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Regulation of Behavioral Arousal and Quiescence in C. elegans 
 
 

Abstract 
 

Animals switch between periods of behavioral quiescence and arousal in response 

to environmental, circadian, or developmental cues. C. elegans exhibit periods of 

behavioral quiescence during larval molts (termed lethargus) and as adults. Little is 

known about the circuit mechanisms that establish these quiescent states. Mutants lacking 

the neuropeptide receptor NPR-1 are a model for heightened arousal and have 

dramatically reduced locomotion quiescence during lethargus as a result of increased 

sensory acuity and secretion of the arousal peptide PDF-1.  

In Chapter 2 of this thesis, we show that the aroused locomotion of npr-1 mutants 

results from the exaggerated activity in multiple classes of sensory neurons, including 

nociceptive (ASH), touch sensitive (ALM and PLM), stretch sensing (DVA) neurons, and 

chemosensory neurons (ASI). These sensory neurons accelerate locomotion via both 

neuropeptide and glutamate release and their relative contribution to arousal differs 

between larval molts and adults. These results demonstrate that a broad network of 

sensory neurons and transmitters dictates transitions between aroused and quiescent 

behavioral states. We propose that locomotion quiescence during molts is mediated by 

diminished sensory inputs (termed sensory gating) and that NPR-1 plays a central role in 

this process.  
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In Chapter 3, we identify a second arousing neuropeptide, FLP-2, which promotes 

locomotion through an orexin-like receptor (FRPR-18). FLP-2 secretion is inhibited by 

NPR-1 and enhanced secretion is associated with aroused locomotion during molts. This 

locomotion arousal is stabilized by reciprocal positive feedback between two arousing 

neuropeptides (FLP-2 and PDF-1). FLP-2 and FRPR-18 are co-expressed in ASI neurons, 

suggesting that ASI activity is regulated by autocrine positive feedback. Our results 

suggest that FLP-2 and FRPR-18 are the C. elegans homologs of mammalian 

hypocretin/orexin peptide and receptor, respectively. We propose that aroused 

locomotion is stabilized by two circuit motifs: reciprocal positive feedback between 

different classes of arousing neurons and autocrine positive feedback of FLP-2 

expressing neurons. These motifs may be conserved in the arousal circuits of other model 

systems.  
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Circadian and homeostatic regulation of behavioral arousal in mammals 
 

Animals switch between periods of behavioral arousal and quiescence in response 

to environmental, developmental, and circadian cues. While behavioral arousal is 

characterized by increased responsiveness to sensory stimuli and motor activity, 

quiescence is associated with decreased activity and responsiveness (Pfaff et al., 2008). 

The biological mechanism underlying behavioral arousal and quiescence is best studied 

in the sleep/wake cycle. Aside from quiescence (or lack of movement), an increased 

arousal threshold is the main behavioral feature distinguishing sleep from rest (Cirelli, 

2009). The other accepted facets of sleep behavior include lack of reactivity to sensory 

inputs, rapid reversibility, and homeostatic response to sleep deprivation (Zimmerman et 

al., 2008).   

For the last three decades, the two-process model of sleep regulation has been the 

dominant conceptual model for sleep in humans (Borbély et al., 2016). The model posits 

that sleep is regulated by two main factors, circadian rhythm and homeostatic pressure. 

Circadian rhythm considers the body’s internal processes of alertness that is determined 

by the internal biological clock, promoting consolidation of sleep into one major phase. 

The circadian rhythm is independent of the amount of preceding sleep or wakefulness, 

typically following the 24 hour day-night cycle. In contrast, homeostatic mechanisms 

regulate the balance between sleep pressure and wakefulness, with homeostatic pressure 

increasing with time spent awake and vice versa. Thus, if wakefulness lasts for an 

extended period of time, homeostatic pressure increases and promotes sleep to 

compensate for sleep deprivation (Cirelli, 2009). In mammals, the suprachiasmatic 

nucleus (SCN) in the hypothalamus is responsible for circadian rhythms while multiple 
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brain regions contribute to homeostatic changes (Borbély and Tobler, 2011; Cirelli, 2009; 

Cirelli and Tononi, 2011). Disruption of either circadian or homeostatic regulation can 

cause fragmentation of sleep and various sleep disorders.  

A variety of explanations for the purpose of sleep have been proposed regarding 

cellular and molecular aspects of biology. Sleep may function to allow time for neuronal 

synapse changes to occur (synaptic plasticity), to facilitate processes of learning and 

memory, to help restore brain energy stores that are depleted during wakefulness, or 

promote biosynthesis and recovery from cellular stress (Benington and Heller, 1995; 

Cirelli and Tononi, 2011; Mignot, 2008; Scharf et al., 2008). Indeed, analysis of 

expression profiles during sleep suggest that sleep isn’t a global state of CNS inactivity, 

but may play a positive role in brain protein synthesis, maintenance, synaptic plasticity 

and membrane trafficking (Cirelli and Tononi, 2011). It has recently been proposed that 

function of sleep can be described in a single unifying theory, the Energy Allocation 

Model of Sleep. This model states that sleep behaviors provide all species the ability to 

optimally allocate energy utilization in order to maximize reproductive success while 

meeting environmental energy constraints (Schmidt, 2014).   

 

Neuropeptide regulation of behavioral arousal  

Through studies in humans, mice, Drosophila, C. elegans, and other model 

systems, it is well known that behavioral arousal is modulated by a complex variety of 

neurotransmitters. In mammals, the precise circuit mechanisms of how these 

neurotransmitters work together is not well understood. Here, I will briefly discuss the 

various neuropeptides known to modulate arousal in mammals including 
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hypocretin/orexin, NPY, growth hormone-releasing hormone (GHRH), and corticotropin-

releasing factor (CRF). While I will focus on these, a multitude of other peptides have 

been shown to influence behavioral arousal, both endogenously and exogenously, 

including dopamine, glutamate, galanin, vasoactive intestinal polypeptide (VIP), and 

melanin-concentrating hormone (Kotronoulas et al., 2009). Some of these will be further 

discussed below in reference to their role in C. elegans quiescence and arousal.  

Hypocretin/orexin signaling was first identified as being essential for stabilizing 

sleep and wakefulness in dogs. Canine narcolepsy is an autosomal-recessive, fully 

penetrant disorder due to mutation in hypocretin/orexin receptor 2 gene (Lin et al., 1999). 

In human narcolepsy, patients cannot maintain long waking periods, and experience 

abrupt transitions into non-REM (NREM) sleep and abnormal intrusions of REM sleep 

into waking (Cirelli, 2009). Similarly, dogs with narcolepsy experience fragmented 

sleeping patterns and episodes of cataplexy (or muscle atonia), typically following 

emotional excitement (Nishino and Mignot, 1997). In mice, a null mutation in prepro-

hypocretin (orexin) peptide gene causes behavioral arrest and EEG patterns also 

reminiscent of narcolepsy (Chemelli et al., 1999; Cirelli and Tononi, 2011). In humans, 

narcolepsy is also associated with hypocretin/orexin deficiency (Nishino et al., 2000). 

While no association has been found between human narcolepsy and polymorphisms in 

the hypocretin/orexin genes, one case of early onset narcolepsy was found to be 

associated with mutation in the preprohypocretin gene (Peyron et al., 2000). Together, 

these studies suggest that hypocretin/orexin acts to promote wakefulness in animals as an 

‘arousal peptide’.  
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In contrast, a peptide known to inhibit arousal/wakefulness is Neuropeptide Y 

(NPY). NPY is broadly expressed in the human brain and is involved in diverse 

physiological functions including food intake, hormone release, thermoregulation, stress 

and anxiety (Dyzma et al., 2010; Thorsell and Heilig, 2002). During sleep, NPY is 

thought to promote sleep by inhibiting corticotropin-releasing hormone (CRH), a wake 

promoting peptide in humans. Administration of NPY results in increased sleep duration 

and decreased sleep latency and wake time (Antonijevic et al., 2000; Held et al., 2006). In 

Drosophila, the NPY homologue neuropeptide F (NPF), and its receptor NPFR1 promote 

sleep duration and quality (He et al., 2013). Together, these studies suggest that NPY 

inhibits behavioral arousal in mammals as a sleep-promoting, or somnogenic, peptide.  

Another mammalian somnogenic peptide is growth hormone-releasing hormone 

(GHRH), which promotes NREM sleep and acts in opposition to the wake promoting 

peptide CRH. Increased levels of CRH, either by overexpression or administration to the 

CNS, have been shown to act on the hypothalamaic-pituitary-adrenal (HPA) axis to 

decrease sleep duration in rats, and even induce anxiety-like behavior in mice (Ehlers et 

al., 1997; Stenzel-Poore et al., 1994). Studies in humans suggest that the ratio between 

these two hormones is critical to the regulation of sleep and wakefulness (Kotronoulas et 

al., 2009).  

 While a large number of neurotransmitters and peptides have been identified to 

regulate sleep in humans and other mammals, very little is known about how these 

factors interact with one another in neural circuits to affect arousal. The organism C. 

elegans provides a powerful genetic model to study the neural and molecular basis of 

sleep and arousal.  
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Lethargus is a sleep-like state in C. elegans 

During the four larval molts, C. elegans undergo a profound period of behavioral 

quiescence termed lethargus that persists for 2-3 hours. This behavior has properties of a 

sleep-like state including cessation of feeding and movement, decreased response to 

sensory stimuli, a stereotypical posture, and showing a homeostatic response to sleep 

deprivation (Iwanir et al., 2013; Raizen et al., 2008). While other behaviors in C. elegans 

have also been described as sleep-like, such as quiescence following stress or satiety 

(Gallagher et al., 2013; Hill et al., 2014; Jones and Candido, 1999; Nelson et al., 2014; 

You et al., 2008), this discussion will focus on the regulation of the molting-associated 

quiescent state, lethargus.   

Despite the fact that C. elegans lethargus does not occur with a 24-hr circadian 

rhythm, many molecular pathways implicated in sleep in higher organisms have been 

found to similarly regulate C. elegans molting-associated quiescence. First, C. elegans 

molting and lethargus is regulated by a conserved molecular clock; the cycle is mediated 

by rhythmic changes in expression of a heterochronic gene, lin-42, which is homologous 

to the fly circadian gene PERIOD. lin-42 mutants display abnormal timing of molting and 

lethargus, while forced expression of LIN-42 results in lethargy in adult animals 

(Monsalve et al., 2011). Additionally, a number of other pathways have been identified to 

regulate quiescence in C. elegans with conservation across sleep behaviors in other 

organisms, as summarized in Table 1.1.  
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Table 1.1 Conserved pathways in the regulation of behavioral quiescence 
 
Pathway Mammals Drosophila C. elegans 
PERIOD Humans and mice have 

three PERIOD 
homologues, Per1, 
Per2, Per3 which show 
rhythmic expression in 
the SCN and other 
brain regions. 
Mutations in period 
genes are linked to 
aberrant sleeping 
patterns and disorders 
(Ko and Takahashi, 
2006; Tei et al., 1997) 

Mutations in Period 
(per) gene affect 
circadian rhythm of 
flies, and per mRNA 
shows oscillation 
consistent with 
circadian cycle 
(Hardin et al., 1990) 

lin-42 (period) 
mutants display 
abnormal timing of 
molting and 
lethargus, while 
forced expression of 
LIN-42 causes 
lethargic behavior in 
adult animals 
(Monsalve et al., 
2011) 

PDF 
(Arousing) 

VIP is expressed in the 
SCN of rats and mice 
lacking VIP exhibit 
reduced REM sleep 
(Hu et al., 2011; 
Maywood et al., 2007) 

PDF mutants show 
defects in circadian 
timing and 
locomotive activity 
(Parisky et al., 2008; 
Renn et al., 1999)  

Secretion of PDF-1 
is decreased during 
lethargus (Choi et 
al., 2013) 

NPY (Sleep 
promoting) 

Administration of NPY 
promotes sleep in 
humans (Antonijevic et 
al., 2000; Held et al., 
2006) 

NPF and NPFR1 
promote sleep 
duration and quality 
(He et al., 2013) 

npr-1 mutants show 
blocked quiescence 
during lethargus 
(Choi et al., 2013) 

cAMP/PKA/ 
CREB 
(Arousing) 

Mutations in cAMP-
regulated binding 
protein (CREB) in mice 
have decreased cortical 
arousal and increased 
sleep (Graves, 2003) 

cAMP signaling and 
CREB activity are 
inversely correlated 
with duration of 
sleep (Hendricks et 
al., 2001) 

Mutants with 
increased PKA 
activity and cAMP 
levels show reduced 
quiescence in 
lethargus and 
increased 
responsiveness to 
sensory stimuli 
(Belfer et al., 2013; 
Iwanir et al., 2013; 
Raizen et al., 2008; 
Singh et al., 2014) 



	 8 

Table 1.1 (Continued) 
	

Pathway Mammals Drosophila C. elegans 
Dopamine 
(Arousing) 

Clinical drugs that 
increase dopamine 
release promote 
wakefulness 
(Wisor et al., 2001) 

Local dopamine 
pathway promotes 
arousal/wakefulness 
in flies (Ueno et al., 
2012)   

Mutations in D1 
receptor dop-1 
increase quiescence, 
while mutations in 
dopamine transporter 
dat-1 reduces 
quiescence (Singh et 
al., 2014) 

PKG (Sleep 
promoting) 

Brain specific 
knockouts of PRKG1 
reduces drive to sleep 
(Langmesser et al., 
2009) 

Decreased PKG 
activity in foraging 
mutants (PKG gene)  
show decreased 
sleep (Donlea et al., 
2012) 

Gain-of-function 
(GOF) mutants in 
pkg-1 increase 
quiescence and 
arousal threshold in 
lethargus, while loss-
of-function (LOF) 
mutants show the 
opposite phenotype 
(Raizen et al., 2008) 

Serotonin 
(Sleep 
promoting) 

Role of Serotonin in 
mammals is unclear, 
with studies showing 
both sleep-promoting 
and wake-promoting 
roles for serotonin 
(Ursin, 2002) 

Loss of Drosophila 
serotonin receptor 5-
HT1A decreases rest 
(Yuan et al., 2006) 

Serotonin-like 
receptor ser-4 
mutants show 
decreased total 
quiescence in 
lethargus (Singh et 
al., 2014) 

 

Some insights have been made into how these neuropeptides and transmitters 

regulate quiescence in C. elegans neural circuits.  The glutamatergic RIA interneurons 

express the sleep-promoting peptide NLP-22, which inhibits feeding and locomotion 

during lethargus and shows cyclical mRNA expression in synchrony with 

molting/lethargus. However, activation of RIA inhibits quiescence during lethargus 

suggesting a more complex role of the interneuron in regulating arousal (Nelson et al., 
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2013). In contrast, the GABAergic interneuron RIS has been identified as a sleep-

promoting neuron that is active during lethargus and inhibits locomotion upon optogenic 

activation. This inhibition requires peptide synthesis, but not GABA synthesis, 

suggesting that a peptide from RIS is critical to promoting quiescence during lethargus 

(Turek et al., 2013). The major sleep-inducing neuropeptide in RIS was identified as 

FLP-11, which is released by depolarization of RIS at the onset of sleep. FLP-11 is 

constantly expressed in RIS (under the control of the transcription factor APTF-1) and 

can induce quiescence at anytime RIS is activated (Turek et al., 2016).  

The circuitry controlling lethargus is at least partially distinct from adult forms of 

quiescence, such as that induced by stress in C. elegans (Trojanowski et al., 2015). For 

example, the peptidergic ALA neuron and secretion of the peptide FLP-13 are required 

for stress-induced quiescence, but is not required for molting-associated quiescence 

(Nelson et al., 2014). While these insights have been notable, further research on the 

neural basis of arousal in C. elegans will increase our understanding of the mechanisms 

behind sleep behaviors including decreased sensory responsiveness and gating, 

homeostasis, quiescence, and the role of sleep in health.   

 

A role for NPR-1 in C. elegans sensory gating and arousal 

A key regulator of dampening sensory responses in C. elegans is the 

neuropeptide-Y receptor npr-1, a NPY receptor homolog (de Bono and Bargmann, 1998). 

NPR-1 expression is concentrated in a central sensory circuit defined by gap junctions to 

the RMG interneuron (Fig. 1.1) where it acts to inhibit activity of the sensory neurons 

(Coates and de Bono, 2002; de Bono and Bargmann, 1998). Mutations inactivating npr-1 
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result in heightened activity in the central sensory circuit, which alters a variety of its 

behavioral outputs. For example, npr-1 mutants exhibit exaggerated responses to oxygen, 

carbon dioxide, pheromone, and pathogen due to increased acuity of the RMG circuit. 

These heightened sensory responses are associated with exaggerated locomotion and for 

this reason, npr-1 mutants can be used as a model for generalized arousal (Bretscher et 

al., 2008; Cheung et al., 2005; Gray et al., 2004; Hallem and Sternberg, 2008; Macosko et 

al., 2009; Reddy et al., 2009; Srinivasan et al., 2012; Styer et al., 2008).  

 

 

 

Figure 1.1 A schematic of the RMG circuit. Sensory neurons (triangles) 

mediating diverse responses form gap junctions with the central RMG 

interneuron (hexagon). Cells expressing NPR-1, TAX-4/CNG channels, PDF-1 

and the flp-21 promoter (sensory rescue) are indicated (Barrios et al., 2012; 

Coates and de Bono, 2002; Janssen et al., 2009; Komatsu et al.; Macosko et al., 

2009; Rogers et al., 2003). ASI neurons are not directly connected to RMG but 

are also a potential source of PDF-1. This diagram is modified from previous 

work (Macosko et al., 2009) and was previously published (Choi et al., 2013) .  
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We previously found that in addition to these sensory behaviors, npr-1 is also 

required for locomotion quiescence during lethargus. Locomotion quiescence during 

lethargus is nearly completely blocked in npr-1 mutants. The quiescence defect can be 

restored by expression of npr-1 in RMG and sensory neurons (flp-21 promoter), and can 

be blocked by mutations inactivating ion channels required for sensory transduction, such 

as TAX-4/CNG channels (Fig. 1.1), suggesting that the npr-1 quiescence defect requires 

increased RMG sensory activity (Choi et al., 2013). In microfluidic chambers where 

sensory cues are minimized, npr-1 mutants only have modest defects in lethargus 

quiescence unless given a brief stimulation with light or vibration, suggesting that 

sensory activity is critical for the aroused locomotion (Nagy et al., 2014a). npr-1 was also 

found to be required for homeostatic rebound following a weak disruption to quiescence 

during lethargus (Nagy et al., 2014b).  

The arousing effects of npr-1 mutation are mediated by increased secretion of the 

neuropeptide Pigment Dispersing Factor (PDF-1) from sensory neurons controlled by the 

RMG circuit. PDF-1 acts on PDF receptors (PDFR-1) expressed in the peripheral 

mechanosensory neurons to drive locomotion (Choi et al., 2013). The neuropeptide PDF 

was first implicated in Drosophila sleep, where it is expressed in central clock neurons 

(LNv neurons) and similarly promotes arousal; flies mutant for PDF or its receptor PDFR 

show defects in circadian timing and morning sleep (Parisky et al., 2008; Renn et al., 

1999). C. elegans PDF-1 and Drosophila PDF are thought to be the functionally 

analogous to VIP, an arousal peptide expressed in the central clock SCN neurons in 

mammals (Choi et al., 2013; Hu et al., 2011; Maywood et al., 2007).  
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Dissertation overview 

The experiments of this dissertation investigate the regulation of arousal and 

quiescence using the model organism C. elegans and aim to better understand how these 

behaviors are regulated by neuronal circuits, neurotransmitters, and sensory perception.  

In chapter 2, I compare the circuits regulating arousal in larval molts and adults 

and describe a role for glutamate and AMPA receptors in this behavior. We show that a 

broad network of sensory neurons arouses locomotion but that the impact of each neuron 

differs between lethargus and adults. We propose that this broad sensory network allows 

C. elegans to adapt its behavior across a broad range of developmental and physiological 

circumstances.  

In chapter 3, I describe the role of the neuropeptide FLP-2 in arousing locomotion 

during lethargus. We show that FLP-2 acts via an orexin-like receptor, FRPR-18, in 

sensory neurons in the worm. In addition, we demonstrate that aroused locomotion is 

mediated in part by concerted action of both FLP-2 and PDF-1, and is stabilized by 

reciprocal positive feedback between these two arousal peptides. We propose that FLP-2 

and FRPR-18 are the C. elegans homologues of mammalian hypocretin/orexin peptide 

and receptor, respectively, and as such are the first hypocretin/orexin pathway identified 

in an invertebrate model system.  

In chapter 4, I comment on the implication of our findings, with emphasis on the 

broad network of sensory neurons that contribute to arousal, understanding sensory 

gating as a mechanism for quiescence, and conservation across phylogeny. I also 

comment on preliminary results and future experiments regarding ascaroside, octopamine 
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and tyramine regulation of behavioral quiescence, the possibility of synaptic remodeling 

during lethargus, and the role of the RMG circuit in circadian timing.  
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Chapter 2 

 

Sensory Neurons Arouse C. elegans Locomotion via both Glutamate and 

Neuropeptide Release 

 

This chapter contains work published as Choi S, Taylor KP, Chatzigeorgiou M, Hu Z, 

Schafer WR, Kaplan JM (2016) PLOS Genetics 11(7) 
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Introduction 

Animals undergo periods of behavioral quiescence and arousal in response to 

changes in their environment and metabolic state. Arousal is defined as a state of 

heightened responsiveness to external stimuli coupled with increased motor activity 

whereas quiescence is associated with diminished responsiveness and motor activity 

(Pfaff et al., 2008). Quiescence and arousal can persist for minutes to hours. Arousal is 

associated with fear, stress, hunger, and exposure to sexual partners (Pfaff et al., 2008), 

while quiescence is associated with sleep and satiety (Cirelli, 2009). Relatively little is 

known about the specific circuit mechanisms leading to arousal or quiescence. In 

particular, it is unclear if similar mechanisms mediate quiescence and arousal in response 

to different cues, or at different times during development. To address this question, we 

have analyzed arousal and quiescence of C. elegans locomotion. 

During each larval molt, C.elegans undergoes a prolonged period of profound 

behavioral quiescence, termed lethargus behavior, whereby locomotion and feeding 

behaviors are inactive for approximately 2 hours (Cassada and Russell, 1975). Lethargus 

has properties of a sleep-like state such as reduced sensory responsiveness and 

homeostatic rebound of quiescence following perturbation (Raizen et al., 2008). Several 

genes and molecular pathways involved in lethargus behavior have been identified (Choi 

et al., 2013; Monsalve et al., 2011; Nagy et al., 2013; Nelson et al., 2013; Raizen et al., 

2008; Singh et al., 2011; Turek et al., 2013; Van Buskirk and Sternberg, 2007). Multiple 

sensory responses are diminished during lethargus, including those mediated by a 

nociceptive neuron (ASH) (Cho and Sternberg, 2014), and by mechanosensory neurons 

(Choi et al., 2013; Schwarz et al., 2011).  
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Mutants lacking NPR-1 Neuropeptide Y (NPY) receptors have been utilized as a 

model for generalized arousal. NPR-1 inhibits the activity of a central sensory circuit that 

is defined by gap junctions to the RMG interneuron (Macosko et al., 2009). In npr-1 

mutants, responses mediated by the RMG circuit (e.g. pheromone and oxygen avoidance) 

are exaggerated, and this heightened acuity is associated with exaggerated locomotion 

(both during lethargus and in adults) (Cheung et al., 2005; Choi et al., 2013; Gray et al., 

2004; Macosko et al., 2009). Mutations that increase (e.g. npr-1) and decrease (e.g. tax-4 

CNG and osm-9 TRPV) RMG circuit activity are associated with locomotion arousal and 

quiescence respectively (Choi et al., 2013; Coates and de Bono, 2002; de Bono et al., 

2002; Macosko et al., 2009).  

We previously showed that locomotion quiescence during lethargus is 

dramatically reduced in npr-1 mutants and that this effect requires increased RMG 

sensory activity (Choi et al., 2013). Subsequent studies showed that in microfluidic 

chambers npr-1 mutants have modest defects in lethargus quiescence when sensory cues 

are minimized but that dramatic quiescence defects are observed following brief 

stimulation with light or vibration (Nagy et al., 2014a; Nagy et al., 2014b). Taken 

together, these papers suggest that npr-1 mutants exhibit aroused locomotion as a 

consequence of enhanced sensory activity. 

The arousing effects of the RMG circuit are mediated in part by secretion of a 

neuropeptide, pigment dispersing factor (PDF-1) (Choi et al., 2013). Activation of PDF 

receptors (PDFR-1) in peripheral mechanosensory neurons enhances sensitivity to 

vibration, thereby accelerating locomotion. Thus, sensory evoked activity in the RMG 

circuit arouses locomotion during lethargus through changes in PDF-1 and PDFR-1 
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signaling. These results raise several interesting questions. Which specific sensory 

neurons are responsible for arousal? Does the RMG circuit regulate arousal via multiple 

outputs (i.e. in addition to PDF-1)? Does the RMG circuit function similarly during 

lethargus and in adults? Is diminished sensory acuity during lethargus required for 

behavioral quiescence? 

Here we show that glutamatergic transmission promotes arousal, we identify 

glutamatergic neurons and glutamate receptors that mediate arousal, and we show that 

arousal occurs by distinct mechanisms in lethargus and adult animals. 
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Results 

Cholinergic transmission at NMJs is increased in npr-1 adults 

Adult npr-1 mutants exhibit accelerated locomotion (Fig. 2.1), as shown in prior 

studies (de Bono and Bargmann, 1998). Faster adult locomotion suggests that locomotion 

circuit activity has been altered. Consistent with this idea, npr-1 mutant adults have 

enhanced sensitivity to the paralytic effects of a cholinesterase inhibitor (aldicarb) (Fig. 

2.2) (Vashlishan et al., 2008), indicating increased excitatory transmission at 

neuromuscular junctions (NMJs).  

 

Figure 2.1 npr-1 regulates adult locomotion. Locomotion behavior of single 

adult worms was analyzed for the indicated genotypes. Instantaneous 

locomotion velocity (A) and average locomotion velocity (B-C) are plotted. 

(A-C) The npr-1 adult locomotion defect was rescued by transgenes 

expressing NPR-1 in the RMG circuit (RMG rescue, flp-21 promoter), and 

suppressed in double mutants lacking TAX-4/CNG channels. The number of 

animals analyzed is indicated for each genotype. Error bars indicate SEM. 

Values that differ significantly are indicated (*, p <0.05; **, p <0.01; ***, p 

<0.001; ns, not significant). 
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To more directly assess changes in synaptic transmission, we recorded miniature 

excitatory post-synaptic currents (mEPSCs) in body muscles, which are evoked by 

acetylcholine (ACh) release at NMJs. The mEPSC rate observed in npr-1 adults was 

significantly higher than in wild type controls while mEPSC amplitudes were unaltered 

(Fig. 2.3). Faster mEPSC rates suggest that ACh release from motor neurons was 

increased whereas unaltered mEPSC  

 
Figure 2.2 npr-1 is hypersensitive to aldicarb-induced paralysis. The 

percentage of animals paralyzed on 1 mM aldicarb at 80 min were plotted for 

the indicated genotypes (A). The number of trials is indicated for each 

genotype. Full time courses (120 min) of aldicarb-induced paralysis are shown 

(B). The npr-1 aldicarb hypersensitivity was rescued by transgenes expressing 

NPR-1 in the RMG circuit (RMG rescue, flp-21 promoter) but not by those 

expressed in GABAergic neurons (GABA rescue, unc-25 and unc-30 

promoters). Error bars indicate SEM. Values that differ significantly are 

indicated (*, p <0.05; **, p <0.01; ***, p <0.001; ns, not significant). 

 

amplitudes imply that muscle responsiveness to secreted ACh was unaffected. By 

contrast, neither ACh release evoked by depolarizing motor neurons with a stimulating 

electrode (evoked EPSCs), nor transmission at GABAergic NMJs (assessed by miniature 
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inhibitory post-synaptic currents, mIPSCs) was altered in npr-1 mutants (Fig. 2.4). This 

constellation of electrophysiological defects suggests that tonic ACh release (assessed by 

mEPSC rate) was enhanced in npr-1 mutants, whereas other forms of neurotransmitter 

release (evoked ACh release and tonic GABA release) were unaffected. Enhanced tonic 

ACh release at NMJs could account for the accelerated locomotion rate observed in npr-1 

adults.  

 

Figure 2.3 Cholinergic transmission at NMJs is enhanced by increased 

sensory activity in npr-1 adults. mEPSCs were recorded from body wall 

muscles of adult worms for the indicated genotypes. Representative traces of 

mEPSCs (A) and summary data are shown (B-C). The npr-1 cholinergic 

transmission defect was rescued by transgenes expressing NPR-1 in the RMG 

circuit (RMG rescue, flp-21 promoter) but not by those expressed in 

GABAergic neurons (GABA rescue, unc-30 promoter). The number of 

animals analyzed is indicated for each genotype. Error bars indicate SEM. 

Values that differ significantly are indicated (*, p <0.05; **, p <0.01; ***, p 

<0.001; ns, not significant). 
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Enhanced cholinergic transmission in npr-1 adults is caused by increased sensory 

activity 

Prior studies showed that several behavioral phenotypes exhibited by npr-1 mutants are 

caused by enhanced sensitivity to environmental cues. In particular, sensory responses 

mediated by the RMG circuit are enhanced in npr-1 mutants (Coates and de Bono, 2002; 

de Bono et al., 2002; Macosko et al., 2009) and this enhanced sensory acuity is required 

for accelerated locomotion rates during lethargus (Choi et al., 2013; Nagy et al., 2014b). 

We did several experiments to determine if enhanced RMG circuit activity is also 

required for increased cholinergic transmission in npr-1 adults. A transgene restoring 

npr-1 expression in the RMG circuit (using the flp-21 promoter) rescued the accelerated 

locomotion (Fig. 2.1B), enhanced aldicarb sensitivity (Fig. 2.2), and faster mEPSC rate 

(Fig. 2.3) defects of npr-1 adults. By contrast, an npr-1 transgene expressed in 

GABAergic neurons lacked rescuing activity (Fig. 2.2 and 2.3). These results indicate 

that NPR-1 acts in the RMG circuit to slow adult locomotion. Similarly, mutations 

inactivating ion channels required for sensory transduction (TAX-4/CNG and OCR-

2/TRPV) in the RMG circuit suppressed the npr-1 adult locomotion (Fig. 2.1C), aldicarb 

sensitivity (Fig. 2.5A-D), and mEPSC rate (Fig. 2.5E-G) defects. Collectively, these 

results suggest that the accelerated adult locomotion exhibited by npr-1 mutants is caused 

by heightened activity in the RMG sensory circuit and, consequently, corresponds to an 

aroused state.  
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Figure 2.4 Stimulus-evoked EPSCs and endogenous IPSCs are normal in 

npr-1 adults. Stimulus-evoked EPSCs (A-B) and mIPSCs (C-E) were recorded 

from body wall muscles of adult worms for the indicated genotypes. Averaged 

traces of stimulus-evoked EPSCs (A), representative traces of mIPSCs (C), and 

summary data are shown (B, D, and E). The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM (ns, not significant). 
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Figure 2.5 npr-1 aldicarb and transmission defects require sensory transduction. 

The percentage of animals paralyzed on 1 mM aldicarb at 80 min were plotted for the 

indicated genotypes (A,C). The number of trials is indicated for each genotype. Full time 

courses (120 min) of aldicarb-induced paralysis are shown (B,D). The npr-1 aldicarb 

hypersensitivity was blocked by mutations inactivating TAX-4/CNG channels or OCR-

2/TRPV channels (A-D). mEPSCs were recorded from body wall muscles of adult worms 

for the indicated genotypes. Representative traces of mEPSCs (E) and summary data are 

shown (F-G). The npr-1 cholinergic transmission defect was abolished by mutations 

inactivating TAX-4 or OCR-2. The number of animals analyzed is indicated for each 

genotype. Error bars indicate SEM. Values that differ significantly are indicated (*, p 

<0.05; **, p <0.01; ***, p <0.001; ns, not significant). 
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Inactivating PDF signaling does not prevent aroused locomotion in npr-1 adults 

We previously showed that the lethargus quiescence defects exhibited by npr-1 

mutants are caused by increased secretion of Pigment dispersing factor (PDF-1) by cells 

in the RMG circuit (Choi et al., 2013). Because PDF-1 secretion is also increased in npr-

1 adults (Choi et al., 2013), we tested the idea that the hyperactive adult locomotion of 

npr-1 mutants is also caused by increased PDF signaling. Contrary to this idea, we found 

that pdf-1 and pdfr-1 (PDF Receptor-1) mutations reduced but did not eliminate the 

aldicarb hypersensitivity, accelerated locomotion, and increased mEPSC rate (Fig. 2.6) 

defects of npr-1 adults. Collectively, these results suggest that additional excitatory 

outputs from the RMG circuit (i.e. beyond PDF-1) must contribute to the aroused 

locomotion of npr-1 adults. 

 

Glutamate released by sensory neurons is required for npr-1 locomotion and EPSC 

defects 

Many C. elegans sensory neurons are glutamatergic, including two neurons in the 

RMG circuit (ASH and ASK) and the body touch neurons (Lee et al., 1999). To 

determine if glutamate release by sensory neurons is required for accelerated locomotion 

in npr-1 mutants, we analyzed mutations that inactivate the vesicular glutamate 

transporter (eat-4 VGLUT), which is primarily expressed in sensory neurons (Lee et al., 

1999). eat-4 VGLUT mutations blocked the increased motile fraction and locomotion 

speed of npr-1 mutants both during the L4-Adult (L4/A) molt and in adults (Fig. 2.7). 

eat-4 mutations also blocked the hypersensitivity to aldicarb (Fig. 2.8) and increased 

mEPSC rate (Fig. 2.9) defects of npr-1 adults.  
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Figure 2.6 Inactivating PDF signaling does not prevent aroused locomotion 

in npr-1 adults.  (A-B) The npr-1 aldicarb hypersensitivity was decreased but not 

abolished by mutations inactivating PDF-1 or PDFR-1. The percentage of animals 

paralyzed on 1 mM aldicarb at 80 min were plotted for the indicated genotypes. 

The number of trials is indicated for each genotype. (C) Locomotion behavior of 

single adult worms was analyzed for the indicated genotypes. The npr-1 adult 

locomotion defect was not blocked by mutations inactivating PDF-1 or PDFR-1. 

(D-F) mEPSCs were recorded from body wall muscles of adult worms for the 

indicated genotypes. Representative traces of mEPSCs (D) and summary data are 

shown (E-F). The npr-1 cholinergic transmission defect was not suppressed by 

mutations inactivating PDFR-1. The number of animals analyzed is indicated for 

each genotype. Error bars indicate SEM. Values that differ significantly are 

indicated (*,p<0.05;**,p<0.01;***, p <0.001; ns, not significant) 
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Figure 2.7 Glutamate released by sensory neurons is required for the npr-

1 locomotion defects. Locomotion behavior of single worms during the L4/A 

lethargus (A-C) and in adults (D-E) was analyzed in the indicated genotypes. 

Instantaneous locomotion velocity (A, D), average motile fraction (B), and 

average locomotion velocity (C, E) are plotted. The npr-1 locomotion defect 

was suppressed by mutations inactivating EAT-4/VGLUT, and partially 

reinstated by transgenes expressing EAT-4 in ASH neurons (sra-6 promoter) 

and touch neurons (mec-4 promoter) in eat-4;npr-1 double mutants using the 

indicated promoters. An EAT-4 transgene expressed in ASK neurons (sra-9 

promoter) lacked rescuing activity. The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM. Values that differ 

significantly are indicated (*, p <0.05; **, p <0.01; ***, p <0.001; ns, not 

significant). 
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Figure 2.8 Glutamate release is required for the npr-1 aldicarb 
hypersensitivity. The npr-1 aldicarb hypersensitivity was suppressed by 
mutations inactivating EAT-4/VGLUT. The percentage of animals paralyzed 
on 1 mM aldicarb at 80 min were plotted for the indicated genotypes (A). The 
number of trials is indicated for each genotype. Full time courses of aldicarb-
induced paralysis are shown (B). The number of animals analyzed is indicated 
for each genotype. Error bars indicate SEM. Values that differ significantly are 
indicated (*, p <0.05; **, p <0.01; ***, p <0.001; ns, not significant). 

 

 

Figure 2.9 Glutamate release is required for the npr-1 cholinergic 
transmission defects. The npr-1 cholinergic transmission defect was 
abolished by mutations inactivating EAT-4/VGLUT. mEPSCs were recorded 
from body wall muscles of adult worms for the indicated genotypes. 
Representative traces of mEPSCs (A) and summary data are shown (B-C). 
The number of animals analyzed is indicated for each genotype. Error bars 
indicate SEM. Values that differ significantly are indicated (*, p <0.05; **, p 
<0.01; ***, p <0.001; ns, not significant). 
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Transgenes restoring EAT-4 expression in touch neurons and ASH neurons 

partially reinstated both lethargus and adult locomotion defects in eat-4; npr-1 double 

mutants, whereas transgenes expressed in ASK lacked rescuing activity (Fig. 2.7). eat-4 

transgenes had no effect on lethargus quiescence in wild type animals (Fig. 2.10). These 

results suggest that glutamate released by ASH and touch neurons arouses locomotion in 

L4/A and adult npr-1 mutants.  

 

Figure 2.10 Transgenic expression of EAT-4 or GLR-2 in WT worms has 

no effect on lethargus quiescence. Locomotion behavior of single worms 

during the L4/A lethargus (A-B) was analyzed in the indicated genotypes. 

Average motile fraction (A), and average locomotion velocity (B) are plotted. 

Transgenes that re-instated lethargus quiescence defects in eat-4;npr-1 (sra-6 

or mec-4 promoted EAT-4, Fig. 2.7) or glr-2;npr-1 (gcy-28d or nlp-12 

promoted GLR-2, Fig. 2.14) double mutants had no effect on lethargus 

quiescence in wild type worms. The number of animals analyzed is indicated 

for each genotype. 

 

ASH activity is associated with locomotion arousal 

The preceding results suggest that ASH synaptic output arouses locomotion in 

npr-1 mutants. We did several additional experiments to test this idea. If altered ASH 
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output were required for aroused locomotion, we would expect that npr-1 mutants 

lacking ASH neurons would have increased locomotion quiescence. To test this idea, we 

induced ASH cell death with a transgene that expresses the pro-apoptotic caspase CED-3. 

Killing ASH significantly decreased the L4/A motile fraction and locomotion rate in npr-

1 mutants (Fig.  2.11). By contrast, ASH ablation had little effect on the locomotion rate 

of npr-1 adults (Fig. 2.11).  

 

Figure 2.11 ASH neurons are required for the npr-1 locomotion 

quiescence defect. Locomotion behavior during the L4/A lethargus (A-C) 

and in adults (D) of single worms whose ASH neurons were ablated by 

transgenic overexpression of CED-3 in ASH neurons (sra-6 promoter) was 

analyzed in the indicated genotypes. Animals were analyzed by fluorescence 

microscopy after locomotion recordings to determine if ASH neurons were 

ablated (1-2 ASH: animals with 1 or 2 ASH intact neurons; 0 ASH: animals 

lacking viable ASH neurons). Instantaneous locomotion velocity (A), 

average motile fraction (B), and average locomotion velocity (C-D) are 

plotted. The npr-1 locomotion defect during the L4/A lethargus, but not in 

adults, was partially suppressed in the transgenic animals in which both of 

ASH neurons were ablated (0 ASH). The number of trials is indicated for 

each genotype. Error bars indicate SEM. Values that differ significantly are 

indicated (***, p <0.001; ns, not significant). 
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To determine if ASH activity is increased in npr-1 mutants during lethargus, we 

examined sensory-evoked calcium responses in ASH, using the genetically encoded 

calcium indicator Cameleon. ASH mediates avoidance responses to copper and hyper-

osmotic stimuli. Consistent with a recent study (Cho and Sternberg, 2014), the magnitude 

of copper and glycerol-evoked calcium transients in ASH was significantly decreased 

during lethargus in wild-type animals (Fig. 2.12). Decreased ASH responsiveness to 

copper and glycerol during L4/A lethargus was blocked in npr-1 mutants, whereas ASH 

responsiveness in adults was unaltered in npr-1 mutants (Fig. 2.12). Transgenes 

expressing NPR-1 in the RMG circuit (using the flp-21 promoter) or in ASH (using the 

sra-6 promoter) reinstated the L4/A decrease in copper and glycerol-evoked ASH 

calcium transients in npr-1 mutants (Fig. 2.12 C-D, G-H). These results suggest that 

NPR-1 acts in ASH to inhibit sensory responses and that increased ASH activity is 

required for accelerated locomotion of npr-1 mutants during lethargus but not in adults. 
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Figure 2.12 NPR-1 is required for the decreased copper- and glycerol-

evoked calcium transients in ASH during L4/A lethargus. Copper-evoked 

(A-D) and glycerol-evoked (E-H) calcium transients in ASH were analyzed 

in L4, L4/A, and adults of the indicated genotypes using cameleon as a 

calcium indicator. Averaged responses (A,C,E, G), and the amplitudes of 
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Figure 2.12 (Continued). individual trials (B,D,F, H) are shown for each 

genotype. Each trace represents the average percentage change in YFP/CFP 

fluorescence ratio. The light tan rectangle indicates the duration for which 10 

mM copper or 500 mM glycerol was applied. Dark gray shading of each 

trace indicates SEM of the mean response. (A-B,E-F) Copper-evoked and 

glycerol-evoked calcium transients in ASH neurons were significantly 

reduced during L4/A lethargus, and this effect was abolished in npr-1 

mutants. (C-D,G-H) This defect during L4/A lethargus was rescued by 

transgenes expressing NPR-1 in the RMG circuit (RMG rescue, flp-21 

promoter) or in ASH neurons (ASH rescue, sra-6 promoter). Values that 

differ significantly are indicated (***, p <0.001; ns, not significant). 

 
 

To determine if increased ASH activity is sufficient to arouse locomotion, we 

analyzed locomotion after artificially depolarizing ASH neurons. For this experiment, we 

utilized transgenic animals that express rat TRPV1 capsaicin receptors in ASH neurons 

(Tobin et al., 2002). In these animals, capsaicin treatment evokes ASH-mediated 

avoidance behaviors (Tobin et al., 2002). A 5-hour capsaicin treatment had little effect on 

L4/A motile fraction and locomotion velocity (Choi et al., 2013), whereas capsaicin 

treatment significantly accelerated adult locomotion (Fig. 2.13A) and increased aldicarb 

sensitivity (Fig. 2.13B). These effects were not observed in animals lacking TRPV1 

expression in ASH neurons (Fig. 2.13A). Thus, forced ASH depolarization was sufficient 

to arouse adult but not lethargus locomotion. Collectively, these results suggest that 

diminished and heightened ASH activity is associated with locomotion quiescence and 

arousal respectively; however, the magnitude of ASH’s arousing effects differ between 

lethargus and adult animals.  
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Figure 2.13 Forced depolarization of ASH neurons aroused adult 

locomotion and increased aldicarb sensitivity. Locomotion behavior of 

adult transgenic worms was analyzed with or without capsaicin treatment (5 

hours). Average locomotion velocity (I) is plotted. Capsaicin treatment 

increased adult locomotion velocity in transgenic animals expressing TRPV1 

in ASH neurons, but not in wild type controls. The number of animals 

analyzed is indicated for each genotype. (J) The percentage of animals 

paralyzed on 1 mM aldicarb at 80 min with or without capsaicin treatment 

(2-3 hours pretreatment) were plotted for the indicated genotypes. The 

number of trials is indicated for each genotype. Error bars indicate SEM. 

Values that differ significantly are indicated (***, p <0.001; ns, not 

significant). 

 

GLR-2 AMPA receptors are required for the npr-1 lethargus defect 

Which glutamate receptors arouse locomotion in npr-1 mutants? Glutamate-

activated cation channels, AMPA (GLR-1 and -2) and NMDA (NMR-1 and -2) receptors, 

mediate excitatory transmission at ASH-interneuron (Brockie et al., 2001; Hart et al., 

1995; Maricq et al., 1995). The npr-1 L4/A quiescence defect was abolished in glr-2; 

npr-1 double mutants (Fig. 2.14 A-C), while glr-1 mutations had no effect (Fig. 2.14 D-

E).  
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Figure 2.14 GLR-2 AMPA receptors are required for the npr-1 lethargus 

defect. Locomotion behavior of single worms during the L4/A lethargus was 

analyzed in the indicated genotypes. Instantaneous locomotion velocity (A), 

average motile fraction (B, D), and average locomotion velocity (C, E) are 

plotted. (A-C) The npr-1 locomotion defect during L4/A lethargus was 

suppressed by mutations inactivating glr-2 AMPA receptors, and partially 

reinstated by transgenes expressing GLR-2 in AIA (gcy-28(d) promoter) and 

DVA (nlp-12 promoter) neurons, but not in Ventral Cord Interneurons (V.C.I., 

glr-1 promoter) in glr-2;npr-1 double mutants using the indicated promoters. 

(D-E) glr-1 mutations had no suppressing effect. The number of animals 

analyzed is indicated for each genotype. Error bars indicate SEM. Values that 

differ significantly are indicated (**, p <0.01; ***, p <0.001; ns, not 

significant). 

 

By contrast, glr-1, glr-2, and nmr-1 mutations had little effect on npr-1 adult 

locomotion (Fig. 2.15 A-B). Similarly, glr-2 mutations did not block the increased 
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mEPSC rate in npr-1 adults (Fig. 2.15 C). These results suggest that GLR-2 AMPA 

receptors are specifically required for the aroused locomotion during the L4/A lethargus 

in npr-1 mutants.  

 

 

Figure 2.15 GLR-2, GLR-1 and NMR-1 glutamate receptors are not 

required for the increased locomotion in npr-1 adults. Locomotion 

behavior of single adult worms was analyzed in the indicated genotypes (A-

B). Average locomotion velocity is plotted. The locomotion defect in npr-1 

adults was not suppressed by mutations inactivating glr-2 (A), glr-1 or nmr-1 

glutamate receptors (B). mEPSCs were recorded from body wall muscles of 

the adult worms for the indicated genotypes. Summary data are shown. glr-2 

mutations did not block the increased mEPSC rate in npr-1 adults (C). The 

number of animals analyzed is indicated for each genotype. Error bars 

indicate SEM. Values that differ significantly are indicated (ns, not 

significant). 

 

GLR-2 AMPA receptors act in AIA and DVA to mediate arousal 

 Which synaptic targets of ASH and touch neurons mediate locomotion arousal? 

To address this question, we identified the neurons in which GLR-2 function is required. 

Aroused L4/A locomotion requires GLR-2 but not GLR-1 receptors; consequently, we 

reasoned that the relevant neurons are likely to express GLR-2 but not GLR-1. GLR-1 
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and GLR-2 are co-expressed in many neurons; however, a few GLR-2-expressing 

neurons lack GLR-1, including DVA (a stretch-activated neuron) and AIA (an 

interneuron in the head ganglia) (Brockie et al., 2001; Hart et al., 1995; Maricq et al., 

1995). The L4/A quiescence defect was partially restored in glr-2; npr-1 double mutants 

by transgenes expressing GLR-2 in DVA and AIA neurons, whereas transgenes 

expressed in the ventral cord interneurons (using the glr-1 promoter) failed to rescue (Fig. 

2.14). Transgenic expression of GLR-2 in DVA or AIA had no effect on lethargus 

quiescence in wild type worms (Fig. 2.10). These results suggest that GLR-2 AMPA 

receptors expressed in AIA and DVA neurons arouse L4/A locomotion in npr-1 mutants. 

DVA receives direct synaptic input from the touch neuron PLM while AIA receives 

direct input from ASH (White et al., 1986a). Thus, increased transmission at ASH-AIA 

and PLM-DVA synapses could account for GLR-2’s effects on locomotion rate. Because 

we only observed partial rescue by glr-2 transgenes expressed in AIA and DVA, it is 

likely the GLR-2 function is required in additional (as yet unidentified) neurons. 

How do AIA and DVA arouse locomotion? AIA neurons provide synaptic input 

to ASK and ASI, both of which express PDF-1 (Choi et al., 2013; Janssen et al., 2009). 

Thus, heightened AIA activity could arouse locomotion by enhancing PDF-1 secretion. 

To assess the level of PDF-1 secretion, we analyzed PDF-1::YFP fluorescence in the 

endolysosomal compartment of coelomocytes, which are specialized scavenger cells that 

internalize proteins secreted into the body cavity (Fares and Greenwald, 2001; Sieburth et 

al., 2007). Inactivating GLR-2 did not alter PDF-1::YFP fluorescence in coelomocytes in 

both adult and L4/A animals (Fig. 2.16). These results suggest that the arousing effects of  
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Figure 2.16 PDF-1 secretion is not altered in glr-2 mutants. PDF-1 

secretion was analyzed in the indicated genotypes. YFP-tagged PDF-1 was 

expressed with the pdf-1 promoter. Representative images (A) and summary 

data (cumulative fraction) (B-C) are shown for coelomocyte fluorescence in 

L4/A lethargus and 1-day old adults of the indicated genotypes. PDF-1::YFP 

coelomocyte fluorescence was dramatically increased in npr-1 mutants during 

the L4/A lethargus and in adults as previously reported (Choi et al., 2013). 

Mutations inactivating GLR-2 did not alter PDF-1::YFP coelomocyte 

fluorescence during L4/A lethargus (B) and in adults (C) in either wild type or 

npr-1 mutants. Scale bar indicates 10 µm. p values are indicated for each 

comparison (Kolmogorov-Smirnov test). 
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GLR-2 are not mediated by changes in PDF secretion. DVA neurons receive direct 

synaptic input from the PLM touch neurons (White et al., 1986b), and secrete NLP-12 (a 

neuropeptide that accelerates locomotion) (Hu et al., 2011). Thus, increased DVA 

activity could contribute to locomotion arousal in npr-1 mutants. Three results support 

this idea. First, PLM neurons exhibit enhanced touch-evoked calcium responses in adult 

npr-1 mutants (Fig. 2.17). Thus, PLM neurons have increased sensory acuity in npr-1 

mutants, similar to the effect we previously showed for ALM neurons (Choi et al., 2013). 

Second, inducing DVA cell death (with a CED-3 transgene) significantly reduced npr-1 

locomotion rate during L4/A lethargus, but not in adults (Fig. 2.18). Third, DVA 

secretion of NLP-12 is significantly increased in npr-1 mutants (Hu et al., 2011), 

indicating increased DVA activity. These results suggest that PLM neurons provide 

enhanced excitatory input to DVA in npr-1 mutants, which promotes aroused L4/A 

locomotion. 

 

 

Figure 2.17 PLM touch sensitivity is increased in npr-1 mutants. Touch-

evoked calcium transients in PLM were analyzed using cameleon as a calcium 

indicator. Responses were analyzed in adult animals. Averaged responses (A) 

and the amplitudes of individual trials (B) are shown for each genotype. Each 

red trace represents the average percentage change in YFP/CFP fluorescence 
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Figure 2.17 (Continued). ratio. The black triangle indicates the time at which 

the mechanical stimulus was applied. Gray shading indicates the response 

SEM. Touch-evoked calcium transients in adult PLM neurons were 

significantly larger in npr-1 mutants.  

 

 

 

 

Figure 2.18 DVA is required for the npr-1 locomotion quiescence defect. 

Locomotion behavior during the L4/A lethargus (A-C) and in adults (D) of 

single worms whose DVA neuron is ablated by transgenic overexpression of 

CED-3 in DVA neuron (nlp-12 promoter) was analyzed in the indicated 

genotypes. Animals were analyzed by fluorescence microscopy after 

locomotion recordings to determine if DVA was ablated. The npr-1 

locomotion defect during the L4/A lethargus, but not in adults, was partially 

suppressed in the transgenic animals in which DVA was ablated (-DVA). The 

number of animals analyzed is indicated for each genotype. Error bars indicate 

SEM. Values that differ significantly are indicated (**, p <0.01; ***, p 

<0.001; ns, not significant). 
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Discussion 
 

To investigate the circuit mechanisms for arousal, we analyzed the locomotion of 

npr-1 mutants in awake (adult) and quiescent (lethargus) states. Our results lead to five 

conclusions.  First, multiple classes of sensory neurons contribute to arousal. Second, 

diminished sensory acuity is a circuit mechanism for promoting behavioral quiescence. 

Third, glutamate and neuropeptides are utilized as excitatory outputs from sensory 

neurons to arouse locomotion. Fourth, different mechanisms are utilized to arouse 

locomotion at different times during development. And fifth, we provide further evidence 

that arousal mechanisms are conserved across phylogeny. 

 

A broad network of sensory neurons contribute to arousal 

Multiple classes of sensory neurons arouse locomotion during lethargus and in 

adults, including: mechanosensory neurons (ALM and PLM), a nociceptive neuron 

(ASH), a pheromone sensing neuron (ASK), and a stretch sensing neuron (DVA). 

Lethargus quiescence is accompanied by diminished sensory-evoked responses in ALM, 

PLM, and ASH (this study and (Cho and Sternberg, 2014; Choi et al., 2013; Schwarz et 

al., 2011)). PDF-1 secretion from ASK neurons is significantly reduced during lethargus, 

implying that ASK neurons also have diminished activity during lethargus (Choi et al., 

2013). npr-1 mutations prevent the dampened ALM (mechanosensory) and ASH 

(nociceptive) responses during lethargus and this was accompanied by decreased 

locomotion quiescence (this study and (Choi et al., 2013)). The arousing effects of npr-1 

mutations are blocked (or diminished) by mutations that decrease sensory responsiveness 

(e.g. tax-4 CNG and osm-9 TRPV mutations) (Choi et al., 2013), or by ablating sensory 
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neurons (e.g. ASH and DVA). Forced activation of ASH neurons arouses adult 

locomotion. Collectively, these results imply that a broad network of sensory neurons 

arouses locomotion, which allows C. elegans to adapt its behavior across a broad range of 

developmental and physiological circumstances. 

 

Sensory gating control as a mechanism for producing quiescence and arousal 

 NPR-1 promotes behavioral quiescence by diminishing the sensitivity of many 

sensory modalities. NPR-1 directly inhibits ASH responses and indirectly inhibits other 

sensory neurons (ALM, PLM, and DVA) via decreased glutamate and neuropeptide 

release. Thus, gating of sensory perception by NPR-1 provides a circuit mechanism for 

producing aroused and quiescent locomotion in C. elegans.   

Our results do not exclude the possibility that additional mechanisms (beyond 

sensory gating by NPR-1) contribute to arousal and quiescence. Both quiescence (during 

lethargus) and arousal (following molts) persist in microfluidic chambers where many 

sensory cues are minimized (Nagy et al., 2014a). In particular, oxygen tension is likely to 

be very low in these chambers, which would greatly diminish NPR-1’s effects on 

behavior (Cheung et al., 2005; Gray et al., 2004). Thus, the quiescence and arousal 

exhibited in microfluidic chambers implies that additional mechanisms beyond NPR-1 

must contribute to expressing these behavioral states. It will be interesting to determine if 

these NPR-1 independent mechanisms also act by gating sensory activity.  
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Sensory-evoked glutamate and neuropeptide release arouses locomotion  

Sensory neurons release glutamate and/or neuropeptides in response to external 

cues, which then engage downstream motor circuits in behavioral outputs. Our prior 

study shows that sensory-evoked PDF-1 secretion promotes locomotion arousal by 

enhancing touch neuron responsiveness. Neuropeptides also mediate arousal in flies 

(PDF) (Parisky et al., 2008), fish and mammals (orexin/hypocretin) (Prober et al., 2006; 

Sutcliffe and de Lecea, 2002).  

Here we show that sensory evoked glutamate release also plays a role in arousal. 

Mutations inactivating the EAT-4/VGLUT decreased locomotion arousal in lethargus and 

in adults. EAT-4 is almost exclusively expressed in sensory neurons (Lee et al., 1999) 

and transgenes restoring EAT-4 expression in touch neurons and ASH neurons re-instates 

locomotion arousal in npr-1 mutants. These results suggest that sensory neurons utilize 

both glutamate and neuropeptides as excitatory outputs to arouse locomotion.  

Our results suggest that exaggerated glutamate release at ASH-AIA and PLM-

DVA synapses arouses locomotion during lethargus in npr-1 mutants. ASH and PLM 

neurons have enhanced sensory evoked activity in npr-1 mutants, which is expected to 

produce enhanced glutamate release at ASH-AIA and PLM-DVA synapses. GLR-2 

receptors are expressed in AIA and DVA. glr-2 mutations block the aroused L4/A 

locomotion of npr-1 mutants and arousal is re-instated by transgenes expressing GLR-2 

in AIA and DVA. Finally, calcium responses in AIA (Macosko et al., 2009), and 

neuropeptide secretion from DVA (Hu et al., 2011) are both enhanced in npr-1 mutants, 

indicating that these neurons have increased activity. We observed only partial rescue of 

aroused locomotion by transgenes restoring EAT-4 expression in ASH and touch neurons 
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or by those expressing GLR-2 in AIA or DVA; consequently, it is likely that glutamate 

released by other sensory neurons also contributes to the aroused L4/A locomotion in 

npr-1 mutants.   

Much less is known about the role of glutamate in arousal in other systems. 

Glutamate release has widespread effects throughout the brain in mammals, which 

complicates the analysis of its effects on arousal. Microinjection of glutamate or AMPA 

into lateral hypothalamic area increased locomotor activity and duration of waking 

episodes in rodents (Alam and Mallick, 2008; Li et al., 2011), while microdialysis of 

CNQX, an AMPA receptor antagonist, into the thalamus promotes sleep in cats (Juhasz 

et al., 1990). Glutamate also induces fictive locomotion in lamprey (Brodin et al., 1985). 

In these cases, however, the circuit mechanisms underlying glutamate’s arousing effects 

are not known.  

 

Comparing lethargus and adult arousal mechanisms 

Mutants lacking NPR-1 exhibit accelerated locomotion in adults and during 

lethargus (Choi et al., 2013; de Bono et al., 2002). Several results suggest that locomotion 

arousal in adult and lethargus is established by a shared central sensory circuit. First, in 

both adult and lethargus, enhanced activity in the RMG sensory circuit accelerates 

locomotion, whereas decreased sensory transduction in the RMG circuit (i.e. by 

inactivating TAX-4 or OSM-9) abolishes npr-1’s hyperactive locomotion defect (Choi et 

al., 2013; Macosko et al., 2009), suggesting that the RMG circuit activity stimulates 

arousal in both awake and quiescent states. Second, EAT-4 acts in ASH and touch 

neurons to mediate hyperactive locomotion of npr-1 adult and lethargus stage animals, 
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suggesting that glutamate release from these sensory neurons is required for locomotion 

arousal in npr-1 mutants.  

On the other hand, several results suggest that the mechanisms that arouse 

locomotion differ between adult and lethargus animals. Inactivating GLR-2 AMPA 

receptors blocks the hyperactive locomotion of npr-1 mutants during lethargus but not in 

adults. Aroused locomotion in npr-1 adults persists in glr-1, glr-2, and nmr-1 mutants, 

indicating that other glutamate receptors are responsible for arousing adult locomotion. 

Similarly, artificial activation of ASH accelerates adult but not lethargus locomotion. 

Collectively, our results suggest that multiple sensory circuits govern locomotion arousal 

throughout development but that the relative contribution of each circuit to arousal differs 

depending on the developmental stage.  
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Materials and Methods 

Strains 

Strain maintenance and genetic manipulation were performed as described (Brenner, 

1974). Animals were cultivated at 20°C on agar nematode growth media (NGM) seeded 

with OP50 (for imaging and behavior) or HB101 E.coli (for electrophysiology). Wild 

type reference strain was N2 Bristol. Strains used in this study are as follows: 

 

Mutant strains and integrants 

KP6048 npr-1(ky13) X 

DA609 npr-1(ad609) X 

KP6064 npr-1(ok1447) X 

PR678 tax-4(p678) III 

CX4544 ocr-2(ak47) IV 

LSC27 pdf-1(tm1996) III 

KP6340 pdfr-1(ok3425) III 

MT6308 eat-4(ky5) III 

KP0004 glr-1(n2461) III 

VM487 nmr-1(ak4) II 

KP6057 ocr-2(ak47) IV;npr-1(ok1447) X 

KP6058 ocr-2(ak47) IV;npr-1(ky13) X 

KP6060 tax-4(p678) III;npr-1(ky13) X 

KP6061 tax-4(p678) III;npr-1(ok1447) X 

KP6100 pdf-1(tm1996) III;npr-1(ky13) X 
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KP6410 pdfr-1(ok3425) III;npr-1(ky13) X 

KP6349 eat-4(ky5) III; npr-1(ky13) X 

CX4978 kyIs200[sra-6p::VR1, elt-2p::NLS-gfp] (Gift from Cori Bargmann) 

KP6414 nmr-1(ak4) II; npr-1(ky13) X 

KP6415 glr-1(n2461) III;npr-1(ky13) X 

VM1123 dpy-19(n1347) glr-2(ak10) III 

KP6740 dpy-19(n1347) glr-2(ak10) III; npr-1(ky13) X 

KP7362 npr-1(ky13) X; nuIs439[nlp-12p::GFP]; nuIs519[nlp-12p::ced-3::GFP, vha-

6::mCherry] 

KP6693 nuIs472 [pdf-1p::pdf-1::venus, vha-6p::mCherry] 

KP6743 npr-1(ky13) X; nuIs472 

KP7194 dpy-19(n1347) glr-2(ak10) III; nuIs472 

KP7195 dpy-19(n1347) glr-2(ak10) III; npr-1(ky13) X; nuIs472 

AQ906 bzIs17[mec-4p::YC2.12] 

KP6681 npr-1(ky13) X; bzIS17 

 

Strains containing extrachromosomal arrays 

CX9396 npr-1(ad609) X;kyEx1966[flp-21p::npr-1 SL2 GFP, ofm-1p::dsRed] (Gift from 

Cori Bargmann) 

KP6051 npr-1(ad609) X;nuEx1519[unc-25p::npr-1::gfp, myo-2p::NLS-mCherry] 

KP6053 npr-1(ad609) X;nuEx1520[unc-30p::npr-1::gfp, myo-2p::NLS-mCherry] 

KP7149, KP7150 eat-4(ky5) III; npr-1(ky13) X; nuEx1613-1614[sra-6p::eat-4, myo-

2p::NLS-mCherry] 
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KP7176, KP7177 eat-4(ky5) III; npr-1(ky13) X; nuEx1615-1616[sra-9p::eat-4, vha-

6p::mCherry] 

KP7198, KP7199 eat-4(ky5) III; npr-1(ky13) X; nuEx1640-1641[mec-4p::eat-4, vha-

6p::mCherry] 

KP7442 npr-1(ky13) X; nuEx1684[sra-6p::ced-3::GFP, sra-6p::mCherry, vha-

6p::mCherry] 

KP7633 nuEx1613[sra-6p::eat-4, myo-2p::NLS-mCherry] 

KP7634 nuEx1640[mec-4p::eat-4, vha-6p::mCherry] 

AQ3304 ljEx239[sra-6::YC.360]  

KP7353 npr-1(ky13) X; ljEx239 

KP7443 npr-1(ky13) X; ljEx239; nuEX1607[flp-21p::npr-1, myo-2p::NLS-mCherry] 

KP7495 npr-1(ky13) X; ljEx239; nuEX1683[sra-6p::npr-1, vha-6p::mCherry] 

KP7191 dpy-19(n1347) glr-2(ak10) III; npr-1(ky13) X; nuEx1637[nlp-12p::glr-

2(gDNA),myo-2p::NLS-mCherry] 

KP7192 dpy-19(n1347) glr-2(ak10) III; npr-1(ky13) X; nuEx1638[gcy-28(d)p::glr-

2(gDNA),vha-6p::mCherry] 

KP7354, KP7355, KP7356  dpy-19(n1347) glr-2(ak10) III; npr-1(ky13) X; nuEx1642-

1644[glr-1p::glr-2(gDNA), vha-6p::mCherry] 

KP7635 nuEx1637[nlp-12p::glr-2(gDNA),myo-2p::NLS-mCherry] 

KP7636 nuEx1638[gcy-28(d)p::glr-2(gDNA),vha-6p::mCherry] 
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Constructs 

eat-4 rescue constructs (sra-6p::eat-4 (KP#2204), sra-9p::eat-4 (KP#2205), and mec-

4p::eat-4 (KP#2207) 

eat-4 cDNA was amplified by PCR and ligated into expression vectors (pPD49.26) 

containing the sra-6 (~3.8kb 5’ regulatory sequence: ASH expression), sra-9 (~3kb 5’ 

regulatory sequence: ASK expression), or mec-4 (~1.1kb 5’ regulatory sequence: Touch 

neuron expression) promoters. 

 

glr-2 rescue constructs (nlp-12p::glr-2 (KP#2211 ), gcy-28(d)p::glr-2 (KP#2209), and 

glr-1p::glr-1 (KP#2208) 

glr-2 genomic DNA was amplified by PCR and ligated into expression vectors 

(pPD49.26) containing the nlp-12 (~400 bp 5’ regulatory sequence: DVA expression), 

gcy-28(d) (~2,9kb 5’ regulatory sequence: AIA expression), or glr-1 (~5.3kb 5’ 

regulatory sequence: ventral cord interneuron (VCI) expression) promoters. 

 

Cell ablation constructs (sra-6p::ced-3::GFP (KP#2151) and nlp-12p::ced-3::GFP 

(KP#2302) 

ced-3 genomic DNA and GFP were amplified by overlapping PCR and ligated into 

expression vectors (pPD49.26) (using NheI and SacI restriction sites) containing the sra-

6 (~3.8 kb 5’ regulatory sequence: ASH expression) or nlp-12 (~400 bp 5’ regulatory 

sequence: DVA expression) promoters. 
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Transgenes and germline transformation 

Transgenic strains were generated by microinjection of various plasmids with coinjection 

markers (myo-2p::NLS-mCherry (KP#1480) and vha-6p::mcherry (KP#1874)). Injection 

concentration was 40 - 50 ng/µl for all the expression constructs and 10 ng/µl for 

coinjection markers. The empty vector pBluescript was used to bring the final DNA 

concentration to 100 ng/µl. The flp-21 promoter (which is expressed in the RMG, ASH, 

ADL, ASK, URX, and ASI neurons (Macosko et al., 2009)) was used to express 

transgenes in the RMG circuit. 

 

Lethargus locomotion and behavior analysis 

Lethargus locomotion was analyzed as previously described (Choi et al., 2013). Well-fed 

late L4 animals were transferred to full lawn OP50 bacterial plates. After 1 hour, 

locomotion of animals in lethargus (determined by absence of pharyngeal pumping) was 

recorded on a Zeiss Discovery Stereomicroscope using Axiovision software. Locomotion 

was recorded at 2 Hz for 60 seconds. Centroid velocity of each animal was analyzed at 

each frame using object-tracking software in Axiovision. Motile fraction of each animal 

was calculated by dividing the number of frames with positive velocity value with total 

number of frames. Speed of each animal was calculated by averaging the velocity value 

at each frame. Quantitative analysis was done using a custom written MATLAB program 

(Mathworks). Statistical significance was determined using one-way ANOVA with 

Tukey test for multiple comparisons and two-tailed Student’s t test for pairwise 

comparison.  
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Adult locomotion and behavior analysis 

Locomotion of adult animals was analyzed with the same setup as lethargus locomotion 

analysis described above, except that well-fed adult animals were monitored 1 – 1.5hr 

after the transfer to full lawn OP50 bacterial plates. For the capsaicin treatment, 1 day-old 

animals were transferred to NGM plates containing 50 µM capsaicin (with food), treated 

with capsaicin for 5 hours, and recorded for their locomotion. Statistical significance was 

determined using one-way ANOVA with Tukey test for multiple comparisons and two-

tailed Student’s t test for pairwise comparison. 

 

Cell Ablations 

Neurons were ablated in npr-1(ky13) mutant worms by transgenes co-expressing CED-3 

and a fluorescent protein (GFP or mCherry) under the sra-6 (ASH ablation) or nlp-12 

(DVA ablation) promoters.  ASH or DVA ablations were confirmed after locomotion 

analysis by fluorescence microscopy.   

 

Aldicarb assay 

Sensitivity to aldicarb was determined by analyzing the time course of paralysis 

following treatment with 1 mM aldicarb (Sigma-Aldrich) as previously described 

(Nurrish et al., 1999). Briefly, movement of animals was assessed by prodding animals 

with a platinum wire every 10 minute following exposure to aldicarb. 20-30 animals were 

tested for each trial. For the capsaicin treatment, adult animals were transferred to NGM 

plates containing 50 µM capsaicin (with food), treated with capsaicin for 2-3 hours, and 

assayed for their paralysis on 1 mM aldicarb plates containing 50 µM capsaicin. 
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Electrophysiology 

Electrophysiology was performed on dissected adult worms as previously described 

(Richmond et al., 1999). Worms were superfused in an extracellular solution containing 

127 mM NaCl, 5 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 20 mM glucose, 1 mM 

CaCl2, and 4 mM MgCl2, bubbled with 5% CO2, 95% O2 at 20°C. Whole cell recordings 

were carried out at –60 mV using an internal solution containing 105 mM CsCH3SO3, 10 

mM CsCl, 15 mM CsF, 4mM MgCl2, 5mM EGTA, 0.25mM CaCl2, 10mM HEPES, and 

4 mM Na2ATP, adjusted to pH 7.2 using CsOH. Under these conditions, we only 

observed endogenous acetylcholine EPSCs. To record GABAergic postsynaptic currents, 

the holding potential was 0 mV, at which we only observe mIPSCs. All recording 

conditions were as described (McEwen et al., 2006). To record evoked EPSCs, a 0.4 ms, 

30 µA square pulse was applied to a motor neuron cell body with a stimulating electrode 

placed near the ventral nerve cord (one muscle distance from the recording pipette). 

Statistical significance was determined using one-way ANOVA with Tukey test for 

multiple comparisons and two-tailed Student’s t test for pairwise comparison.  

 

Fluorescence microscopy and image analysis 

Quantitative imaging of coelomocyte fluorescence was performed as previously 

described (Choi et al., 2013) using a Zeiss Axioskop equipped with an Olympus 

PlanAPO 100x (NA=1.4) objective and a CoolSNAP HQ CCD camera (Photometrics). 

Worms were immobilized with 30 mg/ml BDM (Sigma). The anterior coelomocytes were 

imaged in L4/A lethargus (determined by absence of pharyngeal pumping), and 1 day-old 

adult animals. Image stacks were captured and maximum intensity projections were 
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obtained using Metamorph 7.1 software (Universal Imaging). YFP fluorescence was 

normalized to the absolute mean fluorescence of 0.5 mm FluoSphere beads (Molecular 

Probes). Statistical significance was determined using Kolmogorov-Smirnov test.  

 

Calcium imaging and analysis 

Using Dermabond topical skin adhesive, individual worms were glued to 2% agarose 

pads in extracellular saline (145 mM NaCl, 5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, 20 

mM D-glucose, and 10 mM HEPES buffer [pH7.2]). To image copper and glycerol 

responses, single animals were placed in a perfusion chamber (RC-26GLP,Warner 

Instruments) under a constant flow rate (0.4 ml min -1) of buffer using a perfusion pencil 

(AutoMate). Outflow was regulated using a peristaltic pump (Econo Pump, Bio-Rad). 

10mM CuCl2 (copper(II)chloride dihydrate, Sigma) or 500mM glycerol (Fisher) were 

delivered using the perfusion, pencil and switch between control and stimulus solutions 

was done using manually controlled valves. Solutions contained either 10mM CuCl2 in 

M13 buffer or 500mM glycerol in 40mM NaCl, 1 mM MgSO4, 1 mM CaCl2 and 5 mM 

KPO4. The stimulus was delivered for 10 seconds starting on the 10th second from the 

beginning of the movie. Optical recordings were performed on a Zeiss Axioskop 2 

upright compound microscope equipped with a Dual View beam splitter and a Uniblitz 

Shutter. Images were recorded at 10 Hz using an iXon EM camera (Andor Technology) 

and captured using IQ1.9 software (Andor Technology). For ratiometric imaging, ROIY 

tracked the neuron in the yellow channel, and in the cyan channel, ROIC moved at a fixed 

offset from ROIY. F was computed as FY/FC following a correction for bleed through. No 

correction for bleaching was required. Ratio changes were detected and parametrized 
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using scripts for MATLAB (The Mathworks). Briefly, the scripts average the F value for 

5 preceding and including the marked start stimulus frame (F0) and the 5 frames centered 

on the marked peak frame (F1). ΔF was equal to (F1 - F0 )/ F0 x 100. Touch-evoked 

calcium responses in PLM neurons were analyzed as previously described (Choi et al., 

2013). Statistical significance was determined using one-way ANOVA with Tukey test 

for multiple comparisons. 
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Chapter 3 

 

FLP-2 and PDF-1 Act in Concert to Arouse C. elegans Locomotion 

 

The experiments discussed in this chapter are unpublished work resulting from 

collaboration between Didi Chen and Kelsey Taylor.  

 

Author Contributions 

Didi Chen started this project, originally identifying the role of frpr-18 and flp-2, as well 

as performing all coelomocyte peptide secretion experiments and testing ASI ablation. 

Kelsey Taylor performed ASI activation experiments, mouse orexin experiments, frpr-18 

rescue, and the identification of frpr-18 expressing cells. Qi Hall contributed to the 

generation of some plasmids. Kelsey Taylor and Joshua Kaplan wrote the chapter, with 

input from Didi Chen.   
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Introduction 

Animals undergo periods of behavioral quiescence and arousal in response to 

changes in their environment and metabolic state. Arousal is defined as a state of 

heightened responsiveness to sensory cues coupled with increased motor activity whereas 

quiescence is associated with diminished responsiveness and motor activity (Pfaff et al., 

2008). Arousal is associated with fear, stress, hunger, and exposure to sexual partners, 

while quiescence is associated with sleep and satiety (Cirelli, 2009; Pfaff et al., 2008). 

Quiescence and arousal can persist for minutes to hours. Relatively little is known about 

the circuit mechanisms that dictate the duration of these behavioral states, nor how 

transitions between these states are triggered. To address these questions, we have 

analyzed arousal and quiescence of C. elegans locomotion. 

During each larval molt, C.elegans undergoes a prolonged period of profound 

behavioral quiescence, termed lethargus behavior, during which locomotion and feeding 

behaviors are inactive for approximately 2 hours (Cassada and Russell, 1975). Lethargus 

has properties of a sleep-like state such as reduced sensory responsiveness and 

homeostatic rebound of quiescence following perturbation (Trojanowski et al., 2015; 

Trojanowski and Raizen, 2016). Several genes and molecular pathways involved in 

lethargus behavior have been identified  

(Choi et al., 2013; 2015; Monsalve et al., 2011; Nagy et al., 2014a; 2014b; 2013; Nelson 

et al., 2013; Raizen et al., 2008; Singh et al., 2014; Turek et al., 2013; Van Rompay and 

Sternberg, 2007). Many sensory responses are diminished during lethargus, including 

those mediated by a nociceptive neuron (ASH)  
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(Cho and Sternberg, 2014; Choi et al., 2013; 2015), and by mechanosensory neurons 

(Choi et al., 2013; Schwarz et al., 2011). Diminished sensory responsiveness during 

lethargus is likely to be an important circuit mechanism for producing behavioral 

quiescence (Choi et al., 2013; 2015).  

Mutants lacking NPR-1 Neuropeptide Y (NPY) receptors have been utilized as a 

model for generalized arousal. NPR-1 inhibits the activity of a central sensory circuit 

(defined by gap junctions to the RMG interneuron) (Macosko et al., 2009). In npr-1 

mutants, sensory responses mediated by the RMG circuit (e.g. avoidance of pheromone, 

oxygen, and irritant chemicals) are exaggerated, and this heightened acuity is associated 

with exaggerated locomotion (both during lethargus and in adults) (Cheung et al., 2005; 

Choi et al., 2013; Gray et al., 2004; Macosko et al., 2009). Mutations that increase (e.g. 

npr-1) and decrease (e.g. tax-4 CNG and osm-9 TRPV) RMG circuit activity are 

associated with locomotion arousal and quiescence respectively (Choi et al., 2013; Coates 

and de Bono, 2002; de Bono et al., 2002). In npr-1 mutants, locomotion quiescence 

during lethargus is nearly completely blocked (Choi et al., 2013; Nagy et al., 2014c). 

Sensory neurons controlled by the RMG circuit arouse locomotion via secretion of a 

neuropeptide, pigment dispersing factor (PDF-1), and glutamate  

(Choi et al., 2013; 2015). These results raise several interesting questions. How are 

prolonged quiescent and aroused states established by the RMG circuit?  Do the different 

arousing neurotransmitters (i.e. glutamate and PDF-1) interact to stabilize the aroused 

state? Are there additional transmitters that stabilize the aroused state? 

Here we show that locomotion arousal during lethargus is promoted by the 

concerted action of two arousing neuropeptides (PDF-1 and FLP-2). When animals are 
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inactive, PDF-1 and FLP-2 secretion is diminished whereas enhanced secretion is 

associated with aroused locomotion from lethargus. PDF-1 arouses locomotion in part via 

increased FLP-2 secretion, and vice versa. Thus, locomotion arousal is stabilized by 

reciprocal positive feedback between PDF-1 and FLP-2. A FLP-2 receptor (FRPR-18) is 

similar to mammalian orexin/hypocretin receptors and is required for FLP-2’s arousing 

effects. Our results suggest that concerted signaling by two neuropeptides provides a 

circuit mechanism for synchronized rhythms of behavioral activity.  
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Results 

A neuropeptide receptor (FRPR-18) is required for aroused locomotion during 

molts in npr-1 mutants 

Locomotion quiescence during the fourth stage larva-to-adult (L4/A) molt is 

dramatically reduced in npr-1 mutants (Choi et al., 2013; Nagy et al., 2014c). Mutations 

inactivating PDF-1 or its receptor (PDFR-1) re-instate a wild-type pattern of molting 

associated quiescence in npr-1 mutants. Double mutants lacking both PDF-1 and NPR-1 

exhibit a normal pattern of quiescence and arousal during and following molts (Choi et 

al., 2013), suggesting that changes in PDF-1 signaling are not absolutely required for the 

rhythmic pattern of quiescence and arousal that is coupled to the molting cycle. 

To determine if additional neuropeptides are required for locomotion arousal, we 

used RNAi to inactivate all predicted neuropeptide receptors in npr-1 mutants and 

assayed L4/A locomotion velocity and motile fraction (detailed in methods). One of the 

genes identified in this screen was frpr-18.  Inactivating frpr-18 by either RNAi  (Fig. 

3.1) or a null mutation (Fig. 3.2) significantly decreased L4/A locomotion velocity and 

motile fraction of npr-1 mutants, indicating that molt-associated quiescence was restored. 

The frpr-18 null mutation had little effect on the locomotion of npr-1 adults (Fig. 3.3); 

however, frpr-18 single mutant adults exhibited decreased locomotion velocity (Fig. 3.3).  

A fosmid clone spanning the frpr-18 genomic locus reinstated the L4/A locomotion 

quiescence defects in frpr-18; npr-1 double mutants (Fig. 3.2). Foraging behavior is also 

altered in npr-1 mutants, as indicated by an increased tendency of mutant worms to form  
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Figure 3.1 RNAi of frpr-18 suppresses npr-1 locomotion quiescence defect. 

The fraction of motile animals during the L4/A lethargus following treatment 

with RNAi is shown. RNAi was carried out using a RNAi hypersensitive strain 

(nre-1 lin-15b) (Schmitz et al., 2007). Knockdown of frpr-18 significantly 

suppressed the npr-1 lethargus locomotion defect, whereas the empty vector 

control L4440 has no effect. The number of animals analyzed is indicated. 

Values that differ significantly (by chi-square test) is indicated (**, p<0.01) 

 

 
Figure 3.2 FRPR-18 receptors are required for the npr-1 lethargus defect. 

Locomotion behavior of single worms during the L4/A lethargus was 

analyzed in the indicated genotypes. Instantaneous locomotion velocity (A), 

average motile fraction (B), and average locomotion velocity (C) are plotted. 

The npr-1 L4/A locomotion quiescence defect was suppressed by mutations 

inactivating FRPR-18 and was reinstated by a fosmid clone containing the 

frpr-18 genomic locus (B-C) in frpr-18;npr-1 double mutants. The number of 

animals analyzed is indicated for each genotype.  Error bars indicate SEM. 

Values that differ significantly are indicated (***, p <0.001; ns).  
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Figure 3.3 frpr-18 mutation has little effect on npr-1 adult locomotion. The 

change in average locomotion velocity (normalized to npr-1 mutants) is 

summarized for the indicated genotypes. frpr-18 mutation decreased npr-1 

mutant locomotion speed during L4/A lethargus by 75% decrease, compared 

to a 7% decrease in adults. Similarly, locomotion speed during L4/A lethargus 

was reduced by 52% in flp-2; npr-1 double mutants, while adult speed was 

decreased by 5% (A). Locomotion behavior of single adult worms was 

analyzed in the indicated genotypes and average velocity plotted (B). Both flp-

2 and frpr-18 single mutants showed reduced locomotion in adult. The 

number of animals analyzed is indicated for each genotype. Error bars indicate 

SEM. Values that differ significantly are indicated (***, p <0.001).  

 

clumps at the boundaries of the bacterial lawn (de Bono and Bargmann, 1998). This npr-

1 foraging defect was not suppressed in frpr-18; npr-1 double mutants, indicating the 

FRPR-18 was not required for other npr-1 phenotypes (Fig. 3.4). Collectively, these 

results suggest that FRPR-18 signaling promotes aroused locomotion during lethargus.   
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Figure 3.4 Inactivation of frpr-18 or flp-2 does not suppress npr-1 foraging 

behavior. Representative images of foraging behavior on bacterial lawns are 

shown for the indicated genotypes. Neither frpr-18 nor flp-2 mutations 

prevented clumping of npr-1 mutants. Scale bar indicates 1 mm. 

 

An FRPR-18 ligand (FLP-2) also promotes aroused L4/A locomotion in npr-1 

mutants 

Prior studies found that two neuropeptides (FLP-2A and B) encoded by the flp-2 

gene activate FRPR-18 receptors expressed in transfected cells (Larsen et al., 2013; 

Mertens et al., 2005).  Prompted by these results, we analyzed the effect of a flp-2 

deletion (gk1039) on lethargus locomotion. L4/A locomotion velocity and motile fraction 

were significantly reduced in npr-1; flp-2 double mutants compared to npr-1 single 

mutants (Fig. 3.5). The npr-1 quiescence defect could be rescued by restoration of flp-2 
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under its own promoter (Fig. 3.6). The flp-2 mutation had little effect on npr-1 adult 

locomotion, although flp-2 single mutants exhibited decreased adult locomotion velocity 

(Fig. 3.3). The flp-2 mutation also had no effect on the npr-1 foraging defect (Fig. 3.4), 

indicating that FLP-2 was not required for other npr-1 phenotypes. 

 

 
Figure 3.5 FLP-2 peptide is required for the npr-1 lethargus defect. Locomotion 

behavior of single worms during the L4/A lethargus was analyzed in the indicated 

genotypes. Instantaneous locomotion velocity (A), average motile fraction (B), and 

average locomotion velocity (C) are plotted. The npr-1 L4/A locomotion quiescence 

defect was suppressed by mutation inactivating the FRPR-18 ligand, FLP-2 (B-C). 

The L4/A locomotion velocity and motile fraction of frpr-18;npr-1 or flp-2 npr-1 

double mutants was not significantly different from frpr-18;flp-2 npr-1 triple 

mutants (B-C). The number of animals analyzed is indicated for each genotype.  

Error bars indicate SEM. Values that differ significantly are indicated (***, p 

<0.001; ns, not significant). 
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Figure 3.6 flp-2 can be rescued under its own promoter. Locomotion behavior of 

single worms during the L4/A lethargus was analyzed in the indicated genotypes. 

Average motile fraction (A), and average locomotion velocity (B) are plotted. The 

npr-1 L4/A locomotion quiescence defect was restored in flp-2 npr-1 double 

mutants by transgene expression of flp-2 under its own promoter (flp-2p rescue). 

The number of animals analyzed is indicated for each genotype.  Error bars indicate 

SEM. Values that differ significantly are indicated (***, p <0.001). 

 
 

If FLP-2 neuropeptides function as FRPR-18 ligands in vivo (as predicted by the 

cell culture data), flp-2 and frpr-18 mutations should not have additive effects in double 

mutants. Consistent with this idea, the L4/A locomotion velocity and motile fraction of 

frpr-18; npr-1 double mutants was not significantly different from that observed in frpr-

18; flp-2; npr-1 triple mutants (Fig. 3.5). Similarly, adult locomotion exhibited by frpr-

18; flp-2 double mutants did not significantly differ from that observed in either single 

mutant (Fig. 3.3). These results indicate that flp-2 and frpr-18 function together to arouse 

locomotion, consistent with FLP-2A/B function as FRPR-18 ligands (Larsen et al., 2013; 

Mertens et al., 2005).   
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NPR-1 inhibits FLP-2 secretion during L4/A locomotion quiescence 

We previously showed that NPR-1 inhibits PDF-1 secretion during lethargus, and 

that this effect is required to maintain the molt-associated locomotion quiescence (Choi et 

al., 2013). Prompted by these results, we tested the idea that NPR-1 also inhibits FLP-2 

secretion during lethargus. We analyzed secretion of YFP-tagged FLP-2, expressed by 

the flp-2 promoter. Secretion of FLP-2 was assessed by measuring YFP fluorescence in 

the endolysosomal compartment of coelomocytes, which are specialized scavenger cells 

that internalize proteins secreted into the body cavity (Fares and Greenwald, 2001). In 

wild-type animals, FLP-2::YFP secretion was dramatically decreased during the L4/A 

molt compared to L4 stage animals (Fig. 3.7). This molt-associated decrease in FLP-

2::YFP secretion was eliminated in npr-1 mutants, suggesting that NPR-1 inhibits FLP-2 

secretion during molts and that decreased FLP-2 secretion is required for molt-associated 

locomotion quiescence. 
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Figure 3.7 NPR-1 inhibits FLP-2 secretion during L4/A locomotion 

quiescence. FLP-2 secretion was analyzed in the indicated genotypes. 

VENUS-tagged FLP-2 was expressed with the flp-2 promoter. Representative 

images (A) and summary data (B) are shown for coelomocyte fluorescence in 

L4 and L4/A animals of the indicated genotypes. FLP-2:: VENUS coelomocyte 

fluorescence was dramatically reduced during the L4/A lethargus of wild type 

animals, but not in npr-1 mutants. pdf-1;npr-1 double mutants exhibited 

decreased FLP-2 secretion during lethargus. Scale bar indicates 10 µm. Values 

that differ significantly from L4 controls (B) are indicated (***, p <0.001).  

 

ASI neurons promote arousal  

FLP-2 is expressed in several neurons in head ganglia, including AIA, ASI, MC, 

M4, I5, and RID (Kim and Li, 2004) (Fig. 3.8). To further characterize the cellular 

mechanism for FLP-2’s arousing effects, we identified cells that express frpr-18. An frpr-
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18 promoter construct expressed GFP in many neurons (including AIY, ASI, BAG, URA, 

CAN, I6, PVQ, RIM, DVA and VC) and in the anal sphincter muscle (Fig. 3.9). 

 

 
Figure 3.8 flp-2 is expressed in several head neurons including ASI. 

Expression of flp-2 is observed in head sensory neurons, including ASI. Pflp-2 

::GFP was detectable in several head neurons. The localization of flp-2 in the 

chemosensory ASI neuron is identified by the co-localization between Pflp-2 

::GFP and the ASI marker Pgpa-4:: mcherry (A). Scale bar indicates 10 µm.   
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Figure 3.9 frpr-18 is expressed in a subset of neurons in the head, midbody, and tail. 

Transgenic hermaphrodite animals expressing a GFP (green fluorescent protein) reporter 

construct under control of the frpr-18 promoter were analyzed. frpr-18p:GFP is expressed 

in URA, BAG, I6, RIM, AIY neurons in the head of the worm (A). frpr-18p expression 

was confirmed in the ASI neurons by co-expression with red fluorescent protein under 

the ASI specific promoter, gpa-4. (B). In the ventral nerve cord and midbody of adult 

animals, frpr-18p:GFP is expressed in the VC and CAN  neurons (C). In the tail, frpr-

18p:GFP was identified in the anal sphincter muscle, and PVQ and DVA neurons (D).  
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ASI neurons co-express FLP-2 (Kim and Li, 2004) (Fig. 3.7), FRPR-18 (Fig. 3.8), 

and PDF-1 (Barrios et al., 2012; Janssen et al., 2009), suggesting that these neurons play 

an important role in arousal. To test this idea, we genetically ablated ASI neurons in npr-

1 mutants. ASI cell death was induced by a transgene that expresses a pro-apoptotic 

caspase (CED-3) and GFP in ASI neurons (using the str-3 promoter). ASI cell death was 

confirmed by the absence of GFP fluorescence in transgenic animals. The L4/A motile 

fraction and locomotion rate of npr-1 worms were significantly reduced in animals 

lacking ASI neurons (Fig. 3.10).  

 

 
 

Figure 3.10 ASI neurons promote arousal. Locomotion behavior of single 

worms during the L4/A lethargus was analyzed in the npr-1 worms whose 

ASI neurons were genetically ablated by transgenic overexpression of CED-3 

in ASI (str-3 promoter) (A-B). The npr-1 L4/A locomotion quiescence defect 

was suppressed by ASI ablation. Average motile fraction (A), and average 

locomotion velocity (B) are plotted. The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM. Values that differ 

significantly are indicated (***, p <0.001).  

 

To determine if artificially activating ASI neurons arouses locomotion, we 

analyzed transgenic animals expressing rat TRPV1 capsaicin receptors in ASI. A 5-hour 

capsaicin treatment had no effect on L4/A motile fraction or locomotion velocity (Fig. 
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3.11). These results suggest that ASI activation with capsaicin is not sufficient to arouse 

locomotion during molts, and that the arousing effects of FLP-2/FRPR-18 may require 

activation of multiple neurons other than ASI.  

 

 
Figure 3.11 Forced depolarization of ASI has no effect on L4/A 

locomotion quiescence. Rat TRPV1 was ectopically expressed in ASI 

neurons (using the gpa-4 promoter). Locomotion behavior of wild type or 

transgenic worms during the L4/A lethargus was analyzed with or without 50 

µM capsaicin treatment (4-5 hr). Average motile fraction (A) and locomotion 

velocity (B) are plotted. Capsaicin treatment had no effect on either motile 

fraction or velocity of wild type or transgenic animals. The number of animals 

analyzed is indicated for each genotype. Significance is indicated (ns, not 

significant).  

 

FLP-2 and PDF-1 jointly promote arousal by reciprocal positive feedback  

Thus far, our results suggest that NPR-1 inhibits secretion of two arousal 

neuropeptides, FLP-2 and PDF-1 (Choi et al., 2013), thereby promoting quiescence. FLP-

2 and PDF-1 could act independently to arouse locomotion or they could comprise 

components of a single arousal pathway. If they function independently, flp-2 and pdf-1 

mutations should have additive effects on locomotion in double mutants. Contrary to this 

idea, inactivating FLP-2 or its receptor (FRPR-18) did not further enhance the reduced 
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L4/A locomotion of pdf-1; npr-1 double mutants, nor did these mutations enhance the 

reduced adult locomotion defect of pdfr-1 single mutants (Fig. 3.12). These results 

support the idea that frpr-18, flp-2, and pdf-1 likely act in a single genetic pathway to 

mediate arousal. 

 

 
Figure 3.12 FLP-2, FRPR-18, and PDF-1 act in a single genetic pathway. 

Locomotion behavior of single worms during the L4/A lethargus (A-B) and 

adults (C) was analyzed in the indicated genotypes. Inactivation of FRPR-18 or 

FLP-2 did not further decrease the locomotion activity of pdf-1;npr-1 mutants 

during the L4/A lethargus. Average motile fraction (A), and average locomotion 

velocity (B) are plotted. In addition, flp-2 or frpr-18 mutation didn’t further 

decrease the locomotion activity of pdfr-1 adult worms (C). Values that differ 

significantly are indicated (ns, not significant). The number of animals analyzed 

is indicated for each genotype. Error bars indicate SEM.  

 

Given their function in a single genetic pathway, we next asked if FLP-2 

promotes PDF-1 secretion. To test this idea, we analyzed PDF-1::YFP secretion in flp-2 

mutants. In wild-type animals, PDF-1::YFP secretion is inhibited during the L4/A molt 

and this effect was eliminated in npr-1 mutants, as shown in our prior study (Choi et al., 

2013). Inhibition of PDF-1::YFP secretion during lethargus was restored in both flp-2; 

npr-1 and in frpr-18; npr-1 double mutants (Fig. 3.13). These results suggest that FRPR-
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18 and FLP-2 stimulate PDF-1 secretion, which could contribute to FLP-2’s arousing 

effects. Analogous experiments suggest that PDF-1 promotes FLP-2 secretion (Fig. 3.7). 

These results suggest that FLP-2 and PDF-1 secretion are regulated by reciprocal positive 

feedback. Positive feedback between FLP-2 and PDF-1 could provide a mechanism for 

stabilizing (or prolonging) aroused locomotion in npr-1 mutants. 

 

 
 

Figure 3.13 FLP-2 and PDF-1 jointly promote arousal by reciprocal positive 

feedback. PDF-1 secretion was analyzed in the indicated genotypes. VENUS-

tagged PDF-1 was expressed with the pdf-1 promoter. Representative images (A) 

and summary data (B) are shown for coelomocyte fluorescence in L4, L4/A, and 

young adults (8 hours post L4) of the indicated genotypes. PDF-1:: VENUS 
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Figure 3.13 (Continued). coelomocyte fluorescence was dramatically reduced 

during the L4/A lethargus of wild type animals, but not in npr-1 mutants, as 

previously reported (Choi et al., 2013). frpr-18;npr-1 and flp-2;npr-1 double 

mutants exhibited decreased PDF-1 secretion during lethargus. Scale bar 

indicates 10 µm. Values that differ significantly from L4 controls (D) are 

indicated (***, p <0.001; ns, not significant). The number of animals analyzed is 

indicated for each genotype. Error bars indicate SEM.  

 

 

FLP-2 and FRPR-18 are functionally analogous to vertebrate orexin and orexin 

receptors  

The neuropeptide orexin promotes wakefulness and feeding in vertebrates. Orexin 

orthologs have not been described in invertebrates, suggesting that their arousal is 

mediated by a distinct mechanism. Interestingly, FRPR-18 has significant similarity to 

mammalian orexin type 2 receptors (mOxR2) (BLAST score: E=1e-08), implying that 

FRPR-18 and mOxR2 receptors could perform analogous functions. To test this idea, we 

asked if a transgene expressing the mouse mOxR2 receptor could rescue the frpr-18 

mutant defect. Consistent with this idea, an mOxR2 transgene (expressed by the frpr-18 

promoter) re-instated the L4/A locomotion quiescence defect in frpr-18;npr-1 double 

mutants (Fig. 3.13A-B). Similarly, expressing mOxR2 receptors only in ASI neurons 

(using the gpa-4 promoter), restored the npr-1 L4/A locomotion quiescence defect to 

frpr-18;npr-1 animals (Fig. 3.14C-D). Thus, mOxR2 expression compensates for the 

absence of FRPR-18 receptors, supporting the idea that FRPR-18 and orexin receptors 

perform analogous functions in arousal.  

To test the idea that FLP-2 is functionally analogous to vertebrate orexins, we 

analyzed the effect of flp-2 mutations on the rescuing activity of the mOxR2 transgene. 
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We found that inactivating FLP-2 blocked the ability of mOxR2 to promote aroused 

L4/A locomotion in frpr-18; npr-1 double mutants (Fig. 3.14A-B). This result suggests 

that endogenously expressed FLP-2 neuropeptides are required for mOxR2’s arousing 

effects. Taken together, these results suggest that FLP-2 is functionally analogous to 

mammalian orexin and can activate either the FRPR-18 or mOxR2 receptor. 

 

 
Figure 3.14 FLP-2 and FRPR-18 are functionally analogous to vertebrate 

orexin and orexin receptors. Locomotion behavior of single worms during the 

L4/A lethargus was analyzed in the indicated genotypes. The npr-1 locomotion 

quiescence defect was reinstated in frpr-18;npr-1 double mutants by transgenes 

expressing mouse OX2R with the frpr-18 promoter (A-B) or the ASI-specific 

promoter gpa-4 (C-D). The transgene expressing mouse OX2R under the     
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Figure 3.14 (Continued). frpr-18 promoter did not reinstate the npr-1 

locomotion quiescence defect in frpr-18;flp-2 npr-1 triple mutants (A-B). 

Average motile fraction (A,C), and average locomotion velocity (B,D) are 

plotted. The number of animals analyzed is indicated for each genotype. Error 

bars indicate SEM. Values that differ significantly are indicated (*, p <0.05; **, 

p <0.01). 

 

 

Discussion 

Neuropeptides play a pivotal role in promoting arousal and wakefulness across 

phylogeny. It was previously thought that different arousing peptides were utilized in 

vertebrates and invertebrates. While orexin is known to promote wakefulness in 

vertebrates (including humans, dogs, mice, and zebrafish), PDF promotes wakefulness in 

invertebrates (including flies and worms) (Chemelli et al., 1999; Choi et al., 2013; Lin et 

al., 1999; Nishino et al., 2000; Renn et al., 1999). Here we identify FLP-2 as a new 

arousing neuropeptide in C. elegans, and we show that its arousing effects are mediated 

by an orexin-like receptor, FRPR-18. Our results suggest that the invertebrate C. elegans 

may utilize an orexin-like system to stabilize the aroused state with similar mechanisms 

as found in vertebrates.  

Several results support the idea that FLP-2 promotes locomotion arousal during 

lethargus. Mutations inactivating FLP-2 or FRPR-18 restore molt-associated quiescence 

to npr-1 mutants. FLP-2 secretion is inhibited during molts (when locomotion is 

quiescent) and this inhibition is blocked in npr-1 mutants (which lack molt-associated 

locomotion quiescence). Thus, locomotion quiescence and arousal are linked to decreased 

and increased FLP-2 signaling respectively.  
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FRPR-18 has significant sequence homology to vertebrate OXR2 receptors, 

suggesting that the flp-2 encoded peptides (FLP-2A and B) are functionally analogous to 

vertebrate orexins. To further test this idea, we showed that mOXR2 expression rescues 

that frpr-18 mutant defect in locomotion arousal and that this rescuing activity requires 

expression of endogenous FLP-2 peptides. These results support the idea that FRPR-18 

and mOXR2 are functional analogs and that FLP-2A/B peptides may activate mOXR2 

receptors. These results are surprising because FLP-2A/B are RFamide peptides (defined 

by their carboxy-terminal RF motifs) while Orexin A and B have conserved c-terminal 

sequences lacking the RF motif.  

We also show that ASI neurons play an important role in promoting locomotion 

arousal. Three arousal-inducing genes (pdf-1, flp-2, and frpr-18) are expressed in ASI. A 

transgene expressing mOxR2 in ASI re-instated the lethargus quiescence defect in frpr-

18; npr-1 double mutants, suggesting that FRPR-18 acts in ASI to promote arousal. 

Genetic ablation of ASI significantly decreased locomotion arousal during molts in npr-1 

mutants. However, forced activation of ASI neurons with capsaicin was not sufficient to 

arouse locomotion during molts. FRPR-18 is expressed in several other neurons that were 

previously implicated in controlling locomotion including RIM and AIY (Alkema et al., 

2005; Flavell et al., 2013; Gray et al., 2005; Piggott et al., 2011). These results suggest 

that FLP-2’s arousing effects are mediated by multiple neurons.  

Mutations disrupting orexin or orexin receptors are associated with narcolepsy in 

humans, dogs, and mice. In orexin and mOxR2 knockout mice, the total amount of sleep 

is unaltered; however, the duration of awake bouts is dramatically reduced (Mochizuki et 

al., 2004; Willie et al., 2003). This fragmentation of wakefulness in narcoleptic mice has 
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been interpreted to mean that orexin stabilizes wakefulness. Our results support two 

mechanisms for stabilizing aroused states. First, FLP-2 and FRPR-18 are co-expressed in 

ASI neurons, thereby producing an autocrine positive feedback loop for ASI activation. 

Second, we find that FLP-2 and PDF-1 secretion are regulated by reciprocal positive 

feedback, i.e. FLP-2 promotes PDF-1 secretion and vice versa. We propose that these 

circuit motifs stabilize the aroused state. Interestingly, both motifs are conserved in 

mammalian arousal circuits. Mouse orexin directly activates orexin expressing neurons 

via activation of mOxR2 receptors (Yamanaka et al., 2010). Orexin also activates 

neurons that express several other arousing neurotransmitters (e.g cholinergic, 

histaminergic, noradrenergic, and serotonergic neurons) (Brown et al., 2012). Thus, 

autocrine positive feedback and reciprocal positive feedback are conserved motifs found 

in arousal circuits. 

Last, our results show that NPR-1 inhibits FLP-2 secretion. A similar link 

between NPY and orexin has also been found in rodents. NPY inhibits orexin positive 

neurons in the hypothalamus (Fu, 2004) and orexin inhibits NPY positive neurons in the 

thalamus (Palus et al., 2015). Reciprocal inhibition between arousing and quiescence 

neurons is proposed to be a mechanism for creating bistability of sleep and wake states. If 

reciprocal inhibition is conserved in C. elegans, we expect that the arousing peptides 

(FLP-2 and PDF-1) would inhibit cells expressing quiescence promoting ligands  (FLP-

11, FLP-18, FLP-21, and NLP-22) (Choi et al., 2013; Nelson et al., 2013; Turek et al., 

2016).  

To conclude, in this study we identified a new arousing neuropeptide, FLP-2, that 

regulates C. elegans molting-associated quiescence through an orexin-like receptor, 
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FRPR-18. FLP-2 acts in concert with PDF-1 through reciprocal positive feedback to 

promote arousal. The many mechanistic parallels between mammalian orexin and FLP-

2/FRPR-18 suggest that C. elegans may be a powerful genetic invertebrate system to 

study the role of orexin in behavioral arousal.  
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Materials and Methods 

Strains 

Strain maintenance and genetic manipulation were performed as described (Brenner, 

1974). Animals were cultivated at 20°C on agar nematode growth media (NGM) seeded 

with OP50 (for imaging and behavior) or HB101 E.coli (for electrophysiology). Wild 

type reference strain was N2 Bristol. Strains used in this study are as follows: 

 

Mutant strains and integrants 

KP6048 npr-1(ky13) X 

KP7147 frpr-18(ok2698) V 

KP7380 flp-2(gk1039) X 

KP7487 frpr-18(ok2698) V;flp-2(gk1039) X 

KP7918 frpr-18(ok2698) V;npr-1(ky13) X 

KP7420 flp-2(gk1039) npr-1(ky13) X 

KP7488 frpr-18(ok2698) V;flp-2(gk1039) npr-1(ky13) X 

KP7422 nuIs513[flp-2p::flp-2::venus, vha-6p::mCherry] 

KP7435 npr-1(ky13) X;nuIs513 

KP7398 pdf-1(tm1996);npr-1(ky13);nuIs513 

LSC27 pdf-1(tm1996) III 

KP6340 pdfr-1(ok3425) III 

KP6100 pdf-1(tm1996) III;npr-1(ky13) X 

KP6410 pdfr-1(ok3425) III;npr-1(ky13) X 

KP7385 pdfr-1(ok3425) III;frpr-18(ok2698) V 
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KP7323 pdfr-1(ok3425) III; flp-2(gk1039) X 

KP7384 pdfr-1(ok3425) III;frpr-18(ok2698) V;npr-1(ky13) X 

KP7399 pdfr-1(ok3425) III; flp-2(gk1039) npr-1(ky13) X 

KP7393 pdf-1(tm1996) III; flp-2(gk1039) npr-1(ky13) X 

KP7384 pdf-1(tm1996) III;frpr-18(ok2698) V;npr-1(ky13) X 

KP6693 nuIs472 [pdf-1p::pdf-1::venus, vha-6p::mCherry] 

KP6743 npr-1(ky13) X; nuIs472 

KP7388 frpr-18(ok2698) III;nuIs472 

KP7389 flp-2(gk1039) X;nuIs472 

 

Strains containing extrachromosomal arrays 

KP7587-7589 frpr-18(ok2698) III; npr-1(ky13) X; nuEx1689-1691[WRM0630bG11 

fos;vha-6p::mCherry]  

KP7417 nuEx1648[flp-2p::gfp,vha-6p::mCherry] 

KP7414 nuEx1649[frpr-18p::GFP, flp-6p::NLS-mCherry, vha-6p::mCherry] 

KP7500 nuEx1685[frpr-18p::GFP, gpa-4p::NLS-mCherry]  

KP7502 nuEx1687[frpr-18p::GFP, flp-6p::NLS-mCherry] 

KP7562 nuEx1688[frpr-18p::GFP, sra-6p::mCherry] 

KP7982 nuEx1747[frpr-18p::GFP];otIs518[eat-4(fosmid::SL2::mCherry::H2B + 

(pBX)pha-1(+)] III; him-5(e1490) V 

KP7983 nuEx1747[frpr-18p::GFP];otIs544[cho-1(fosmid::SL2::mCherry::H2B + 

(pBX)pha-1(+)] III; him-5(e1490) V 
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KP7431-KP7434 npr-1(ky13);nuEx1656-1659[str-3p::ced-3::GFP, daf-7p::GFP, vha-

6p::mCherry] 

KP7426 flp-2(gk1039) npr-1(ky13) X; nuEx1652[flp-2p::flp-2(gDNA), vha-6p::mCherry] 

KP77425 frpr-18(ok2698) III; npr-1(ky13) X; nuEx1651[frpr-18p::mOx2R, vha-

6p::mCherry] 

KP7593 frpr-18(ok2698) III; flp-2(gk1039) npr-1(ky13) X; nuEx1651 

KP7890-7891 frpr-18(ok2698) III; npr-1(ky13) X; nuEx1736-1737[gpa-4p::mOx2R, vha-

6p::mCherry] 

 

Constructs 

FLP-2 secretion construct (flp-2p::flp-2::VENUS (KP#2282)) 

flp-2 genomic DNA and YFP (VENUS) containing a stop codon were each amplified by 

PCR and ligated into the expression vector pPD49.26 (Addgene) containing the sra-6 

(~3.8kb 5’ regulatory sequence: ASH expression) promoters. 

 

frpr-18 and flp-2 expression constructs (frpr-18p::GFP (KP#2276 ) and flp-2p::GFP 

(KP#2271)) 

DNA corresponding to the frpr-18 regulatory sequence (~ 2.6 kb 5’) or flp-2 regulatory 

sequence (~ 3 kb 5’) was amplified by PCR and ligated into expression vectors 

(pPD95.75) containing GFP coding sequence.  
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flp-2 rescue constructs (KP#2283)  

flp-2 genomic DNA (with stop codon) was amplified by PCR and ligated into the 

expression vectors (PD49.26) containing the flp-2 promoter (~ 3 kb 5’ regulatory 

sequence).  

 

ASI cell ablation construct (str-3p::ced-3::GFP (KP#2150)) 

ced-3 cDNA and GFP were amplified by overlapping PCR and ligated into expression 

vectors (pPD49.26) (using NheI and SacI restriction sites) containing the str-3 (~3 kb 5’ 

regulatory sequence: ASI expression) promoter.  

 

Mouse orexin receptor 2 constructs (frpr-18p::mOxR2 (KP#2290) and gpa-4p::mOxR2 

(KP#3251)) 

cDNA of mouse orexin type 2 receptor (mOxR2) (~1.3 kb) was amplified by PCR from a 

mouse cDNA library and ligated into expression vectors (pPD49.26) (using NheI and 

NcoI restriction sites) containing the frpr-18 promoter (~2.6 kb 5’ regulatory sequence) 

or gpa-4 promoter (~3 kb 5’ regulatory sequence: ASI expression) 

 

Transgenes and germline transformation 

Transgenic strains were generated by microinjection of various plasmids with coinjection 

markers (myo-2p::NLS-mCherry (KP#1480) and vha-6p::mcherry (KP#1874)). Injection 

concentration was 40 - 50 ng/µl for all the expression constructs and 10 ng/µl for 

coinjection markers. The empty vector pBluescript was used to bring the final DNA 

concentration to 100 ng/µl.  
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Lethargus locomotion and behavior analysis 

Lethargus locomotion was analyzed as previously described (Choi et al., 2013). Well-fed 

late L4 animals were transferred to full lawn OP50 bacterial plates. After 1 hour, 

locomotion of animals in lethargus (determined by absence of pharyngeal pumping) was 

recorded on a Zeiss Discovery Stereomicroscope using Axiovision software. Locomotion 

was recorded at 2 Hz for 60 seconds. Centroid velocity of each animal was analyzed at 

each frame using object-tracking software in Axiovision. Motile fraction of each animal 

was calculated by dividing the number of frames with positive velocity value with total 

number of frames. Speed of each animal was calculated by averaging the velocity value 

at each frame. For ASI activation experiments, early L4 animals were transferred to 

NGM plates containing 50 µM capsaicin (with food) and treated with capsaicin for 4-5 

hours. Quantitative analysis was done using a custom written MATLAB program 

(Mathworks). Statistical significance was determined using one-way ANOVA with 

Tukey test for multiple comparisons and two-tailed Student’s t test for pairwise 

comparison.  

 

Adult locomotion and behavior analysis 

Locomotion of adult animals was analyzed with the same setup as lethargus locomotion 

analysis described above, except that well-fed adult animals were monitored 5-10 min 

after the transfer to full lawn OP50 bacterial plates. Foraging behavior was analyzed as 

described (de Bono and Bargmann, 1998). Briefly, approximately 150 well-fed adult 

animals were placed on NGM plates seeded with 200 µl OP50 E.coli 2 days before the 

assay. After 3 hours, images were taken for each genotype. Statistical significance was 
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determined using one-way ANOVA with Tukey test for multiple comparisons and two-

tailed Student’s t test for pairwise comparison. 

 

RNAi screen 

A small-scale RNAi feeding screen was performed as described (Kamath et al., 2003). 

The screen was performed in the neuronal RNAi hypersensitive mutant background (nre-

1 lin-15b; npr-1(ky13) (Schmitz et al., 2007). 114 neuropeptide receptor genes were 

selected for the screen (Frooninckx et al., 2012). After 5 days of RNAi treatment (2 

generation) at 20°C, well-fed late L4 animals were transferred to full lawn OP50 bacterial 

plates. After 1 hour, animals in lethargus (determined by absence of pharyngeal pumping) 

were scored for their motility. Statistical significance was determined using chi-square 

test.  

Cell ablations 

Neurons were ablated in npr-1(ky13) mutant worms by transgenes co-expressing CED-3 

and a fluorescent protein (GFP or mCherry) under the str-3 (ASI ablation) promoter.  ASI 

ablation was confirmed by fluorescence microscopy.   

 

Fluorescence microscopy and image analysis 

Quantitative imaging of coelomocyte fluorescence was performed as previously 

described (Choi et al., 2013) using a Zeiss Axioskop equipped with an Olympus 

PlanAPO 100x (NA=1.4) objective and a CoolSNAP HQ CCD camera (Photometrics). 

Worms were immobilized with 30 mg/ml BDM (Sigma). The anterior coelomocytes were 

imaged in L4/A lethargus (determined by absence of pharyngeal pumping), and 1 day-old 
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adult animals. Image stacks were captured and maximum intensity projections were 

obtained using Metamorph 7.1 software (Universal Imaging). YFP fluorescence was 

normalized to the absolute mean fluorescence of 0.5 mm FluoSphere beads (Molecular 

Probes). Statistical significance was determined using Kolmogorov-Smirnov test.  

 

Identification of FRPR-18 expressing neurons 

GFP-expressing cells of frpr-18p::GFP were evaluated based on their position, 

morphology, and projection pattern. Identification of many neurons was made by analysis 

of frpr-18p::GFP co-expression with RFP (mCherry) driven constructs under promoters 

with known expression patterns. These include gpa-4p::mCherry for ASI, flp-

6p::mCherry for I6 (and to eliminate ASE neurons), sra-6p::mCherry for PVQ neurons 

(and to eliminate ASH neurons). Several identifications were made by comparing co-

expression of frpr-18p::GFP with eat-4p::RFP (Serrano-Saiz et al., 2013) and cho-

1p::RFP (O. Hobert, personal communication) known expression patterns. Images were 

taken using a 60x objective (NA 1.45) on a Olympus FV-1000 confocal microscope. 

Maximum intensity projections of Z-series stacks were made using Metamorph 7.1 

software (Molecular Devices, Sunnvale, CA, US).  
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Chapter 4 

 

 

 

 

 

Concluding Remarks and Future Directions 

 

The experiments discussed in this chapter are unpublished work. Kelsey Taylor 

performed all experiments.   
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Implications of the regulation of behavioral arousal by NPR-1 

Organisms undergo changes in behavior in response to various environmental and 

developmental cues. Our study investigated arousal utilizing the molting-associated 

behavioral quiescent state in C. elegans, lethargus. We’ve demonstrated that npr-1 

mutants can be used as a model for heightened arousal from lethargus, and in doing so 

have identified a number of neuropeptides and neurons which modulate quiescence. 

These studies provide insight on 1) the broad network of sensory neurons that contribute 

to arousal, 2) the modulation of sensory-motor circuitry for inducing quiescence and 3) 

the conservation of neurotransmitters in the regulation of behavioral arousal across 

phylogeny.  

 

A broad network of sensory neurons contribute to arousal 

 Our findings suggest that a broad network of sensory neurons arouse locomotion 

during quiescence. We’ve found that mechanosensory neurons (ALM and PLM), 

nociceptive neurons (ASH), PDF-1 expressing neurons (ASK), stretch sensitive neuron 

(DVA), and chemosensory neurons (ASI) all contribute to behavioral arousal (Choi et al., 

2013; Schwarz et al., 2011; Chapter 2; Chapter 3). For the following reasons, our findings 

suggest that sensory activity is decreased during quiescence: 

 

1) Sensory-evoked responses in ALM, PLM, and ASH are all decreased during L4/A 

lethargus and this dampening of activity requires npr-1 (Choi et al., 2013) 

(Chapter 2) 
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2) The arousing effects of npr-1 are blocked by mutations that decrease sensory 

responsiveness, such as tax-4 CNG and osm-9 TRPV mutations (Choi et al., 2013; 

Chapter 2)  

3) Ablating ASH, DVA, or ASI sensory neurons diminishes the npr-1 quiescence 

defect (Chapter 2 and 3) 

 

In C. elegans there is an overall decrease in spontaneous neural activity during 

lethargus, which is reminiscent of activity patterns found during sleep in higher 

organisms (Schwarz et al., 2011).  In Drosophila, calcium transients in response to 

stimuli are decreased in the Kenyon cells of mushroom bodies during sleep. In addition, 

calcium levels in these cells decline when flies fall asleep and increase when they wake 

up (Bushey et al., 2015). Meta-analysis of brain activity studies in humans using position 

emission tomography (PET) and functional magnetic resonance imaging (fMRI) have 

also shown an overall decrease in activity in thalamic structures and frontal regions of the 

brain during NREM and REM sleep. However, increased activity in the anterior cingulate 

was also found, demonstrating that not all brain regions become less active in sleep 

(Jakobson et al., 2012).  

Why is such a complex circuit required to regulate the absence of behavior, or 

quiescence? A more complex circuit may be advantageous since it allows C. elegans to 

adapt its behavior across a range of circumstances. Animals need to not only sustain the 

quiescent or aroused states for prolonged periods of time, but also be able to switch 

between behavioral states rapidly.  
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Sensory gating is a mechanism for inducing quiescence 

To our knowledge, sensory gating by NPR-1 in C. elegans is one of the best-

understood examples of gating as a mechanism to regulate quiescence. We’ve found that 

the dampening of sensory activity in multiple neurons discussed above (ASH, ALM, 

PLM, PDF-1 expressing ASK neurons) requires npr-1. NPR-1 acts cell autonomously to 

dampen activity during lethargus in ASH (Chapter 2), however npr-1 is not expressed in 

mechanosensory neurons (ALM, PLM) suggesting that sensory gating by npr-1 can act 

cell non-autonomously, likely through PDF-1 signaling (Choi et al., 2013). Therefore, 

through both direct and indirect mechanisms, NPR-1 acts to gate sensory perception to 

promote quiescent behavior in C. elegans. Gating of ASH activity during lethargus 

results in asynchronous activity of downstream interneurons AVA and AVD, which is 

thought to modulate downstream motor circuits to promote quiescence (Cho and 

Sternberg, 2014). It would be interesting to test if the synchronous activity of AVA and 

AVD seen during arousal is controlled by glutamate and neuropeptide release from ASH, 

as predicted by our results.   

 Others have shown that egl-4 PKG is also required for sensory gating during 

lethargus, as egl-4 mutants show increased responsiveness to sensory stimuli during 

lethargus and can be rescued by restoring expression of the gene to sensory neurons 

(Raizen et al., 2008). Upstream of egl-4 PKG, Notch signaling regulates L4/A quiescence 

and arousal threshold in an EGL-4- dependent fashion in ciliated sensory neurons (Singh 

et al., 2011). Understanding how these signaling pathways diminish the sensitivity of 

various sensory modalities will further our understanding of sensory gating as a 

mechanism for inducing quiescence.  
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Less is known about how sensory gating is regulated in mammals, where flow of 

sensory information is primarily controlled by the thalamus.  Thalamic neurons receive 

input from multiple areas, including the sensory organs, and show distinct states of 

activity to control state-dependent gating of sensory information during sleep and 

wakefulness. During wakefulness, thalamocortical relay neurons projecting to sensory 

cortical areas show tonic activity of fast action potentials, while during sleep these cells 

are hyperpolarized and show rhythmic bursts of low-threshold calcium potentials (Coulon 

et al., 2011).  Interestingly, NPY reduces activity of retricular thalamic neurons, thereby 

suppressing thalamic network oscillations that are relevant to sleep and arousal (Sun et 

al., 2003). Thus, NPY receptors in mammals may also modulate sensory inputs through 

sensory gatekeeping neurons just as NPR-1 does in C. elegans.  

 

Phylogenic parallels in neuropeptide regulation of behavioral arousal 

 Our studies provide evidence that arousal mechanisms are conserved across 

phylogeny. As shown in Table 1.1, a number of signaling pathways are conserved across 

mammalian sleep, Drosophila ‘rest’, and C. elegans lethargus. Most significant to our 

studies, just as NPR-1 promotes lethargus quiescence in C. elegans, NPY in mammals 

promotes sleep as studies have shown that intravenous injection of NPY in young men 

enhances sleep quality and reduces the time it takes for subjects to get to sleep 

(Antonijevic et al., 2000). In addition to the factors mentioned in Table 1.1, here we have 

shown that glutamate and the orexin-like peptide and receptor, FLP-2 and FRPR-18, 

regulate quiescence in C. elegans. While the role of orexin in sleep is well established, 



	 105 

much less is known about the role of glutamate in arousal. C. elegans provides us with a 

powerful genetic system to study the role of these factors.  

Several parallels between orexin signaling in mammals and FLP-2/FRPR-18 in C. 

elegans are notable. First, orexin signaling in mammals can act by a positive feedback 

loop, with local orexin release activating orexin-expressing neurons through orexin type 2 

receptors (Yamanaka et al., 2010). In C. elegans, FLP-2 acts similarly, activating FRPR-

18 receptors on FLP-2-expressing ASI neurons (Chapter 3). Second, orexin expressing 

neurons are inhibited by NPY, just as NPR-1 inhibits FLP-2 secretion (Fu, 2004)  

(Chapter 3). Third, mammalian orexin activates a wide variety of neurons with arousing 

neurotransmitters (e.g cholinergic, histaminergic, noradrenergic, and serotonergic 

neurons) (Brown et al., 2012). A number of the cells we identified to express FRPR-18 

express similar neurotransmitters (Table 4.1) and are known to promote locomotion 

(Flavell et al., 2013; Gray et al., 2005; Hu et al., 2011; Li et al., 2006; Piggott et al., 

2011). Activation of FRPR-18 by FLP-2 may provide global activation of locomotion 

promoting neurons in C. elegans as a mechanism for arousal.  

 

Table 4.1 Mammalian orexin and C. elegans FLP-2 activate neurons with similar 

arousing neurotransmitters 

Mammalian Neuronal Types 
Activated by Orexin 

Corresponding C. elegans neurons 
expressing FRPR-18 receptor 

Serotonergic VC4,VC5 (Waggoner et al., 1998) 

Histaminergic/Noradrenergic RIM (Tyramine in C. elegans is the closest 

analog to mammalian NE and histamines) 

(Alkema et al., 2005) 

Cholinergic AIY, RIM, URA, VC, DVA 
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Areas of Future Investigation  

 

Sensory modalities that influence behavioral arousal 

Our findings show that heightened sensory activity in the RMG circuit causes 

aroused locomotion both during lethargus and as adults in npr-1 mutants (Choi et al., 

2013) (Chapter 2). As discussed, sensory neurons in the RMG circuit respond to a variety 

of environmental cues of both positive and negative valence. These include pheromones, 

oxygen, and aversive odors and chemicals (Fig. 1.1) (Cheung et al., 2005; Gray et al., 

2004; Macosko et al., 2009; Reddy et al., 2009). We’ve also shown that sensory neurons 

outside of the apparent RMG circuit influence the state of arousal in C. elegans, such as 

the chemosensory neuron, ASI (Chapter 3). An unanswered question is whether the 

sensory gate-keeping role of NPR-1 applies to all sensory neurons and modalities. One 

hypothesis is that during molting-associated quiescence, there is a decrease in neural 

activity in some sensory neurons while an increase in others that is dependent on the 

sensory valence of the neuron.  

One approach to address these questions is to specifically stimulate each sensory 

neuron with known stimulants during and after lethargus, and see if stimulation 

influences the animal’s state of arousal. Sensory neurons and modalities could then be 

grouped by which increase quiescence in lethargus vs. those that decrease quiescence. 

We can then ask if these effects require NPR-1 sensory gating. We have already shown 

that stimulation of ASH by the aversive chemicals copper and glycerol is decreased 

during lethargus in wild type worms, and this effect requires npr-1 (Chapter 2). It would 

be interesting to see if the same is true for other neurons, such as ASK, which can be 
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stimulated by ascarosides/pheromones, URX by oxygen, ASI by food (OP50 bacteria), 

and ADL and AWB by aversive odors such as 2-nonanone.  

Indeed, we already have evidence that sensory modalities other than those 

regulated by ASH are required for arousal from lethargus. First, oxygen likely contributes 

positively to arousal from lethargus. Inactivation of the soluble guanylate cyclase that 

binds oxygen, gyc-35, suppressed the npr-1 quiescence defect (Choi, 2013). This 

correlates with the fact that a decrease in ambient oxygen is likely the reason that the npr-

1 lethargus quiescence defect is diminished in microfluidic devices (Nagy et al., 2014a; 

2014b).  Overall, these results suggest that ambient oxygen increases arousal.  

In addition to oxygen, my preliminary results suggest that pheromones contribute 

to arousal. C. elegans produce a diverse set of ascarosides, the equivalent of mammalian 

pheromones. Ascarosides are small glycolipids of which there have been over 100 

identified in C. elegans. These pheromones are sensed by chemosensory neurons 

(including ADF, ASG, ASI, ASJ, ASK) and have been shown to be involved in a variety 

of behaviors, including male-hermaphrodite attraction, aggregation, and entry into dauer 

(Ludewig and Schroeder, 2013). Interestingly, loss-of-function mutations in npr-1 have 

been shown to affect hermaphrodite responses to certain ascarosides (Macosko et al., 

2009). To test if ascarosides are required for arousal from lethargus, we tested the effect 

of inactivating the ascarocide biosynthesis genes, dhs-28 and daf-22. These mutants 

completely lack wild type ascarosides (Butcher et al., 2009; Ludewig and Schroeder, 

2013). Inactivating either dhs-28 or daf-22 in npr-1 mutants partially blocked the npr-1 

quiescence defect, suggesting that ascarosides (one or more) are required for arousal from 

lethargus (Fig. 4.1). Future experimentation will address which ascaroside receptors are 
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contributing to arousal by inactivating putatative pheromone receptor genes such as srbc-

64, srbc-66, srg-36, and srg-37 (Ludewig and Schroeder, 2013). By narrowing down 

which receptors are required, we can then determine which specific ascarosides arouse C. 

elegans and on which cells they act.  

 

 

Figure 4.1 Ascaroside biosynthesis is required for the npr-1 lethargus 

defect. Locomotion behavior of single worms during the L4/A lethargus was 

recorded for 30-60 seconds and velocity was measured (2 Hz sampling). 

Average motile fraction (A) and average locomotion velocity (B) are plotted. 

The npr-1(ky13) L4/A locomotion quiescence defect was suppressed by 

mutations in daf-22(ok693)II or dhs-28(hj8)X ascaroside biosynthetic genes. 

The number of animals analyzed is indicated for each genotype. Error bars 

indicate SEM. Values that differ significantly are indicated (***, p<0.001).  

 

Role of Octopamine and Tyramine in Lethargus 

  In humans, noradrenergic neurotransmission has been implicated in the regulation 

of sleep (Brown et al., 2012). While C. elegans lack norephinephrine and epinephrine, 

they do contain two related transmitters, octopamine (OA) and tyramine (TA). Several 

findings suggest that OA and TA may also regulate arousal in the worm: 
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1. OA has been shown to inhibit ASH responses (Mills et al., 2011). We have shown 

that ASH responses promote arousal (Chapter 2).   

2. The octopamine receptor octr-1 and tyramine receptors tyra-2 and tyra-3 were 

amongst the hits in the previously mentioned RNAi screen as suppressors of npr-1 

(data not shown). 

3)  In Drosophila, the biosynthetic enzyme for TA production is rhythmically 

expressed in clock (PDF expressing) cells and mutants exhibit arrhythmic 

circadian behavior in locomotion (Huang et al., 2013).   

 

  To test if tyramine and octopamine regulate molting-associated quiescence in C. 

elegans, we examined the effect of inactivation of the octopamine biosynthesis pathway 

genes, tyrosine decarboxylase (tdc-1) and tyramine beta hydroxylase (tbh-1), on the npr-1 

quiescence defect. In the synthesis of TA and OA, tdc-1 catalyzes the reaction of tyrosine 

to tyramine, while tbh-1 catalyzes the formation of octopamine from tyramine. Therefore, 

tdc-1 mutants lack both tyramine and octopamine, while tbh-1 mutants lack only 

octopamine. Interestingly, we found that null mutation of tdc-1 partially suppressed the 

npr-1 quiescence defect while inactivation of tbh-1 had no effect (Fig. 4.2). This result 

suggests that tyramine is required for the npr-1 defect and is an arousing 

neurotransmitter. Consistent with our results, tdc-1 single mutants were recently reported 

to have increased total quiescence (duration) and arousal threshold during lethargus 

(Singh et al., 2014). In contrast, tbh-1 single mutants were also found to have increased 

total quiescence and arousal threshold (Singh et al., 2014). TBH-1 and octopamine 
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synthesis may have a more subtle effect on lethargus that is difficult to discern in the npr-

1 mutant background through our methods.  

 

 

 

Figure 4.2 Tyramine, but not octopamine, biosynthesis is required for the 

npr-1 lethargus defect. Locomotion behavior of single worms during the L4/A 

lethargus was recorded for 30-60 seconds and velocity was measured (2 Hz 

sampling). Average motile fraction (A) and average locomotion velocity (B) 

are plotted. The npr-1 (ky13) L4/A locomotion quiescence defect was 

suppressed by mutations in tdc-1 (n3420) II, but not tbh-1 (n3247) X. The 

number of animals analyzed is indicated for each genotype. Error bars indicate 

SEM. Values that differ significantly are indicated (***, p<0.001).  

 

We also tested if exogenous octopamine applied to wild type C. elegans has any 

effect on quiescence. We hypothesized that if octopamine is arousing, it would increase 

the velocity and motile fraction of animals during lethargus. Consistent with our result 

that loss of octopamine by tbh-1 mutation does not suppress npr-1, exogenous 

octopamine had no effect on wild type animals (Fig. 4.3).  
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Figure 4.3 Exogenous octopamine has no affect on lethargus quiescence. 

Locomotion behavior of single worms during the L4/A lethargus was recorded 

for 30-60 seconds and velocity was measured (2 Hz sampling). Octopamine 

treated worms were exposed to octopamine in agar plates for 4-5 hr. at the 

indicated concentrations. Average motile fraction (A) and average locomotion 

velocity (B) are plotted. The number of animals analyzed is indicated for each 

genotype. Error bars indicate SEM. No values are significantly different.  

 

Future experiments will examine the contribution of tyramine to arousal from 

lethargus. Which receptors (tyra-2, tyra-3) are required for npr-1 quiescence defect? In 

which cells does tyramine contribute to arousal? Does tyramine act in concert or in 

parallel with PDF-1 and FLP-2? 

 

Synaptic remodeling as a mechanism for sleep 

 For a couple reasons, one might propose that structural changes occur at the 

synaptic or circuit level during quiescence. Synaptic plasticity is thought to be one of the 

main functions of sleep in mammals. The synaptic homeostasis hypothesis proposes that 

organisms sleep in order to allow time for restoration of energy stores that are depleted 

by synaptic strengthening during wakefulness and development (Tononi and Cirelli, 
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2014). The model states that renormalization occurs via synaptic depression or down-

selection during sleep. Synapses are down-selected based on their strength and how often 

they are activated, promoting memory consolidation and integration (Tononi and Cirelli, 

2014). However, recent results suggest that while synaptic homeostasis (or firing rate 

homeostasis) is gated by behavioral sleep/wake states, it occurs during the waking brain 

(Hengen et al., 2016). Nonetheless, the depression of synapses during arousal/quiescence 

may also be a mechanism for reducing circuit activity in sensory neurons or locomotor 

circuits. Synaptic remodeling as a function of circadian cycles and quiescence has been 

reported in Drosophila and zebrafish.  In Drosophila, neurons that secrete pigment-

dispersing factor show dramatically reduced axonal arborization during nighttime as a 

function of the circadian clock (Fernández et al., 2008). Interestingly in zebrafish, 

hypocretin neurons remodel their presynaptic boutons, showing decreased boutons during 

dark/night cycles in a circadian pattern that is also affected by homeostatic changes in 

sleep/wake periods (Appelbaum et al., 2010).   

Based on these reports, we hypothesized that similar changes may occur during 

lethargus in C. elegans. Indeed, it has been reported that GABAergic synaptic 

transmission is reduced during lethargus, although no remodeling of UNC-49, the 

GABAA receptor subunit, was seen (Dabbish and Raizen, 2011). In finding that GLR-2 

AMPA receptors function in DVA to regulate arousal from quiescence (Chapter 2), we 

asked if any changes occur to GLR-2 synapses in DVA in and out of lethargus. We 

hypothesized that GLR-2 synapses may be down regulated during lethargus as a 

mechanism for inducing quiescence. To test this, we visualized GLR-2 synapses in DVA 

(using the DVA specific promoter, nlp-12) by expressing a fusion protein of GLR-2 and 
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GFP. A punctate pattern in the proximal process of DVA resembled the expected pattern 

for synapses (Fig. 4.4).  

 

 

Figure 4.4 GLR-2::GFP shows punctate pattern in DVA proximal 

process. A construct expressing GLR-2::GFP was expressed in DVA (nlp-12 

promoter) and images taken on a Olympus FV1000 confocal microscope. A 

punctate pattern could be seen in the DVA neuron proximal process with 

puncta disappearing as the process entered the cord. Cell body is on far right 

of image. Arrows indicate example puncta.  

 

We have previously shown that blocking glutamate release increases GLR-1 receptor 

abundance at synapses (Grunwald et al., 2004). To determine if the GLR-2 puncta in 

DVA we visualized represented synapses, we tested if they similarly responded to a loss 

of glutamate release. Indeed, blocking glutamate release by inactivating the vesicular 

glutamate transporter, eat-4, increased GLR-2 receptor abundance (quantified by puncta 

intensity), suggesting that these puncta were in fact glutamatergic synapses (Fig. 4.5).  
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Figure 4.5 Blocking glutamate transmission increases GLR-2 receptor 

abundance in DVA. Inactivating glutamate release by mutation in the 

vesicular glutamate transporter, eat-4, increased the amplitude of GLR-2:GFP 

puncta intensity in the DVA proximal process, a pattern consistent with that 

seen for GLR-1 synapses (Grunwald et al., 2004). GLR-2:GFP was expressed 

in DVA (nlp-12 promoter) and analyzed for the indicated genotypes. Images 

were taken on an Olympus FV1000 confocal microscope. Line scans of the 

proximal DVA process were analyzed in Igor Pro (WaveMetrics) using 

custom designed software as described (Dittman and Kaplan, 2006). Values 

that differ significantly are indicated (***, p<0.001).  

 
 

However, contrary to our hypothesis, we found that there were no changes in GLR-2 

synapses before, during, or after lethargus (Fig. 4.6) in wild type of npr-1 mutant 

animals. We also tested if expression levels of glr-2 mRNA changed in and out of 

lethargus. Interestingly, glr-2 levels are increased approximately two-fold during the 

L4/A molt in both wild type and npr-1 mutants (Fig. 4.7). However, due to the amount of 

time it takes for a newly transcribed receptor to be delivered to the plasma membrane (5-

10 hours) (Greger et al., 2002; 2003), we suspect that newly translated GLR-2 receptors 

are unlikely to be active until long after the molt, during the adult stage.  
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Figure 4.6 GLR-2 receptor abundance and synapse density in DVA is 

unchanged in and out of lethargus. GLR-2:GFP was expressed in DVA 

(nlp-12 promoter) and analyzed for the indicated genotypes and stages. 

Images were taken on an Olympus FV1000 confocal microscope. Line scans 

of the proximal DVA process were analyzed in Igor Pro (WaveMetrics) using 

custom designed software as described (Dittman and Kaplan, 2006). No 

values are significantly different.  
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Figure 4.7 glr-2 mRNA is increased during lethargus. The abundance of 

glr-2 mRNA in worm extracts was analyzed by quantitative PCR. Values 

reported were normalized to those observed in wild type adults. The 

abundance of glr-2 mRNAs in lethargus was significantly higher than in 

young adults. 4 biological replicates were analyzed for each genotype and 

mRNA. Shown is one primer set for glr-2 mRNA, although a second showed 

the same result. Error bars indicate SEM. Values that differ significantly are 

indicated (*, p<0.05).  

 

To conclude, although we have no evidence that synaptic remodeling occurs at 

GLR-2 synapses during lethargus, we cannot eliminate the possibility that changes are 

occurring at glutamatergic synapses or others. It will be interesting to assess if synaptic 

remodeling is occurring in other neurons that have been implicated in quiescence in C. 

elegans, such as the RMG circuit, ASI, or touch neurons. For example, do PDF-1 

expressing neurons show plasticity changes as Drosophila PDF-positive neurons do? 

Does ASI show comparable differences to hypocretin expressing neurons in zebrafish? 
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Role of the RMG circuit 

 Biological rhythms are governed by inherent timekeeping mechanisms, referred to 

as circadian clocks. The neurons that regulate these circadian rhythms are typically 

referred to as clock or pacemarker neurons. In mammals, neurons in the suprachiasmatic 

nucleus (SCN) are the primary clock neurons, while in Drosophila they include the 

lateral neurons of the central nervous system (Helfrich-Förster, 2004; Maywood et al., 

2007; Renn et al., 1999). The molecular basis of the circadian clock is a set of proteins 

that act by feedback loops on the transcriptional and translational level, resulting in self 

sustained circadian oscillations (Helfrich-Förster, 2004; Ko and Takahashi, 2006). Our 

findings highlight a key role of the RMG circuit in regulating arousal in C. elegans (Fig. 

1.1). We hypothesize that the RMG circuit may function similarly to clock neurons 

identified in other animals. Previous evidence suggests that lethargus is in fact controlled 

by clock genes, such as the C. elegans homolog of the fly gene PERIOD, lin-42. In C. 

elegans, lin-42 shows rhythmic expression peaking during larval molts (Monsalve et al., 

2011). Interestingly, lin-42 has also been found to regulate the cyclical expression of the 

quiescence-promoting peptide, NLP-22 (Nelson et al., 2013). In addition, just as the 

pacemaker lateral neurons secrete PDF in Drosophila, the primary source of pdf-1 in C. 

elegans is from neurons in the RMG circuit (RMG and ASK) (Fig. 1.1) (Choi et al., 

2013; Parisky et al., 2008; Renn et al., 1999). To further explore if the RMG circuit 

functions similarly to a C. elegans clock, we propose testing the following: 

 

1) To test if lin-42 shows cyclical expression within RMG neurons, as it does in 

hypodermal cells, we will examine a lin-42 reporter in the RMG circuit. 
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2)  Findings in Drosophila suggest that PDF can influence stability of the period 

protein (PER) in clock neurons (Li et al., 2014). We will test if mutations in 

pdf-1 similarly influence lin-42 expression, in or outside of the RMG circuit, 

as a mechanism for regulating locomotion arousal from lethargus. We can 

similarly test the effects of inactivating flp-2 and other neuropeptides 

associated with arousal and quiescence.    

3) To test if activity of RMG is altered with respect to quiescent and aroused 

behaviors, we will examine calcium responses in RMG using a genetically 

encoded calcium indicator. This experiment will ideally be done in freely 

moving animals as they enter and exit molting associated quiescence.  

 

While circadian clocks have been primarily associated with 24-hr cycle in other 

animals (rodents, Drosophila), these experiments would explore the role of  PERIOD/lin-

42 and clocks that operate on an ultradian periodicity. Additionally, they may 

demonstrate that clocks can function outside of a light-dark cycle and instead incorporate 

other sensory inputs.  
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Concluding remarks on future directions 

The experiments proposed and initiated in this chapter advance our work toward 

better understanding the molecular mechanisms governing the regulation of arousal in C. 

elegans. Follow up experiments on the role of FLP-2 and FRPR-18 in C. elegans can 

provide additional support to our notion that orexin signaling and circuit motifs 

regulating arousal are conserved in C. elegans. Further exploration of how sensory 

modalities, such as ascarosides, regulate arousal will enhance our understanding of how 

sensory valence alters circuit activity and behavioral outputs. Examining the role of 

octopamine and/or tyramine as well as synaptic remodeling will allow continued 

dissection of the mechanisms controlling quiescence. Last, characterization of the RMG 

circuit may shed light on the role of circadian timing in C. elegans arousal. Altogether, 

these studies will greatly enhance our understanding of the neuropeptide regulation and 

sensory-evoked alteration of neural circuits and behavior.  
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Appendix A 

 

 

RNAi and Mutant Screens for Identification of Neuropeptides Regulating 

Lethargus Locomotion Behavior 

 

 

Kelsey Taylor and Seungwon Choi performed the RNAi and mutant screens 

discussed in this appendix during Kelsey’s rotation in the lab. A portion of the screen 

results were published in Choi S, Chatzigeorgiou M, Taylor KP, Schafer WR, Kaplan 

JM (2015) Analysis of NPR-1 Reveals a Circuit Mechanism for Behavioral 

Quiescence in C. elegans. Neuron 78(5), 869-880.  
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npr-1 suppressor RNAi screen 

To identify other neuropeptides that may regulate behavioral quiescence, we 

performed an RNAi screen for additional neuropeptide genes whose inactivation 

suppresses the npr-1 lethargus locomotion defect. We screened 113 neuropeptide 

genes including 30 flp (FMRFamide-related peptides), 39 ins (Insulin-like peptides), 

43 nlp (non-insulin, non-FMRFamide-related peptides) genes, and pdf-1, and used 

egl-3 RNAi as a positive control. The RNAi screen was performed as described 

below. In the primary screen, 16 genes including pdf-1 were identified whose 

inactivation suppressed the npr-1 lethargus locomotion defect significantly more than 

did the empty vector control (L4440) (p <0.05, Chi-square test) (Table A.1). To 

validate the results from the primary screen, we subjected 11 out of the 16 positive 

genes to the secondary screen. We confirmed that inactivation of 5 neuropeptide 

genes caused significant suppression of the npr-1 lethargus locomotion defect 

compared to empty vector controls (Table A.2). The positive genes include flp-8, nlp-

5, nlp-10, flp-33, and pdf-1. Further analyses on double mutants with npr-1 mutations 

should confirm the RNAi screen results. 

 

 

 

 

 

 

 



	 127 

Table A.1 npr-1 suppressor RNAi screen: Lethargus locomotion behavior 

(Primary Screen). RNAi was carried out using an RNAi hypersensitive strain 

in npr-1 mutant background (npr-1 nre-1 lin-15b). 113 neuropeptide genes 

were screened. After 2 generation RNAi treatment, worms in lethargus 

(determined by cessation of pharyngeal pumping) were scored as ‘wild type-

like’ (no or little movement) or ‘npr-1-like’ (significant movement). 16 genes 

were identified whose inactivation suppressed the npr-1 lethargus locomotion 

defect significantly more than did the empty vector control (L4440) (p<0.05, 

Chi-square test).  
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Neuropeptide Mutant Screen 

In addition to the RNAi screen discussed above, we also conducted an 

unbiased mutant screen for neuropeptide genes whose inactivation causes a decrease 

in lethargus quiescence. C. elegans mutant strains were available for more than half 

of ~120 identified neuropeptide genes. In the primary screen, 68 neuropeptide 

mutants were screened, and only 1 (flp-1) out of 68 genes was identified to have 

decreased lethargus quiescence significantly more than wild type controls (p<0.05, 

Chi-square test) (Table A.3). However, the effect of flp-1 mutations on lethargus 

quiescence was rather subtle compared to npr-1 mutations. In addition, the deletion 

allele (yn4) that we used to inactivate flp-1 in the screen also inactivates a 

neighboring gene, daf-10 (intraflagellar transport complex component). Thus, further 

analyses on a new allele that specifically inactivates flp-1 should confirm the screen 

results. In addition, the effect of the remaining untested neuropeptides on lethargus 

behavior should be further addressed by mutant analysis, CRISPR, or RNAi.  
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Table A.2 npr-1 suppressor RNAi screen: Lethargus locomotion 

behavior (Secondary screen). 11 positive genes from the primary screen 

were subjected to the secondary screen. Inactivation of 5 neuropeptide 

genes caused significant suppression of the npr-1 lethargus locomotion 

defect compared to empty vector controls (L4440) (p<0.05, Chi-square 

test).  
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 Table A.3 Neuropeptide mutant screen: Lethargus locomotion behavior.  

68 neuropeptide mutants were screened, and worms in lethargus (determined by 

cessation of pharyngeal pumping) were scored as ‘wild type-like’ (No or little 

movement) or ‘npr-1-like’ (significant movement). Only 1 (flp-1) out of 68 

genes was identified whose inactivation decreased lethargus quiescence 

significantly more than wild type controls (p<0.05, Chi-square test).  
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Materials and Methods 

Strains 

KP6050 npr-1(ky13) nre-1(hd20) lin15b(hd126) X 

 

RNAi feeding screen 

A small-scale RNAi feeding screen was performed as described (Kamath et al., 

2003). The screen was performed in the neuronal RNAi hypersensitive mutant 

background (nre-1 lin-15b) (Schmitz et al., 2007). 15 neuropeptide genes known to 

be expressed in RMG circuit were selected for the screen (Li and Kim, 2008). After 5 

days of RNAi treatment (2 generation) at 20°C, well-fed late L4 animals were 

transferred to full lawn OP50 bacterial plates. After 1 hour, animals in lethargus 

(determined by absence of pharyngeal pumping) were scored for their motility. 

Statistical significance was determined using chi-square test. 
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