitrogen). Quantitative RT-

PCR reactions were performed using SYBR green PCR Master Mix (Applied Biosystems). The 

primer sequences used were obtained from MGH PrimerBank:  

FRS2_forward: CTGTCCAGATAAAGACACTGTCC 

FRS2_reverse: CACGTTTGCGGGTGTATAAAATC 

GAPDH_forward: CCTGTTCGACAGTCAGCCG 

GAPDH_reverse: CGACCAAATCCGTTGACTCC 

Triplicate reactions for the gene of interest and the endogenous control (GAPDH) were 

performed separately on the same cDNA samples by using the ABI 7900HT real-time PCR 

instrument (Applied Biosystems). The mean cycle threshold (Ct) was used for the ddCt analysis 

method. 
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Flow cytometry 

Cells were collected, washed, and fixed with 70% ethanol at -20C for 4 hours. Fixed 

cells were washed, re-hydrated and re-suspended in propidium iodide staining solution (25ug/ml 

propidium iodide, Sigma P4862, 50ug/ml RNase A, Invitrogen 12091-021, in PBS) at room 

temperature for 30 minutes. Flow cytometry was done on BD LSR II flow cytometer (BD 

Biosciences). Debris and aggregates were gated out and the sub-G1 population was analyzed 

using FlowJo software.  

 

Tumorigenicity assay 

Female NCR/nude mice (Charles River Laboratories) were obtained at 6 weeks of age. 

All animal experiments were approved by the Dana-Farber Institutional Animal Care and Use 

Committee. Tumor xenograft experiments were performed as described (21). NIH/3T3 cells 

expressing indicated constructs were trypsinized and collected in fresh media. Cells were 

washed and re-suspended in PBS at 106 cells per 100 ul. Cells were injected subcutaneously 

on left and right flanks, and upper back. Two mice were used for each experimental condition. 2 

X 106 cells were injected per site, three sites per mouse. Tumor injection sites were monitored 

for 3 months for tumor formation. Mice were euthanized when the largest tumor on mouse 

reached 2 cm in largest dimension. 

 

Statistical analysis 

Unless otherwise indicated, one-way ANOVA was used (GraphPad). P < 0.05 was 

considered statistically significant. Fisher’s exact test was used for tumor formation assays and 

mutual exclusivity analysis. Two-tailed Student’s t test was used for pairwise comparisons. A 

log-rank test was performed for animal survival studies. 

 



Chapter 5 

Conclusion 
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In this thesis I describe methods to improve the functional characterization of focal 

amplifications and non-synonymous point mutations. Integrating functional and structural 

genomics data facilitates identification of driver genes in recurrently amplified regions. Indeed, 

investigating amplified and essential genes in high-grade serous ovarian cancer led to the 

discovery of FRS2 as an oncogene. This method may allow identification of driver genes in 

other recurrently amplified regions in ovarian cancers. As CRISPR technology is increasingly 

utilized, genome-scale CRISPR screen data may provide additional information to pinpoint 

essential and amplified genes.  

To study the functional impact of point mutations, 474 alleles, the majority of which was 

observed only once in a set of 5,338 tumors, were generated and subjected to two functional 

assays, a pooled in vivo tumorigenesis screen and gene expression profiling. I demonstrated 

that the large-scale experimental characterization of cancer-associated gene variants is feasible 

and can generate valuable insights. From the in vivo tumorigenesis screen, I found that rare 

variants could be driver events in tumorigenesis. Alleles such as KRASD33E, POT1G76V and 

PIK3CBA1048V were shown to be transforming. NFE2L2 alleles were shown to be transforming in 

vivo for the first time as well. Through analyzing gene expression correlation to wild type and 

known functional alleles, I inferred the functional status of unstudied alleles in genes including 

KRAS, NRAS, IDH1/2, SPOP, PTEN and FBXW7. These methods provide proof-of-concept 

evidence that experimental inference of cancer-associated variants can accelerate the 

translation of cancer genome sequencing data. As the first pilot study of this scale, this study 

also provides valuable empirical knowledge on how to perform large-scale functional 

characterization of diverse cancer alleles. 

The first important lesson from this study is the importance of selecting many alleles of 

the same gene for meaningful analysis of expression profiling data. Without at least six alleles 

from the same gene, including the wild type, it is difficult to see the pattern of clustering among 

the alleles. Including at least two biological replicates will greatly enhance the confidence in the 
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gene expression signature; two biological replicates should be required for the wild type allele at 

the least. In the study of 500 alleles, for example, it would be much more valuable to study 10 

alleles of 50 genes than to study two alleles of 250 genes.  

In line with the first point, it is critically important to include as many well-characterized 

alleles as possible, for these alleles will guide the interpretation of the other, unknown alleles. 

Moreover, it can be very valuable to study every single possible mutated allele in genes that are 

currently used in clinical setting to generate a complete dictionary. As these genes are well 

characterized, tailored phenotypic assays would be more appropriate than in vivo tumor 

formation or gene expression profiling. 

The second lesson is the importance of testing the cellular background in eliciting the 

transcriptional impact of specific alleles. For example, the gene expression change induced by 

tumor suppressor genes such as KEAP1 may only be distinctive enough to be detectable in 

KEAP1 null background (Alice Berger, personal communication). In cells with endogenous wild 

type KEAP1, the difference between the impacts of overexpressed loss-of-function variant and 

wild type may be masked by the presence of the endogenous wild type allele. In light of this 

observation, the same set of alleles should be investigated in multiple cellular backgrounds. If a 

consensus gene expression signature can be derived from multiple backgrounds, it will provide 

a more powerful and accurate picture of specific variants. 

The third lesson is an apparent but often-neglected point in large-scale ORF screens: 

the quality of ORFs. As we are attempting to study the changes associated with a single amino 

acid substitution, having concurrent alterations in the ORF would confound results. Constructing 

an ORF collection with 100% sequence accuracy is tremendously difficult as many genes have 

multiple transcripts and SNP variants. However, nearly all significantly mutated cancer genes 

have one reference sequence that the research community has reached a consensus on, which 

should be prioritized for study. In addition, large genes are typically vastly underrepresented in 

ORF libraries. For longer genes, individualized cloning strategies are required. These genes 
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may be unfit for the large-scale characterization described here due to inefficiencies in creating 

virus carrying large vectors and need to be studied individually. ORF library with 100% correct 

sequences would be a tremendous asset to the variant phenotyping community, not only in 

cancer but also in other diseases. 

The pooling strategy was also found to be essential in this study. Pooling alleles in a 

greater number of combinations and testing each pool in fewer mice would be clearly more 

informative than smaller number of combinations injected into higher number of mice. For 

example, 28 pools injected into two mice per pool would allow discovery of more alleles than 14 

pools injected into four mice per pool.  

From the pooled in vivo screen, the “jackpot effect,” in which the strongest alleles 

overtaking the entire tumor, was evident. Although the strong tumorigenic phenotype of potently 

transforming allele provides convincing evidence that it may be a driver allele in human cancer, 

this approach may not be the most efficient use of resources due to high false negative rates for 

alleles screened in the same pool as the jackpot allele. The jackpot effect is a consequence of 

the stochasticity of tumor formation in in vivo environment. This stochastic effect has minimal 

impact on strong oncogenic alleles such as activating KRAS alleles because the probability that 

a cell with this strong pro-tumorigenic allele would generate a tumor is fairly high, such that 

when more than a couple hundred cells are injected, the tumor take rate is ~100% since the 

take rate = 1-(1-probability of forming tumor)^(number of cells). However, for less robust alleles 

with orders of magnitude lower “probability of forming tumor,” the take rate can be variable. 

Since the mouse needs to be sacrificed when the tumor size reaches predetermined size, 

variable take rate results in inconsistent scoring in a specific allele. To address this issue, I 

advocate using more democratic in vitro assays such as growing cells on low attachment plate 

to measure transformation phenotype. 

Another important observation from the in vivo screen was the identification of false 

positives alleles, such as FAM200AS481N and AKT1Q79K, which scored in pooled screen but did 



 

 94 

not drive tumor formation when assessed individually. This was a puzzling observation as the 

number of cells with specific alleles injected in individual assay is orders of magnitude higher 

than the number of cells in the pooled assay. My conjecture is that, for cells overexpressing 

these false positive alleles, co-injection with cells transduced with different alleles could have 

facilitated tumorigenesis by paracrine effect of secretory factors from the neighboring cells. This 

hypothesis needs to be further validated, but the pool composition should be constructed with 

this effect in mind. The lessons described above will help improve sensitivity and specificity of 

studies of this kind in the future.  

Based on the lessons I learned from this project, I propose a way forward to 

systematically characterize non-synonymous point mutations in cancer. 

1.  For clinically sequenced genes, whether the purpose is counseling or patient 

stratification for therapy or clinical trial enrollment, saturation mutagenesis and allele-by-allele 

functional characterization will prove immensely useful. These experiments are increasingly 

feasible as efficient and cost-effective construction of libraries with every possible amino acid 

substitution becomes more widely available. For small genes like KRAS, such libraries cost 

about $10,000 to synthesize. For larger genes like EGFR, the cost is roughly $40,000. 

Moreover, as the cancer-relevant functions of these genes are well characterized, the library 

can be screened using specific cancer-relevant functional assays. 

2.   For significantly mutated genes in cancer, about 200 genes, template ORFs with 

100% sequence fidelity should be generated, and six to ten mutant alleles should be generated. 

Well-characterized and hot spot mutations should be prioritized and biological replicates should 

be included. These alleles should to be assessed using L1000 gene expression assays in 

multiple cell lines from different lineages. By analyzing the expression signature among the 

biological replicates, the cell line in which each gene is “readable” (provides meaningful 

expression profiles) should be identified. Based on the gene expression signature in the 

readable cell line, likely functional alleles can be differentiated from the likely neutral alleles.  
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3-1. For significantly mutated genes with likely functional alleles determined as above, all 

alleles created for this gene in 2. should to be subjected to in vitro transformation assays that 

measure anchorage independence.  

3-2. For significantly mutated genes without likely functional alleles determined as 

above, gene expression may not be a suitable way to detect their functional impact. This 

category likely includes genes such as POT1 and splicing factors. Genes in this category are 

likely not suitable for high throughput characterization and will need to be studied individually.  

4. These characterization efforts need to be accompanied by development of better in 

silico methods. Methods described in 1. alone would likely generate enough training data to 

enable improvement in machine learning based variant calling algorithms such as Polyphen2. 

This will in turn teach us how to select features better and how to weigh features such as 

evolutionary conservation, biochemical properties of amino acid change and 3D spatial 

relationship correctly. One can speculate that after multiple iterations, the accuracy of in silico 

methods would be high enough that we may be able to reliably utilize in silico methods instead 

of experimental methods. 

After 1-4, we will have a list of genes and alleles that we have enough confidence to 

embark on in-depth characterization that will eventually elucidate the full mechanism.  

In summary, studies presented here describe approaches to translate structural cancer 

genome data into functional understanding. As future iterations of similar studies accumulate 

more functional data, we will be able to accurately describe and predict the functional 

consequences of novel alleles, systematically decreasing the number of variants of unknown 

significance.  

 

 

 



Appendix 

 

The following tables are provided separately as Excel spreadsheets: 

Supplementary Table S1 Genes and alleles selected for the project 

Supplementary Table S2 Annotation of 1163 ORFs 

Supplementary Table S3 Pool composition of in vivo screen 

Supplementary Table S4 Composition of cells and tumors from the in vivo screen 

Supplementary Table S5 L1000 gene expression data of 1036 ORFs
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Supplementary Table S6. Comparison to in silico methods. 

 

Mutation This Study
Concordance 

to Polyphen2

Concordance 

to Mutation 

Assessor

Concordance 

to CHASM

Concordance 

to VEST
Polyphen2 call

Mutation 

Assessor 

call

CHASM FDR 

(red<0.05)

VEST FDR 

(red<0.05)

AKT1_p.D44N neutral 0 1 1 1 possibly damaging neutral >0.05 >0.05
AKT1_p.E17K functional 1 1 1 1 probably damaging medium <0.05 <0.05
AKT1_p.E267G functional 0 0 1 1 benign neutral <0.05 <0.05
AKT1_p.L52R functional 1 1 1 1 probably damaging medium <0.05 <0.05
AKT1_p.Q79K functional 1 0 0 1 probably damaging low >0.05 <0.05
AKT1_p.R370C functional 0 1 1 1 benign medium <0.05 <0.05
AKT1_p.V201I neutral 1 1 0 1 benign neutral <0.05 >0.05
FBXW7_p.A502V neutral 0 0 0 0 probably damaging medium <0.05 <0.05
FBXW7_p.I347M neutral 1 1 1 0 benign neutral >0.05 <0.05
FBXW7_p.R465C functional 1 1 1 1 probably damaging medium <0.05 <0.05
FBXW7_p.R465H functional 1 0 1 1 probably damaging low <0.05 <0.05
FBXW7_p.R505C functional 1 1 1 1 probably damaging medium <0.05 <0.05
FBXW7_p.R658Q neutral 0 0 0 1 probably damaging medium <0.05 >0.05
FBXW7_p.R689Q neutral 0 0 0 1 probably damaging medium <0.05 >0.05
FBXW7_p.S462Y neutral 0 0 1 0 probably damaging medium >0.05 <0.05
IDH1_p.E190K neutral 1 1 1 1 benign neutral >0.05 >0.05
IDH1_p.P33S neutral 0 0 0 1 probably damaging medium <0.05 >0.05
IDH1_p.R132C functional 0 1 1 1 benign high <0.05 <0.05
IDH1_p.R132H functional 0 1 0 1 benign high >0.05 <0.05
IDH1_p.R132L functional 0 1 1 1 benign high <0.05 <0.05
IDH1_p.R132S functional 1 1 1 1 probably damaging high <0.05 <0.05
IDH2_p.A416V neutral 0 0 1 0 probably damaging medium >0.05 <0.05
IDH2_p.A47V neutral 1 1 1 1 benign low >0.05 >0.05
IDH2_p.E268D neutral 1 1 1 1 benign low >0.05 >0.05
IDH2_p.G137E neutral 0 0 1 0 probably damaging high >0.05 <0.05
IDH2_p.I139F neutral 0 0 0 0 possibly damaging high <0.05 <0.05
IDH2_p.R172K functional 1 1 1 1 probably damaging high <0.05 <0.05
IDH2_p.R172M functional 1 1 1 1 probably damaging high <0.05 <0.05
IDH2_p.T331M neutral 0 0 0 0 probably damaging high <0.05 <0.05
KRAS_p.A59G functional 1 1 0 1 possibly damaging high >0.05 <0.05
KRAS_p.D33E functional 1 0 1 1 probably damaging low <0.05 <0.05
KRAS_p.E62K functional 1 1 0 1 possibly damaging high >0.05 <0.05
KRAS_p.G12A functional 1 1 1 1 possibly damaging medium <0.05 <0.05
KRAS_p.G12C functional 1 1 1 1 probably damaging medium <0.05 <0.05
KRAS_p.G12D functional 1 1 1 1 possibly damaging medium <0.05 <0.05
KRAS_p.G12S functional 1 0 1 1 possibly damaging low <0.05 <0.05
KRAS_p.G12V functional 1 1 1 1 probably damaging medium <0.05 <0.05
NFE2L2_p.G31A functional 1 1 1 1 probably damaging medium <0.05 <0.05
NFE2L2_p.G31R functional 1 1 1 1 probably damaging medium <0.05 <0.05
NFE2L2_p.G31V functional 1 1 1 1 probably damaging medium <0.05 <0.05
NFE2L2_p.N160S neutral 1 1 1 1 benign neutral >0.05 >0.05
NFE2L2_p.T80K functional 1 1 1 1 probably damaging medium <0.05 <0.05
NRAS_p.G12A functional 1 1 1 1 possibly damaging medium <0.05 <0.05
NRAS_p.G12C functional 1 1 1 1 possibly damaging medium <0.05 <0.05
NRAS_p.Q61H functional 0 1 1 1 benign high <0.05 <0.05
NRAS_p.Q61K functional 1 1 1 1 possibly damaging high <0.05 <0.05
NRAS_p.Q61L functional 1 1 1 1 probably damaging high <0.05 <0.05
NRAS_p.Q61R functional 0 1 1 1 benign medium <0.05 <0.05
NRAS_p.Y64D neutral 0 0 1 0 probably damaging medium >0.05 <0.05
PIK3CB_p.A1048V functional 1 1 1 1 probably damaging medium <0.05 <0.05
PIK3CB_p.A593V neutral 1 1 0 0 benign low <0.05 <0.05
PIK3CB_p.E497D neutral 1 1 1 1 benign neutral >0.05 >0.05
POT1_p.G76V functional 1 1 0 1 probably damaging medium >0.05 <0.05
POT1_p.L265H neutral 0 0 1 0 probably damaging medium >0.05 <0.05
POT1_p.L388M neutral 1 1 1 1 benign low >0.05 >0.05
PTEN_p.F90S neutral 0 0 0 0 probably damaging high <0.05 <0.05
PTEN_p.G127R functional 1 1 1 1 probably damaging high <0.05 <0.05
PTEN_p.G127V functional 1 1 1 1 probably damaging high <0.05 <0.05
PTEN_p.G129E functional 1 1 1 1 probably damaging high <0.05 <0.05
PTEN_p.G129V functional 1 1 1 1 probably damaging high <0.05 <0.05
PTEN_p.K6N neutral 1 0 0 1 benign medium <0.05 >0.05
PTEN_p.R173H neutral 0 0 0 0 probably damaging medium <0.05 <0.05
PTEN_p.R233Q neutral 0 0 0 0 possibly damaging medium <0.05 <0.05
SPOP_p.E47A functional 1 0 0 1 probably damaging low >0.05 <0.05
SPOP_p.E50K functional 0 0 1 0 benign low <0.05 <0.05
SPOP_p.F102C functional 1 1 1 1 probably damaging medium <0.05 <0.05
SPOP_p.F133S functional 1 1 1 1 probably damaging medium <0.05 <0.05
SPOP_p.K101I neutral 0 0 1 0 probably damaging medium >0.05 <0.05
SPOP_p.K134N functional 1 0 1 0 probably damaging low <0.05 >0.05
SPOP_p.W131C functional 1 1 0 1 probably damaging medium >0.05 <0.05
SPOP_p.W131G funcitonal 1 1 1 1 possibly damaging high <0.05 <0.05

Sum 47 47 52 55
Percent Concordant66.1971831 66.1971831 73.23943662 77.46478873
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Supplementary Table S7. Genes in 12q15 Amplified region. 

 
 

Ovarian chr12:69692322-71120515
#bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts exonEnds name2

1117 ENST00000261267.2 chr12 + 69742120 69748014 69742188 69746999 4 69742120,69743887,69745999,69746932,69742324,69744052,69746078,69748014,LYZ
1117 ENST00000549690.1 chr12 + 69742163 69747275 69742188 69747045 3 69742163,69743887,69746932,69742324,69744052,69747275,LYZ
1117 ENST00000548839.1 chr12 + 69742165 69744286 69742188 69744066 2 69742165,69743887,69742324,69744286,LYZ
1117 ENST00000548900.1 chr12 - 69747272 69748005 69748005 69748005 2 69747272,69747522,69747388,69748005,RP11-1143G9.4
1117 ENST00000247843.2 chr12 + 69753482 69784576 69753752 69784096 7 69753482,69756567,69759412,69759569,69764485,69764667,69783926,69753803,69756687,69759479,69759664,69764578,69764755,69784576,YEATS4
1117 ENST00000548020.1 chr12 + 69753489 69784411 69753752 69784096 5 69753489,69756567,69764485,69764667,69783926,69753803,69756687,69764578,69764755,69784411,YEATS4
1117 ENST00000549261.1 chr12 + 69843249 69854504 69854504 69854504 3 69843249,69853296,69854384,69843468,69853380,69854504,RP11-956E11.1
1118 ENST00000299293.2 chr12 + 69864128 69973559 69962810 69968735 10 69864128,69924644,69925793,69931695,69955959,69962784,69964110,69965055,69965897,69967784,69864310,69924740,69925836,69931763,69956054,69962876,69964297,69965214,69966061,69973559,FRS2
1118 ENST00000549921.1 chr12 + 69864154 69968744 69962810 69968735 9 69864154,69924644,69925793,69955959,69962784,69964110,69965055,69965897,69967784,69864310,69924740,69925836,69956054,69962876,69964297,69965214,69966061,69968744,FRS2
1118 ENST00000550389.1 chr12 + 69864185 69973562 69962810 69968735 7 69864185,69955959,69962784,69964110,69965055,69965897,69967784,69864310,69956054,69962876,69964297,69965214,69966061,69973562,FRS2
1118 ENST00000397997.2 chr12 + 69924602 69973559 69962810 69968735 8 69924602,69925793,69955959,69962784,69964110,69965055,69965897,69967784,69924740,69925836,69956054,69962876,69964297,69965214,69966061,69973559,FRS2
139 ENST00000299300.6 chr12 + 69979113 69995350 69979301 69995105 16 69979113,69980049,69980532,69981284,69981709,69981929,69983264,69985838,69986755,69987289,69990935,69991417,69991747,69992101,69993642,69995074,69979304,69980124,69980598,69981396,69981786,69982042,69983467,69985939,69986883,69987393,69991055,69991546,69991851,69992201,69993784,69995350,CCT2
139 ENST00000544368.2 chr12 + 69979239 69995305 69979301 69995232 15 69979239,69980049,69980532,69981284,69981709,69981929,69983264,69985838,69986755,69987289,69990935,69991417,69991747,69992101,69995074,69979304,69980124,69980598,69981396,69981786,69982042,69983467,69985939,69986883,69987393,69991055,69991546,69991851,69992201,69995305,CCT2
139 ENST00000543146.2 chr12 + 69979445 69995345 69980595 69995105 16 69979445,69980049,69980532,69981284,69981709,69981929,69983264,69985838,69986755,69987289,69990935,69991417,69991747,69992101,69993642,69995074,69979789,69980124,69980598,69981396,69981786,69982042,69983467,69985939,69986883,69987393,69991055,69991546,69991851,69992201,69993784,69995345,CCT2
1118 ENST00000550871.1 chr12 + 69982764 69985840 69985840 69985840 3 69982764,69983264,69985838,69982851,69983467,69985840,CCT2
1119 ENST00000361484.3 chr12 - 70002350 70004942 70003784 70004618 1 70002350, 70004942, LRRC10
1119 ENST00000331471.4 chr12 - 70037333 70093141 70037470 70091578 10 70037333,70065207,70066664,70070695,70070959,70072518,70087453,70088149,70091426,70092984,70037567,70065359,70066745,70070848,70071037,70072673,70087687,70088244,70091593,70093141,BEST3
1119 ENST00000488961.1 chr12 - 70047388 70083056 70048686 70072668 6 70047388,70065207,70066664,70070959,70072518,70082849,70049593,70065359,70066745,70071037,70072673,70083056,BEST3
1119 ENST00000330891.5 chr12 - 70047388 70093196 70048686 70091578 10 70047388,70065207,70066664,70070695,70070959,70072518,70087453,70088149,70091426,70092984,70049593,70065359,70066745,70070848,70071037,70072673,70087687,70088244,70091593,70093196,BEST3
1119 ENST00000553096.1 chr12 - 70047598 70093065 70048686 70087616 8 70047598,70065207,70066664,70070695,70070959,70072518,70087453,70092984,70049593,70065359,70066745,70070848,70071037,70072673,70087687,70093065,BEST3
1119 ENST00000476098.1 chr12 - 70063458 70093131 70064225 70072668 7 70063458,70065207,70066664,70070959,70072518,70087508,70092984,70064358,70065359,70066745,70071037,70072673,70087687,70093131,BEST3
1119 ENST00000266661.4 chr12 - 70077018 70093256 70078332 70087616 3 70077018,70087453,70092984,70078388,70087687,70093256,BEST3
1119 ENST00000551160.1 chr12 - 70078187 70093175 70078332 70087616 4 70078187,70087453,70088149,70092984,70078388,70087687,70088244,70093175,BEST3
1119 ENST00000393365.1 chr12 - 70078332 70093141 70078332 70087616 5 70078332,70087453,70088149,70091426,70092984,70078388,70087687,70088244,70091593,70093141,BEST3
1119 ENST00000533674.1 chr12 - 70081038 70093124 70093124 70093124 4 70081038,70087453,70088149,70092984,70081239,70087687,70088244,70093124,BEST3
139 ENST00000501387.1 chr12 - 70107412 70132348 70132348 70132348 4 70107412,70119001,70124352,70132057,70109367,70119169,70124476,70132348,RP11-588G21.2
139 ENST00000501300.1 chr12 - 70116101 70132342 70132342 70132342 3 70116101,70119001,70132057,70116351,70119169,70132342,RP11-588G21.2
1120 ENST00000247833.7 chr12 + 70132460 70211157 70149188 70209226 11 70132460,70149163,70150184,70178499,70188216,70188920,70193988,70195388,70206557,70206743,70209143,70132811,70149439,70150443,70178595,70188294,70189124,70194117,70195501,70206657,70206813,70211157,RAB3IP
1120 ENST00000378815.6 chr12 + 70132641 70190427 70149188 70189184 6 70132641,70149163,70150184,70178499,70188216,70188920,70132811,70149439,70150443,70178595,70188294,70190427,RAB3IP
1120 ENST00000483530.2 chr12 + 70132641 70209503 70149188 70206801 10 70132641,70149163,70150184,70178499,70188216,70188920,70193988,70195388,70206743,70209143,70132811,70149439,70150443,70178595,70188294,70189124,70194117,70195501,70206813,70209503,RAB3IP
1120 ENST00000325555.9 chr12 + 70132641 70209503 70188228 70209226 11 70132641,70149163,70150184,70178499,70188216,70188920,70193988,70195388,70206557,70206743,70209143,70132811,70149439,70150443,70178595,70188294,70189124,70194117,70195501,70206657,70206813,70209503,RAB3IP
1120 ENST00000550536.1 chr12 + 70133169 70216984 70133626 70209226 11 70133169,70149163,70150184,70178499,70188216,70188920,70193988,70195388,70206557,70206743,70209143,70133649,70149439,70150443,70178595,70188294,70189124,70194117,70195501,70206657,70206813,70216984,RAB3IP
1120 ENST00000362025.5 chr12 + 70133179 70209503 70133626 70206801 10 70133179,70149163,70150184,70178499,70188216,70188920,70193988,70195388,70206743,70209143,70133649,70149439,70150443,70178595,70188294,70189124,70194117,70195501,70206813,70209503,RAB3IP
1120 ENST00000551641.1 chr12 + 70172729 70210961 70188228 70209226 9 70172729,70178499,70188216,70188920,70193988,70195388,70206557,70206743,70209143,70172961,70178595,70188294,70189124,70194117,70195501,70206657,70206813,70210961,RAB3IP
1120 ENST00000553099.1 chr12 + 70172746 70210897 70188228 70209226 9 70172746,70178499,70188216,70188920,70193988,70195388,70206557,70206743,70209143,70172876,70178595,70188294,70189124,70194117,70195501,70206657,70206813,70210897,RAB3IP
1120 ENST00000550847.1 chr12 + 70190352 70209330 70190414 70209226 6 70190352,70193988,70195388,70206557,70206743,70209143,70190423,70194117,70195501,70206657,70206813,70209330,RAB3IP
1120 ENST00000550437.1 chr12 + 70195448 70249143 70195448 70219110 5 70195448,70206557,70206743,70219102,70249059,70195501,70206657,70206813,70219343,70249143,AC025263.3
17 ENST00000552032.1 chr12 + 70219083 70352503 70284895 70352311 25 70219083,70249059,70272807,70273004,70273980,70280573,70284750,70287579,70289150,70290935,70297423,70303748,70304600,70320350,70321464,70326292,70329892,70330062,70330232,70345892,70346578,70349142,70351601,70352028,70352224,70219343,70249150,70272875,70273233,70274072,70280767,70284946,70287620,70289261,70291026,70297624,70303857,70304710,70320514,70321528,70326378,70329967,70330115,70330412,70345955,70346666,70349217,70351722,70352103,70352503,C12orf28

1121 ENST00000299350.4 chr12 + 70320436 70352503 70326367 70352311 12 70320436,70321464,70326292,70329892,70330062,70330232,70345892,70346578,70349142,70351601,70352028,70352224,70320514,70321528,70326378,70329967,70330115,70330412,70345955,70346666,70349217,70351722,70352103,70352503,C12orf28
1121 ENST00000535034.1 chr12 + 70326315 70352387 70326367 70352311 9 70326315,70329892,70330062,70330232,70345892,70346578,70351601,70352028,70352224,70326378,70329967,70330115,70330412,70345955,70346666,70351722,70352103,70352387,C12orf28
1121 ENST00000547547.1 chr12 - 70340322 70340861 70340861 70340861 2 70340322,70340680,70340575,70340861,RP11-611E13.3
1123 ENST00000552324.1 chr12 + 70574117 70595784 70595784 70595784 3 70574117,70593512,70595494,70574318,70593599,70595784,RP11-320P7.2
1123 ENST00000552998.1 chr12 - 70612911 70615642 70615642 70615642 2 70612911,70615479,70613377,70615642,RP11-320P7.1
1123 ENST00000549651.1 chr12 - 70636085 70637140 70637140 70637140 2 70636085,70636845,70636673,70637140,RP11-611E13.2
140 ENST00000229195.3 chr12 + 70636776 70748773 70672006 70747695 16 70636776,70671911,70704674,70713077,70723202,70724066,70726546,70729217,70731168,70732222,70732445,70735886,70736037,70737907,70739959,70747608,70637260,70672054,70704797,70713144,70723350,70724249,70726626,70729343,70731293,70732343,70732602,70735948,70736087,70738008,70740104,70748773,CNOT2
140 ENST00000418359.3 chr12 + 70636809 70748773 70672006 70747695 17 70636809,70637112,70671911,70704674,70713077,70723202,70724066,70726546,70729217,70731168,70732222,70732445,70735886,70736037,70737907,70739959,70747608,70637017,70637260,70672054,70704797,70713144,70723350,70724249,70726626,70729343,70731293,70732343,70732602,70735948,70736087,70738008,70740104,70748773,CNOT2
1124 ENST00000548230.1 chr12 + 70721286 70729246 70729246 70729246 5 70721286,70723202,70724066,70726546,70729217,70721495,70723350,70724249,70726626,70729246,CNOT2
1124 ENST00000551483.1 chr12 + 70728214 70747717 70732471 70747695 7 70728214,70732445,70735886,70736037,70737907,70739959,70747608,70732343,70732602,70735948,70736087,70738008,70740104,70747717,CNOT2
140 ENST00000258111.4 chr12 + 70760055 70828072 70760514 70824433 3 70760055,70793988,70824264,70760850,70794116,70828072,KCNMB4
1125 ENST00000410473.1 chr12 - 70837563 70837703 70837703 70837703 1 70837563, 70837703, U4
140 ENST00000549460.1 chr12 + 70861859 70931840 70931840 70931840 6 70861859,70863992,70913978,70916303,70921454,70931829,70862107,70864088,70914047,70916410,70921518,70931840,RP11-588H23.3
140 ENST00000548687.1 chr12 + 70861864 70932859 70932859 70932859 9 70861864,70903991,70904187,70906964,70913978,70914565,70916303,70921454,70931829,70862107,70904064,70904357,70907007,70914047,70914708,70916410,70921518,70932859,RP11-588H23.3
1125 ENST00000548924.1 chr12 + 70861889 70905002 70905002 70905002 5 70861889,70901674,70903991,70904187,70904854,70862107,70901781,70904064,70904357,70905002,RP11-588H23.3
140 ENST00000549616.1 chr12 + 70861902 70914619 70914619 70914619 6 70861902,70901674,70903991,70906964,70913978,70914565,70862107,70901781,70904064,70907007,70914047,70914619,RP11-588H23.3
140 ENST00000549359.1 chr12 + 70861902 70921529 70921529 70921529 6 70861902,70901674,70903991,70906964,70913978,70921454,70862107,70901781,70904064,70907007,70914047,70921529,RP11-588H23.3
140 ENST00000551438.1 chr12 + 70861974 70931985 70931985 70931985 6 70861974,70913978,70916303,70919139,70921454,70931829,70862107,70914047,70916410,70919206,70921518,70931985,RP11-588H23.3
1126 ENST00000451516.2 chr12 - 70910629 71003594 70915268 71003594 31 70910629,70918250,70925814,70928267,70928612,70929804,70931934,70932703,70933404,70933606,70933718,70934637,70938336,70946556,70948935,70949649,70953122,70954450,70956623,70960214,70963454,70964805,70965603,70970161,70974815,70980786,70986061,70988246,70989828,71002848,71003540,70915291,70918371,70925950,70928431,70928735,70929939,70932011,70932794,70933486,70933624,70933802,70934737,70938443,70946796,70949089,70949928,70953404,70954714,70956887,70960484,70963718,70965069,70965867,70970425,70975082,70981047,70986325,70988504,70990107,71003119,71003594,PTPRB
1126 ENST00000334414.6 chr12 - 70910629 71031220 70915268 71031175 34 70910629,70918250,70925814,70928267,70928612,70929804,70931934,70932703,70933404,70933606,70933718,70934637,70938336,70946556,70948939,70949649,70953122,70954450,70956623,70960214,70963454,70964805,70965603,70970161,70974815,70980786,70983743,70986061,70988246,70989828,71002848,71016169,71029450,71031120,70915291,70918371,70925950,70928431,70928735,70929939,70932011,70932794,70933486,70933624,70933802,70934737,70938443,70946800,70949089,70949928,70953404,70954714,70956887,70960484,70963718,70965069,70965867,70970425,70975082,70981047,70984013,70986325,70988504,70990107,71003119,71016426,71029846,71031220,PTPRB
1126 ENST00000547656.1 chr12 + 70913970 70932279 70932279 70932279 2 70913970,70931806,70914047,70932279,RP11-588H23.3
1126 ENST00000546836.1 chr12 + 70913985 70932443 70932443 70932443 3 70913985,70916303,70931829,70914047,70916410,70932443,RP11-588H23.3
1126 ENST00000550358.1 chr12 - 70915095 71031201 70915268 71031175 33 70915095,70918250,70925814,70928267,70928612,70929804,70931934,70932703,70933404,70933606,70933718,70934637,70938336,70946556,70948939,70949649,70953122,70954450,70956623,70960214,70963454,70964805,70965603,70974815,70980786,70983743,70986061,70988246,70989828,71002848,71016169,71029450,71031120,70915291,70918371,70925950,70928431,70928735,70929939,70932011,70932794,70933486,70933624,70933802,70934737,70938443,70946800,70949089,70949928,70953404,70954714,70956887,70960484,70963718,70965069,70965867,70975082,70981047,70984013,70986325,70988504,70990107,71003119,71016426,71029846,71031201,PTPRB
1126 ENST00000544694.1 chr12 - 70915096 71031201 70965684 71031175 34 70915096,70918250,70925814,70928267,70928612,70929804,70931934,70932703,70933404,70933606,70933718,70934637,70938336,70946556,70948939,70949649,70953122,70954450,70956623,70960214,70963454,70964805,70965603,70965730,70974815,70980786,70983743,70986061,70988246,70989828,71002848,71016169,71029450,71031120,70915291,70918371,70925950,70928431,70928735,70929939,70932011,70932794,70933486,70933624,70933802,70934737,70938443,70946800,70949089,70949928,70953404,70954714,70956887,70960484,70963718,70965069,70965729,70965867,70975082,70981047,70984013,70986325,70988504,70990107,71003119,71016426,71029846,71031201,PTPRB
1126 ENST00000538708.1 chr12 - 70915182 71003623 70915268 71003594 31 70915182,70918250,70925814,70928267,70928612,70929804,70931934,70932703,70933404,70933606,70933718,70934637,70938336,70946556,70948939,70949649,70953122,70954450,70956623,70963454,70964805,70965603,70970161,70974815,70980786,70983743,70986061,70988246,70989828,71002848,71003540,70915291,70918371,70925950,70928431,70928735,70929939,70932011,70932794,70933486,70933624,70933802,70934737,70938443,70946800,70949089,70949928,70953404,70954714,70956887,70963718,70965069,70965867,70970425,70975082,70981047,70984013,70986325,70988504,70990107,71003119,71003623,PTPRB
1126 ENST00000550857.1 chr12 - 70915182 71003623 70915268 71003594 31 70915182,70918250,70925814,70928267,70928612,70929804,70931934,70932703,70933404,70933606,70933718,70934637,70938336,70946556,70948939,70949649,70953122,70954450,70956623,70960214,70963454,70964805,70965603,70970161,70974815,70980786,70986061,70988246,70989828,71002848,71003540,70915291,70918371,70925950,70928431,70928735,70929939,70932011,70932794,70933486,70933624,70933802,70934737,70938443,70946800,70949089,70949928,70953404,70954714,70956887,70960484,70963718,70965069,70965867,70970425,70975082,70981047,70986325,70988504,70990107,71003119,71003623,PTPRB
1126 ENST00000261266.5 chr12 - 70915182 71003624 70915268 71003594 32 70915182,70918250,70925814,70928267,70928612,70929804,70931934,70932703,70933404,70933606,70933718,70934637,70938336,70946556,70948939,70949649,70953122,70954450,70956623,70960214,70963454,70964805,70965603,70970161,70974815,70980786,70983743,70986061,70988246,70989828,71002848,71003540,70915291,70918371,70925950,70928431,70928735,70929939,70932011,70932794,70933486,70933624,70933802,70934737,70938443,70946800,70949089,70949928,70953404,70954714,70956887,70960484,70963718,70965069,70965867,70970425,70975082,70981047,70984013,70986325,70988504,70990107,71003119,71003624,PTPRB
1126 ENST00000551525.1 chr12 - 70952567 71031200 70953081 71031175 18 70952567,70954450,70956623,70960214,70963454,70964805,70965603,70970161,70974815,70980786,70983743,70986061,70988246,70989828,71002848,71016169,71029450,71031120,70953404,70954714,70956887,70960484,70963718,70965069,70965867,70970425,70975082,70981047,70984013,70986325,70988504,70990107,71003119,71016426,71029843,71031200,PTPRB
1126 ENST00000538174.2 chr12 - 70978744 71031194 71031194 71031194 10 70978744,70980786,70983743,70986061,70988246,70989828,71002848,71016169,71029450,71031120,70979075,70981047,70984013,70986325,70988504,70990107,71003119,71016426,71029846,71031194,PTPRB
140 ENST00000440835.2 chr12 - 71031852 71148441 71032963 71147973 10 71031852,71050483,71054719,71056274,71077906,71078483,71092044,71094916,71139597,71147970,71033057,71050597,71054877,71056385,71078044,71078563,71092129,71095103,71139866,71148441,PTPRR
140 ENST00000537619.2 chr12 - 71031858 71058457 71058457 71058457 5 71031858,71050483,71054719,71056274,71058112,71033057,71050597,71054877,71056385,71058457,PTPRR
140 ENST00000378778.1 chr12 - 71031861 71148373 71032963 71148373 11 71031861,71050483,71054719,71056274,71077906,71078483,71092044,71094916,71139597,71147970,71148364,71033057,71050597,71054877,71056385,71078044,71078563,71092129,71095103,71139866,71148081,71148373,PTPRR
17 ENST00000283228.2 chr12 - 71031861 71314623 71032963 71314170 14 71031861,71050483,71054719,71056274,71077906,71078483,71092044,71094916,71139597,71147970,71155250,71158444,71286458,71314112,71033057,71050597,71054877,71056385,71078044,71078563,71092129,71095103,71139866,71148081,71155406,71158558,71286757,71314623,PTPRR
140 ENST00000342084.4 chr12 - 71032710 71182762 71032963 71182616 13 71032710,71050483,71054719,71056274,71077906,71078483,71092044,71094916,71139597,71147970,71155250,71158444,71182595,71033057,71050597,71054877,71056385,71078044,71078563,71092129,71095103,71139866,71148081,71155406,71158558,71182762,PTPRR
140 ENST00000549308.1 chr12 - 71032839 71148496 71032963 71147973 11 71032839,71050483,71054719,71056274,71077906,71078483,71092044,71094916,71139597,71147970,71148364,71033057,71050597,71054877,71056385,71078044,71078563,71092129,71095103,71139866,71148081,71148496,PTPRR
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Supplementary Table Legend 
Supplementary Table S1: Genes and alleles selected for the project. 
This table includes description of all the alleles selected for the project, including the ones 
excluded due to template unavailability and unsuccessful mutagenesis. The meaning of column 
headings is specified below: 

• template_available: TRUE, when the template ORF was available in hORFeme 8.1 
collection 

• mutagenesis_successful: TRUE, when the mutagenesis was successful  
• BarcodedVectorID: identification number given to each vector. (failed_QC: sequencing 

results were not satisfactory, template_unavailable: template was not available) 
• n_AML - n_UCEC: number of times each mutation was found in each cancer type 
• n_pancan: sum of columns of n_AML - n_UCEC. This column was used for generating 

Fig. 1B. 
 
Supplementary Table S2: Annotation of 1163 ORFs. 
This table includes description of all the alleles used in the in vivo screening and gene 
expression experiments. Only the mutant alleles (PC_MUT, under category) were included in 
the in vivo screening (474 total alleles). All of the ORFs were included for the gene expression 
assay. The meaning of column headings are specified below: 

• plate_well_ID: identification number given to each well of the assay plate. This ID is 
used in Supplementary Table S5. 

• clone_ID: identification number identical to BarcodedVectorID in Supplementary Table 
S1. 

• Vector: lentiviral vectors used. PLX_TRC317 is identical to pLEX_307 
(https://www.addgene.org/41392/). It has EF1α promoter and puromycin selection 
marker. PLX_TRC304 is identical to pLX304 (https://www.addgene.org/25890/). It has 
CMV promoter and blasticidin selection marker.  

• open_close: when the C-terminal of the ORFs did not have the stop codon, it resulted in 
V5 tagging at the C-terminal (annotated as “open”). “close” otherwise.  

• gene, protein_change: shows gene and protein change. 
• point_mutation: additional point mutation found. “c.262C>T|p.H88Y” shows that 

nucleotide position 262 was T, not C, which resulted in non-synonymous mutation H88Y. 
• indel: additional insertion or deletion found. “1121delG” means nucleotide position 1121 

had a single G deletion. 
• intended_transcript: shows the intended RefSeq accession number. 
• category:  

o PC_MUT: mutant alleles generated for the study. 474 in total.  
o PC_WT: wild type alleles generated for the study. 187 unique alleles, 334 in total 

due to many alleles having two entries (open and close forms). 
o REF: reference alleles of known biological function. 232 unique alleles, 308 in 

total due to many alleles having more than one entry.  
o CTL_INRT: negative controls including BFP, eGFP, HcRED, LacZ, and 

Luciferase. 5 unique alleles, 35 in total due to each allele being included seven 
times. 

o CTL_L1000: internal expression control for L1000 assay, including DNMT3A, 
NFE2L2, NFKBIA, RHEB. 4 unique alleles, 12 total due to each allele being 
included three times.   

o infection_efficiency: infection efficiency shown in percentage. Refer to Methods 
for full details.   
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Supplementary Table S3: Pool composition of in vivo screen. 
This table shows the composition 14 pools. The first column shows the name of the mutant or 
control alleles. TRUE mean that the allele belongs to that pool. For example, 
“A4GALT_p.A272V” belongs to Pool 5 and Pool 14. To search for alleles in each pool, use the 
filtering function of the Excel (shown as funnel shaped icon).  
 
Supplementary Table S4: Composition of cells and tumors from the in vivo screen. 
These tables show the composition of pre-expansion and pre-injection cells and tumors in each 
pool. The numbers are shown in percentage. 

• Supplementary Table S4-1: Composition of Pre-expansion cell culture. Supplementary 
Table S3 describes the pool membership of each Mutation (first column). This table 
shows the barcode representation immediately after pooling the cells after arrayed 
infection.  

• Supplementary Table S4-2: Composition of Pre-injection cell culture. Supplementary 
Table S3 describes the pool membership of each Mutation (first column). This table 
shows the barcode representation after 15 days of in vitro culture, right before cells were 
injected into nude mice. All enrichment analysis was done using this as reference point.  

• Supplementary Table S4-3 - Supplementary Table S4-14: Composition of each tumor in 
the Pool1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13 in that order. Second column to last column 
headings show tumor ID. Tumor ID “P1M1_L” means Pool1, mouse 1, left flank injection 
site. “L”: left flank, “R”: right flank, “T”: upper back. 

 
Supplementary Table S5: L1000 gene expression data of 1036 ORFs. 
This table shows the L1000 gene expression date of 1036 ORFs that passed 40% infection 
efficiency cutoff.  

• landmark: this column shows the 978 landmark genes, whose expressions are 
measured in L1000 assay.  

• second column to last column: these columns show the plate_well_ID, as specified in 
Supplementary Table S2.  

 
Supplementary Table S6: Comparison to in silico methods. 
This table shows the calls of four different in silico methods (Polyphen2, Mutation Assessor, 
CHASM, and VEST) and comparison to our results. See the methods for description. 

• Mutation: lists alleles 
• This Study: functional description from this study. “functional” denotes both gain-of-

function and loss-of-function alleles. “neutral” denotes likely passenger mutations. 
• Concordance to Polyphen2, Mutation Assessor, CHASM, VEST: “1” if concordant, “0” 

otherwise. 
• Polyphen2 score, Polyphen2 call: output from Polyphen2. 
• Mutation Assessor score, Mutation Assessor call: output from Mutation Assessor 
• CHASM cancer driver p-value (missense), CHASM FDR (red<0.05): output from 

CHASM. FDR <0.05 was colored red. 
• VEST pathogenicity p-value (non-silent), VEST FDR (red<0.05): output from VEST. FDR 

<0.05 was colored red. 
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