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Abstract

These essays explore the risks and real effects of various non-bank financial institutions,

such as open-end mutual funds, hedge funds, and venture capital. In the first essay, “A

Dynamic Theory of Mutual Fund Runs and Liquidity Management,” I show that mutual

funds are subject to bank-run-like risks, but the underlying mechanism is different. In the

second essay, "Investment Exuberance under Cross Learning,” written with Shiyang Wang,

we argue that firm cross learning can lead to inefficient investment exuberance, in which

institutional investors’ (like hedge funds) play a key role. In the third essay, “Financing

Entrepreneurial Production: Security Design with Flexible Information Acquisition," written

with Ming Yang, we explores the optimal security design when the investor (like venture

capital) can acquire information to help the entrepreneur make better investment decisions.
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Introduction

The first chapter develops a model of an open-end mutual fund that invests in illiquid assets

and show that shareholder runs can occur even with a fully flexible fund NAV. The key is

the fund’s dynamic management of its cash buffer. Holding more cash at time t helps the

fund avoid fire sales of its illiquid assets if it experiences a significant net outflow. However,

the need to rebuild the cash buffer at time t + 1 after outflows at t implies predictable

sales of illiquid assets and hence a predictable decline in NAV. This generates a first-mover

advantage at t, leading to shareholder runs. This mechanism differs from that underlying

bank runs, which relies on fixed-NAV claims. I then study the fund’s optimal dynamic cash

policy in the presence of run concerns, which gives rise to the following tension. Rebuilding

the cash buffer more rapidly at t + 1 can trigger runs at t. However, lack of cash re-building

makes the fund more likely to suffer another round of fire sales in the future. This tension

is aggravated by a time-inconsistency problem: the fund may want to pre-commit to a less

rapid cash re-building policy to avoid runs but cannot credibly convince the shareholders

absent a commitment device. Therefore, despite optimal liquidity management, mutual

funds are not run-free and runs can lead to higher ex-ante fire sale losses. Appropriate

design of policies aiming at reducing financial stability risks of mutual funds requires taking

into account the dynamic interdependence of runs and liquidity management.

The second chapter, co-authored with Shiyang Huang, investigates how cross-learning

by firms amplifies industry-wide investment exuberance. When investing, firms learn from

each other’s stock prices to gain more knowledge about a common shock, generating higher

investment sensitivity to the shock. Speculators respond by putting more weight on the
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shock when trading, making prices even more informative about it. This spiral produces

higher investment (and price) comovements in investment exuberance. Meanwhile, cross-

learning generates a new externality by making other firms’ prices less informative about

their idiosyncratic shocks. This externality increases in the number of firms, suggesting that

more competitive industries may exhibit more inefficient investment exuberance.

The third chapter, co-authored with Ming Yang, proposes a new theory of the use of debt

and non-debt securities in financing entrepreneurial production, positing that the investor

can acquire costly information on the entrepreneur’s project before making the financing

decision. We show that debt is optimal when information is not valuable for production,

while the combination of debt and equity is optimal when information is valuable. These

predictions are consistent with the empirical facts regarding the finance of entrepreneurial

businesses. Flexible information acquisition allows us to characterize the payoff structures

of optimal securities without imposing usual assumptions on feasible securities or belief

distributions.
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Chapter 1

A Dynamic Theory of

Mutual Fund Runs and Liquidity

Management

1.1 Introduction

There are rising concerns about the financial stability risks posed by open-end mutual

funds, which promise daily liquidity to shareholders but have been increasingly holding

illiquid assets such as corporate bonds.1 Many regulators are worried about the potential

for a bank-run-like scenario on mutual funds investing in illiquid assets,2 and a number of

funds, the Focused Credit Fund of Third Avenue as the most notable example, shut down

redemptions in the middle of severe shareholder runs at the end of 2015.3 However, despite

1These patterns of liquidity mismatch are significant in corporate bond mutual funds and are also pervasive
in funds investing in other illiquid assets. See Appendix A.1 for facts and institutional details.

2The U.S. SEC voted 5-0 on Sept 22, 2015 to approve a new proposal requiring mutual funds to manage
liquidity risks. Also see “Potential Emerging Threats and Vulnerabilities,” Ch. 7 in the Annual Report, the U.S.
FSOC, May 2015, “Asset Management Industry and Financial Stability,” Ch. 3 in the Global Financial Stability
Report, the IMF, April 2015, and “Old and New Risks in the Financial Landscape”, Ch. 6 in the Annual Report,
the BIS, June 2015.

3The Third Avenue shutdown on Dec 10, 2015 was the first case since the 1940 Act that a U.S. mutual fund
shut down redemptions without getting approval from the U.S. SEC. In particular, the Focus Credit Fund was

3



the prominence of this issue, the theoretical mechanism of mutual fund runs is not well

understood and the existence of runs is still in dispute. First, conventional wisdom suggests

that mutual funds with a flexible end-of-day net asset value (NAV) should be immune to

bank-run-like crises, which occur only with fixed-NAV claims. Second, observers also argue

that careful fund liquidity management can mitigate first-mover advantages and hence

prevent runs. With these two points in mind, can there really be runs on mutual funds?

In this paper, I develop a model of an open-end mutual fund that invests in illiquid

assets and show that shareholder runs can occur in equilibrium even with a fully flexible

NAV. My main insight is that the combination of a flexible NAV and active fund liquidity

management, both of which are viewed as means to mitigate financial stability risks, can

make the fund prone to shareholder runs even without any fundamental shocks to the

underlying assets.

The mechanism works as follows. Holding more cash at time t helps the fund avoid

fire sales of its illiquid assets if it experiences a significant net outflow. However, the need

to rebuild the cash buffer at time t + 1 after outflows at t implies predictable sales of

illiquid assets and hence a predictable decline in NAV at t + 1. This generates a first-mover

advantage at t, which leads to shareholder runs in equilibrium. This logic illustrates the key

trade-off in the model: cash buffers mitigate fire sales today, but the need to rebuild cash

buffers tomorrow triggers runs today.

The potential for shareholder runs further gives rise to a tension regarding the fund’s

optimal dynamic cash management. On the one hand, rebuilding the cash buffer more

rapidly at t + 1 by aggressively selling illiquid assets can trigger runs at t for the reasons

outlined above. On the other hand, rebuilding the cash buffer less rapidly makes the fund

more likely to suffer another round of fire sales in the future. This tension is aggravated

by a time-inconsistency problem: the fund may want to pre-commit to a less rapid cash

the single largest holder of many high-yield corporate bonds, the fundamental of which were still good. This
suggests that the liquidity mismatch and the resulting strategic considerations among shareholders must have
played an important role in the run-up to its crisis. A number of the so-called “liquid-alternative” mutual funds,
operated by hedge fund managers such as Whitebox Advisors, J.P. Morgan, and Guggenheim Partners also
experienced shareholder runs and were forced to close in 2015.

4



rebuilding policy to avoid runs but cannot credibly convince the shareholders absent a

commitment device. Thus, despite optimal liquidity management, mutual funds are not

run-free and runs can lead to considerably higher ex-ante fire sale losses.

My theoretical predictions are consistent with new micro-level evidence. Chen, Goldstein

and Jiang (2010), Feroli, Kashyap, Schoenholtz and Shin (2014), Goldstein, Jiang and Ng

(2015), Shek, Shim and Shin (2015) and Wang (2015) document that current fund outflows

predict a future decline in fund NAV, and the magnitude of the predictable decline in NAV

is larger if the fund invests in more illiquid assets or has less cash.4 My model provides a

concrete mechanism to explain these documented patterns of run incentives and shows that

they can indeed lead to runs in equilibrium. Moreover, I show that the potential for runs

can in turn distort fund liquidity management, generating new testable predictions.

I formulate the ideas sketched above in a stochastic dynamic model of an open-end

mutual fund with many shareholders, who may redeem their shares daily at the end-of-

day flexible NAV. Section 3.2 lays out the model, which is built based on four realistic

assumptions. First, the fund invests in both cash and many illiquid assets. Second, selling

illiquid assets generates fire sale losses (Williamson, 1988, Shleifer and Vishny, 1992, 1997).

Third, the fund minimizes total expected fire sale losses by managing its cash buffer over

time. Finally, the fire sale prices are time-varying. Specifically, outflow-induced fire sales can

create temporary price overshooting at t and subsequent reversal at t + 1, as documented by

Coval and Stafford (2007) and Duffie (2010).5 This price pattern gives rise to a motive for

fund liquidity management. After a significant outflow at t, the fund may voluntarily sell

some assets to rebuild its cash buffer at t + 1 when the selling price partially rebounds, in

4These papers differ in focus, but they all suggest a single point: the existence of run incentives among
mutual fund shareholders. See the literature review for more detailed discussions of these papers.

5This assumption is consistent with many other empirical studies including Campbell, Grossman and
Wang (1993), Pastor and Stambaugh (2003), Hendershott and Seasholes (2007), Mitchell, Pedersen and Pulvino
(2007), Comerton-Forde, Hendershott, Jones, Moulton and Seasholes (2010), Greenwood and Thesmar (2011),
Edmans, Goldstein, and Jiang (2012), Jotikasthira, Lundblad, and Ramadorai (2012), Lou (2012), Nagel (2012)
and Hendershott and Menkveld (2014). Duffie (2010) ascribes this pervasive pattern to the idea of “slow-moving
capital,” which is in turn linked to the classic work of Grossman and Miller (1988). In Appendix A.3 I provide a
micro-foundation where the price pattern emerges endogenously but in the main text I assume it to highlight
the run mechanism in the paper.
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order to avoid potentially more severe fire sales in the future (i.e., at t + 2) should another

outflow shock comes. Other than this time-varying fire sale cost, my model does not feature

other shocks or frictions at the asset market level.

I first show in Section 1.3 that the fund’s desire to rebuild its cash buffer can induce

shareholder runs, and more rapid cash rebuilding leads to more severe runs. This result is

general: runs can occur in equilibrium regardless of whether the fund starts with a high

cash position or a low one. However, the cost of runs, that is, the impact of runs on the

risk of fire sales, is different in these two cases. The nature of strategic interactions among

shareholders is also different in these two cases. Therefore, it is helpful to discuss them

separately to clarify the run mechanism.

On the one hand, when the fund starts with a high cash-to-assets ratio, shareholder runs

induced by fund cash rebuilding lead to higher risk of future fire sales. When a redemption

shock occurs at t, the fund starting with a high cash position can satisfy the projected

redemptions at both t and t + 1 without incurring fire sales. This implies that, even if the

shareholders who initially plan to redeem at t + 1 ran at t, the fund would still have enough

cash at t, and thus time-t NAV would not adjust. But since some cash is paid out at t, the

fund may want to rebuild its cash buffer by voluntarily selling some illiquid assets at t + 1.

Thus, the shareholders who initially plan to redeem at t + 1 would get a lower NAV if they

waited until t + 1, and hence may decide to run at t. Fundamentally, this occurs because

cash rebuilding endogenously gives rise to strategic complementarity among shareholders.

In this scenario, shareholder runs force the fund to pay more redeeming shareholders at

the endogenously unchanged NAV at t, and thus the fund loses more cash.6 Therefore,

shareholder runs partially offset the fund’s cash rebuilding efforts at t + 1 and thus lead to

higher risk of future fire sales at t + 2.

On the other hand, if the fund starts with a low cash-to-assets ratio such that it cannot

satisfy the projected redemptions at both t and t + 1 without selling illiquid assets, share-

6In other words, if the shareholders who initially plan to redeem at t + 1 do not run, the fund can pay them
a lower NAV when rebuilding its cash buffer and hence effectively carry more cash into t + 2 under the same
cash rebuilding policy.
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holder runs further lead to higher current (i.e., time-t) fire sale losses in addition to higher

risk of future (i.e., t + 2) fire sales. Interestingly, in this scenario, a shareholder is less likely

to run if more of other shareholders decide to run. This is because runs may force the fund

to fire sell more of its illiquid assets at an extremely low price at t, and any shareholder who

runs at t has to share that cost, that is, to get a lower NAV. This means that shareholders’ run

decisions can exhibit strategic substitutability. However, since the fund is already running

out of cash and may voluntarily sell more assets at t + 1 to rebuild its cash buffer, waiting

may only give the shareholders an even lower NAV. Therefore, the fund’s desire to rebuild

its cash buffer reinforces a strong incentive for shareholders to redeem earlier despite the

strategic substitutability. In this scenario, shareholder runs introduce a more severe cost

by directly forcing the fund to fire sell more assets at t, a time when the fire sale price is

extremely low. In addition, runs still offset the fund’s cash rebuilding efforts and thus lead

to higher risk of future fire sales.

Having analyzed the implications of cash rebuilding on shareholder runs for an arbitrary

starting level of cash, I endogenize the dynamic cash rebuilding policy of the fund. I show

in Section 1.4 that introducing the potential for runs gives rise to a tension absent in existing

liquidity management theories. On the one hand, rebuilding the cash buffer more rapidly

at t + 1 can trigger shareholder runs at t. As described above, shareholder runs lead to

higher risk of fire sales. This run concern makes a more rapid cash rebuilding policy less

appealing. On the other hand, adopting a less rapid cash rebuilding policy at t + 1 makes

the fund more likely to suffer another round of future fire sales at t + 2. Moreover, carrying

less cash to t + 2 also implies that the fund may ultimately have to rebuild its cash buffer

more rapidly at time t + 3, which can trigger future runs at t + 2. With this tension, the

fund’s optimal dynamic cash rebuilding policy is significantly different from the benchmark

case where there are no runs.

Moreover, I show that the potential for shareholder runs introduces a time-inconsistency

problem for the fund, which aggravates the tension in choosing between a rapid or a slow

cash rebuilding policy. When the cost of runs at t is relatively large, ex-ante, the fund may

7



wish to commit itself to rebuilding its cash buffer less rapidly at t + 1 to reduce run risks at

t. However, ex-post, the fund may instead be tempted to adopt a more rapid cash rebuilding

policy at t + 1, because the time-t cost is sunk. Anticipating this, shareholders will always

have strong incentives to run at t. In other words, in the absence of a commitment device,

the fund cannot make credible announcement to convince shareholders not to run. I further

show that, in certain circumstances, introducing a commitment device can help temper the

run incentives at t and thus reduce total expected fire sale losses.

Overall, my paper provides theoretical underpinnings for understanding why open-end

mutual funds may not be run-free, in contrast to what the conventional wisdom suggests.

The potential for shareholder runs can considerably increase fire sale losses in expectation

despite optimal cash management by the fund. The dynamic interdependence of shareholder

runs and fund liquidity management uncovered in this paper plays a critical role in shaping

these outcomes.

Fundamentally, shareholder runs in my model are driven by a key contractual property

of mutual fund NAVs: they are flexible but not forward-looking. In other words, the NAV

at time t does not take into account the predictable asset sales and price impact at t + 1.

With this contractual property, fund cash rebuilding gives rise to predictable declines in

NAV and thus the potential for runs.

Although they are reminiscent of bank runs in some ways, fund shareholder runs differ

from classic bank runs (Diamond and Dybvig, 1983) in terms of the underlying mechanism.

In my model, the first-mover advantage does not come from an exogenous fixed-NAV claim

at t (like the deposit at a bank). Because NAVs in my model flexibly and endogenously

adjust, a shareholder redeeming at t realizes that more early withdrawals will potentially

induce more fire sales at t and thus lower the proceeds she receives. Hence, if the fund

did not rebuild its cash buffer at t + 1, the net benefit of running over waiting could be

decreasing as more shareholders run. Rather, it is the fund’s desire to rebuild its cash

buffer at t + 1 and the resulting predictable decline in NAV that lead to a strong first-mover

advantage. This mechanism highlights a dynamic interaction between the fund and its

8



shareholders. Such an interaction is absent in bank run models, which focus on coordination

failures among depositors themselves.

The mechanism in my model is also different from that underlying market runs. Bernardo

and Welch (2004) and Morris and Shin (2004) argue that if an asset market features an

downward-sloping demand, investors fearing future liquidity shocks will have an incentive

to front-run, fire selling the asset earlier to get a higher price. One might imagine that

introducing an intermediary that helps manage liquidity shocks can alleviate such problems.

Indeed, in my model, fund cash management is beneficial to shareholders because it reduces

fire sale losses. However, the key tension that I document is that the fund’s cash rebuilding

also endogenously gives rise to predictable declines in NAV and thus run incentives. In

contrast, there is no role for liquidity management in market run models. In this sense,

market run models focus on asset markets themselves while my theory focuses on the role of

financial intermediaries. This allows me to distinguish between risks that come from active

management of financial intermediaries and those that are only a reflection of market-level

frictions and would occur in the absence of intermediaries.

My model generates new policy implications, which I explore in Section 1.5. First,

the model suggests that to introduce a flexible NAV is not a fix to money market mutual

fund (MMF) runs, as also argued in Hanson, Scharfstein and Sunderam (2015). I also

consider many fund-level policies, including liquidity requirements, in-kind redemptions,

redemption fees and restrictions, credit lines, and swing pricing, all of which aim at

mitigating financial stability risks of mutual funds. Perhaps surprisingly, these policies do

not necessarily improve shareholder welfare in equilibrium because they may distort fund

liquidity management, and thus lead to more fire sales. Overall, my model suggests that

policies should be designed taking into account the dynamic interdependence of runs and

fund liquidity management.

Section 2.6 explores various extensions to the baseline model, including the flow-to-

performance relationship, asset price correlations, and persistent price impacts. Section 3.6

concludes.
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Related Literature. This paper first contributes to the burgeoning literature on financial

stability risks posed by open-end mutual funds.7 Empirically, Feroli, Kashyap, Schoenholtz

and Shin (2014) find that fund outflows predict future declines in NAV, suggesting the

existence of run incentives for shareholders. At a more micro level, Chen, Goldstein and

Jiang (2010) find that the flow-to-performance relationship is stronger for funds investing

in less liquid stocks. Goldstein, Jiang and Ng (2015) echo the message by showing that

corporate bond funds even exhibit a concave flow-to-performance relationship. Shek, Shim

and Shin (2015) explores the underlying channel by showing that outflows are associated

with future discretionary bond sales and liquidity rebuilding in an emerging market bond

fund context. Wang (2015) further finds that outflows predict a stronger decline in future

NAVs when the fund has less cash or invests in more illiquid bonds. My model predictions

are consistent with all of these facts. Chen, Goldstein and Jiang (2010) and Morris and Shin

(2014) have addressed the potential for mutual fund runs from theoretical perspectives, but

their focuses and approaches are different from this paper, and they do not consider fully

flexible NAV adjustment or fund liquidity management.8

There is a broader literature on the costs of outflows to non-trading shareholders and to

future fund performance.9 Edelen (1999), Dickson, Shoven and Sialm (2000), Alexander, Cici

and Gibson (2007) and Christoffersen, Keim, and Musto (2007) find that flow-induced trades

hurt fund performance, and redeeming shareholders impose externalities on non-trading

shareholders through trading-related costs (including commissions, bid-ask spreads, and

7The notion of open-end mutual funds does not include MMFs, insurance companies, or pension funds.
Recent literature has also documented run-like dynamics associated with those financial intermediaries. For
example, Schmidt, Timmermann and Wermers (2014) provide a throughout investigation of shareholder runs
on MMFs, and Strahan and Tanyeri (2014) find that MMFs experiencing more outflows also reallocate their
portfolio more, consistent with my prediction in a mutual fund context. More recently, Foley-Fisher, Narajabad
and Verani (2015) and Da, Larrain, Sialm and Tessada (2015) provide new evidence suggesting that runs can
even happen to insurance companies and pension funds, respectively.

8In the appendix of Chen, Goldstein and Jiang (2010), the authors build a static global game model for the
purpose of hypothesis development. In that model, fund NAV is not fully flexible: shareholders are assumed to
get a fixed-value claim if they run (in the spirit of Diamond and Dybvig, 1983). Their model does not consider
fund liquidity management. Morris and Shin (2014) build a model of runs by funds on the asset markets,
focusing on fund managers’ relative performance concerns. Their model does not distinguish between open-
and closed-end funds and does not consider shareholder runs.

9See Christoffersen, Musto and Wermers (2014) for a comprehensive review of this literature.
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taxes) that are not reflected in current NAVs. Coval and Stafford (2007), Ellul, Jotikasthira and

Lundblad (2011) and Manconi, Massa and Yasuda (2012) further show this by highlighting

the channel of flow-induced fire sales. In addition, Chernenko and Sunderam (2015) find

that even careful liquidity management of mutual funds cannot alleviate those costs. These

papers do not examine the potential for shareholder runs. Especially, since runs are induced

by active fund liquidity management in my model, I am able to identify a new externality

that even including all the current trading-related costs in NAVs (as suggested by swing

pricing) cannot internalize.

My paper also contributes to the literature of mutual fund liquidity management.10

This literature suggests that holding cash is costly because funds have to give up other

higher-yielding investment opportunities (Wermers, 2000), but cash can help them with-

stand redemption shocks and reduce fire sales (Edelen, 1999, Christoffersen, Keim, and

Musto, 2007, Coval and Stafford, 2007). Recently, Simutin (2013), Ben-Rephael (2014) and

Huang (2015) investigate the determinants of cash management and the implications on

fund performance for equity funds, and Chernenko and Sunderam (2015) provide more

comprehensive evidence on fund cash management covering both bond and equity funds.

The most relevant theory is Chordia (1996) who shows in a static model that funds hold more

cash when there is uncertainty about redemptions, but funds with load and redemption

fees hold less cash. My paper document a novel aspect of fund liquidity management:

rebuilding cash buffers by selling illiquid assets can induce shareholder runs, which can in

turn distort fund liquidity management.

Dated back to Bryant (1980) and Diamond and Dybvig (1983), there is a vast bank run

10There is also a large dynamic corporate finance literature on general liquidity management for non-financial
institutions. With the premise of costly external liquidity under agency problems, this literature focuses on the
role of holding internal liquidity in making investments rather than meeting redemptions. I refer readers to
Bates, Kahle and Stulz (2009) for empirical evidence and Bolton, Chen and Wang (2011) for a typical modern
theoretical treatment. Hugonnier and Morellec (2014), Sundaresan and Wang (2014) and Della Seta, Morellec
and Zucchi (2015), among others, further push this research agenda to the bank context with a focus on
the relationship between liquidity management and bank default risks. In this literature, the bank can only
accumulate internal liquidity by retaining its proceeds; partial liquidation (like in my model) is not allowed.
The bank in question defaults abruptly when it chooses to liquidate assets.
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literature.11 Beyond the discussion in the introduction, I review three branches of theories

that are closely related.

First, pioneered by Cooper and Ross (1998), a literature looks at how banks manage

their liquidity buffers to mitigate runs.12 By combining liquidity management and fully

flexible NAV adjustment, I uncover a cost of cash rebuilding in the mutual fund context:

unintended shareholder runs. In contrast, when a comparable bank rebuilds its cash buffer

by selling assets, the underlying deposit value will not be affected, and thus cash rebuilding

by itself would not directly trigger depositor runs.

Second, there is a growing literature about runs on non-bank but leveraged financial

institutions, for instance, Liu and Mello (2011) on leveraged hedge fund runs, Martin, Skeie

and von Thadden (2014) on repo runs, and Parlatore (2015) on MMF runs. These theories

resemble classic bank run models in that investors still get a fixed-value claim if they run.

Third, a burgeoning literature models bank runs in dynamic contexts. Some models

imbed a Diamond-Dybvig type bank run model into a dynamic growth or economic

fluctuation model (Ennis and Keister, 2003, Gertler and Kiyotaki, 2014). Others model

investors’ dynamic run decisions directly (He and Xiong, 2012, He and Manela, 2014).13

These dynamic models make bank run theory appealing to more contexts like debt rollovers

and rumor-based runs. For tractability reasons, those models do not feature liquidity

management. By developing a new framework, I can model the interaction between mutual

fund shareholder runs and fund liquidity management in a tractable manner.

Finally, it is also important to distinguish my mechanism from that in the market run

literature (Bernardo and Welch, 2004, Morris and Shin, 2004), as aforementioned in the

introduction. The idea of market run is also present in the “cash-in-the-market” theory

11See Gorton and Winton (2003) for a comprehensive review.

12This literature has been growing recently (Vives, 2014, Diamond and Kashyap, 2015) given the emphasis of
bank liquidity requirement in Basel III.

13This literature has been growing rapidly. See Cheng and Milbradt (2012) and Schroth, Suarez and Taylor
(2014) for recent developments built upon He and Xiong (2012). Morris (2014) gives a theoretical treatment
about how such dynamic bank run models can be reconciled with static, global-game-based bank run models
(Goldstein and Pauzner, 2005) and synchronization games (Abreu and Brunnermeier, 2003).
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in Allen and Gale (1994, 2005) and the predatory treading theory in Brunnermeier and

Pedersen (2005) and Carlin, Lobo and Viswanathan (2007). Based on the search model of

Lagos, Rocheteau and Weill (2011), Di Maggio (2015) investigates the implications of market

runs in over-the-counter (OTC) markets. My run mechanism differs from theirs by focusing

on the role of financial intermediaries rather than market-level frictions themselves.

1.2 The Model

I first introduce the baseline model of an open-end mutual fund investing in both cash

and illiquid assets. The model features the key institutional setting of open-end mutual

funds, that is, possible daily shareholder redemptions at a flexible end-of-day NAV. The

mechanism of this baseline model is fairly general and can be readily extended to other

settings.

1.2.1 Setup

Time is discrete and infinite. Discount rate is normalized to 1. There is a single open-end

mutual fund with many existing shareholders, who may redeem their shares on ex-ante

unknown dates. The fund invests in two types of assets: 1) cash, denoted by x, which is

liquid and the only consumption good, and 2) a continuum of many illiquid assets, denoted

by a. These illiquid assets are assumed to have a fundamental value R > 1, but they are all

different, which means they can have different market prices in equilibrium. The illiquid

assets pay off at the end of the game (specified later) and do not generate any interim cash

flows.

Timeline. Each stage consists of two dates, an even date and an odd date.14 I use 2t

to denote an even date and 2t + 1 to denote an odd date. I still use t to denote a stage or

a general date when the difference between even and odd dates is not important. At the

14To make distinctions between even and odd dates is a common modeling tool in the theoretical literature
to capture time-varying or alternating market conditions. See Woodford (1990) and Lagos and Wright (2005) for
examples.
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Figure 1.1: Timeline

beginning of any date t, the fund has xt cash and at unit of the basket of illiquid assets.

The fund also has nt existing shareholders, some of whom may exit the fund by redeeming

their shares in future. Redemption needs must be met in cash, so the fund may be forced to

sell its illiquid assets if running short of cash, but doing this will generate fire sale losses

because of the underlying illiquidity problem. Specifically, the unit fire sale price for any

illiquid assets on date t is pt, which is lower than R. To focus on redemptions, I assume that

the fund has no inflows or credit lines.15

At the beginning of each stage (i.e., right before an even date), a shock hits the economy.

Specifically, with probability p the game ends; otherwise the game continues. Only if the

game continues, will there be projected redemptions on the following two dates within the

given stage. The random end-of-game event can be thought of as an upside event in which

all the illiquid assets mature at their fundamental value, shareholders get paid off, and there

will be no future redemption needs. Therefore, the shock structure parsimoniously captures

the randomness of redemptions in reality, with a lower p implying that redemptions are

more persistent. For these reasons, I call the shock redemption shock in what follows. Figure

1.1 shows the timeline with some elements to be explained shortly. In Section 1.2.2, I will

15I will relax this assumption in Section 1.5.6. As shown then, having credit lines cannot reduce potential
financial stability risks of mutual funds but may instead aggravate them in some cases.
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give an intuitive interpretation of this setup and map it to real-world scenarios.

Flexible Fund NAV. The first important pillar of this model is a flexible fund NAV. The

end-of-day flexible NAV will reflect all the asset sale losses during the given day. Specifically,

if the fund does not sell any illiquid assets on date t, the end-of-day NAV will be

NAVt =
atR + xt

nt
.

However, if the fund sells some assets on date t at the fire sale price pt, the NAV will

reflect that loss and hence become lower:

NAVt =
xt + (at � at+1)pt + at+1R

nt
. (1.2.1)

I explain the three terms in the numerator of (1.2.1) in order. The first term xt is the

amount of cash that the fund has initially at the beginning of date t. The second term

represents the amount of cash the fund raises by selling at � at+1 unit of assets at the fire sale

price pt. The third term represents the value of the non-traded illiquid assets remained on

the fund’s balance sheet. In (1.2.1), the market prices of those different and non-traded assets

will not change. This is true for illiquid assets that are different in nature, especially for

those traded in OTC markets like corporate bonds. This is also consistent with the empirical

evidence in Coval and Stafford (2007) that flow-induced fire sales only have temporary and

local price impacts within the assets being sold. In practice, asset prices may be correlated,

and mutual funds may also use matrix pricing for these non-traded assets based on the fire

sale price pt of the assets that are sold. But as I will show in Section 1.6.2 as an extension,

asset price correlations or different accounting rules such as matrix pricing are not crucial

for my model mechanism and will not change my results qualitatively. What is crucial in

(1.2.1) is that the end-of-day NAV is flexible in the sense that it takes into account all the

same-day price impact and asset sale losses, while that NAV is not forward-looking in the

sense that it will not reflect any possible future price impacts and asset reallocation costs.

These contractual features of fund NAV are robust regardless of the nature of different asset

markets and accounting rules.
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Fund Manager. The second important pillar of this model is active fund liquidity

management. The fund has one fund manager. On any date t, the fund manager’s objective

is to minimize total expected fire sales from date t to the end of the game. The formal

objective function will become clear shortly after I describe the asset market.

Since all the shareholders are ex-ante identical, having a fund manager who minimizes

total expected fire sale losses implies that there is no agency friction between the fund

manager and the shareholders as a whole. In this sense, the fund manager’s objective

parsimoniously captures the outcome of optimal contract design between investors and the

asset manager (see Bhattacharya and Pfleiderer, 1985 for a classic treatment). Minimizing

total fire sale losses also suggests that the fund manager’s compensation is tied to the size

or equivalently the assets under management (AUM) of the fund, which is common in

practice.

Shareholders. Fund shareholders may redeem their shares when they have consumption

needs. I define three groups of shareholders within each stage: early shareholders, late

shareholders, and sleepy shareholders. Specifically, if the game continues on an even date

2t (with probability 1 � p), µEn2t early shareholders and µLn2t late shareholders are hit by

unanticipated consumption shocks and thus must consume, where 0 < µE, µL < 1 and 0 <

µE + µL < 1. Since consumption shocks are unanticipated, the remaining (1 � µE � µL)n2t

sleepy shareholders do nothing but wait until the next stage; they do not plan ahead for

future stages although they may randomly become early or late shareholders in the future.16

Both early and late shareholders do not have any cash in advance, so they have to redeem

their shares and get the endogenous and flexible end-of-day NAV.

Early shareholders must consume on date 2t, so they always redeem their shares at the

16This is consistent with the observation that many mutual fund shareholders are mom-and-pop investors:
they do not actively review their portfolios but only do so when subject to unanticipated liquidity shocks
(for empirical evidence, see Agnew, Balduzzi and Sunden, 2003, Ameriks and Zeldes, 2004, Mitchell, Mottola,
Utkus and Yamaguchi, 2006, Brunnermeier and Nagel, 2008, and Grinblatt and Keloharju, 2009). Institutional
investors like insurance companies and pension funds also review and update their mutual fund asset portfolio
infrequently. From a theoretical point of view, this helps construct a standard stochastic dynamic game with
a long-run player (the fund manager) and many generations of short-run players (the shareholders). It also
allows me to highlight the conflict of interests between different generations of shareholders from a dynamic
perspective.
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endogenous end-of-day NAV on 2t. Late shareholders prefer to consume on date 2t + 1, but

can also choose to consume on date 2t. Formally, late shareholders’ utility function is:

uL(c2t, c2t+1) = qc2t + c2t+1 , (1.2.2)

where 0 6 q 6 1. As late shareholders are risk neutral,17 their consumption choice boils

down to a binary problem: to redeem on date 2t or date 2t + 1. There is no outside storage

technology, so if a late shareholder redeems on date 2t, she gets the endogenous end-of-day

NAV on 2t and must consume immediately; otherwise she gets the endogenous end-of-day

NAV on 2t + 1 and consume then. If a late shareholder chooses to redeem and consume on

date 2t, I say that the late shareholder runs the fund. I allow late shareholders to choose

mixed strategies: the run probability of late shareholder i is denoted by l

i
2t 2 [0, 1]. As one

can expect, a late shareholder’s run decision will depend on the difference of NAV between

the two dates, which will in turn depend on other late shareholders’ run decisions and the

fund manager’s asset allocation decision in the given stage.

The preference parameter q in (1.2.2) parsimoniously captures different types of share-

holders with different propensities to run.18 Intuitively, when q is lower, late shareholders

prefer late consumption more and they are less likely to run even if the NAV is lower on

date 2t + 1. This setting implies that late shareholders’ realized marginal utilities can be

different on the two dates, a setting also commonly seen in the bank run literature (for

example, Peck and Shell, 2003). My model mechanism works for any q 2 [0, 1].

The presence of different types of shareholders, that is, the early, the late, and the

17In Diamond-Dybvig type bank run models, depositors are usually assumed to be risk averse, and
demandable deposit emerges as the optimal contract for risk-sharing between early and late depositors.
Instead, I focus on the commonly observed contractual features of open-end mutual funds rather than optimal
contract design, so I assume risk-neutrality to help better document the impact of flexible NAVs on shareholders’
consumption choices.

18There are many plausible explanations for different types of shareholders to have different values of q. For
example, Chen, Goldstein and Jiang (2010) suggest that institutional investors may have a lower q because they
often have stricter investment targets and are more likely to internalize the market impact posed by own trading
activities. Alternatively, Gennaioli, Shleifer and Vishny (2015) argue that mutual funds provide trust to their
shareholders. For those shareholders who value such trust, if they choose to leave the fund early, they have to
give up the trust premium so can also be viewed as having a lower q.
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sleepy ones, captures an important friction in my model: the conflict of interests among

shareholders with different investment horizons. This conflict of interests is natural and

well-documented in the empirical literature: short-term investors can impose negative

impacts on a fund’s long-term performance through the transaction and fire-sale costs they

incur to the fund, and the fund has to manage its portfolio and liquidity carefully to mitigate

such costs (for example, Edelen, 1999, Dickson, Shoven and Sialm, 2000, Alexander, Cici

and Gibson, 2007, Christoffersen, Keim, and Musto, 2007, Coval and Stafford, 2007). This

realistic friction plays an important role in driving the interaction between shareholder runs

and fund liquidity management in my model.

Asset Market and Fire Sales. On any date, the fund manager can sell the illiquid assets

to an outside investor at fire sale prices. Flow-induced fire sales are natural and pervasive

(Williamson, 1988, Shleifer and Vishny, 1992, 1997), and they can create temporary price

impacts (Coval and Stafford, 2007). Based on these evidence, I assume that the selling price

of any unit of illiquid assets is pE = dER on date 2t and pL = dLR on date 2t + 1, where

0 < dE, dL < 1. Moreover, I assume that selling right after the shock (i.e., on date 2t) incurs

a higher price discount (and thus a lower selling price). Figure 1.2 illustrates a sample

selling price path before the end of the game (assumed to be date 4 in this example).19,20

Specifically, the following parameter assumption holds throughout the paper:

Assumption 1. The selling prices satisfy dL > dE + (1 � dE)(µE + µL) .21

This selling price pattern can be micro-founded by the idea of slow-moving capital in

illiquid asset markets (Duffie, 2010). When a redemption shock just hits the economy on

date 2t, because there are only a few liquidity providers available, it is very hard for the

fund manager to find a good selling price. But if she can wait until the next date 2t + 1,

19Although my model features discrete time, the price path is intentionally depicted as a cádlág function
that is everywhere right-continuous and has left limits everywhere to better reflect the perfectly elastic intra-day
asset demand and daily price update.

20I also consider more persistent price impacts in Section 1.6.3 as an extension and show that they will only
strengthen my results.

21Besides the fact that the fire sale cost on even dates is larger, the specific form in Assumption 1 is not
crucial to my results.

18



0 1 2 3 4 t

Initial Price

Fire Sale Prices

Shock
Game Continues

Shock
Game Continues

Shock
Game Ends

dER

dLR

R

pt

Figure 1.2: Sample Path of the Selling Prices

since more liquidity providers step in, it would be easier to find a higher selling price. If the

game continues on date 2t + 2, that is, when another round of redemption shock hits the

economy, the selling price drops again. These transitory price impacts induced by outflows

and the associated price over-shooting and reversal have been empirically documented

in various asset markets (for example, Campbell, Grossman and Wang, 1993, Pastor and

Stambaugh, 2003, Coval and Stafford, 2007, Hendershott and Seasholes, 2007, Mitchell,

Pedersen and Pulvino, 2007, Comerton-Forde, Hendershott, Jones, Moulton and Seasholes,

2010, Greenwood and Thesmar, 2011, Edmans, Goldstein, and Jiang, 2012, Jotikasthira,

Lundblad, and Ramadorai, 2012, Lou, 2012, Nagel, 2012, Hendershott and Menkveld, 2014,

among others). They are also consistent with the timeline and in particular with the nature of

shocks in my economy. This price pattern will be formally micro-founded in Appendix A.3,

based on the idea of slow-moving capital outlined above. To focus on redemption shocks

and their price impacts, my model is intentionally abstracted away from any fundamental

shocks of the underlying assets.

Fund Liquidity Management. The open-end mutual fund has to meet redemption

needs in cash on a daily basis.22 Hence, the fund manager needs to manage its liquidity

carefully to keep an adequate cash position. Specifically, she manages the cash position of

22In Section 1.5 I discuss how this model can be extended to analyze emergency rules such as redemption
restrictions and in-kind redemptions.
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the fund both passively and actively.

On the one hand, on any date t, if the fund does not have enough cash to meet date-t

projected redemptions at the beginning-of-day NAV (i.e., NAVt�1), the fund will be forced

to raise cash until all redemption needs can be met. Since there are no inflows and the

illiquid assets do not pay interim cash flows, the fund manager can only raise cash by selling

illiquid assets passively23 at the fire sale price pt. However, redeeming shareholders will

only get the end-of-day NAV, which will reflect asset sale losses within the given date, so

that the fund manager only has to sell assets to a point at which the redemptions can be

met at the end-of-day NAV. Denote the amount of illiquid assets that the fund has to sell

passively by qt, which will be endogenously determined in equilibrium.

On the other hand, in addition to selling assets passively for meeting redemptions, the

fund can also manage its cash buffer actively. Specifically, the fund manager is able to

voluntarily sell illiquid assets more than actual redemption needs to rebuild the cash buffer,

also at the fire sale price pt. Denote the amount of assets that the fund voluntarily sells on

date t by st. As will become clear later, it is the time-varying fire sale price that gives rise to

the motive for active cash rebuilding: the fund manager may optimally choose to rebuild

the fund’s cash buffer on odd dates when the fire sale price is high (and thus the fire sale

loss is low), in order to avoid more severe fire sales in future. In what follows, I will call st

the fund’s cash rebuilding policy on date t. Intuitively, a larger st means that the fund is

rebuilding its cash buffer more rapidly.

Now it is natural to specify the fund manager’s objective function formally. Denote by T

the random date on which the game ends.24 The fund manager chooses a sequence {s
t

}

date by date to maximize:

� Et

T�1

Â
t=t

(q
t

+ s
t

)(R � p
t

) , (1.2.3)

where the expectation is taken over the random variable T. In particular, selling illiquid

assets (either passively or actively) at fire sale prices will always hurt the fund NAV that

23In Section 1.5.6, an extension to the baseline model, I also allow the fund to have credit lines to raise cash.

24By construction, T must be an even number.
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redeeming shareholders are able to get. This implies that late shareholders’ redemption

decisions will be directly affected by the fund’s cash rebuilding policies. Specifically, the

late shareholders in stage t rely on the difference of NAV between date 2t and date 2t + 1 to

make redemption decisions, so they rationally form beliefs about the fund’s cash rebuilding

policies {s2t, s2t+1} within that stage.25 As one can expect, the fund’s cash rebuilding policies

will affect shareholders’ run decisions, which will in turn affect the fund’s optimal cash

rebuilding policies in the dynamics. This interaction is only at play when fund NAV is

flexible, the key institutional setting I highlight throughout this paper.

It is important to note that, although feasible, the fund manager will never rebuild

the fund’s cash buffer on even dates in any generic equilibrium, that is, s2t = 0 for any

t.26 This is intuitive because all the purpose for the fund to manage its cash buffer is to

avoid extremely costly fire sales on even dates, and hence it never makes sense for the fund

manager to voluntarily sell assets on even dates. As a result, the fund’s cash rebuilding

policy in stage t is solely determined by s2t+1, the amount of illiquid assets the fund manager

voluntarily sells on the odd date 2t + 1. In what follows, I consider s2t+1 the only choice

variable of the fund manager in any stage t.

Finally, it is worth noting that my model is admittedly not intended to be a general

theory of mutual fund management. In general, a fund manager may engage in other man-

agement activities (see Wermers, 2000 for a comprehensive evaluation of fund management

activities such as asset-picking, style-investing, and fee-setting). Also, in addition to meeting

redemption needs, a fund keeps cash for other purposes, such as making timely investments

in illiquid and high-yield assets without waiting for inflows (Chordia, 1996). To focus on

the interaction between fund liquidity management and shareholder runs, I assume that the

purchasing price of the illiquid assets (from outside dealers) is always the fundamental value

25In the U.S., mutual funds are required to disclose their asset positions quarterly, under the scrutiny of the
SEC according to 17 CFR Parts 230, 232, 239, and 274. See “Enhanced Disclosure and New Prospectus Delivery
Option for Registered Open-End Management Investment Companies, Investment Company Act Release No.
28584,” The SEC, Jan 13, 2009. From a theoretical point of view these requirements allow shareholders to form
consistent beliefs about a fund’s cash rebuilding policies.

26This statement will be formally proved in Appendix C.1.3.
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R. This is consistent with the existence of large bid-ask spreads in illiquid asset markets,

and it implies that the fund will never repurchase the illiquid assets in my economy with

net outflows only.

1.2.2 Interpretation of the Setup

The settings described above represent a mutual fund crisis management scenario, during

which the fund experiences persistent redemption shocks before a random recovery time.

In the setup, p measures how persistent the redemptions shocks are, or in other words how

likely the economy is going to recover from a bad market condition. When p is lower, the

game is more likely to continue, and thus the fund is more likely to experience redemptions

and potential fire sales in the next stage. As the fund manager never knows when the

game will end, liquidity management indeed helps the fund minimize its total expected

fire sale losses, and it matters more when p is lower. Also, I use the end-of-game event to

parsimoniously capture what can possibly happen in a normal-time scenario such as inflows

to the fund and dividend payouts to shareholders. In a normal-time scenario, asset prices

are also more likely to be high and correctly reflecting their fundamentals, as I postulate in

the setting. In this sense, my model is not intended as a general boom-bust cycle model of

mutual fund management but one focusing on crisis management and the economic forces

involved. From a theoretical standpoint, many dynamic crisis management theories in other

contexts employ similar structures of persistent shocks followed by a random recovery time,

for example, Lagos, Rocheteau and Weill (2011) on crises in OTC asset markets, He and

Xiong (2012) on corporate debt runs, and He and Milbradt (2015) on maturity choices in a

debt rollover crisis, among others.27

More importantly, the crisis management scenarios of open-end mutual funds are

pervasive in reality. They can occur at both long and short time horizons, and for both

fundamental and non-fundamental reasons. Since the May of 2013, the flagship Total Return

27These models all have quite distinct approaches and focuses from mine, but they share the similar structure
of negative shocks followed by a random recovery time.
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fund of the Pacific Investment Management Company (PIMCO), one of the largest fund

in the U.S., has experienced net outflows for more than 28 consecutive months.28 The

Prudential M&G’s flagship Optimal Income fund, one of the largest bond fund in the

Europe, has experienced more than 50 consecutive trading days of net outflows in mid

2015.29 Another example features Aberdeen Asset Management, the largest listed fund

manager in Europe, has experienced net outflows for 15 consecutive months as of the end

of 2015.30 This is also true at the aggregate level: between Aug 20, 2015 and Aug 26, 2015,

aggregate outflows from the entire equity fund sector happened for five consecutive trading

days at the total amount of 29.5 billion U.S. dollars, the largest weekly outflow on record

since fund flow data began being calculated in 2002. Not surprisingly, these scenarios

happen to smaller funds as well. My model is designed to capture such scenarios and to

explore the potential risks of shareholder runs and fire sales. Given the pervasiveness of the

fund crisis management scenarios, my model is likely to have first-order implications on the

potential financial stability risks of open-end mutual funds.

1.2.3 Roadmap and Solution Approach

Formally, the setup above defines an infinite-horizon stochastic game with a long-run player

(the fund manager) and a sequence of short-run players (the late shareholders). I take a

two-step approach to solve this game. First, in Section 1.3, I solve the stage game among

the late shareholders who are hit by consumption shocks in stage t, given any generic cash

policy of the fund within that stage. The late shareholders’ equilibrium run decisions in

that stage game will help determine how the asset and cash positions of the fund evolve

over time. Then I turn to the fully stochastic dynamic game in Section 1.4, solving for the

fund manager’s optimal dynamic cash policies. I will offer formal equilibrium definitions

accordingly in these two sections.

28“PIMCO Total Return Assets Drop Below 100 Billion,” The Reuters, Sept 2, 2015.

29“Investors Pull 2.7 Billion from Giant M&G Bond Fund,” The Financial Times, July 29, 2015.

30“Aberdeen Hit by Investor Outflows,” The Wall Street Journal, December 1, 2015.
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Both of the two steps provide new insights to the literature. The first step shows that

when fund NAVs flexibly adjust, cash rebuilding by the fund can directly push shareholders

to run, a point absent in classic bank run models. The second step further shows how

the potential for shareholder runs distorts fund liquidity management, a point new to the

mutual fund management literature.

1.3 Shareholder Runs

In this section, I focus on the two-date stage game, showing that the fund’s desire to rebuild

its cash buffer can trigger shareholder runs, and more rapid cash rebuilding leads to more

severe runs. This result is very general: runs can occur in equilibrium regardless of the

fund’s initial cash position.

1.3.1 Stage-Game Equilibrium Definition and Preliminary Analysis

The two-date stage-game equilibrium is a mixed-strategy Nash equilibrium: in any stage t

(consisting of dates 2t and 2t + 1), given the fund’s initial portfolio position (a2t, x2t) and

the late shareholders’ common beliefs on the fund’s cash rebuilding policy s2t+1, a late

shareholder’s run strategy maximizes her utility given other late shareholders’ strategies.

Since all the late shareholders are identical, there is no loss of generality to consider

symmetric equilibria when mixed strategies are allowed (Khan and Sun, 2002). Formally:

Definition 1. Given µE, µL, dE, dL, R, a2t, x2t, and s2t+1, a symmetric run equilibrium of the

stage-t game is defined as a run probability l2t(a2t, x2t, s2t+1) 2 [0, 1] such that

i) given other late shareholders’ run probability l2t, late investor i’s optimal run probability

l

i
2t = l2t maximizes her utility function (1.2.2), and

ii) all of the late shareholders have a common belief about the fund’s cash rebuilding policy s2t+1.31

By the Law of Large Numbers, in a symmetric run equilibrium, the total population of

31For simplicity, when analyzing the stage game, I slightly abuse the notation s2t+1 to denote both the
shareholders’ common belief about the fund’s cash rebuilding policy and the actual cash rebuilding policy itself.
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shareholders who redeem on date 2t is (µE + l2tµL)n2t. Intuitively, this means when some

late shareholders are going to run, there will be effectively more early shareholders and

fewer late shareholders.

Before solving for the stage-game equilibrium, I first describe three cases of the stage

game according to the fund’s starting cash position, x2t. As will become clear shortly, the

consequences of runs on the risk of fire sales are different when the initial cash position

varies. Different x2t also implies different nature of strategic interactions among late

shareholders. Hence, it is useful to discuss these cases separately to clarify the mechanism.

These cases can be characterized by the following three cash-to-assets ratio regions.

Cash-to-Assets Ratio Regions

Formally, assuming no cash rebuilding and no shareholder runs as the status quo, I

characterize three different cash-to-assets ratio regions of the portfolio position space

{(a2t, x2t)} ✓ R2
+ . In these different regions, the amounts of illiquid assets that the fund is

forced to sell on the two adjacent even and odd dates, that is, q2t and q2t+1, vary. I define

the cash-to-assets ratio

ht ⌘
xt

ax

for any date t.

Lemma 1. Suppose the fund does not rebuild its cash buffer and no late shareholder is going to run,

that is, s2t+1 = 0 and l2t = 0. Then there are three regions of the cash-to-assets ratio h2t in the

stage-t game. In these three regions, the amounts of illiquid assets that the fund has to sell passively

on dates 2t and 2t + 1 are characterized by:
8
>>>>>>>>>><

>>>>>>>>>>:

High Region Gh: q2t = 0, q2t+1 = 0, iff h2t >
(µE + µL)R
1 � µE � µL

,

Intermediate Region Gm: q2t = 0, q2t+1 > 0, iff
µER

1 � µE
6 h2t <

(µE + µL)R
1 � µE � µL

,

Low Region Gl: q2t > 0, q2t+1 > 0, iff h2t <
µER

1 � µE
.
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The exact values of q2t and q2t+1 in the intermediate and low regions will be solved in Section 1.3.3

and Section 1.3.4.

The three regions of h2t are intuitive. When h2t 2 Gh, the fund has enough cash to meet

all projected redemptions on both date 2t and 2t + 1, and thus no forced fire sales occurs.

When h2t 2 Gm, the fund only has enough cash to meet redemptions on date 2t but not on

date 2t + 1, so it has to passively fire sell its illiquid asset on 2t + 1. Finally, when h2t 2 Gl ,

the fund does not even have enough cash to meet redemption needs on date 2t, and thus

has to incur forced fire sales on both dates.

Lemma 1 also implies that the stage game is scale-invariant. Neither the absolute value of

(a2t, x2t) nor the initial population of shareholders n2t plays a role in determining the three

regions. This allows me to use the single variable, the cash-to-assets ratio, to characterize

shareholder runs in the stage game. This property of the stage game plays an important

role in making the model transparent and tractable.32 Without loss of generality, I assume

n2t = 1 throughout this section.

Although cash rebuilding by the fund unambiguously leads to shareholder runs, Lemma

1 suggests that the detailed reasons for runs can be different in these three regions because of

the different initial amounts of fire sales. In what follows, I analyze equilibrium shareholder

runs and their impact on the risk of fire sales in the three regions one by one.

1.3.2 High Cash-to-Assets Ratio Region Gh

When the stage game is in the high cash-to-assets ratio region Gh, Lemma 1 implies that

the fund is not forced to sell any illiquid assets, that is, q2t = q2t+1 = 0, if no shareholder

decides to run. But what would happen if some shareholders decided to run, that is, when

l2t > 0? The next lemma answers this question. It shows that even if all shareholders decide

to run, there will be still no forced fire sales.

32Existing dynamic bank run models are usually assumed to be cashless, because adding variable cash
positions would introduce a second state variable that makes a dynamic model intractable. See He and Xiong
(2012) and Cheng and Milbradt (2012) for discussions about this point.
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Lemma 2. When h2t 2 Gh, q2t(l2t) = q2t+1(l2t) = 0 for any given l2t 2 [0, 1] .

The intuition of Lemma 2 is clear. When some late shareholders decide to run, there will

be effectively more early shareholders and fewer late shareholders, but the total population

of redeeming shareholders in the given stage is not changed. Since the fund always has

sufficient cash to meet all early and late redemption needs at the initial NAV, it indeed has

enough cash on date 2t even if all of the late shareholders are going to run.

Lemma 2 has an important implication: NAV2t will never change regardless of whether

late shareholders run or not. In other words, in the high region, shareholders can effectively

get a fixed-value claim on date 2t even though the NAV is flexible by nature. As long

as the fund does not rebuild its cash buffer on date 2t + 1, Lemma 2 further implies that

NAV2t+1 = NAV2t regardless of l2t, suggesting that there is no strategic interaction among

late shareholders absent fund cash rebuilding. As a result, late shareholders will never run

if the fund does not rebuild its cash buffer.

However, given the endogenously fixed NAV2t, late shareholders may decide to run

if the fund rebuilds its cash buffer on date 2t + 1 (i.e., s2t+1 > 0), which results in a

predictable decline in NAV2t+1. The following lemma characterizes late shareholders’

strategic interaction when s2t+1 is positive.

Lemma 3. When h2t 2 Gh, late shareholders’ run decision l2t exhibits strategic complementarity if

and only if s2t+1 > 0. Moreover, the strategic complementarity becomes stronger as s2t+1 increases.

Mathematically, there are:

∂DuL(l2t)
∂l2t

> 0 and
∂

2DuL(l2t)
∂l2t∂s2t+1

> 0 ,

if and only if s2t+1 > 0, where DuL(l2t) = uL(l2t,i = 1; l2t,�i = l2t)� uL(l2t,i = 0; l2t,�i =

l2t), while
∂DuL(l2t)

∂l2t
= 0 ,

when s2t+1 = 0.33

33For simplicity, in what follows when I state results about strategic complementarity and substitutability I
omit the mathematical definitions because they are standard.
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Lemma 3 suggests the existence of run incentives, which comes from the predictable de-

cline in NAV when the fund rebuilds its cash buffer. Suppose the fund manager voluntarily

sells s2t+1 > 0 unit of illiquid assets on date 2t + 1 and l2t of the late shareholders decide to

run. Lemma 2 first suggests that no matter what l2t is, q2t is always zero and thus we have

NAV2t = Ra2t + x2t| {z }
NAV2t�1

. (1.3.1)

However, NAV2t+1 becomes lower due to the fire sales of illiquid assets on date 2t + 1:

NAV2t+1 =
R

illiquid assets remained
z }| {
(a2t � s2t+1) +

cash remainedz }| {
x2t � (µE + l2tµL)(Ra2t + x2t) +

cash rebuiltz }| {
dLRs2t+1

1 � (µE + l2tµL)| {z }
shareholders remained on date 2t + 1

(1.3.2)

= NAV2t �
(1 � dL)Rs2t+1

1 � µE � l2tµL
. (1.3.3)

The calculation in (1.3.2) reflects the fund manager’s voluntary asset sales and the asso-

ciated price impact on date 2t + 1 before the end-of-day NAV is determined. Consequently,

a wedge, as shown in (1.3.3), emerges between the NAV of the two dates. It suggests a

predictable decline in the NAV on date 2t + 1.

The predictable decline in NAV implies that the fund manager rebuilds its cash buffer

at the expense of the late shareholders who initially plan to wait until date 2t + 1, giving

rise to run incentives among these late shareholders. Specifically, the wedge in (1.3.3) is

increasing in 1 � dL and s2t+1, suggesting that the late shareholders who wait are hurt

more if the price impact is larger or if the fund sells more. The wedge is also increasing

in µE and l2t, suggesting that the late shareholders who wait are hurt more if more of

others are running, and thus they have to bear a higher fire sale cost per share on date

2t + 1. Moreover, for given s2t+1 and l2t, the utility gain DuL(l2t) of running over waiting

is qNAV2t � NAV2t+1, which is strictly increasing in l2t by (1.3.3). This illustrates the

underlying strategic complementarity among late shareholders.

Lemma 3 suggests that both cash rebuilding and flexible NAV adjustment play crucial

roles in generating the run incentives for late shareholders. If s2t+1 = 0, the stage game
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features no strategic interaction at all in the high region. If NAV2t+1 was fixed, which is the

case for MMFs, rebuilding the cash buffer by selling illiquid assets would not generate a

wedge of value between early and late shareholders.

I further show that the run incentives can indeed lead to shareholder runs in equilibrium.

When the fund rebuilds its cash buffer rapidly enough, that is, when s2t+1 is large enough,

late shareholders are going to run.

Proposition 1. When h2t 2 Gh, late shareholders’ equilibrium run behaviors are given by the

following three cases:

i) none of the late shareholders runs, that is, l2t = 0, if

s2t+1 < sh ⌘ (1 � q)(1 � µE � µL)(Ra2t + x2t)
(1 � dL)R

,

ii) all of the late shareholders run, that is, l2t = 1, if

s2t+1 > sh ⌘ (1 � q)(1 � µE)(Ra2t + x2t)
(1 � dL)R

,

iii) l2t 2 {0, el2t, 1}, if

sh 6 s2t+1 6 sh ,

where el2t is the solution to

s2t+1 =
(1 � q)(1 � µE � el2tµL)(Ra2t + x2t)

(1 � dL)R
.

Moreover, there are 0 6 sh 6 sh.

Proposition 1 suggests that the fund’s cash rebuilding indeeds leads to shareholder

runs in equilibrium, and more rapid cash rebuilding can trigger more shareholders to run.

The intuitions for the three cases are as follows. In Case i), when the fund sells only a

few illiquid assets, NAV2t+1 is still high enough, the utility gain of running over waiting

would be negative even if all of the late shareholders decided to run, so it turns out no

one runs. In Case ii), when the fund manager voluntarily sells so many illiquid assets to

a point where NAV2t+1 is so low and the utility gain of running would be positive even if
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others did not run, all of the late shareholders will run. Both Case i) and Case ii) feature

a unique equilibrium. In Case iii), the utility gain of running is negative when no one

runs but becomes positive when all of the late shareholders are going to run. Strategic

complementarity implies that the utility gain of running is increasing when more late

shareholders decide to run, so multiple equilibria emerge. Among the three possible

equilibria, the partial run equilibrium e
l2t features a point where the utility gain of running

is zero so that any late shareholder is indifferent between running or waiting.

One natural question is, would cash rebuilding (i.e., a positive s2t+1) ever make sense

from the fund manager’s perspective? This question is sensible given that shareholder runs

happen in equilibrium only if s2t+1 > 0. As I will show in Section 1.4, there can indeed be

scenarios in which the fund manager optimally chooses to rebuild its cash buffer rapidly

and bear some costs of shareholder runs, which supports the existence of run equilibria in

the stage game.

The next question is: what kind of costs do shareholder runs impose on the fund? In

other words, how do shareholder runs affect the fund’s total risk of fire sales, given the

fund manager’s objective function as in (1.2.3)? I formally answer this question by looking

at the law of motions of the fund’s portfolio position (a2t, x2t). The law of motions is also

important for the fully dynamic analysis in Section 1.4.

Corollary 1. When h2t 2 Gh, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t � s2t+1 , and ,

x2t+2 = x2t � (µE + µL)(Ra2t + x2t)| {z }
cash remained if no cash rebuilding

+ dLRs2t+1| {z }
cash rebuilt

+
(1 � l2t)µL(1 � dL)Rs2t+1

1 � µE � l2tµL| {z }
cash saved due to NAV adjustment

,
(1.3.4)

where l2t is the equilibrium run probability induced by (a2t, x2t) and s2t+1, as characterized in

Proposition 1.

I illustrate the implications of runs on the total risk of fire sales by interpreting the two

laws of motions in Corollary 1. The law of motions of a2t is straightforward by Lemma 2

because q2t = q2t+1 = 0 regardless of l2t. This suggests that even though cash rebuilding
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can trigger shareholder runs, it will not induce any forced fire sales in the current stage

when h2t 2 Gh.

However, shareholder runs can offset the fund’s cash rebuilding efforts and lead to

higher risk of future fire sales. This can be seen from the law of motions of x2t in (1.3.4). To

make this clear, I organize the terms in the right hand side of (1.3.4) in a way to better reflect

the cost of shareholder runs. The first term denotes the amount of cash remained if the fund

did not rebuild its cash buffer so that the fund paid the initial NAV to all of the early and

late shareholders. The second term denotes the actual amount of cash the fund can get by

selling s2t+1 illiquid assets. Neither of these two terms depends on l2t. The third term is

more interesting. It reflects the fact that the fund can give the late shareholders less cash

when it rebuilds its cash buffer on date 2t + 1. Specifically, when s2t+1 is positive, NAV2t+1

becomes lower as shown in (1.3.3). Thus, more cash remains on the fund’s balance sheet

than that indicated by the first term in (1.3.4). But the third term is strictly decreasing in

l2t, suggesting that this benefit of cash saving to the fund becomes smaller when more late

shareholders are running.34 As a result, when more shareholders run in equilibrium, the

fund loses more cash in the given stage, carries less cash to future stages under the same

cash rebuilding policy s2t+1, and thus faces higher risk of future fire sales.

With the intuition outlined above, it is convenient to combine the last two terms in (1.3.4)

and define

bpL(l2t) ⌘


dL +
(1 � l2t)µL(1 � dL)

1 � µE � l2tµL

�
R (1.3.5)

as the effective selling price on the odd dates 2t + 1. It is decreasing in l2t, meaning that

the effective selling price on odd dates is lower when more shareholders are going to run.

Intuitively, the fund prefers a higher effective selling price on odd dates because that helps

34There are two effects captured by the numerator and denominator of the third term in (1.3.4), respectively.
On the one hand, as more late shareholders run on date 2t, the fund has to pay the (endogenously) fixed NAV2t
to more shareholders. This is reflected in the numerator in the sense that only 1 � l2tµL late shareholders are
left to bear the asset sale cost on date 2t + 1, so that the benefit of cash saving due to flexible NAV adjustment
becomes lower to the fund. On the other hand, as reflected by the denominator as well as the wedge term
in (1.3.3), NAV2t+1 becomes lower as more shareholders are going to run, suggesting that the fund can give
less to each of those late shareholders who wait. In equilibrium, the former effect dominates, suggesting that
shareholder runs impose an unambiguous negative effect on the net amount of cash the fund can get by selling
s2t+1 illiquid assets.
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reduce future risk of fire sales. I will frequently refer to this definition in the dynamic

analysis in Section 1.4.

1.3.3 Low Cash-to-Assets Ratio Region Gl

Now I turn to the low cash-to-assets ratio region Gl . In this region, the fund’s starting cash

position is so low that it cannot even meet the redemption needs of the early shareholders.

Thus, it is forced to fire sell its illiquid assets on both dates 2t and 2t + 1. If late shareholders

decide to run, the fund has to passively sell even more. The following lemma formally

characterizes how late shareholder runs affect the fund’s forced fire sales on the two dates.

Lemma 4. When h2t 2 Gl, there are

q2t(l2t) =

cash gap
z }| {
(µE + l2tµL)(Ra2t + x2t)� x2t

[dE + (1 � dE)(µE + l2tµL)] R| {z }
effective selling price with NAV adjustment

, and , (1.3.6)

q2t+1(l2t) =

cash gap
z }| {

(1 � l2t)µL ·
R(a2t � q2t)

1 � µE � l2tµL
dL +

(1 � l2t)µL(1 � dL)
1 � µE � l2tµL

�
R

| {z }
effective selling price with NAV adjustment

, (1.3.7)

where q2t is increasing in l2t, q2t+1 is decreasing in l2t, and q2t + q2t+1 is increasing in l2t.

I first interpret the intuition behind the expressions of q2t(l2t) and q2t+1(l2t). In deter-

mining the amounts of forced fire sales, one needs to know 1) the amount of cash that the

fund is forced to raise (i.e., the “cash gap”), and 2) the price at which the fund can sell its

assets. Specifically, at the beginning of each date, the cash gap is defined as the difference

between the fund’s initial cash position and the amount of cash needed to meet projected

redemptions at the beginning-of-day NAV, as shown in the numerators of (1.3.6) and (1.3.7).

However, the fund does not really have to raise that much cash in equilibrium, because the

NAV goes down as the fund sells its assets, and redeeming shareholders are only entitled to

the end-of-day NAV, which reflects those asset sale costs. Effectively, this is equivalent to a

32



counterfactual in which the fund still sells assets to close the initial cash gap but at a higher

effective selling price as the denominators of (1.3.6) and (1.3.7) indicate.

Thus, like (1.3.5), I also formally define the notion of effective selling price on the even

dates 2t:

bpE(l2t) ⌘ [dE + (1 � dE)(µE + l2tµL)] R . (1.3.8)

Lemma 4 shows how shareholder runs affect the amounts of forced fire sales on the two

dates, respectively. When more late shareholders decide to run, the fund has to meet more

redemptions on date 2t while fewer redemptions on date 2t + 1. Hence, it is forced to fire

sell more assets on date 2t while fewer assets on date 2t + 1.35

More importantly, Lemma 4 also illustrates that runs unambiguously lead to higher total

amounts of forced fire sales in the given stage, as shown in the monotonicity of q2t + q2t+1

in l2t. This is because the effective selling price on date 2t is always lower than that on date

2t + 1,36 which means that more early redemptions have to be met by selling assets at a

lower effective selling price while fewer late redemptions will be met by selling assets at a

higher effective selling price. Hence, the increase of q2t will dominate the decrease of q2t+1

when more shareholders are going to run. As a result, shareholder runs, if occurring in

equilibrium, lead to unambiguously more severe current-stage fire sales.

Lemma 4 implies that both NAV2t and NAV2t+1 will be lower when shareholder runs

35Formally, for q2t, there are two effects: the cash gap is larger when l2t is larger, but the effective selling
price is also higher. The cash gap effect dominates so that q2t is increasing in l2t. For q2t+1, there are three
effects. When l2t gets larger, fewer late shareholders choose to wait, and fewer illiquid assets remain as well
(since q2t becomes larger). Both lead to a smaller cash gap. However, the effective selling price is lower as well.
Again the cash gap effect dominates so that q2t is increasing in l2t.

36More formally, by the monotonicity of the effective selling prices bpL(l2t) and bpE(l2t), there is

bpE(l2t) 6 bpE(1) < bpL(1) 6 bpL(l2t)

for any l2t 2 [0, 1]. In other words, the potential for runs may change the effective selling prices on the two
adjacent dates in the given stage, but the effective selling price on 2t is still lower than that on 2t + 1 regardless
of shareholder runs.
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occur. There are

NAV2t(l2t) = R

illiquid assets remained
z }| {
(a2t � q2t(l2t)) +

cash existedz}|{
x2t +

cash raisedz }| {
dERq2t(l2t)

= Ra2t + x2t| {z }
NAV2t�1

�(1 � dE)Rq2t(l2t) , (1.3.9)

and

NAV2t+1(l2t) =
R

illiquid assets remained
z }| {
(a2t � q2t(l2t)� q2t+1(l2t)� s2t+1) +

cash raised and rebuiltz }| {
dLR (q2t+1(l2t) + s2t+1)

1 � µE � l2tµL| {z }
shareholders remained on date 2t + 1

, (1.3.10)

where q2t(l2t) and q2t+1(l2t) are given in (1.3.6) and (1.3.7).

Like in the high region, a predictable decline in NAV2t+1 emerges because of the fund’s

forced fire sales and active cash rebuilding on date 2t + 1, as shown in (1.3.10). However,

different from the high region, NAV2t(l2t) is no longer fixed but decreasing in l2t, as shown

in (1.3.9). Intuitively, because the fund NAV flexibly adjusts, shareholders who choose to

run have to bear all the fire sale costs incurred on date 2t. This feature changes the nature

of the stage game.

Lemma 5. When h2t 2 Gl, late shareholders’ run decision l2t exhibits strategic substitutability for

any l2t satisfying qNAV2t(l2t) > NAV2t+1(l2t) and any feasible s2t+1.37 However, when s2t+1

increases, the strategic substitutability becomes weaker and qNAV2t(l2t)� NAV2t+1(l2t) becomes

larger, reinforcing a stronger incentive to redeem earlier.

The intuition behind Lemma 5 is as follows. On the one hand, the predictable decline in

NAV2t+1 can give rise to an incentive to redeem earlier (i.e., to run on date 2t). On the other

hand, a late shareholder who decides to run has to accept a lower NAV2t when more of

other late shareholders decide to run. In particular, as more shareholders are going to run,

the difference between NAV2t(l2t) and NAV2t+1(l2t) becomes smaller, implying strategic

substitutability among late shareholders. Intuitively, a shareholder redeeming at t realizes

37In equilibrium l2t will be an endogenous function of s2t+1. But in showing the strategic interaction among
late shareholders of the stage game, l2t should be treated as an independent variable. This also applies to the
analysis of the intermediate region.
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that more early withdrawals will potentially induce more fire sales at t and thus lower the

proceeds she receives, and thus the expected utility gain of running over waiting would be

decreasing as more shareholders run.

However, when the fund rebuilds its cash buffer, the strategic substitutability may not

reduce the run incentive (when q is large enough). Concretely, when the fund voluntarily

sells a sufficiently large amount of assets to rebuild its cash buffer, the resulting large

predictable decline in NAV2t+1 reinforces a sufficiently strong run incentive. As a result,

a late shareholder may still decide to run even if all of the other late shareholders have

already run, despite the strategic substitutability.

Consequently, the next proposition fully characterizes late shareholders’ equilibrium run

behaviors in the low region.

Proposition 2. When h2t 2 Gl, late shareholders’ equilibrium run behaviors are given by the

following three cases:

i) none of the late shareholders runs, that is, l2t = 0, if

s2t+1 < sl ⌘
Ra2t � q(1 � µE)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE))Rq2t(0)

(1 � dL)R
� q2t+1(0) ,

ii) all of the late shareholders run, that is, l2t = 1, if

s2t+1 > sl ⌘
Ra2t � q(1 � µE � µL)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE � µL))Rq2t(1)

(1 � dL)R
,

iii) some of the late shareholders run, that is, l2t = el2t, if

sl 6 s2t+1 6 sl ,

where el2t is the solution to

s2t+1 =
Ra2t � q(1 � µE � el2tµl)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE � el2tµl))Rq2t(el2t)

(1 � dL)R
� q2t+1(el2t) .

All of the q2t(l2t) and q2t+1(l2t) are given in Lemma 4. Moreover, there are sl > 0 and sl > sl.

Like Proposition 1, Proposition 2 also suggests that the fund’s cash rebuilding leads

to shareholder runs in equilibrium, and more rapid cash rebuilding can trigger more
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shareholders to run, despite the strategic substitutability. In Case i), when the fund does

not rebuild its cash buffer or only sells a few illiquid assets, NAV2t+1 can be still higher

regardless of shareholders’ redemption decisions, so that late shareholders will not run. In

Case ii), when the fund voluntarily sells so many illiquid assets, NAV2t+1 is so low that

the utility gain of running over waiting is positive even if all of the late shareholders have

already run. In other words, fund cash rebuilding can reinforce a strong run incentive

despite the strategic substitutability. In addition, all of the late shareholders do not run

unless the fund rebuilds its cash buffer (since sl > 0), suggesting that only cash rebuilding

by the fund can push all the shareholders to run in this mutual fund context.38 In Case iii),

the utility gain of running over waiting is positive when no shareholder runs but becomes

negative when all of the late shareholders are going to run. In this case, there exists some

run equilibrium in which the utility gain of running over waiting is zero, so that late

shareholders are indifferent between running or waiting.

Again, I show how shareholder runs affect the risk of forced fire sales, by looking at the

law of motions of the fund portfolio position (a2t, x2t).

Corollary 2. When h2t 2 Gl, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t �
forced fire sales

z }| {
(q2t(l2t) + q2t+1(l2t))�s2t+1 , and , (1.3.11)

x2t+2 = dLRs2t+1| {z }
cash rebuilt

+
(1 � l2t)µL(1 � dL)Rs2t+1

1 � µE � l2tµL| {z }
cash saved due to NAV adjustment

= bpL(l2t)s2t+1 , (1.3.12)

where l2t is the equilibrium run probability induced by (a2t, x2t) and s2t+1, as characterized in

Proposition 2.

The two laws of motions here are different from those in Corollary 1, but can be unified

under the same intuition. The law of motions of a2t in (1.3.11) is different because of the

newly introduced forced fire sales terms: shareholder runs result in more forced fire sales in

38This is not true for a comparable bank with fixed-value deposits, in which all shareholders can run in
equilibrium even if the bank does not do anything by itself.
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the given stage. The law of motions of x2t in (1.3.12) loses the first term in (1.3.4). This is

natural because by construction no cash would remain in the low region if the fund did not

rebuild its cash buffer. Perhaps surprisingly, the two terms in (1.3.12) are exactly the same

as the last two terms in (1.3.4) despite the more complicated forced asset sales and NAV

updating in the low region. But this is still intuitive: all the proceeds from forced fire sales

accrue to the redeeming shareholders, and thus they will not affect the amount of cash that

the fund can carry into future stages. This suggests that, in rebuilding its cash buffer the

fund is still selling at the effective selling price bpL(l2t).

Importantly, Corollary 2 implies two different costs of shareholder runs. First, share-

holder runs force the fund to fire sell more illiquid assets in the current stage (remember

Lemma 4 shows that q2t + q2t+1 is increasing in l2t). Second, like that in the high region,

shareholder runs lead to a lower effective selling price on date 2t + 1 when the fund rebuilds

its cash buffer. This means that runs partially offset the fund’s efforts of cash rebuilding

and thus lead to higher risk of future fire sales. The second cost is also present in the high

region as shown in (1.3.4).

Compared to the analysis for the high region in Section 1.3.2, Proposition 2 and Corollary

2 suggest that starting with a low cash position makes a fund financially more fragile. Being

in the low cash-to-assets ratio region makes the fund more prone to forced fire sales initially.

Even worse, because the fund is running out of cash, it is likely to rebuild its cash more

rapidly (as formally shown in Section 1.4), leading to more severe runs. In particular, runs

in the low region are more detrimental to the fund: they not only increase current-stage

forced fire sales but also lead to higher risk of future fire sales.

1.3.4 Intermediate Cash-to-Assets Ratio Region Gm

I then analyze the intermediate cash-to-assets ratio region Gm. In this region, the fund’s

starting cash position is moderate in the sense that it can meet all of the early shareholders’

redemption needs but then falls short for late shareholders’ redemption requests.

In the intermediate region, we still have the universal results of shareholder runs as
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those in the high and low regions. Specifically, the fund’s cash rebuilding can lead to runs

in equilibrium, and more rapid cash rebuilding implies more severe runs. Also, there are

two costs of runs as those in the low region: more current-stage forced fire sales and higher

risk of future fire sales.

However, the underlying strategic interaction among shareholders becomes more in-

volved in the intermediate region. When only a few late shareholders decide to run, the

fund will not be forced to fire sell its illiquid assets on date 2t, and thus NAV2t will be

endogenously fixed. However, when many late shareholders decide to run, the fund will be

forced to sell its assets on date 2t, and thus both NAV2t and NAV2t+1 vary. In this sense, the

stage game in the intermediate region can be viewed as a hybrid of one game in the high

region and another one in the low region, which can switch from strategic complementarity

to substitutability as more shareholders decide to run. However, it is still the fund’s cash

rebuilding and the resulting predictable decline in NAV2t+1 that reinforce a strong run

incentive. Given the results in Sections 1.3.2 and 1.3.3, I defer the full investigation of the

intermediate region to Appendix A.2. The formal results are stated there as Lemma 21,

Proposition 27, and Corollary 6.

1.3.5 The Differences from Bank Runs and Market Runs

Before analyzing the fully dynamic model of fund cash management, it is useful to contrast

the shareholder run mechanism to those underlying classic bank runs (Diamond and

Dybvig, 1983) and market runs (Bernardo and Welch, 2004, Morris and Shin, 2004). This

helps highlight the contribution of this paper to the existing run literature.

First, fund shareholder runs differ from classic bank runs in terms of the underlying

mechanism. In my model, the first-mover advantage does not come from an exogenous

fixed-NAV claim on date 2t like the deposit at a bank. Instead, it is the fund’s desire to

rebuild its cash buffer on date 2t + 1 and the resulting predictable decline in NAV2t+1 that

lead to a strong first-mover advantage and thus the potential for shareholder runs. In

contrast, when a comparable bank rebuilds its cash buffer by selling assets, the underlying
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deposit value will not change,39 and thus bank cash rebuilding by itself cannot directly

generate depositor runs.

To illustrate the differences between fund shareholder runs and classic bank runs more in

depth, it is again helpful to separate the cases with a high and a low starting cash position.

When the fund starts with a high cash position, late shareholders are going to run

only if the fund voluntarily sells a sufficient amount of assets to rebuild its cash buffer,

which generates a large enough predictable decline in NAV. On the one hand, although

the late shareholders who run are expecting to get a fixed NAV on date 2t, NAV2t is fully

endogenous and flexible by nature. This is in contrast to bank run models in which a

fixed-value claim is either exogenously assumed or derived as the optimal contract in an

outer risk-sharing problem. On the other hand, in a typical two-date bank run model,

strategic complementarity arises because run-induced asset liquidation on the early date

hurts what a waiting shareholder can get on the late date; no asset liquidation happens

on the late date. But in my model, no fire sales ever occur on date 2t when the fund is in

the high cash-to-assets region. Instead, runs hurt shareholders who wait because fewer of

them are left on date 2t + 1 and thus each has to bear a higher asset sale cost per share

when the fund rebuilds its cash buffer. As will be clear in the dynamic analysis, when more

shareholders run, the fund loses more cash on date 2t and thus may want to rebuild it cash

buffer more rapidly, creating an negative externality on the late shareholders who wait.

In contrast, when the fund starts with a low cash position, the stage game can even

feature strategic substitutability, but the fund’s cash rebuilding reinforces a strong run

incentive. In classic two-date bank run models, the game exhibits strategic substitutability

only if the bank goes bankruptcy on the early date and an equal sharing rule is applied

among depositors. In other words, strategic substitutability emerges only because more

depositors are going to share the fixed liquidation value on the early date, and thus

everyone gets less. Such strategic substitutability is absent as long as the bank is still

39To be precise, banks are always financed by some equity, so that the asset sale costs go to the equity
holders. This is consistent with the reality in the sense that deposit banks are always subject to some capital
requirements.
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solvent. However, in my mutual fund model with a fully flexible NAV, the fund never goes

bankruptcy. Strategic substitutability instead emerges from the fact that the fund may be

forced to fire sell more illiquid assets on date 2t and thus NAV2t becomes lower. Indeed,

some fund managers refer to this strategic substitutability to deny the existence of fund

shareholder runs. But as I have already showed, the fund’s cash rebuilding and the resulting

predictable decline in NAV can lead to shareholder runs in equilibrium despite the strategic

substitutability.

Regardless of the starting cash position, the shareholder run mechanism further high-

lights a dynamic interaction between the fund and its shareholders, which is absent in bank

run models that focus on coordination failures among depositors themselves. Specifically, a

shareholder’s run decision not only depends on her belief about other shareholders’ run

decisions, but also depends on her belief about the fund’s cash rebuilding policy,40 which

in turn depends on all the future generations of shareholders’ run decisions in the fully

dynamic model.

Observationally, fund shareholder runs also tend to be “slow-moving,” in the sense that

their costs are reflected in higher fire sale losses over time rather than an abrupt bankruptcy

as that in bank run models.41 This nature suggests that the negative impacts of shareholder

runs on fund performance can be gradual but long-lasting.

The run mechanism in my model is also different from that underlying market runs.

The notion of market runs is formally proposed by Bernardo and Welch (2004) and Morris

and Shin (2004), which independently argue that if an asset market features an exogenous

downward-sloping demand curve, investors fearing future liquidity shocks will have an

incentive to front-run, selling the asset earlier to get a higher selling price. This run

mechanism leads to massive fire sales in equilibrium. In my model, shareholders get

40In this sense, the shareholder run mechanism within the stage game more closely resemble the idea of
fundamental runs as argued by Chari and Jagannathan (1988), Jacklin and Bhattacharya (1988) and Allen and
Gale (1998).

41In my model, as long as the entire population of shareholders are not going to run (i.e., µE + µL < 1), the
fund will stay solvent. This is not true for a bank, which can be forced to go bankruptcy even if only a fraction
of depositors run.
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access to the underlying assets only through the fund, and fund cash management is indeed

beneficial to shareholders because it helps reduce total expected fire sale losses. However, the

key tension that I document is that the fund’s dynamic cash rebuilding also endogenously

gives rise to a predictable decline in NAV and thus a new kind of run incentives. No cash

management implies no runs in my model. In contrast, there is no role for cash management

in market run models. In this sense, market run models focus on the asset market itself while

my theory focuses on the role of financial intermediaries. This allows me to distinguish

between risks that come from the active management of financial intermediaries and those

that are only a reflection of the underlying asset market frictions.

1.4 Fund Liquidity Management in the Presence of Runs

In this section, I turn to the fully dynamic game and endogenize the fund’s optimal dynamic

cash rebuilding policy. I show that the potential for runs gives rise to a new tension:

rebuilding the cash buffer more rapidly can trigger runs, while rebuilding it less rapidly

puts the fund at higher risk of future fire sales as well as future runs. I then show that a

time-inconsistency problem further complicates this tension, leading to severe fire sales in

expectation despite optimal cash management by the fund.

1.4.1 Dynamic Equilibrium Definition and Preliminary Analysis

The dynamic equilibrium is a Markov perfect equilibrium42: in any stage t (consisting of

dates 2t and 2t + 1), as long as the game continues, both the fund manager and the late

shareholders’ strategies are functions of the state variables a2t and x2t, the fund’s starting

portfolio position, and the strategy profile is subgame perfect. Formally, I have:

42As shown in Bhaskar, Morris and Mailath (2013), an equilibrium is purifiable if some close-by behavior is
consistent with equilibrium when agents’ payoffs in each stage are perturbed additively and independently, and
for infinite stochastic games with at most one long-run player all purifiable equilibria are Markov. My model
can be viewed as a special case of the general class of games described in Bhaskar, Morris and Mailath (2013).
As the fund manager is the only long-run player in my model, to restrict attention to Markov equilibria involves
no loss of generality in the sense of finding all purifiable equilibria.
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Definition 2. Given µE, µL, dE, dL, and R, a Markov perfect equilibrium is defined as a combination

of the fund manager’s optimal cash rebuilding policy function s⇤2t+1(a2t, x2t) and the late shareholders’

run decision l2t(a2t, x2t, s2t+1) such that

i) given any state (a2t, x2t) and any generic common belief of the cash rebuilding policy s2t+1(a2t, x2t),

the late investors’ run decision l2t(a2t, x2t, s2t+1) 2 [0, 1] constructs a symmetric run equilibrium

as defined in Definition 1, which also determines q2t and q2t+1 in any stage,

ii) the fund manager’s optimal cash rebuilding policy function s⇤2t+1(a2t, x2t, l2t) solves the

following Bellman equation:

V(a2t, x2t) = �(1 � dE)Rq2t � (1 � dL)Rq2t+1 + max
s⇤2t+1

[�(1 � dL)Rs2t+1 + (1 � p)V(a2t+2, x2t+2)] ,

(1.4.1)

iii) the state variables (a2t, x2t) are govern by the endogenous laws of motions as described in

Corollaries 1, 2 and 6, according to the respective cash-to-assets ratio regions.

I use a guess-and-verify approach to solve for the equilibrium.43 Specifically, I will

first characterize some important properties of the value function V(a2t, x2t). With the help

of these properties, I solve for the equilibrium for different parameter values of q, which

governs the late shareholders’ propensity to run.

The stage game may admit multiple equilibria in some circumstances, and thus an

equilibrium selection mechanism is needed. Since equilibrium selection is not crucial

to my main point about the dynamic interdependence between shareholder runs and

fund liquidity management, I assume that late shareholders will coordinate to the worst

equilibrium whenever multiple equilibria occur.44 This equilibrium selection mechanism

can be motivated by that the fund manager may be ambiguity averse to the potential for

shareholder runs, so that she wants to find the most conservative cash rebuilding policies.

43Formally, the usual first-order approach does not apply here, because the value function is only piecewise-
differentiable.

44See Postlewaite and Vives (1987), Allen and Gale (1998), Cooper and Ross (1998), among other more recent
papers, for a similar treatment; some of those papers assume shareholders to coordinate to the best equilibrium
to justify the existence of banks.
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Alternative equilibrium selection mechanisms such as selecting the best equilibrium or the

static global game approach (Goldstein and Pauzner, 2005) will not qualitatively change my

results.

The following proposition establishes the existence and some important analytical

properties of the value function.

Proposition 3. A value function V(a2t, x2t) exists under the Markov strategies proposed in

Definition 8. In particular, V(a2t, x2t) is homogeneous of degree one (HD1) in (a2t, x2t).

The fact that V(a2t, x2t) is HD1 in (a2t, x2t) is important. It implies that the dynamic

game is also scale-invariant, and thus the cash-to-assets ratio h2t becomes the single effective

state variable of the fully dynamic model. This property will make the analysis of the fund’s

dynamic cash rebuilding policies more transparent.

Finally, before analyzing the fully dynamic equilibrium in general, I analyze how

different values of p, the probability at which the game ends, shape the fund’s optimal cash

rebuilding policy. Intuitively, when the shock is less persistent (i.e., p is large), the future

risk of fire sales is small, and thus cash buffers become less valuable. Therefore, when p is

sufficiently large, it makes little sense for the fund to rebuild its cash buffer ex-ante, because

doing do only induces current sales of assets for sure but generates little future benefit. As

a result, the model admits a type of equilibria in which the fund finds it optimal not to

rebuild its cash buffer at all. In these equilibria, ex-post, the fund may be forced to fire sell

many illiquid assets in future, because it may not have enough cash buffer when the game

continues. This is consistent with the view that if agents underestimate the probability of

bad shocks they are likely to suffer huge losses ex-post (Gennaioli, Shleifer and Vishny,

2012, 2013).

Lemma 6. When p is sufficiently large, the equilibrium features s⇤2t+1(a2t, x2t) = 0 for any starting

portfolio position (a2t, x2t).

To better illustrate the key trade-off involved in the dynamic model, in the following

analysis, I will consider an arbitrarily small (but still positive) p. Intuitively, this means that
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the redemption shocks are sufficiently persistent, consistent with the crisis management

scenarios discussed in Section 1.2.2. This will introduce significant future risk of fire sales

and thus give rise to a significant trade-off between current runs and future fire sales.45

1.4.2 The No-Run and Extreme-Run Scenarios: q = 0 and q = 1

First, I consider two extreme scenarios, which are sufficient to illustrate the key trade-off

underlying the fund’s optimal cash management. One is the scenario of q = 0, in which there

are completely no runs. The other is the scenario of q = 1, in which late shareholders are

indifferent between early and late consumptions so that they have the strongest propensity

to run.

I show that, in both scenarios, the fund optimally rebuilds its cash buffer when its cash

position falls below some threshold. But the threshold and the optimal amount of cash

rebuilding are different in these cases, reflecting different trade-offs between current runs

and future fire sales.

I start by defining some new notations to streamline the presentation. First, the dynamic

game is scale-invariant according to Proposition 3, so it is convenient to define

s2t+1 ⌘ s2t+1

a2t
,

the fraction of illiquid assets that the fund voluntarily sell on odd dates 2t + 1 (relative to

the beginning-of-stage asset position a2t), to denote the cash rebuilding policy. Moreover,

Corollaries 1, 2, and 6 suggest that h2t+2 is uniquely determined by (a2t, x2t) and s2t+1.46

Given (a2t, x2t) as the state variables and h2t as the only effective state variable, it is also

convenient to use h2t+2 to denote the fund’s cash rebuilding policy.

I also recap the definitions of different cash-to-assets ratio regions. In particular, I further

divide the high region Gh into three different sub-regions: the high-low region Ghl , the

45It should be noted that those equilibria characterized by Lemma 6 are still intuitive and consistent with the
model settings. They are just less relevant to the main point of this paper: the dynamic interdependence of
shareholder runs and fund liquidity management in a crisis management scenario.

46Keep in mind that the fixed stage-game equilibrium selection mechanism is used when needed.
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high-intermediate region Ghm, and the high-high region Ghh:

Region Cash-to-Assets Ratio

Gl h2t <
µER

1 � µE

Gm
µER

1 � µE
6 h2t <

(µE + µL)R
1 � µE � µL

Ghl h2t >
(µE + µL)R
1 � µE � µL

and h2t+2 <
µER

1 � µE
if s2t+1 = 0

Ghm h2t >
(µE + µL)R
1 � µE � µL

and
µER

1 � µE
6 h2t+2 <

(µE + µL)R
1 � µE � µL

if s2t+1 = 0

Ghh h2t >
(µE + µL)R
1 � µE � µL

and h2t+2 >
(µE + µL)R
1 � µE � µL

if s2t+1 = 0

The three sub-regions of the high region Gh are defined from a dynamic perspective,

and they will be useful in describing the optimal dynamic cash rebuilding policy. When

the fund starts from Gh and does not rebuild its cash buffer, by definition, after meeting

redemptions in the given stage the fund still has a non-negative cash position in the next

stage. If the fund ends up into the low region Gl in the next stage, I say that the fund starts

from the high-low region Ghl . If instead the fund ends up into the intermediate region Gm

in the next stage, I say that the fund starts from the high-intermediate region Ghm. The

high-high region Ghh is defined in the same manner. Clearly, there is

Gh = Ghl [ Ghm [ Ghh .

Now I characterize the fully dynamic equilibria when q = 0 and q = 1. First, I analyze

the behavior of shareholder runs in these two scenarios, given any generic and feasible

cash rebuilding policy of the fund. These results are useful not only because they illustrate

whether and when shareholders will run in equilibrium, but also because they can help pin

down all the possible off-equilibrium paths.

Lemma 7. When q = 0, none of the late shareholders run in stage t, that is, l2t(a2t, x2t) = 0 for

any (a2t, x2t) and any cash rebuilding policy s2t+1.
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Lemma 7 is straightforward. If a shareholder gets nothing when running, they will never

run. In other words, there will be completely no runs in this scenario.

Lemma 8. When q = 1, all of the late shareholders run in stage t, that is, l2t(a2t, x2t) = 1 for any

(a2t, x2t) and any positive and feasible cash rebuilding policy s2t+1 > 0.

Lemma 8 shows that when the shareholders’ propensity to run is the highest (i.e., q = 1),

all of the late shareholders decide to run even if the fund only sells a small amount of assets

to rebuild its cash buffer, regardless of the fund’s initial cash position. In intuitive terms, in

this case shareholders are extremely sensitive to the fund’s cash rebuilding. This is because

when q = 1 the late shareholders simply compare between NAV2t and NAV2t+1 to decide

whether to run. As long as the fund rebuilds its cash buffer, there will be a predictable

decline in NAV2t+1 regardless of either the fund’s initial cash position or other shareholders’

run behavior, and thus all of the late shareholders are going to run.

Now I turn to the fund’s equilibrium cash rebuilding policy. With the help of Lemma 7,

the following proposition first characterizes the optimal cash rebuilding policy when q = 0.

Proposition 4. When q = 0, the equilibrium cash rebuilding policy of the fund is characterized

by:47

i) if h2t 2 Gl [ Gm [ Ghl, the fund chooses s

⇤
2t+1 > 0 such that

h

⇤
2t+2 =

µER
1 � µE

, and ,

ii) if h2t 2 Ghm [ Ghh, the fund does not rebuild its cash buffer, that is, s

⇤
2t+1 = 0.

The fund’s optimal dynamic cash rebuilding policy when q = 0, as characterized in

Proposition 4, is illustrated in Figure 1.3. In this figure, the horizontal axis denotes date,

while the vertical axis denotes the cash-to-assets ratio. The blue dotted line depicts the

evolution of the cash-to-assets ratio if the fund does not rebuild its cash buffer at all.

47Keep in mind that the dynamic equilibrium requires sequential optimality. In other words, the fund’s
cash rebuilding policy is optimal in a stage only when in the next stage the fund also follows its optimal cash
rebuilding policy, which is again conditional on the fund’s optimal cash rebuilding policy in the following stage,
and so on.
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2t 2t + 2 2t + 4

h2t h2t+2 h2t+4
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Gm

Ghl

Ghm

Ghh

bpE(0)

bpL(0)bpL(0)

The horizontal axis denotes date. The vertical axis denotes the cash-to-assets ratio (the effective state
variable) by different regions. The blue dotted line depicts the evolution of the cash-to-assets ratio if
the fund does not rebuild its cash buffer at all. The red line depicts the equilibrium evolution of the
cash-to-assets ratio when the fund follows the optimal dynamic cash rebuilding policy. From the
perspective of any stage t (including dates 2t and 2t + 1), the effective selling price bpL(·) on the left
side is that at which the fund can rebuilds its cash buffer in the current stage, while the effective
selling prices bpE(·) and bpL(·) on the right side are those at which the fund can raise cash in the next
stage in different cash-to-assets regions. See the main text for more explanations.

Figure 1.3: Equilibrium Cash Rebuilding Policy When q = 0

The red line depicts the evolution of the cash-to-assets ratio when the fund follows the

optimal dynamic cash rebuilding policy in equilibrium. Because of the scale-invariance

and the resulting stationarity of the dynamic game, the equilibrium cash rebuilding policy

(conditional on the effective state variable, the cash-to-assets ratio h2t) always follows the

same pattern in different stages as long as the game continues.

Proposition 4 says that as long as its initial cash position falls below the high-intermediate

region Ghm, the fund optimally rebuilds its cash buffer until the next-stage cash-to-assets

ratio h2t+2 reaches the cutoff between the low region Gl and the intermediate region Gm.

But if the fund starts with a higher initial cash position, it will not rebuild its cash buffer. In

either case, the fund has a strictly positive cash target for the next stage.
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Since there are no runs in equilibrium (by Lemma 7), the main insight behind Proposition

4 is a trade-off between current-stage active asset sales (under a policy of more rapid cash

rebuilding) and future-stage forced fire sales (under a policy of no or less rapid cash

rebuilding). Intuitively, because the fund manager cares about total expected fire sale losses,

it is worthwhile for her to voluntarily sell more assets at the current stage (on date 2t + 1),

if the cash buffer rebuilt can help avoid more severe fire sales in the next stage (on dates

2t + 2).

Importantly, due to flexible NAV adjustment, what matter for the dynamic trade-off of

current and future amounts of fire sales are not the physical but the effective selling prices

as defined in (1.3.5) and (1.3.8). To see this, on the one hand, suppose there is a cash gap

Dx2t+2 > 0 on date 2t + 2. In other words, the difference between the fund’s initial cash

position x2t+2 and the amount of cash needed to meet projected redemptions on date 2t + 2

at the beginning-of-day NAV (i.e., NAV2t+1) is Dx2t+2. As a result, there will be forced fire

sales on date 2t + 2. But since redeeming shareholders on date 2t + 2 will only get a lower

end-of-day NAV, the fund manager can effectively sell at the effective selling price on date

2t + 2 to meet the initial cash gap Dx2t+2. On the other hand, the fund manager can choose

to actively sell more assets on date 2t + 1, also at the corresponding effective selling price, to

rebuild Dx2t+2 unit of cash buffer in advance on date 2t + 1, carry it to date 2t + 2, and thus

avoid forced fire sales on date 2t + 2. Moreover, the physical selling price on date 2t + 1

is always higher than that on date 2t + 2. Hence, when the effective selling price on date

2t + 1 is higher than that on date 2t + 2, the fund can sell a smaller amount of assets at a

higher physical price on date 2t + 1 in order to avoid higher fire sale losses on date 2t + 2.

Hence, a more rapid cash rebuilding policy is better for the purpose of minimizing total fire

sale losses, and thus it is optimal for the fund to do so.

I discuss different cash-to-asset ratio regions to illustrate this trade-off in more depth.

First, the fund always rebuilds its cash buffer when starting from the low, the intermedi-

ate, or the high-low cash-to-assets ratio region (i.e., h2t 2 Gl [ Gm [ Ghl). The reason is the

following. If the fund did not rebuild its cash buffer, it would end up in the low region in
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the next stage (i.e., h2t+2 2 Gl). Since the fund will be forced to fire sell its assets then (as the

game continues with a high probability 1 � p), the fund manager may want to rebuild its

cash buffer on date 2t + 1 to avoid fire sales on 2t + 2. Specifically, because late shareholders

never run (by Lemma 7), the effective selling price to rebuild cash buffers actively on date

2t + 1 is bpL(0), while the effective selling price to raise cash passively on date 2t + 2 is bpE(0).

As bpL(0) > bpE(0), the fund manager always finds it optimal to rebuild its cash buffer on

date 2t + 1.

Given that the fund rebuilds its cash buffer, what is the optimal amount of active asset

sales? In equilibrium, the fund manager will rebuild the cash buffer up to a point where

h2t+2 just hits the cut-off between the low and the intermediate region. This is because, on

the one hand, a lower cash target still implies forced fire sales on date 2t + 2 at a lower

effective selling price bpE(0) and thus is not optimal. On the other hand, any more cash

rebuilding on date 2t + 1 means the fund will still have a strictly positive cash buffer on

date 2t + 3 after outflows on date 2t + 2. This is also not optimal because that cash buffer is

excessive from the perspective of date 2t + 1. In other words, even if asset sales occur on

date 2t + 3, the fund manager will be able to sell at the higher effective selling price bpL(0)

then. Since the game only has a less than one probability to continue, selling at the same

effective price bpL(0) on date 2t + 1 to build that excessive cash buffer is not profitable.

Then, it is straightforward to understand the equilibrium cash rebuilding policy in

the high-intermediate and the high-high regions (i.e., h2t 2 Ghm [ Ghh) with the intuition

outlined above. Here, even if the fund does not rebuild its cash buffer, it will end up at least

in the intermediate region, where the fund can raise cash at the effective selling price bpL(0)

when needed. As a result, any cash buffer rebuilt on date 2t + 1 (by selling assets also at the

effective selling price bpL(0)) is excessive, and thus the fund finds s

⇤
2t+1 = 0 to be optimal.

Next, I characterize the optimal cash rebuilding policy when q = 1 and contrast it to

that in the scenario of q = 0. This illustrates how the potential for runs distorts a fund’s

dynamic liquidity management.

Proposition 5. When q = 1, the equilibrium cash rebuilding policy of the fund is characterized by:
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i) if h2t 2 Gl [ Gm [ Ghl [ Ghm, the fund chooses s

⇤
2t+1 > 0 such that

h

⇤
2t+2 =

(µE + µL)R
1 � µE � µL

, and ,

ii) if h2t 2 Ghh, the fund does not rebuild its cash buffer, that is, s

⇤
2t+1 = 0.

2t 2t + 2 2t + 4 2t 2t + 2 2t + 4

h2t h2t+2 h2t+4 h2t h2t+2 h2t+4

Gl

Gm

Ghl

Ghm

Ghh

Gl

Gm

Ghl

Ghm

Ghh

Run

bpE(1)

bpL(1)

bpL(1)

Figure 1.4: Equilibrium Cash Rebuilding Policies When q = 0 (Left) and q = 1 (Right)

The right panel of Figure 1.4 illustrates the equilibrium cash rebuilding policy when

q = 1. To recap and better show the difference, I illustrate the equilibrium cash rebuilding

policy when q = 0 on the left. As one can see, the equilibrium when q = 1 differs

significantly from that when q = 0 because of the interdependence between shareholder

runs and fund liquidity management.

Proposition 5 says that the fund starts to rebuild its cash buffer at a higher starting cash

position, and it also rebuilds the cash buffer more rapidly, compared to the scenario without

runs. Specifically, as long as the fund’s initial cash position falls below the high-high region

Ghh, it rebuilds its cash buffer until the next-stage cash-to-assets ratio h2t+2 reaches the cutoff

between the intermediate region Gm and the high region Gh.
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Although Proposition 5 still features the trade-off between current- and future-stage fire

sales, this trade-off becomes more subtle in the presence of runs. By Corollaries 1, 2 and 6,

runs in equilibrium result in less effective cash rebuilding (i.e., a lower effective selling price)

on odd dates and more forced fire sales on even dates. Thus, when current-stage run risks

are relatively high, the fund wants to choose a less rapid cash rebuilding policy. In contrast,

when future-stage risk of fire sales is relatively high, in particular, when future-stage runs

lead to more severe future-stage fire sales, the fund prefers a more rapid cash rebuilding

policy.

Again, I discuss different cash-to-asset ratio regions to illustrate how shareholder runs

interact with fund cash rebuilding in equilibrium.

First, suppose the fund starts from the low or the intermediate region (i.e., h2t 2 Gl [ Gm).

By Lemma 8, all of the late shareholders are going to run on date 2t (because NAV2t >

NAV2t+1) in this case, which implies a lower effective selling price (for cash rebuilding)

bpL(1) on date 2t + 1. However, if the fund did not rebuild its cash buffer, it would end up

in the low region in the next stage, where the fund would have to fire sell at an effective

price bpE(1). Because bpL(1) > bpE(1), the risk of future fire sales is relatively larger. Hence,

the fund still finds it optimal to rebuild its cash buffer on date 2t + 1 to avoid more costly

fire sales on date 2t + 2, despite the runs on date 2t.

However, different from the scenario when q = 0, when q = 1 the fund does not stop

rebuilding its cash buffer even if the next-stage cash-to-assets ratio hits the cutoff between

the low and the intermediate region. The reason is as follows. If the fund ended up in the

intermediate region in the next stage (i.e., h2t+2 2 Gm), again by Lemma 8, all of the late

shareholders in the next stage will run on date 2t + 2 too. Thus, the fund would be forced

to fire sell its assets on date 2t + 2 at the effective selling price bpE(1) even if starting in the

intermediate region then. Fundamentally, future-stage runs lead to higher risk of future fire

sales. As a result, the fund will keep rebuilding its cash buffer even when h2t+2 2 Gm.

In equilibrium, the fund manager will rebuild the cash buffer up to a point where h2t+2

hits the cutoff between the intermediate and the high region, which is higher than the
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counterpart when q = 0 (as shown in Proposition 5). As analyzed above, a lower cash target

implies forced fire sales on date 2t + 2 at a lower effective selling price bpE(1) and thus is

not optimal. Also, a higher cash target becomes excessive despite runs in the next stage.

Specifically, a higher cash target implies that the fund would end up in the high region in

the next stage (i.e., h2t+2 2 Gh), where runs only lead to a lower effective selling price bpL(1)

on date 2t + 3. Since the game only has a less than one probability to continue, selling at the

same effective price bpL(1) on date 2t + 1 to build that excessive cash buffer is not profitable.

Second, suppose the fund starts from the high-low or the high-intermediate region (i.e.,

h2t 2 Ghl [ Ghm). If the fund did not rebuild its cash buffer, it would end up in the low or

the intermediate region (i.e., h2t+2 2 Gl [ Gm), where there would be expected forced fire

sales in the next stage. Since the risk of next-stage fire sales is still relatively higher, the fund

still finds it optimal to suffer current-stage runs (i.e., to incur a lower effective selling price)

and choose a more rapid cash rebuilding policy. For the same reason as discussed above,

the fund still optimally rebuilds its cash buffer to the cutoff between the intermediate and

the high region, and any more cash buffer would be excessive.

Lastly, I consider the high-high region (i.e., h2t 2 Ghh). Without cash rebuilding, the

fund would end up in the high-low or high-intermediate region in the next stage (i.e.,

h2t 2 Ghl [ Ghm) as long as the starting cash position is not sufficiently high.48 As discussed

above, all the next-stage late shareholders would decide to run on date 2t + 2 in those two

regions, because the fund would rebuild its cash buffer on date 2t + 3 . Would it make sense

for the fund to rebuild its cash buffer on date 2t + 1 to prevent these runs on date 2t + 2?

The answer is no in this case. This is because in the future stage the fund will be at least

in the high region, where runs will not result in forced fire sales on date 2t + 2. Although

future-stage runs on date 2t + 2 still lead to a lower effective selling price bpL(1) for cash

rebuilding on date 2t + 3, the effective selling price on date 2t + 1 would also be bpL(1) if

the fund chose to rebuild the cash buffer and triggered runs on date 2t. Since the game

48If h2t is sufficiently high, there can be h2t+2 2 Ghh with s2t+1 = 0. I can further divide region Ghh into
three separate regions to make the argument more precise. But doing this adds little to provide new insights.
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only has a less than one probability to continue, the risk of future-stage fire sales becomes

relatively smaller while current-stage costs of runs become relatively larger. As a result, the

fund optimally chooses not to rebuild its cash buffer in the high-high region.

Overall, compared to the scenario without runs (i.e., q = 0), Proposition 5 and the

intuition above suggest that the trade-off in fund cash rebuilding becomes more complicated

in the presence of runs. When the starting cash position is lower, future risk of fire sales

(in particular, future-stage forced fire sales induced by future runs) is relatively higher, and

thus the fund optimally chooses a more rapid cash rebuilding policy. On the contrary, when

the starting cash position is higher, current-stage costs of runs are relatively higher, and

thus the fund optimally chooses a less rapid cash rebuilding policy or does not rebuild the

cash buffer at all.

Finally, it is helpful to contrast the equilibrium cash rebuilding policies here to those

in the classic (s, S)-type inventory problem.49 In the (s, S)-type inventory problems, a firm

holds inventory because it helps the firm to meet future demand more easily. However, to

accumulate inventory is also costly. It may incur additional adjustment costs, which are

often assumed to be exogenous or following a quadratic form. When there are no runs, my

fund liquidity management framework resembles a (s, S)-type inventory problem with a

zero fixed cost and different variable costs on different dates. However, when the potential

for runs is introduced, it features a novel cash inventory problem in which the cost structure

is endogenously determined by shareholders’ run decisions, which are in turn endogenously

determined by the fund’s cash rebuilding policy itself.

1.4.3 The General Scenarios

I proceed to characterize the fully dynamic equilibria in the general scenarios when q 2 (0, 1).

In these general scenarios, the equilibrium cash policies and the resulting run behaviors

49See Stokey and Lucas (1989) for a textbook treatment of the classic (s, S)-type inventory problems and
Strebulaev and Whited (2012) for a review on the modern applications of (s, S)-type problems to dynamic
corporate liquidity management. None of the existing (s, S)-type problems considers a mutual fund context as I
do.
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become more involved. This is because when the shareholders have a moderate propensity

to run, they become less sensitive to the fund’s cash rebuilding than they would in the q = 1

scenario, while a sufficiently rapid cash rebuilding policy can still push them to run. This in

turn shapes the fund’s optimal cash rebuilding policy in equilibrium.

However, despite the complexity of the general scenarios, all the equilibrium results can

be still unified under the same trade-off between current-stage runs and future-stage fire

sales as discussed in Section 1.4.2. The formal result is stated in Proposition 6.

Proposition 6. When q 2 (0, 1), there exist two endogenously determined thresholds 0 < q < q <

1, such that

i) if q 2 (0, q], the equilibrium cash rebuilding policy is characterized by Proposition 4, that is,

the cash rebuilding policy follows that in the scenario of q = 0,

ii) if q 2 (q, q), the equilibrium cash policies are characterized by

a) if h2t 2 Gl [ Gm [ Ghl [ Ghm, the fund chooses s

⇤
2t+1 > 0 such that

h

⇤
2t+2 = h(ľ) ⌘ (µE + ľµL)R

1 � µE � ľµL
,

where ľ is given by 8
><

>:

l

⇤
2t > 0 iff h2t < h(ľ) ,

l

⇤
2t = 0 iff h2t > h(ľ) ,

in which l

⇤
2t denotes the equilibrium run behaviors under the optimal cash rebuilding policy

s

⇤
2t+1, and

Ghm ⌘
(

h2t|h2t >
(µE + µL)R
1 � µE � µL

and
µER

1 � µE
6 h2t+2 <

(µE + ľµL)R
1 � µE � ľµL

for s2t+1 = 0

)
,

b) if h2t 2 Ghm [ Ghh, then s

⇤
2t+1 = 0, where Ghm = Ghm/Ghm,

iii) if q 2 [q, 1), the equilibrium cash rebuilding policy is characterized by Proposition 5, that is,

the cash rebuilding policy follows that in the scenario of q = 1.

Figure 1.5 illustrates the optimal cash rebuilding policies when q varies. As suggested

by Proposition 6, when q is close to 0, the equilibrium is the same as that when q = 0,

while when q approaches 1 the equilibrium is the same as that when q = 1. As q increases,
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shareholder runs spread to more cash-to-assets regions, and the fund also chooses a more

rapid cash rebuilding policy in equilibrium to better avoid future-stage fire sales induced by

future-stage runs. Figure 1.5 illustrates the scenarios with a moderate value of q, in which

the equilibrium is different from the two extreme scenarios when q = 0 and q = 1.

t t + 2 t + 4

Ghm

Ghm

Run bpE(·)bpL(·)

bpL(0) bpL(0)

ht ht+2 ht+4

Gl

Gm

Ghl

Ghh

Figure 1.5: Equilibrium Cash Rebuilding Policy

1.4.4 The Time-Inconsistency Problem

I illustrate the time-inconsistency problem associated with fund cash rebuilding by asking

the following question. From Propositions 4, 5, and 6, it can be seen that for any q and

in any equilibrium path, the fund never allows its target of next-stage cash-to-assets ratio

below the intermediate region Gm regardless of the starting cash position. Why? In other

words, can there be any circumstances in which the fund finds it optimal to adopt a less

rapid cash rebuilding policy such that the next stage game falls into the low region (i.e.,

h

⇤
2t+2 2 Gl)?

This question is very valid in views of the trade-off between current runs and future
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fire sales. Especially, as suggested by Corollaries 2 and 6, more shareholder runs result

in more severe current-stage forced fire sales when the fund starts from the low or the

intermediate region. Why does not the fund choose a less rapid cash rebuilding policy to

prevent current-stage runs and thus reduce those forced fire sale losses?

Proposition 7 gives an answer. It suggests that, in the absence of a commitment device,

such a less rapid cash rebuilding policy as mentioned above will never appear in any

equilibrium path. But it may indeed be optimal if the fund can credibly announce and

commit to such a policy on date 2t. Figure 1.6 illustrates this problem.

Proposition 7. A cash rebuilding policy involving

h

⇤
2t+2 <

µER
1 � µE

cannot happen in any equilibrium path unless the fund is able to credibly commit to such a policy.

2t 2t + 2 2t + 4

h2t h2t+2 h2t+4

Gl

Gm

Ghl

Ghm

Ghh

Figure 1.6: The Time-Inconsistency Problem

The intuition behind Proposition 7 is a time-inconsistency problem, which aggravates

the tension in choosing between a rapid or a slow cash rebuilding policy. Starting from the
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low region or the intermediate region, the fund indeed has a relatively large current-stage

cost of shareholder runs because they lead to severe current-stage forced fire sales. Thus,

on date 2t, the fund may wish to commit itself to rebuilding its cash buffer less rapidly

on date 2t + 1 to reduce such run risks on date 2t. However, on date 2t + 1, because all

the date-2t costs of runs are sunk, the fund may instead be tempted to adopt a more rapid

cash rebuilding policy on date 2t + 1. Importantly, what matters for shareholders’ run

decisions on date 2t are their beliefs about the fund’s cash rebuilding policy on date 2t + 1.

In equilibrium, they can always anticipate the fund manager’s date-2t + 1 temptation to

rebuild the cash buffer more rapidly, and thus will always have strong incentives to run on

date 2t. Mathematically, the intuition outlined above can be also seen from the dynamic

equilibrium definition (Definition 8) and in particular from the Bellman equation (1.4.1) in

the non-commitment benchmark.

Proposition 7 suggests a fundamental difficulty in reducing fund shareholder runs in

practice, in which a commitment device can be hard to implement. In the mutual fund

context, shareholders decide to run not only because they expect other shareholders to run

at the same time, but more importantly because they expect the fund to rebuild its cash

buffer in the future, which gives rise to the predictable NAV and thus the run incentives. As

will be shown in Section 1.5, policies that are effective in preventing bank runs may fail in

preventing fund shareholder runs, because they are not designed taking into account the

dynamic interdependence of shareholder runs and fund liquidity management.

1.4.5 Expected Total Fire Sale Losses

Finally, I show in Proposition 8 that the potential for shareholder runs can lead to unambigu-

ously higher total fire sale losses ex-ante, regardless of the fund’s initial portfolio position.

This occurs in a world where both the fund manager and the shareholders are rational, and

the fund’s cash rebuilding policy is optimal. It suggests that the potential financial stability

risks induced by mutual fund shareholder runs can be significant and thus should not be

overlooked.
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Proposition 8. When q increases, the ex-ante total fire sale losses become higher for any positive

starting portfolio position (a2t, x2t).

As suggested by Proposition 7, the lack of a commitment device contributes to the

occurrence of run problems despite optimal liquidity management by the fund. I show in

Proposition 9 that introducing a commitment device can indeed help reduce total fire sale

losses in expectation by tempering shareholders’ run incentives.

Proposition 9. When the fund can pre-commit to a cash policy s2t+1 on date 2t, the ex-ante total

fire sale losses become lower for any positive (a2t, x2t) and any q > 0.

Intuitively, introducing a commitment device helps reduce total fire sales through two

ways. On the one hand, as suggested by Proposition 7, since the fund is able to pre-commit

to a less rapid cash rebuilding policy, it can directly reduce current-stage forced fire sales

by reducing shareholder runs. On the other hand, from a dynamic perspective, the risk of

future-stage fire sales also becomes lower thanks to less severe future runs, and thus the

fund is also more comfortable in choosing a less rapid cash rebuilding policy by selling

assets less aggressively in the current stage.

1.5 Policy Implications

Many regulators and practitioners have proposed fund-level policies, aiming at mitigating

potential financial stability risks of open-end mutual funds. By documenting the dynamic

interdependence between shareholder runs and fund liquidity management, my model

delivers new policy implications. Rather than making definitive policy prescriptions, I

emphasize how the mechanism in this model adds new dimensions to the current policy

debates.

1.5.1 MMF Reforms

First of all, my model contributes to the recent debate about MMF reforms. A major proposal

of reforming the MMFs is to adopt floating NAV accounting, which will effectively make
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MMFs like regular open-end mutual funds.50 However, as discussed by Hanson, Scharfstein

and Sunderam (2015), flexible NAV adjustment may not be a fix to run problems on MMFs.

My formal model also suggests the same view. In particular, MMFs adopting a flexible NAV

are no longer prone to an abrupt “breaking-the-buck,” but will be prone to a new type of

shareholder runs as I have shown. This is in particular relevant in bad times when funds’

cash positions are low while redemption shocks are large and persistent.

In the following, I turn to several other fund-level policies that are specific to regular

open-end mutual funds. I show that, perhaps surprisingly, some of them are less effective

than commonly thought in mitigating potential financial stability risks of mutual funds. The

key insight is again the dynamic dependence between runs and liquidity management.

1.5.2 Liquidity Requirements

I first discuss the proposal of imposing liquidity requirements on open-end mutual funds.

Although no formal liquidity requirements have been proposed to mutual funds, many

have been imposed on banks and MMFs by the U.S. SEC51 and the International Regulatory

Framework for Banks (Basel III)52 since the past financial crisis. Recently, the U.S. SEC voted

5-0 on Sept 22, 2015 to approve a new proposal requiring mutual funds to better manage

their liquidity risks. Also, the IMF and the BIS have both proposed potential stress tests for

mutual funds in 2015,53 which resemble fund liquidity requirements. These developments

suggest that formal liquidity requirements for mutual funds are likely to be introduced in

50This proposal has been introduced by the SEC in 2013 in amendments to its 2a-7 rules and then formally
adopted in 2014. It applies to institutional prime money market funds. See Hanson, Scharfstein and Sunderam
(2015) for a comprehensive discussion.

51In 2010, the U.S. SEC changed the 2a-7 rules to institute overnight and weekly liquidity thresholds for
MMFs. Specifically, the U.S. SEC mandated that any MMF holds at least 10% of their assets in securities
maturing within one business day and at least 30% of assets in securities maturing within one week.

52The Basel III accord of 2010 and 2011 require banks to hold a certain amount of high-quality liquid assets
to meet expected outflows. Given typical projections of outflows, the threshold for retail banks is set to be 3% of
stable retail deposits.

53“IMF Seeks Stress Tests for Asset Managers,” The Financial Times, April 8, 2015, and “Asset Managers’
Push into Bonds Prompts Regulatory Scrutiny,” The Financial Times, June 2, 2015.
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the future, given the increasing concerns about potential financial stability risks.

My model offers a new building block to help assess the effectiveness of liquidity

requirements for mutual funds. From a bank run perspective, Vives (2014) and Diamond

and Kashyap (2015) are among the first attempts to evaluate the effectiveness of these new

liquidity requirements in mitigating bank runs. Interestingly, as I have already shown, in a

bank context, selling illiquid assets to meet liquidity requirements would not induce runs

per se as long as the bank is solvent, but doing so can indeed lead to shareholder runs in a

mutual fund context. This suggests that designing any appropriate mutual fund liquidity

requirements needs to take account of the dynamic interdependence of shareholder runs

and fund liquidity management.

Specifically, the results in Proposition 6 suggest state-contingent and fund-specific

optimal cash targets for mutual funds. On the one hand, when persistent redemption

shocks are likely to occur in the future, mutual fund managers should be warned about

the possibility of future shareholder runs. Hence, a more stringent liquidity requirement is

preferred. This ensures that when future redemption shocks realize, mutual funds will have

higher cash-to-assets ratios and thus can better avoid severe fire sales and runs.

On the other hand, when persistent redemption shocks have already hit the economy

as my model describes, the optimal liquidity requirement design should be more fund-

specific. For funds whose shareholders have a lower propensity to run (i.e., q is lower),

a more stringent liquidity requirement is likely to help the fund better avoid future fire

sales. However, for funds whose shareholders have a higher propensity to run (i.e., q is

higher), a less stringent liquidity requirement as suggested by Proposition 7 is likely to

be appropriate, which can better mitigate the fund’s time-inconsistency problem and thus

reduce shareholder runs.

Of course, the design of any implementable fund liquidity requirements calls for a more

comprehensive assessment of other relevant factors. At the bottom line, the results of my

model suggest that the one-size-fits-all liquidity requirements as those currently designed
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for banks and MMFs are unlikely to be appropriate for mutual funds.54 Instead, the dynamic

interdependence of shareholder runs and fund liquidity management should be better taken

into account.

1.5.3 Redemption Fees

The second policy proposal is to increase or eliminate the cap on redemption fees. Open-end

mutual funds can charge their shareholders redemption fees when they redeem their shares.

Currently, the SEC requires mutual fund redemption fees to be lower than 2%.55 Therefore,

some observers argue that to increase or eliminate the cap, at least in crisis times, is likely to

mitigate potential financial stability risks of mutual funds.

My model suggests that higher redemption fees may help reduce shareholder runs.

Suppose 1� k of the redemption proceeds are collected as redemption fees, where k 2 (0, 1).

Thus, any shareholder who redeems on date t only gets kNAVt.56 Also, redemption fees are

paid back directly to the fund, implying that the fund can save (1 � k)NAVt cash per share

redeemed. To better contrast to the baseline model without redemption fees, I consider

q = 1, that is, when the shareholders’ propensity to run is the highest. The following

proposition shows that the introduction of redemption fees can lead to less shareholder

runs in equilibrium.

Proposition 10. For any given starting portfolio position (a2t, x2t), any feasible cash rebuilding

policy s2t+1, and any proportional redemption fee 1 � k > 0, there is l

k

2t 6 l2t, where l

k

2t is the

equilibrium run probability in the game with the redemption fee while l2t is that in the game without

redemption fees, all other things being equal.

When the stage game starts from the high cash-to-assets region, redemption fees have

54The recent work of Diamond and Kashyap (2015) suggests that those one-size-fits-all liquidity requirement
rules may not be optimal for banks as well, but for different reasons.

55This is according to Rule 22c-2 of the Investment Company Act of 1940.

56According to Rule 22c-2, the U.S. SEC prohibits discriminative redemption fees solely conditional on
shareholder identities as those would effectively create classes of shareholder seniority. This implies that, in my
model, the fund cannot intentionally impose different redemption fees on early and late shareholders.

61



a stronger effect. In contrast to the baseline model where any cash rebuilding (i.e., any

s2t+1 > 0) leads to shareholder runs when q = 1, with the redemption fee there can be

completely no runs in equilibrium when s2t+1 is small, that is, when the fund only sells a

few assets to rebuild its cash buffer.

Corollary 3. For any given starting portfolio position (a2t, x2t) satisfying h2t 2 Gh and any

proportional redemption fee 1 � k > 0, there exists a strictly positive s > 0 such that l

k

2t = 0

constructs the unique equilibrium when s2t+1 6 s.

Proposition 10 and Corollary 3 suggest that redemption fees can directly reduce share-

holders’ run incentives. Intuitively, with redemption fees, redeeming shareholders effectively

get a value lower than the prevailing NAV, implying a wealth transfer from redeeming

shareholders to staying ones. Moreover, in any stage, redemption fees allow the fund to

save more cash proportionally, making it easier to meet redemption needs without incurring

fire sales.

However, as suggested by Proposition 10, redemption fees do not directly alter the

dynamic interdependence between runs and fund liquidity management. They cannot solve

the time-inconsistency problem associated with the fund’s dynamic cash rebuilding policy

either. Only when the fund imposes a 100% redemption fee, or equivalently, chooses to

be closed-ending, can shareholder runs be completely prevented. But closed-end mutual

funds cannot provide liquidity service to their shareholders (Stein, 2005), and thus it will be

obviously not optimal to push all the mutual funds to be closed-ending just for preventing

runs.

Redemption fees may also be less effective in practice for the following reasons. First,

in my model, redemption fees are introduced ex-ante. However, if redemption fees are

first introduced on an odd date 2t + 1 but are expected on the previous date 2t, the late

shareholders will have higher incentives to run to avoid the fees. This represents a real-

world concern that imposing higher redemption fees by itself can lead to one-time market

turmoil. Other unmodeled but plausible reasons include negative effects on future fund

share sales and on the reputation of fund managers. In practice, many funds still stick to

62



zero or lower than 2% redemption fees even when market volatility or outflows are high

(Nanda, Narayanan and Warther, 2000), suggesting that to increase or eliminate the 2% cap

on redemption fees may only have limited effects.

1.5.4 In-Kind Redemptions

By nature, open-end mutual funds can satisfy redemption requests by delivering a portion

of the underlying basket of assets invested, including cash, which is known as “in-kind

redemptions.” Many practitioners argue that the option to elect to in-kind redemptions can

largely mitigate any financial stability risks of mutual funds, at least during crisis times.

Are in-kind redemptions really a relief?

My model suggests that in-kind redemptions can be very effective in preventing fund

shareholder runs within a fund, but perhaps surprisingly, they do not necessarily help reduce

total fire sale losses or improve total shareholder welfare. The following proposition offers a

sufficient condition for the episodes in which the negative effects of in-kind redemptions

dominate.

Proposition 11. Electing to in-kind redemptions completely prevents shareholder runs, that is,

l(a2t, x2t) = 0 for any (a2t, x2t). However, when q, µL are sufficiently small and dL is sufficiently

larger than dE, in-kind redemptions lead to higher total fire sale loss ex-ante than a counterfactual in

which the fund sticks to cash redemptions, all other things being equal.

The intuition behind Proposition 11 relies on three progressive reasons. First, adopting in-

kind redemptions completely eliminates any run incentives. This is because late shareholders

always get the same basket of assets regardless of the time they redeem, and they would

have to sell the illiquid assets at a lower price pE for consumptions if they ran, so they prefer

not to run. Second, since the fund manager only cares about total fire sale losses at the

fund level, liquidity management becomes irrelevant. In other words, the fund will never

rebuild its cash buffer, and the initial cash-to-assets ratio h0 will never change. Third, early

shareholders have to fire sell the illiquid assets they get at the extremely low price pE for

consumptions. These fire sale losses could have been avoided if the fund manager actively
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managed its cash buffer. If these fire sale losses are significant, shareholders will become

worse-off than the counterfactual with cash redemptions.

At a fundamental level, Proposition 11 suggests that in-kind redemptions are not a free

lunch even during crisis times, because shareholders who ask their fund to elect to in-kind

redemptions effectively give up any benefit they could get from active liquidity management

by the fund. This point again highlights the dynamic interdependence between shareholder

runs and fund liquidity management. In addition, given that in-kind redemptions are

obviously costly during normal times since they discourage the sales of shares, the overall

benefit of adopting in-kind redemptions can be even more ambiguous. Moreover, in reality,

in-kind redemptions can be hard to implement; they are seldom used for both legal and

practical reasons.57

Furthermore, the analysis about in-kind redemptions here sheds new light on the

potential financial stability risks of exchange-traded funds (ETFs). Observers may argue

that ETFs should be immune to shareholder runs because they are not directly subject to

outflows from shareholders. Specifically, unlike open-end mutual funds, ETF sponsors can

issue and redeem shares only with market-making firms known as authorized participants

(APs). In other words, APs are the only market player who can directly redeem ETF shares

by trading with fund sponsors. In particular, transactions between an ETF sponsor and an

AP are typically settled in-kind, where the AP delivers or receives a basket of assets almost

identical to the ETF’s holdings,58 known as the creation/redemption basket. Therefore, by

the logic underlying Proposition 11, there will be no direct shareholder or AP runs on ETFs,

and ETFs hold less cash buffer than their mutual-fund counterparts do.59 However, when

57Rule 18f-1 of the Investment Company Act of 1940 only enables mutual funds to limit in-kind redemptions,
which implies that in-kind redemptions will not be effected unless specific approval is first obtained from the
SEC. This rule is intended to facilitate mutual fund share sales in jurisdictions where in-cash redemptions are
required.

58There are a few exceptions where cash transactions may be required. This is because some ETF holdings,
such as some specific emerging market assets, are subject to legal restrictions that prevent in-kind transactions.

59The fact that ETFs on average hold less liquidity buffer than open-end mutual funds do is documented
by new empirical evidence (Ben-David, Franzoni and Moussawi, 2014). This allows ETFs to better track the
underlying benchmark while keeping a minimal tracking error.
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APs redeem the shares they have bought (presumably at a discount to fund NAV) and get

the underlying assets, they are less likely to hold them on their balance sheets for a long

time. Rather, they typically sell the underlying assets immediately, trying to lock in the

arbitrage profits. This mechanism, known as the AP arbitrage mechanism of ETFs, plays

an important role to keep ETF prices as close as possible to fund NAVs. But as suggested

by Proposition 11, this may potentially lead to more fire sales (by APs) of the underlying

illiquid assets and potentially larger price impacts in the underlying markets. Overall, this

analysis suggests that ETFs may also generate previously overlooked financial stability risks,

the mechanism of which can be unified under the dynamic interaction between shareholder

runs and fund liquidity management.60

1.5.5 Redemption Restrictions

A similar emergency rule is redemption restrictions, which give a fund the right to suspend

redemptions in given periods as permitted by regulators, for example, the U.S. SEC.61 Can

redemption restrictions prevent shareholder runs?

In my framework, I model redemption restrictions by assuming that the fund is able to

deny any individual shareholder’s redemption request on any date with probability 1 � z,

z 2 (0, 1). To better contrast to the baseline model without redemption fees, I also consider

q = 1 when the shareholders’ propensity to run is the highest. The following proposition

characterizes the nature of this game with redemption restrictions.

Proposition 12. For any given starting portfolio position (a2t, x2t) and any redemption restriction

1 � z > 0, there is l

z

2t 6 l2t, where l

z

2t is the equilibrium run probability in the game with the

redemption restriction while l2t is that in the game without redemption restrictions, all other things

being equal.

60In a complementary paper, Pan and Zeng (2015) explores this AP arbitrage mechanism of ETFs in greater
detail and documents the financial stability risks that arise from this mechanism.

61According to Rule 22e of the Investment Company Act, an open-end mutual fund is generally prohibited
from suspending the right or redemption or postponing the payment of redemption proceeds for more than
seven days. However, the SEC has the right to deem emergency periods during which a fund is able to suspend
redemptions.
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Proposition 12 suggests that redemption restrictions can help reduce shareholder runs.

Interestingly, introducing redemption restrictions closely resembles the introduction of

redemptions fees as analyzed in Proposition 10 and Corollary 3. The intuition for Proposition

12 is clear, because by the Law of Large Numbers, only z of the redeeming shareholders

can get cash out of the fund. Therefore, there will be effectively fewer redemptions. But

like the introduction of redemption fees, the introduction of redemption restrictions cannot

fully prevent shareholder runs or solve the time-inconsistency problem associated with fund

liquidity management.

In addition, my model suggests that redemption restrictions can be indeed hard to

implement in reality, given that they have to be introduced at the discretion of regulators.

Due to the “slow-moving” nature of shareholder runs, no abrupt bankruptcy or events like

“breaking-the-buck” by MMFs can be observed. Even in scenarios where run-induced fire

sales are extremely severe, as suggested by Proposition 6, the fund can still keep a positive

cash-to-assets ratio in each stage, making it hard for the regulatory authority to deem such

periods emergent. In practice, unsurprisingly, the U.S. SEC has seldom deemed a period to

be an emergency to allow open-end mutual funds to use redemption restrictions. One and

the only recent example for the SEC to permit redemption restrictions happened in 2008 for

the Reserve Primary Fund,62 which was an MMF.

1.5.6 Credit Lines

Although my baseline model focuses on a crisis management scenario during which there

are no net inflows, mutual funds may turn to pre-established credit lines to raise cash. For

example, in 2015 BlackRock increased the amount that its mutual funds can collectively

borrow to meet redemptions to $2.1 billion, a historically high level.63 Can fund credit lines

prevent shareholder runs?

My model suggests that using credit lines may temporarily mitigate the negative effects

62See Investment Company Act Release No. 28,487.

63“BlackRock Leads Funds Raising Credit Lines Amid Review,” The Bloomberg Business, January 21, 2015.
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of current-stage shareholder runs, but can induce more severe fire sales and runs in the

future. Specifically, in stage t, suppose the fund uses pre-established credit lines (rather than

selling assets) when it is in the low or the intermediate cash-to-assets region. Thus, the fund

does not have to fire sell any illiquid assets in meeting redemptions on dates 2t and 2t + 1.

As a result, the NAV will not change within stage t, that is, NAV2t+1 = NAV2t = NAV2t�1,

and thus (lE + lL)n2t shareholders leave the fund with such an intact NAV. However, in

the next stage (if the game continues) the fund will have no cash to start (i.e., h2t+2 = 0). If

the credit lines have a sufficiently long maturity, the fund does not have to pay back the

debts immediately, but have to face more severe fire sales unless it can borrow more. What

is worse, if the fund is required to pay back its debts first on date 2t + 2, it will have to fire

sell even more illiquid assets or simply default. Intuitively, using credit lines makes a fund’

life easier temporarily, but the fund also forgoes the option value of cash rebuilding, which

is higher when the redemption shocks are more persistent (i.e., p is smaller). This idea

resembles that outlined for in-kind redemptions in Section 1.5.4, suggesting that it will be

naive to shut down a fund’s active liquidity management when attempting to prevent runs.

Moreover, credit lines may expose a fund back to the risk of debt runs as suggested by

He and Xiong (2012) and by other bank run models. This is in particular relevant when

the redemption shocks are persistent so that the fund has to repeatedly turn to credit lines

established with multiple creditors or to rollover existing debts. In a crisis management

scenario, creditor banks may also be subject to aggregate risks, making credit lines riskier

and less reliable than cash buffers (Acharya, Almeida and Campello, 2013). Thus, having

credit lines is hardly a relief for open-end mutual funds.

1.5.7 Swing Pricing

Some observers argue that swing pricing, which allows current NAVs to reflect commissions

to asset brokers and dealers, bid-ask spreads, taxes, and other trading-related charges, can

reduce the negative externalities imposed by redeeming shareholders on non-trading ones.

A growing number of open-end mutual funds has been adopting swing pricing, while as
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of September 2015 the use of swing pricing is still voluntary and not required by the U.S.

SEC.64 Will full swing pricing prevent shareholder runs?

My model suggests that the answer is no. In fact, swing pricing, in its currently observed

form, has already been incorporated into my baseline model, This is because flow-induced

fire sales are the only type of trading-related costs in the model, and current NAVs have

already taken them into account. However, my model suggests that, since they still do not

incorporate future asset sale costs, they are not able to mitigate the risk of runs induced by

active fund liquidity management. In this sense, my theory identifies a form of negative

externality that even introducing swing pricing cannot internalize.

Rather than swing pricing in its current form, my model suggests that forward-looking

NAVs may help reduce shareholder runs. This is equivalent to requiring shareholders to

contract on future NAVs directly. However, from the perspective of market incompleteness,

shareholders cannot fully contract on future NAVs because mutual funds promise to

provide daily liquidity service to their shareholders. In other words, if shareholders instead

contracted on future NAVs and they had common and rational beliefs on future NAVs,

they would effectively go back to “separate accounts,” or equivalently direct holdings of

the underlying assets by the shareholders, and there will be no liquidity service provided

by the funds. In this sense, there is no point to have a mutual fund in the first place. As a

result, forward-looking NAV rules may be hard to implement in reality, and runs can be

viewed as a cost that shareholders have to bear to have mutual funds engage in liquidity

transformation.65 To investigate optimal mechanism design for liquidity provision in a

64“Fund Investors May Pay Fees for Withdrawals Amid Turmoil,” The Bloomberg Business, September 11,
2015.

65One can go further along this line to ask why mutual funds provide liquidity. Gorton and Pennacchi (1990)
argue that banks and bank-like financial intermediaries are the best candidate to provide liquidity because debt
value is the least sensitive to asset-side value fluctuations. But as suggested by Stein (2005), in competing for
funding, mutual funds are also eager to provide liquidity (i.e., to adopt open-ending) to shareholders through
the means of equity. To make such liquidity appealing to shareholders, mutual funds invest in higher-yielding
but illiquid assets with the help of deliberate cash management, effectively engaging themselves in liquidity
transformation. On the one hand, this logic suggests that mutual funds are not a simple pass-through; they are
not as “plain-vanilla” as practitioners usually argue. On the other hand, more importantly, as fund shareholders
get the promised liquidity at the flexible NAV, their liquidity is more sensitive to asset-side fluctuations. This
nature makes mutual funds immune to the usual notion of debt runs that stem from fixed claims, but prone to
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mutual fund context (like Green and Lin, 2003 and Peck and Shell, 2003 in a bank context)

is beyond the scope of this paper, and thus I leave it for future research.

1.6 Extensions

My baseline model parsimoniously captures the novel interdependence between shareholder

runs and fund liquidity management. The underlying mechanism is fairly general and

robust to other aspects which may either aggravate or mitigate mutual fund financial stability

risks. Here I explore several extensions, one at a time, with a focus on their interactions

with the main mechanism of the baseline model.

1.6.1 Flow-to-Performance Relationship

The baseline model assumes random redemption shocks, but the realized population of

redeeming shareholders in each stage is taken as exogenous. One may argue that future

fund flows are likely to be positively correlated with past returns, known as the flow-to-

performance relationship. Earlier research finds that future flows mostly respond to past

good performance (Ippolito, 1992, Sirri and Tufano, 1998), but recent evidence suggests

that they also respond to bad performance in particular when the underlying assets are

illiquid (for example, Spiegel and Zhang, 2013, Goldstein, Jiang and Ng, 2015). Does such

flow-to-performance relationship interact with fund shareholder runs?

My model suggests that, in the presence of shareholder runs, introducing the flow-to-

performance relationship implies higher total expected fire sale losses despite optimal cash

management by the fund. To see this, I can incorporate the flow-to-performance relationship

into my baseline model. For any stage, I define the fund return as

r2t+1 =
NAV2t+1

NAV2t
,

a new notion of equity runs that result from asset-side value adjustment.
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which is positive but no greater than one in my baseline model.66 I then assume that in any

stage t the populations of early and late shareholders are g2tlEn2t and g2tlLn2t for the even

date 2t and the odd date 2t + 1, respectively, where g2t(r2t�1) > 1 for t > 1 is a decreasing

function of r2t�1 satisfying g2t(1) = 1, and g0 = 1. This implies that, if current fund return

is lower, there will be more shareholders redeeming in the next stage if the game continues,

capturing the flow-to-performance relationship.

In this extended setting, the flow-to-performance relationship does not directly alter

shareholders’ run incentives in any stage game, but will complicate the tension in choosing

between a rapid or slow cash rebuilding policy by the fund manager. This can be seen from

Proposition 5. Suppose the fund starts from the joint region Gl [ Gm [ Ghl [ Ghm where

it is optimal to sell some illiquid assets to rebuild the cash buffer (i.e., s

⇤
2t+1 > 0). When

the flow-to-performance relationship is introduced, s

⇤
2t+1 suggested by Proposition 5 is no

longer optimal. To see this, notice that s

⇤
2t+1 > 0 implies r2t+1 < 1 and then g2t+2 > 1. As

a result, the fund either has to increase s2t+1 to prevent more severe future fire sales due

to a larger population of redeeming shareholders in the next stage, or to decrease s2t+1 to

sustain a higher current fund return but suffer higher risk of future fire sales. Either way,

the fund incurs higher risk of shareholder runs and higher total expected fire sale losses as

well.

At a fundamental level, the extended setting suggests a new amplification mechanism to

explain fund performance persistence in bad times. The flow-to-performance relationship

first implies that it is harder for the fund to manage its cash buffer. Due to the interdepen-

dence of shareholder runs and fund liquidity management, this further suggests more severe

runs and fire sales, leading to worse performance. Only those funds with a sufficiently high

cash-to-assets ratio are likely to withstand these hard times without incurring shareholder

runs and fire sales.

66But it can be larger than one in the model with redemption fees or redemption restrictions.
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1.6.2 Asset Price Correlations

In the baseline model, flow-induced fire sales will not impact the market prices of the

non-traded assets that still remain on the fund’s balance sheet. This is realistic given that

mutual funds invest in many different illiquid assets, and flow-induced fire sales only have

local and temporary price impacts (Coval and Stafford, 2007). One may argue that asset

prices can be correlated with each other, and the fund manager may want to use alternative

accounting rules such as matrix pricing for these non-traded assets. Will those differences

have any qualitative effects on shareholder runs?

My model suggests no. To see why, I assume that asset prices are perfectly correlated

(while still keeping the realistic assumption that the price impacts induced by fire sales are

temporary; they only last for one stage). This can be effectively viewed as a world with only

a single illiquid asset. In this alternative setting, if the fund sells some assets on date t at the

fire sale price pt, the end-of-day flexible NAV will be:

NAVt =
xt + (at � at+1)pt + at+1 pt

nt
.67 (1.6.1)

Clearly, the only difference between (1.6.1) and the baseline model NAV (1.2.1) is the last

term in the numerator, which reflects the fact that the market prices of non-traded assets

are also updated to pt, the temporary fire-sale price, in this extended setting. In both (1.2.1)

and (1.6.1), the NAV is flexible in the sense that it takes into account all the same-day price

impact and asset sale losses, while it is not forward-looking in the sense that it will not

reflect any possible future price impacts and asset reallocation costs. By similar analysis as

that in Section 1.3, as long as these contractual features of fund NAV are present, fund cash

rebuilding still gives rise to a predictable decline in NAV and thus the run incentives. As a

result, introducing asset price correlations or alternative accounting rules at the fund level

would not change my results qualitatively.68

67To be more precise, in this case the fire sale price pt will be assumed to be a decreasing function of the
amount of fire sales within the given date, and the slope of this intra-day downward-sloping demand curve is
steeper on an even date than that on an odd date.

68Depending on how correlated asset prices are, the run incentives can be quantitatively different in
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1.6.3 Persistent Price Impacts

Although the price impacts induced by fire sales tend to be temporary, in some asset classes

there can be more persistent or even long-term price impacts. For example, in illiquid asset

markets where dealers actively manage their inventory, a higher inventory level implies

a higher price concession to compensate for their inventory risks. Would persistent price

impacts change shareholders’ run behaviors?

0 1 2 3 4 t

Original Price

Fire Sale Prices

Shock
Game Continues

Shock
Game Continues

Shock
Game Ends

R

pt

Figure 1.7: Price Path with Persistent Price Impacts

To answer this question, I can incorporate persistent price impacts into the baseline model.

I illustrate that there can be more severe shareholder runs and fire sales in equilibrium in

this extended setting, despite optimal cash management by the fund.

Specifically, I assume that in stage t, the fire sale price on the even date 2t is b

t
dER,

while that on the odd date 2t + 1 is b

t
dLR, where b 2 (0, 1]. When b = 1, this goes back

to the baseline model. Figure 1.7 illustrates a sample path of selling prices with persistent

price impacts. There are two important ingredients of this price pattern. First, in the short

run (i.e., within each stage), it still features temporary price overshooting and subsequent

reversal. This is consistent with the baseline model.69 Second, in the long run (i.e., across

equilibrium. This quantitative difference is not crucial for the key mechanism of this model.

69Note that, this extended setting still keeps the structure of one shock per two dates, and thus the micro-
foundation in Appendix A.3 is still valid.
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different stages) but before the game ends, the selling prices for the illiquid assets become

lower over time.

Like the analysis in Section 1.6.1, persistent price impacts do not directly change share-

holders’ run incentives, but will significantly change the fund’s dynamic optimal cash

rebuilding policy, which in turn alters shareholders’ equilibrium run behaviors. Again, this

can be seen from Proposition 6. In the baseline model, the fund rebuilds its cash buffer on

the odd date 2t + 1 to prevent forced fire sales on the next even date 2t + 2. The fund is not

worried about potential asset sales on the next odd date 2t + 3 because of the same asset

selling price there. However, in the extended setting with persistent price impacts, the asset

selling price on the next odd date 2t + 3 will become lower, which gives rise to an incentive

for the fund to sell more assets on date 2t + 1. Therefore, by the results in Propositions 1, 2

and 27, more rapid cash rebuilding unambiguously leads to more severe run problems and

potentially higher total fire sale losses in expectation.

This extension has two implications. On the one hand, it suggests that shareholder runs

and the dynamic interdependence between runs and fund liquidity management do not

rely on the existence of persistent price impacts described here. In other words, there can

be shareholder runs in equilibrium without persistent price impacts. On the other hand,

the existence of persistent price impacts can make the run problems more severe. Given

that persistence price impacts can indeed exist in some illiquid asset markets, this extension

suggests that the concerns about shareholder runs can be indeed very relevant.

1.7 Conclusion

In this paper, I build a model of an open-end mutual fund with a flexible NAV, and show

that shareholder runs can occur in equilibrium despite optimal liquidity management by

the fund. With a flexible NAV, fund cash rebuilding by selling illiquid assets implies a

predictable decline in NAV and thus a first-mover advantage, leading to runs. The presence

of shareholder runs further complicates the fund’s efforts in liquidity management, leading

to higher total fire sale losses in expectation. Hence, appropriate design of policies aiming
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for mitigating financial stability risks of mutual funds should take into account the dynamic

interdependence of shareholder runs and fund liquidity management.

At a fundamental level, shareholder runs are driven by a key contractual property of

mutual fund NAVs: they are flexible but not forward-looking. Specifically, the NAV at

t does not take into account the predictable asset sales and price impact at t + 1. This

contractual property comes from a form of market incompleteness that shareholders cannot

fully contract on future NAVs. This property implies that cash rebuilding can give rise to

predictable declines in NAV and thus the potential for runs.

Finally, my model sheds new light on potential systemic risks posed by mutual funds.

As mutual fund runs can lead to more fire sales, the underlying asset markets may become

even more illiquid. As suggested by Stein (2014) and formally shown in He and Milbradt

(2014), this effect can cause more corporate bond defaults and impose considerate risks

on real economic activities. This channel becomes increasingly relevant given the bank-

bond substitution after the crisis (Becker and Ivashina, 2014, Crouzet, 2015) as well as the

increasing “reaching-for-yield” behavior in corporate bond markets (Becker and Ivashina,

2015). To be clear, I do not claim that mutual fund runs cause more systemic risks. The

systemic implications of mutual fund runs depend not only on the contagion from secondary-

market fire sales to primary-market investment losses, but also on how non-bank financial

intermediaries interact with other bank-like financial institutions. A thorough investigation

covering all these issues is beyond the scope of this paper, but the results here can naturally

serve as a building block for future research on these issues.
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Chapter 2

Investment Exuberance under Cross

Learning1

2.1 Introduction

Industry-wide investment exuberance has been commonly observed in history, especially

after the arrival of major innovations that involve large uncertainty.2 Existing theories

usually focus on boom-bust cycles, over-investments and price bubbles whereas ignore the

second-moment implications of investment exuberance: high systematic risks. Specifically,

in exuberant industries, a firm’s real investment and asset price comove greatly with those of

other firms, as well as with the market (see Rhodes-Kropf, Robinson and Viswanathan, 2005,

Pastor and Veronesi, 2009, Hoberg and Phillips, 2010, Bhattacharyya and Purnanandam,

2011, Greenwood and Hanson, 2014, for recent empirical evidence in different contexts, and

the herding literature, for example, Scharfstein and Stein, 1990, for early rational theories).

These joint comovements are hard to be explained by fundamental shocks. More surprisingly,

1Co-authored with Shiyang Huang.

2The most typical examples include the “railway mania” of the UK in the 1840s, the rapid development
of automobiles and radio in the 1920s, and the surge of the Internet in the 1990s, among many others. Other
notable examples include major financial innovations like asset-backed securities (ABS) and credit default swaps
(CDS), as well as the Mississippi Scheme and the South Sea Bubble, in which market structures experienced
dramatic changes.
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more competitive industries exhibit more inefficient investment exuberance with higher

systematic risks, in the sense that their investment exuberance is more predictable and

their firms’ real and financial performances also comove more (Hoberg and Phillips, 2010,

Greenwood and Hanson, 2014). Our paper provides a new rational amplification theory

that helps unify these observations of industry-wide investment exuberance.

Our theory features a natural fact, firm cross learning, meaning that firms learn from

other firms’ asset prices (in addition to their own asset prices) in making investment

decisions.3 Although firm cross learning has been explicitly documented by recent empirical

work, Foucault and Fresard (2014), Ozoguz and Rebello (2013), and more broadly Graham

and Harvey (2001),4 it is overlooked in the theoretical literature. Our model attempts to

fill this gap by providing a micro-foundation for firm cross learning and more importantly

exploring its aggregate implications.

Our theory builds on the burgeoning literature that highlights the feedback from asset

prices to investment decisions (see Bond, Edmans and Goldstein, 2012, for a survey).

Specifically, since secondary market participants may have incremental information that is

unavailable to firms or primary market participants, firms or their capital providers may

learn from the asset prices in the secondary markets for making investment decisions, and

this in turn affects the asset prices (see Luo, 2005, Chen, Goldstein, and Jiang, 2007, Bakke

and Whited, 2010, Edmans, Goldstein, and Jiang, 2012, Foucault and Fresard, 2012, among

many others, for the empirical evidence). The feedback literature, however, has not explored

the multi-firm context and the cross-learning mechanism we emphasize which help generate

and amplify industry-wide investment exuberance.

3This definition of cross learning differs from the observational learning literature (for example, Banerjee,
1992, Bikhchandani, Hirshleifer, and Welch, 1992), which suggests that agents may directly observe other agents’
actions and then take similar actions. We do not deny the importance of direct observational learning and
spill-over in the firm investment setting, but we put it aside in order to highlight our cross learning channel,
which is less understood.

4In the survey by Graham and Harvey (2001), CFOs of firms report that they tend to rely on other firms’
prices in making capital budgeting decisions, and this in turn affects CEOs’ investment decisions.
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Figure 2.1: Self-Feedback Benchmark

To address industry-wide investment exuberance and cross learning, we construct a

feedback model to admit multiple firms. We postulate that firms in an industry (or an

economy) have correlated investment opportunities, so that they have incentives to learn

from each other’s asset prices. To clarify the idea, Figure 1 depicts the existing feedback

models without this feature, even if they can literally accommodate many firms. Although

these firms can learn from their own asset prices for making better investment decisions,

they are essentially separated in segmented economies, in turn making other firms’ asset

prices irrelevant. This is the reason that the existing feedback models usually feature one

representative firm or one single asset.5

Instead, the novelty of our work is developing a tractable multi-firm model featuring

two-way cross learning of firms from other firms’ asset prices (in addition to their own),

and identifying a new pecuniary externality involved. Inspired by the two-factor feedback

5One exception is Subrahmanyam and Titman (2013), in which a private firm learns from the stock price
of another public firm to make investment decision. The private firm’s investment affects the profitability of
the public firm through competition, which further generates interesting macroeconomic implications. But the
public firm does not invest by itself and the private firm also does not have its own asset price. Hence, their
model still features the standard feedback channel as shown in Figure 1. Their formal model also admits two
private firms, which introduces an additional externality in terms of investment complementarity that amplifies
their feedback effect. But as the authors have claimed, the introduction of two private firms is not essential for
most of their results.
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framework introduced by Goldstein and Yang (2014a,b), we explicitly model correlated

investment opportunities in our multi-firm setting. Specifically, the fundamental of each

firm’s asset is subject both to a common productivity shock (an industry shock)6 and an

idiosyncratic shock (a firm-specific shock). As speculators trade firms’ assets, the prices

aggregate their private information about the two types of shocks. Therefore, for each

firm, other firms’ asset prices become noisy but informative signals about the common

shock. Consequently, the firm in question uses other firms’ asset prices (and its own) to

gain more knowledge about the common shock and make investment decisions accordingly,

while other firms do the same. Such cross learning makes firms’ investments more sensitive

to the common shock, encouraging secondary market speculators to weight information

about the common shock more. This in turn makes firms’ asset prices more informative

about the common shock, resulting in an even higher investment sensitivity to the common

shock. Eventually, a tiny shock can be amplified significantly.7 Moreover, when one firm

6In a broader sense, our common shock can also be interpreted as a shock to the entire economy. Hence,
our model speaks to not only industry-wide investment exuberance but also more broadly economy-wide
investment exuberance.

7This mechanism resembles rational herding in financial markets (see Scharfstein and Stein, 1990 for an
example) and more closely the market-based two-task corporate investment setting in Aghion and Stein (2008),
but we explicitly model learning from prices and our cross-learning mechanism does not rely on any form of
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learns from other firms’ asset prices, it does not internalize a negative pecuniary externality

where the prices become less informative about other firms’ idiosyncratic shocks due to

the speculators’ endogenous over-weight on the information about the common shock (and

thus under-weight on the information about the idiosyncratic shocks). This externality

leads to high investment inefficiency. Interestingly, the new pecuniary externality takes

effect through the informativeness rather than the level of prices. Figure 2 illustrates the

idea of cross learning and contrasts it to the existing feedback models. Empirically, firm

cross learning has been documented by recent studies like Foucault and Fresard (2014)8 and

Ozoguz and Rebello (2013), and the magnitude is shown to be considerable, serving as a

strong support to our theory.

The predictions of our model are consistent with many empirical regularities. Compared

with a benchmark in which firms cannot learn from others’ asset prices, cross learning

results in a higher weight of speculators on the information of the common shock in trading

and firms’ higher investment sensitivity to the common shock.9 We further show that under

cross learning (plus learning from own prices), a firm’s investment and price comove more

greatly with 1) other firms’ investments and prices, and 2) with the common productivity

shock. We interpret these patterns as amplification of systematic risks. Since the cross-

learning mechanism relies on observable prices in public financial markets, it is further

supported by Maksimovic, Phillips and Yang (2013)’s empirical findings that systematic

risks are stronger among public firms than private ones. To the best of our knowledge,

our work is the first to show that firms’ two-way cross learning has significant aggregate

short-termism.

8For the purpose of developing empirical hypotheses, Foucault and Fresard (2014) build a model, featuring
one-way learning: one focal firm may learn from its peer firm’s price while not the other way around, and the
peer firm does not invest. That model lays out a nice foundation for their empirical analysis. However, it does
not generate inefficient multi-firm investment exuberance or comovements with the common productivity shock
as emphasized in our paper. The setup and mechanisms of their model are also different from ours.

9See Peng, Xiong, and Bollerslev (2007), and more broadly Rhodes-Kropf, Robinson and Viswanathan (2005),
Hoberg and Phillips (2010), Bhattacharyya and Purnanandam (2011) for empirical evidence. Complementary
to another related theoretical literature that highlights investors’ higher attention to the common shock (see
Veldkamp, 2006, Peng and Xiong, 2006), our work further speaks to its endogenous origin from firm cross
learning as well as its real consequences on firms’ investment decisions.
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amplification effects on investment, prices, and systematic risks.

We investigate many circumstances in which varying economic conditions amplify sys-

tematic risks through the cross-learning mechanism. First, an increasing uncertainty on the

common shock, most typically associated with the introduction of major innovations, leads

to more weight on the information of the common shock and amplification of systematic

risks. This is consistent with the messages in Brunnermeier and Nagel (2004) and Pastor

and Veronesi (2006, 2009) that systematic risks are too high to be explained by fundamental

shocks during investment exuberance like the so-called Nasdaq bubble. This amplification

also fits in line with the broader evidence of investment exuberance in Rhodes-Kropf,

Robinson and Viswanathan (2005), Hoberg and Phillips (2010) and Bhattacharyya and

Purnanandam (2011) in various contexts. Second, an improvement of capital providers’

knowledge about the common shock leads to higher systematic risks. Last, lower market

liquidity or higher variances of idiosyncratic non-fundamental trading activities also lead

to higher systematic risks. These empirical regularities have frequently been ascribed to

separate behavioral explanations in the previous literature, whereas our work provides a

unified rational explanation.

Furthermore, our framework offers a novel perspective to look at the relationship

between inefficient investment exuberance and industrial competition. This relationship

is particularly helpful to separate aggregate effects specific to cross learning from other

potential mechanisms. Due to the unaligned interests of firms and speculators in feedback

and the new pecuniary externality associated with cross learning, the investment exuberance

is inefficient. In particular, we show that, when the number of firms in an industry increases,

that is, when the industry potentially becomes more competitive, the extent of cross

learning becomes stronger, leading to more severe pecuniary externalities. This suggests

a rationale for the puzzling facts identified in Hoberg and Phillips (2010) and Greenwood

and Hanson (2014) that investment exuberance is more predictable and firms’ investment

(and price) comovements are greater in more competitive industries. According to Hoberg

and Phillips (2010), no single existing theory can accommodate their findings. Our cross-
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learning mechanism with the new pecuniary externality implies that firms and investors

in more competitive industries are more likely to overweight common shock whereas

to underweight idiosyncratic shocks, leading to more inefficient investment exuberance

with higher systematic risks. Such industry-level heterogeneity helps differentiate the

cross-learning mechanism from other potential ones that may also generate investment

exuberance. In this regard, Ozoguz and Rebello (2013) have identified that firms in more

competitive industries have higher investment sensitivity to stock prices of their peers,

which directly supports our predictions.

Fundamentally, the amplification effect of firm cross learning stems from two-way en-

dogenous strategic complementarities across the primary and secondary markets, which are

absent in the previous literature. Unlike the existing literature involving complementarities

in financial markets (see Veldkamp, 2011, for an extensive review), our mechanism does

not posit any exogenous complementarity in actions or externality but a well-documented

natural fact that firms learn from their own and other firms’ asset prices.

Related Literature. Our framework contributes to the burgeoning feedback theories (see

Bond, Edmans and Goldstein, 2012, for a survey).10 Most related to the present approach

are Goldstein, Ozdenoren and Yuan (2013), Goldstein and Yang (2014a,b), and Sockin and

Xiong (2014a,b), all of which highlight the feedback from secondary market speculators’

information aggregation to primary market capital providers’ scale-varying investment in

various contexts. In particular, pioneering the two-factor feedback framework, Goldstein

and Yang (2014a) uncover new relationship between market efficiency and real efficiency,

and Goldstein and Yang (2014b) deliver new implications regarding the effectiveness of

disclosure policies. Our contribution is to develop a two-way cross-learning framework

with multiple firms, which generates the new pecuniary externality and various aggregate

10For instance, Dow and Gorton (1997) on market and real efficiencies, Fulghieri and Lukin (2001) on security
design, Subrahmanyam and Titman (2001, 2013) on information cascades and shock propagation, Hirshleifer,
Subrahmanyam and Titman (2006) on irrational trading, Foucault and Gehrig (2008) on cross listing, Goldstein
and Guembel (2008) on manipulative short selling, Ozdenoren and Yuan (2008) on excess volatility, Edmans
(2009) on blockholders trading, Bond, Goldstein and Prescott (2010) on corrective managerial actions, among
many others.
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implications regarding inefficient investment exuberance and competition. Methodologically,

our approach is highly tractable despite the complexity of the equilibrium, offering a

framework for future research involving market feedback with multiple firms.

Our work also contributes to the literature of rational models on investment exuberance

by exploring new implications.11 In particular, this literature has been paying increasing

attention to the role of learning in financial markets.12 In the rational learning model of

Rhodes-Kropf and Viswanathan (2004), which shares a similar signal extraction problem

with ours, managers cannot differentiate between common misevaluation and possible

idiosyncratic synergies, leading to herding and merger and acquisition exuberance. Pastor

and Veronesi (2009) propose an explicit learning model, in which the uncertain productivity

of a new technology is subject to learning. Learning and the ensuing technology adoption

make the uncertainty from idiosyncratic to systematic, generating rational herding and

investment exuberance. Our contribution to this literature is three-fold. First, our model

features multiple firms and their cross learning explicitly. This allows us to study the second-

moment implications of industry-wide investment exuberance, which is less understood.

Second, we cast the microstructure of public asset markets explicitly, ensuring us to reflect

the indispensable role of public financial markets as suggested by Maksimovic, Phillips and

Yang (2013). Lastly, our model identifies a new externality regarding the use of information

about common shocks and idiosyncratic shocks in making investment decisions.

Identifying the externality associated with cross learning contributes to the large pecu-

niary externality literature.13 The classical pecuniary externality takes effect through the

11The bubble literature is the first to provide an explanation for investment exuberance in the time series (see
Brunnermeier and Oehmke, 2013, Xiong, 2013, for surveys of various models and evidence). These theories
have focused on the over-investment or over-valuation of one single firm, and have often referred to behavioral
aspects. The modern literature of macro-finance (see Brunnermeier, Eisenbach and Sannikov, 2013, for an
extensive survey) also generates various forms of over-investment, over-borrowing, and over-lending in the time
series, by highlighting agency or financial frictions. The focuses of those literatures are mostly on the time series
and thus different from ours. Our model is not intended as a general dynamic theory of booms and busts.

12Other notable rational models on investment exuberance include DeMarzo, Kaniel, and Kremer (2007),
featuring endogenous relative wealth concerns, Carlson, Fisher and Giammarino (2004), featuring investments
as real options, and Ozdenoren and Yuan (2013), featuring contractual externalities.

13See Stiglitz (1982), Greenwald and Stiglitz (1986), and Geanakoplos and Polemarchakis (1985).
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level of prices: under various frictions agents do not internalize the impacts of their actions

on equilibrium price levels, leading to a welfare loss. Instead in our multi-firm cross-learning

framework, firms that make real investment decisions do not fully internalize the impact

of cross learning on equilibrium price informativeness. This leads to a “tragedy of the

commons” regarding the use of the price system as an information source. In this sense,

our pecuniary externality is reminiscent of the learning externality in the early dynamic

learning and herding literature (for example, Vives, 1997) that an agent, when responding to

her private information, does not take into account the benefit of increased informativeness

of public information in the future.14

Our work is also related to the literature on the interaction across different asset markets,

in particular the models that highlight learning. This literature has focused on speculator

learning rather than firm cross learning as we model. Cespa and Foucault (2014) consider

the contagion of illiquidity across segmented markets by introducing a concept of cross-asset

learning among speculators. By cross-asset learning, speculators trading in one market can

potentially learn from the asset price in another market, which in turn generates propagation.

Goldstein and Yang (2014c) model an environment in which different speculators are

informed of different fundamentals affecting one single asset. Trading on information

about the two fundamentals exhibits complementarity, suggesting that greater diversity

of information improves price informativeness. Our model complements those papers by

focusing on the implications of firm cross learning on both real investments and asset prices,

in contrast to their exchange economy setting that focuses on trading.

Finally, our framework is broadly related to a macroeconomic literature focusing on

dispersed information and boom-bust cycles. Closely related are Angeletos, Lorenzoni and

Pavan (2012) on the role of beauty contest and Amador and Weill (2010) on the crowding-

out effect of exogenous public information provision to the use of private information.

14The recent study of Vives (2014) further combines the classical pecuniary externality (through the level of
prices) and the learning externality associated with exogenous public information in an industrial competition
context. This is different from our new pecuniary externality through endogenous price informativeness on the
two shocks. Its focus is also on the strategic interaction in product markets instead of our endogenous cross
learning in financial markets.

92



Compared with Angeletos, Lorenzoni and Pavan (2012), our cross-learning framework with

more detailed financial market structures can generate the new second-moment implications

of investment exuberance. Our externality is also different from theirs, which instead

features beauty contest in signaling and higher-order uncertainties. Complementary to

Amador and Weill (2010), the externality in our model derives from a different mechanism

and suggests a new crowding-out effect: endogenous over-weight on the common shock

crowds out the use of information about the idiosyncratic shocks. Relatedly, Liu (2014)

has embedded a single-firm feedback and disclosure mechanism (in the spirit of Goldstein

and Yang, 2014b,c) into a macroeconomic setting. None of the papers aforementioned have

distinguished between common and idiosyncratic shocks or considered firm cross learning.

Section 3.2 lays out the model, featuring correlated investment opportunities and cross

learning. Section 2.3 characterizes the cross-learning equilibrium and benchmarks it to the

self-feedback case. Section 2.4.2 investigates important implications of cross learning with a

focus on systematic risks in investment exuberance. Section 3.4.2 explores the externality

and the relationship between investment inefficiency and competition. Section 2.6 discusses

some extensions of the model. All the proofs are delegated to Appendix unless otherwise

noted.

2.2 The Model

2.2.1 The Economy

Inspired by Goldstein, Ozdenoren and Yuan (2013) and Goldstein and Yang (2014a,b), we

build a new multi-firm feedback model to study industry-wide investment exuberance. To

focus on the second moments and inefficiency of investment exuberance, which are less

understood in the literature, we set aside a full dynamic investigation of the boom-bust

cycles.

We consider a continuum of 1 of firms, i 2 [0, 1), each having an asset traded in a

secondary market. Each firm i’s corresponding asset market is occupied by a mass 1
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of exclusive informed risk-neutral speculators and uninformed noisy traders. We index

speculators for firm i by (i, j), with j 2 [0, 1).15 Each firm also has an exclusive capital

provider i who decides how much capital to provide to the firm for investment purposes.

There are three dates, t = 0, 1, 2. At date 0, the speculators trade in their corresponding

asset market based on their private information, and the asset price aggregates their

information. At date 1, the capital providers observe the asset prices of both their own firm

and all the other firms. Having observed all the prices and received their private information,

the capital providers decide the amount of capital to provide to their corresponding firms

and the firms undertake investment accordingly. All the cash flows are realized at date 2.

2.2.2 Capital Providers and Investment

All the firms in the economy have an identical linear production technology: Q(Ii) = AFi Ii ,

where Ii is the amount of capital provided by capital provider i to firm i, and A and Fi

are two stochastic productivity shocks. Specifically, shock A captures an industry-wide

common productivity shock, and shock Fi captures an idiosyncratic productivity shock for

firm i only. Denote by a and fi the natural logs of these shocks, and assume that they are

normal and mutually independent:

a ⇠ N(0, 1/ta) , and fi ⇠ N(0, 1/tf ) ,

where ta and tf are positive and i 2 [0, 1).

The introduction of multiple firms and of the two different productivity shocks plays

an important role in necessitating firm cross learning. Specifically, if the investment oppor-

tunities are uncorrelated, cross learning does not make sense. On the other hand, if the

investment opportunities are perfectly correlated, all assets become identical and thus it is

less interesting to consider firm cross learning. To flesh the cross-learning mechanism out,

we intentionally abstract away from any possible industrial structure of the firms’ product

15Since the speculators do not have a diversification motive, our results are unaffected if we assume that they
can trade all assets. In other words, market segmentation regarding speculator trading plays no roles in our
model.
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market.16

At date 1, all the capital providers choose the amount of capital Ii simultaneously in their

respective primary markets. Capital provider i captures a proportion k 2 (0, 1) of the output

Q(Ii) by providing Ii, which incurs a private quadratic adjustment cost, C(Ii) = 1
2 cI2

i .17

Thus, capital provider i’s problem at t = 1 is

max
Ii

E


kAFi Ii �

1
2

cI2
i |Gi

�
, (2.2.1)

where Gi is the information set of capital provider i at t = 1. It consists of the price of

firm i’s own asset, Pi, and those of all the other firms’ assets, denoted by the set {P�i}

for brevity, formed at date 0, as well as their private signals about the (log) productivity

shocks a and fi. Specifically, we assume that each capital provider i gets a private noisy

and independent signal sa,i about the (log) common productivity shock a with precision

ts, and another private noisy and independent signal s f ,i about its own (log) idiosyncratic

productivity shock fi with precision tf :

sa,i = a + #a,i , where #a,i ⇠ N(0, 1/tsa) , and

s f ,i = fi + # f ,i , where # f ,i ⇠ N(0, 1/ts f ) .

Hence, for capital provider i, the information set is Gi = {Pi, {P�i}, sa,i, s f ,i}.

Different from existing literature, one major novelty of our setup is to allow capital

providers to learn from other firms’ asset prices as well as own firms’ prices, which we

formally call cross learning. As highlighted later, although the capital providers only care

about their own firms, they use the prices of other firms’ assets for making better investment

decisions.

16However, in Session 3.4.2, we extend the baseline model to admit a finite number of n firms and use the
number of firms to proxy the extent of competition. We discuss the plausibility of doing this in greater detail in
Session 3.4.2.

17The objective function of the capital providers is inherited from Goldstein, Ozdenoren and Yuan (2013),
where the capital providers are interpreted as banks, private managers, or large shareholders of the firms. The
specification helps ensure the tractability of the model.
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2.2.3 Speculators and Secondary Market Trading

At date 0, the remaining cash flow (1 � k)Q(Ii), as an asset, is traded in a separate competi-

tive secondary market for each firm i. For firm i, denote the price of this asset by Pi. To focus

on capital providers’ cross learning, we do not consider any possible monetary transfers

from the secondary market to the firm, but instead highlight the information revealed in

the secondary market trading.18 In the asset market of firm i, each speculator (i, j) has two

private and independent signals about the common shock and the respective idiosyncratic

shock. Specifically, the first signal is about the common shock:

xij = a + #x,ij, where #x,ij ⇠ N(0, 1/tx) ,

and the second signal is about the firm-specific idiosyncratic shock:

yij = fi + #y,ij, where #y,ij ⇠ N(0, 1/ty) .

In other words, the information set of speculator (i, j) is Gij = {xij, yij}. During trading,

their private information will be aggregated into asset prices.

Based on their private information, the speculators submit limited orders (so that their

information set does not consist of the asset prices),19 with an additional constraint that each

speculator can buy or sell up to a unit of the asset.20 Formally, the speculators maximize

their expected trading profit given the market price. Their problems at t = 0 are

max
dij2[�1,1]

dijE [(1 � k)AFi Ii � Pi| Gij] , (2.2.2)

where dij is speculator (i, j)’s demand. The aggregate demand in market i is given by

18Hence, this asset can be interpreted as either equity of the firm or a derivative on the return from the firm’s
investment.

19The fact that the speculators submit limited orders is not essential. For any firm i, even if its speculators can
submit market orders, all of our results are unaffected. See Goldstein and Yang (2014b) for another exposition
of this point in a similar framework.

20As discussed in the survey by Brunnermeier and Oehmke (2013), the specific size of this position limit is
not essential for the results, as long as speculators cannot take unlimited positions, otherwise the prices would
be fully revealing. This constraint can be easily justified by their capital or borrowing constraints.
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Di =
R 1

0 dijdj.

We assume that the noisy supply in asset market i takes the following form:21

D(z, xi, Pi) = 1 � 2F(z + xi � l log Pi) ,

where

z ⇠ N(0, t

�1
z

) , and xi ⇠ N(0, t

�1
x

) .

We elaborate the noisy supply. F(·) denotes the cumulative standard normal distribution

function. The first term z captures a common noisy supply shock that can be viewed as

industry-wide sentiment or industry-wide fund flow. The second term xi captures the

idiosyncratic noisy supply shock in market i that can be viewed as market-specific liquidity

shocks. The presence of a common noisy supply not only makes our framework more

general, but more importantly prevents the aggregate price from fully revealing the common

productivity shock. Both noisy supply shocks z and xi are independent and also independent

of other shocks in the economy. Meanwhile, l in the noisy supply function captures price

elasticity and can be viewed as market liquidity. When l is high, the demand from

speculators can be easily absorbed and thus their aggregate demand has little impact on the

asset prices.

Finally, in equilibrium, the prices clear each asset market by equalizing the aggregate

speculator demand to the noisy supply in each asset market i:

Di = D(z, xi, Pi) . (2.2.3)

2.2.4 Discussion

Before proceeding, we discuss several crucial differences of our settings from the existing

feedback literature. First, to lay out a foundation for cross learning, our model features a

continuum of many firms. Modeling multiple firms and two-way cross learning imposes

new technical challenges in terms of finding closed form solutions. Despite this difficulty,

21This functional form resembles those used in Hellwig, Mukherji and Tsyvinski (2006) and Dasgupta (2007).
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our model provides a tractable approach not only suited for our purpose but potentially

useful for future work in other directions.

Second, built upon the multiple-firm setup, our economy features two different produc-

tivity shocks. In most existing papers, there is only one productivity shock. Goldstein and

Yang (2014a,b) first introduce two factors to the cash flow in feedback models. Their two

factors differ in an informational sense that the capital providers perfectly observe one but

not the other. Instead, in the multi-firm setting, our two shocks differ in a productivity-

related sense that one is common to all firms while the other is firm-specific. The presence

of such two different shocks helps deliver new aggregate implications regarding firm cross

learning and investment.

Finally, in contrast to the theory for hypotheses development in Foucault and Fresard

(2014), our framework fully features two-way cross learning instead of one-way learning

by a focal firm from its peer firm. The one-way learning channel in Foucault and Fresard

(2014) gives clear predictions on how the peer firm’s stock price may affect the focal firm’s

investment, but the peer firm itself does not invest or learn. Our framework with two-way

cross learning as well as more detailed real and financial market structures captures the new

strategic complementarities and spiral toward the common shock. This new mechanism is

crucial in generating industry-wide inefficient investment exuberance, which are consistent

with the empirical regularities.

2.3 Cross-Learning Equilibrium

2.3.1 Equilibrium Definition

We formally introduce the equilibrium concept. We focus on symmetric linear equilibria that

are commonly used in the literature. Specifically, the speculators in market i long one share

of the corresponding asset when fixij + yij > µi, and short one share otherwise, where fi

and µi are two constants to be determined in equilibrium. Since agents are risk neutral and

firms are symmetric in our framework, symmetry further implies that fi = f and µi = µ,
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which mean that all the speculators use symmetric trading strategies in all asset markets,

and the information contents of all asset prices are also symmetric.

Definition 3. A (symmetric) cross-learning equilibrium is defined as a combination of a price

function for each firm i, Pi(a, fi, z, xi): R4 ! R, an investment policy for each capital provider i,

Ii(sa,i, s f ,i, Pi, {P�i}): R2 ⇥ R• ! R, and a linear monotone trading strategy for each speculator

(i, j), dij(xij, yij) = 1(fixij + yij > µi)� 1(fixij + yij 6 µi), such that

i) each capital provider i’s investment policy Ii(sa,i, s f ,i, Pi, {P�i}) solves problem (2.2.1),

ii) each speculator (i, j)’s trading strategy dij(xij, yij) is identical and solves problem (2.2.2), and

iii) market clearing condition (2.2.3) is satisfied for each market i.

2.3.2 Equilibrium Characterization

We characterize the equilibrium, featuring the capital providers’ cross learning. We follow a

step-by-step approach to streamline the presentation.

Step 1. First we solve for the price functions, which help characterize the information

contents of prices from the capital providers’ perspective. We have the following lemma:

Lemma 9. The speculators’ trading leads to the following equilibrium price of each asset i:

Pi = exp

0

@ fi

l

q
t

�1
x f

2
i + t

�1
y

a +
1

l

q
t

�1
x f

2
i + t

�1
y

fi +
z + xi

l

� µi

l

q
t

�1
x f

2
i + t

�1
y

1

A . (2.3.1)

Hence, from any capital provider i’s perspective, the price for its own firm i’s asset is

equivalent to the following signal in predicting the common shock a:

za(Pi) =
l

q
t

�1
x f

2
i + t

�1
y log Pi + µi

fi
= a +

1
fi

fi +

q
t

�1
x f

2
i + t

�1
y

fi
(z + xi) , (2.3.2)

and is equivalent to the following signal in predicting the corresponding idiosyncratic shock

fi:

z f (Pi) = l

q
t

�1
x f

2
i + t

�1
y log Pi + µi = fi + fia +

q
t

�1
x f

2
i + t

�1
y (z + xi) . (2.3.3)

Lemma 9 not only helps specify the information contents of a firm’s asset price to its
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own capital provider, but it also hints those to other firms’ capital providers. It suggests

that capital providers would like to cross learn from each other when feasible. The next step

formulates the idea.

Step 2. We then characterize the informational implications of cross learning. Specifically,

we show that, when cross learning is feasible, that is, capital provider i’s information set

includes both Pi and {P�i}, the capital provider will endogenously rely on an aggregate price

as well as the target firm’s own asset price (in addition to the private signals) in inferring the

two productivity shocks. To formally show the results, we impose the symmetry conditions

fi = f and µi = µ to conditions (2.3.1), (2.3.2) and (2.3.3) as we focus on symmetric

equilibria, and we also define the aggregate price as

P =
Z 1

0
Pidi .22

Lemma 10. For capital provider i, when her information set includes both Pi and {P�i}, these asset

prices are informationally equivalent to the following two signals:

i) a signal based on the aggregate price P:

za(P) = a +

q
t

�1
x f

2 + t

�1
y

f

z (2.3.4)

for predicting the common shock a, with the precision

tpa =
txtyt

z

f

2

tx + tyf

2 , (2.3.5)

which is increasing in f, and

ii) a signal based on the own asset price Pi as well as the aggregate price P:

z f ,i(P) = z f (Pi)� fza(P) = fi +
q

t

�1
x f

2 + t

�1
y xi (2.3.6)

22The fact that the asset prices are equally weighted in calculating the aggregate price is inessential to their
information contents. Our results carry through even if we choose arbitrarily positive weights.
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for predicting the corresponding idiosyncratic shock fi, with the precision

tp f =
txtyt

x

tx + tyf

2 , (2.3.7)

which is decreasing in f.

Along with Lemma 9, Lemma 10 implies that cross learning changes the feedback

channel in which a capital provider uses asset prices to infer the two productivity shocks:

she now uses the aggregate price P to infer the common shock a and still uses her target

firm’s own price Pi to infer the idiosyncratic shock fi. Intuitively, for capital provider i, other

firms’ asset prices {P�i} are uninformative about the idiosyncratic shock fi but informative

about the common shock a. Hence, when other firms’ asset prices are observable, which

is natural in reality, the capital provider of the firm in question uses them to make better

inference about the common shock. In particular, in a symmetric equilibrium, all prices

are symmetric regarding their information contexts, so that the aggregate price is equally

weighted. By the law of large numbers, P only aggregates information about the common

shock a: all the information about idiosyncratic shocks and the idiosyncratic noisy supply

shocks gets wiped out, while the presence of the common noisy supply shock still prevents

the aggregate price from fully revealing the fundamental. This makes za(P), as characterized

in (2.3.4), the most informative signal about the common shock a. Moreover, knowing za(P),

the capital provider also eliminates the information about the common shock and about the

common noisy supply shock when she uses her own price Pi to infer the idiosyncratic shock

fi, as characterized in (2.3.6).

Step 3. We then solve for the capital providers’ optimal investment policy under cross

learning. This indicates the real consequences of cross learning. Lemma 10 implies that,

under cross learning, capital provider i uses the new signal za(P) and her private signal sa,i

to infer the common shock a, and the new signal z f ,i(P) and the private signal s f ,i to infer

the idiosyncratic shock fi. Thus, we have the following lemma.
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Lemma 11. Observing sa,i, s f ,i, Pi and {P�i}, capital provider i’s optimal investment policy is

Ii =
k

c
exp

"
tsasa,i + tpaza(P)

ta + tsa + tpa
+

1
2(ta + tsa + tpa)

+
ts f s f ,i + tp f z f ,i(P)

tf + ts f + tp f
+

1
2(tf + ts f + tp f )

#
.

(2.3.8)

The investment policy is intuitive. First, the optimal amount of investment is higher

when the share k of capital provider is higher while lower when the investment cost

c is higher. Moreover, the capital providers infer the two productivity shocks a and fi

independently but simultaneously in making investment decisions, reflected in the first

and third terms in the parenthesis. In particular, the capital providers find it optimal to

learn from both their target firms’ own asset prices as well as other firms’ prices, which

are summarized in the two new signals za(P) and z f ,i(P). This fits quite in line with the

recent empirical facts about firm and capital provider cross learning behavior (Foucault and

Fresard, 2014, Ozoguz and Rebello, 2013).

According to Lemma 11, we propose the following intuitive concept of investment

sensitivity to capture how the capital providers’ investment decision responds to the two

productivity shocks under cross learning.

Definition 4. For capital providers, the investment sensitivity to the common productivity shock

and the idiosyncratic productivity shock are defined as:

Sa(tpa) =
tsa + tpa

ta + tsa + tpa
, and Sf (tp f ) =

ts f + tp f

tf + ts f + tp f
,

respectively. We call Sa the common investment sensitivity and Sf the idiosyncratic investment

sensitivity.

We highlight that the investment sensitivity depends not only on the capital providers’

private signals about the corresponding shock, but also on the new endogenous price signals

coming from cross learning as characterized in Lemma 10. In particular, these two notions of

investment sensitivity are increasing functions of tpa and tp f , respectively, which are in turn

affected by the speculators’ trading strategy. Hence, by Lemma 10, we have the following

lemma that bridges the capital providers’ investment sensitivity and the speculators’ weight
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f on the signal of the common productivity shock.

Lemma 12. The common investment sensitivity Sa(tpa) is increasing in f while the idiosyncratic

investment sensitivity S f (tp f ) is decreasing in f.

Lemma 12 is helpful because it offers an intuitive look at the real consequences of cross

learning from asset prices in the economy with two productivity shocks. When the weight f

is higher, the speculators put more weight on the information about the common shock, and

thus asset prices become more informative about the common shock while less informative

about the idiosyncratic shocks. This in turn leads to a more sensitive investment policy in

response to the common shock while less sensitive in response to the idiosyncratic shock.

Step 4. We finally close the model by solving for the speculators’ equilibrium trading

strategy, characterized by the weight f and the constant µ. This also pins down other

equilibrium outcomes since they are all functions of f.

For speculator (i, j), her expected profit of trading given her available information is

E
⇥
(1 � k)AFi Ii � Pi|xij, yij

⇤
, (2.3.9)

in which Ii and Pi have been characterized by conditions (2.3.8) and (2.3.1) respectively.

It is easy to show that speculators’ expected profit (2.3.9) of trading asset i can be

expressed as

E
⇥
(1 � k)AFi Ii � Pi|xij, yij

⇤
=

k(1 � k)
c

exp
�
a0 + a1xij + a2yij

�
� exp

�
g0 + g1xij + g2yij

�
,

where a0, a1, a2, g0, g1, and g2 are all functions of f:

a1 = (Sa + 1)
tx

ta + tx
,

a2 =
�
Sf + 1

�
ty

tf + ty
,

g1 =
f

l

q
tx + tyf

2

tx

ta + tx
,

g2 =
1

l

q
tx + tyf

2

ty

tf + ty
.
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By definition, in a symmetric cross-learning equilibrium with cross learning, we have

f =
a1 � g1

a2 � g2
.

Plugging in a1, a2, g1 and g2 yields

f =

✓
Sa + 1 � f

l

p
tx+tyf

2

◆
tx

ta+tx
✓

Sf + 1 � 1
l

p
tx+tyf

2

◆
ty

tf +ty

. (2.3.10)

Analyzing this equation by further plugging in Sa and Sf , which are both functions of

f, we reach a unique cross-learning equilibrium, formally characterized by the following

proposition.

Proposition 13. For a high enough noisy supply elasticity l, there exists a cross-learning equilib-

rium in which the speculators put a positive weight f > 0 on the signal of the common productivity

shock. For a high enough information precision ty (of the speculators’ signal on the idiosyncratic

shock), the equilibrium is unique.

Establishing the existence of a unique equilibrium is essential for our further analysis

regarding investment exuberance, as it allows us to investigate that how changes in economic

environment affect investments and prices through the cross-learning mechanism. When

f is higher, the speculators put more weight on the information about the common shock

in trading, encouraging all the capital providers to respond to the common shock more

sensitively through cross learning, which in turn leads to an even higher f. This new

spiral gives rise to many implications in line with the empirical phenomena regarding

industry-wide investment exuberance as we later explore.

The conditions to guarantee a unique cross-learning equilibrium are not only commonly

seen in the feedback literature but also empirically plausible. A relatively high noisy supply

elasticity l implies that markets are liquid enough. A relatively high information precision

ty of the speculators’ signal on the idiosyncratic shock suggests that asset market participants

understand their target firms better than the whole industry. These two conditions are

appropriate in particular when we focus on the contexts leading to investment exuberance:
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relatively liquid markets and relatively more uncertain macroeconomic conditions.23

2.3.3 Self-Feedback Benchmark

Having established the existence and uniqueness of a cross-learning equilibrium, we com-

pare the cross-learning equilibrium to the corresponding self-feedback equilibrium in a

comparable economy. This self-feedback benchmark helps understand how the presence of

cross learning affects the capital providers’ investment policy and the speculators’ trading

strategy, in contrast to the counterfactual where cross learning is absent. To show these

effects, we again focus on the difference of the speculators’ weight f on the signal of the

common productivity shock in the two respective equilibria, as all equilibrium outcomes are

functions of this weight. We still consider unique symmetric equilibrium and denote by f

0

the speculators’ weight on the signal of the common productivity shock in the self-feedback

benchmark.

Formally, the only difference of the benchmark economy is that each capital provider

i observes its own asset price Pi but not other firms’ asset prices {P�i}. In other words,

capital provider i’s information set is Gi = {Pi, sa,i, s f ,i}. We have

Pi = exp

0

@ f

0

l

q
t

�1
x (f0)2 + t

�1
y

a +
1
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q
t
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y
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�1
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1

A ,

which is equivalent to the following two signals

za(Pi) =
l

q
t

�1
x (f0)2 + t

�1
y log Pi + µi

f

0 = a +
1
f

0 fi +

q
t

�1
x (f0)2 + t

�1
y

f

0 (z + xi)

in predicting the common shock a and

z f (Pi) = l

q
t

�1
x (f0)2 + t

�1
y log Pi + µi = fi + f

0a +
q

t

�1
x (f0)2 + t

�1
y (z + xi)

23We have numerically shown that these conditions are not restrictive. Even for reasonably small l and ty,
our model still features a unique cross-learning equilibrium. These numerical results are reported in Section
3.4.2. We have also explored other sufficient conditions that can guarantee a unique cross-learning equilibrium,
which are less empirically irrelevant but the results are available upon request. The cross-learning mechanism
itself is unaffected under other sets of sufficient conditions.
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in predicting the corresponding idiosyncratic shock fi. The precisions of za(Pi) and z f (Pi)

are denoted as tpa and tp f where

tpa =
1

1
(f0)2 t

�1
f +

t

�1
x (f0)2+t

�1
y

(f0)2 (t�1
z

+ t

�1
x

)
,

and

tp f =
1

(f0)2
t

�1
a + (t�1

x (f0)2 + t

�1
y )(t�1

z

+ t

�1
x

)
.

Following the same definition of investment sensitivity and the same analysis for the

capital providers’ investment policy and the speculators’ trading strategy, we have

S0
a =

tsa + tpa

ta + tsa + tpa
+

tp f

tf + ts f + tp f
f

0 ,

S0
f =

ts f + tp f

tf + ts f + tp f
+

tpa

ta + tsa + tpa

1
f

0 ,

a

0
1 =

�
S0

a + 1
�

tx

ta + tx
,

a

0
2 =

⇣
S0

f + 1
⌘

ty

tf + ty
,

g

0
1 =

f

0

l

q
tx + ty(f0)2

tx

ta + tx
,

g

0
2 =

1

l

q
tx + ty(f0)2

ty

tf + ty
.

In the self-feedback equilibrium, we also have

f

0 =
a

0
1 � g

0
1

a

0
2 � g

0
2

to pin down the speculators’ weight on the information of the common shock. Plugging in

a

0
1, a

0
2, g

0
1 and g

0
2 yields

f

0 =

✓
S0

a + 1 � f

0

l

p
tx+ty(f0)2

◆
tx

ta+tx
✓

S0
f + 1 � 1

l

p
tx+ty(f0)2

◆
ty

tf +ty

. (2.3.11)

Therefore, we have the following proposition regarding the comparison between the

cross-learning equilibrium and the corresponding self-feedback benchmark. We focus on

comparable cases in which a self-feedback equilibrium and its corresponding cross-learning
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equilibrium are both unique.

Proposition 14. For a high enough noisy supply elasticity l, a low enough idiosyncratic noisy

supply shock precision t

x

, and a high enough information precision ty (of the speculators’ signal on

the idiosyncratic shock), there exists a unique self-feedback equilibrium in which speculators put a

positive weight f

0 > 0 on the signal of the common productivity shock. In particular, f

0 < f, where

f is the speculators’ weight on the signal of the common productivity shock in the corresponding

cross-learning equilibrium.

The comparison between a cross-learning equilibrium and its corresponding self-feedback

equilibrium implies that, the presence of cross-learning may encourage the speculators to

put a higher weight f on the information about the common productivity shock.

The results in Proposition 14 uncover the informational and real consequences of cross

learning in equilibrium. Intuitively, when the capital providers are able to cross learn

from each other’s asset prices (in addition to their own firms’ prices), they indeed do so in

equilibrium as other firms’ asset prices help them better infer the common shock. According

to the results in Section 2.3.2, this makes firms’ investments relatively more correlated

with the common shock. Thus, the speculators find it more profitable to put more weight

on the information about the common shock. This further makes asset prices becoming

relatively more informative about the common shock in guiding investment decisions, and

thus the capital providers respond to the common shock even more sensitively in investing.

This spiral is absent in existing feedback models, and it indeed plays an important role in

amplifying industry-wide investment exuberance as we fully explore in the next section.

2.4 Systematic Risks

The most important implications of cross learning are on the systematic risks in industry-

wide investment exuberance. This derives from the endogenous spiral between the capital

providers’ investment sensitivity to the common shock and the speculators’ weight on the

information about the common shock, as shown in Section 2.3. The new spiral and strategic
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complementarities help generate and amplify systematic risks in many relevant economic

environments, which seem jointly puzzling otherwise. These implications also suggest

differing extent of cross learning in industries with different economic conditions.

2.4.1 Impacts of Speculators’ Weight on Systematic Risks

It is instructive to first investigate the impact of the speculators’ weight f (on the information

of the common shock) on systematic risks. We also introduce our measures of systematic

risks in investment exuberance along the way.

Definition 5. The correlation coefficients between the investments of two firms and between the

asset prices of two firms are defined as:

b I =
Cov(log Ii, log Ij)

p
Var(log Ii)

q
Var(log Ij)

, and bP =
Cov(log Pi, log Pj)

p
Var(log Pi)

q
Var(log Pj)

,

respectively. We call b I the investment beta and bP the price beta henceforth.

We take the investment beta b I and the price beta bP as two major measures of systematic

risks in investment exuberance, with both real and financial respects. We have the following

intuitive results on the impact of speculators’ weight f on the two betas. When the

speculators put more weight on the information of the common shock, the capital providers’

investment sensitivity to the common shock increases, which makes their investments more

correlated. This in turn encourages the speculators to put a higher weight on the common

shock, resulting in a higher correlation between asset prices.

Lemma 13. Both the investment beta b I and the price beta bP are increasing in f when f > 0.

Similarly, we also look at the correlations between investment and the two productivity

shocks, respectively. As a complement to Definition 4 of investment sensitivity and the

associated Lemma 12, the following definition shoots a closer look at the equilibrium

investments’ correlation with the two shocks.

Definition 6. The correlation coefficient between investment and the common productivity shock,
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and between investment and the idiosyncratic productivity shock are defined as:

bA =
Cov(log Ii, log A)p

Var(log Ii)
p

Var(log A)
, and bF =

Cov(log Ii, log Fi)p
Var(log Ii)

p
Var(log Fi)

,

respectively. We call bA the common investment correlation and bF the idiosyncratic investment

correlation.

Intuitively, when the speculators put more weight on the information of the common

shock, both investments and prices become more correlated with the common productivity

shock instead of the idiosyncratic shocks. This is because the asset prices become more infor-

mative in predicting the common shock but less informative in predicting the idiosyncratic

shocks.

Lemma 14. The common investment correlation bA is increasing in f while the idiosyncratic

investment correlation bF is decreasing in f when f > 0.

In what follows, we focus on the investment beta b I and the price beta bP in exploring the

comparative statics, highlighting the speculators’ endogenous weight and equilibrium sys-

tematic risks under cross learning. The investigation on the common investment correlation

bA and the idiosyncratic investment correlation bF yields the same insights.

2.4.2 Endogenous Cross Learning and Systematic Risks

Having established the impacts of the speculators’ weight f (on the information about the

common shock) on systematic risks, we turn to one of the most interesting parts of the paper,

which investigates how the changes of economic environments affect equilibrium systematic

risks through the cross-learning mechanism. This unifies several observations regarding

shock amplifications that are otherwise hard to reconcile with fundamental shocks only.

Mathematically, we perform formal comparative statics of the equilibrium betas with respect

to exogenous parameters. We elaborate the first comparative statics (with respect to the

common uncertainty) in more detail to explore the underlying mechanism, while the other

comparative statics follow the same intuition.
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Common Uncertainty

We first focus on the effects of common uncertainty, which is captured by the prior precision

ta of the common productivity shock. We pay greater attention to common uncertainty,

because many cases of industry-wide and economy-wide investment exuberance are associ-

ated with an increasing common uncertainty in the first place. The most typical driver for

an increasing common uncertainty is the arrival of all-purpose technological or financial

innovations, as discussed in Brunnermeier and Nagel (2004), Pastor and Veronesi (2006, 2009),

and more broadly the literature of bubbles. Highlighting the cross-learning mechanism,

our predictions help deliver a new perspective to look at the impacts of innovations and

the accompanying increasing common uncertainty on the systematic risks in investment

exuberance.

Lemma 15. Increasing the common uncertainty leads to a higher weight of the speculators on the

information about the common shock. Specifically, the speculators’ weight f is decreasing in ta.

Lemma 15 implies that an increase in the common uncertainty leads to a stronger cross-

learning spiral towards the common shock. The following proposition further establishes

the overall impact on the equilibrium systematic risks.

Proposition 15. Increasing the common uncertainty leads to both a higher investment beta and

a higher price beta in equilibrium. Specifically, b I and bP are both decreasing in ta. We further

decompose the effects into two negative components (the same for b I and bP):

db(ta, f)
dta

=
∂b(ta, f)

∂ta| {z }
Mechanical Effect <0

+
∂b(ta, f)

∂f

∂f

∂ta| {z }
Cross-Learning Effect <0

< 0 .

Proposition 15 indicates two effects contributing to the higher systematic risks associated

with an increasing common uncertainty. The first is a mechanical effect that does not depend

on the endogenous interaction between the capital providers and the speculators under

cross learning. Intuitively, when the common uncertainty increases, the firms’ fundamentals

become more exposed to the common shock, and thus their capital providers’ investment
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sensitivity to the common shock increases mechanically. This immediately results in a higher

comovement among firms’ investments and prices. Figure 2.3 illustrates this mechanical

effect in a two-firm example. As pointed out in the literature, however, investment (and

price) comovements during investment exuberance are hard to reconcile with fundamental

shock comovements only, so a further amplification channel is needed.

Figure 2.3: Mechanical Effect on Systematic Risks

The second effect, the cross-learning effect, provides a new perspective to understand the

amplification from fundamental shocks to large investment (and price) comovements. This

effect is novel and only at play in our multi-firm cross-learning framework with two types

of shocks. It reflects the new spiral between the capital providers’ investment sensitivity to

the common shock and the speculators’ weight on the signal of the common shock.

Figure 2.4 illustrates this cross-learning effect in a two-firm example. Interestingly,

this effect takes place even when only some (not all) firms in the economy perceive the

increasing common uncertainty. Suppose, without loss of generality, firm 1’s capital provider

perceives the increasing common uncertainty but firm 2’s does not. As seen in the upper-left

panel, firm 1’s investment sensitivity to the common shock Sa1 first increases (along with a

decreasing investment sensitivity to its idiosyncratic shock), leading to a higher weight f1

on the information of the common shock by its speculators. Then, as seen in the upper-right

panel, a higher f1 results in an even higher Sa1 since firm 1 learns from its own price. More
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Figure 2.4: Learning Effect on Systematic Risks

Order: Upper-Left, Upper-Right, Lower-Left, Lower-Right

importantly, because of cross learning, firm 2’s investment sensitivity to the common shock

Sa2 also increases, since firm 2 finds firm 1’s price more informative about the common shock

and thus better understands the common shock. It then naturally leads to a higher weight

f2 on the information of the common shock by firm 2’s speculators, as seen in the lower-left

panel. Finally, the increase of f2 results in even higher Sa1 and Sa2 by cross learning, as

seen in the lower-right panel. This spiral suggests two new strategic complementarities only

under cross learning: the first is among speculators’ weight on the information about the

common shock in each market, and the second is among different firms’ relative investment

sensitivity to the common shock. With the two strategic complementarities, the spiral

reinforces itself and eventually pushes the economy to a new equilibrium with much higher

systematic risks.

Our predictions on systematic risks after an increasing common uncertainty are consis-
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tent with the literature (Brunnermeier and Nagel, 2004, Pastor and Veronesi, 2006, 2009)

that documents the increasing systematic risks after major technological innovations, as

these innovations often come with industry-wide uncertain market prospects. In particular,

the cross-learning amplification effect helps understand the huge magnitude of systematic

risks in these cases of investment exuberance, which is hard to be explained by fundamental

shocks. These predictions also shed light on the empirical regularities on systematic risks in

papers such as Rhodes-Kropf, Robinson and Viswanathan (2005) on merger and acquisitions,

Hoberg and Phillips (2010) on investment waves, and Bhattacharyya and Purnanandam

(2011) on financial institutions’ collective risk-taking activities.

Capital Providers’ Access to Information

We then turn to the capital providers’ access to private information, captured by the two

precisions tsa and ts f regarding the two productivity shocks, respectively. Again, we have

the following lemma pertaining to the speculators’ endogenous weight.

Lemma 16. Increasing the capital providers’ information precision on the common shock leads to a

higher speculator weight on the information about the common shock, while increasing the capital

providers’ information precision on the idiosyncratic shock leads to a lower weight. Specifically, the

speculators’ weight f is increasing in tsa while decreasing in ts f .

Lemma 16 prescribes that when the capital providers have better information on the

common shock, they use that information more in investing, which in turn encourages

the speculators to put more weight on the common shock. Hence, the equilibrium cross-

learning spiral towards the common shock is stronger. In contrast, better information on the

idiosyncratic shock pushes the cross-learning spiral towards the idiosyncratic shocks.

Moreover, similar to Proposition 15, when the overall impact of the mechanical effect

and the cross-learning effect is considered, we have the following proposition.

Proposition 16. For the capital providers’ access to private information, we have the following

results.
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i) Increasing the precision on the common shock leads to a higher investment beta when the

precision is not small, and always a higher price beta; specifically, b I is increasing in tsa when

tsa > ta + txt

z

and bP is always increasing in tsa.

ii) Increasing the precision on the idiosyncratic shock leads to both a lower investment beta and a

lower price beta; specifically, b I and bP are always decreasing in ts f .

Liquidity Trading

We also investigate the effects of liquidity trading, captured by the market liquidity l and

the two precisions of noisy supplies t

z

and t

x

. Similarly, we have the following intuitive

lemma on the speculators’ endogenous weight.

Lemma 17. For liquidity trading, a higher weight of the speculators on the information about the

common shock results from a lower market liquidity, a lower variance of common noisy supply, or a

higher variance of idiosyncratic noisy supply. Specifically, the speculators’ weight f is decreasing in

l, increasing in t

z

, and decreasing in t

x

.

The predictions along the three dimensions are all intuitive. When the market liquidity

is higher, it is easier for the noisy traders to absorb speculators’ demand, making asset prices

harder to aggregate information so that the cross-learning spiral towards the common shock

becomes weaker. When the variance of the common noisy supply is lower, speculators are

more likely to trade upon the common productivity shock. In contrast, when the variance of

the idiosyncratic noisy supply is lower, speculators are less likely to trade upon the common

shock, which results in a weaker spiral towards the common shock.

These predictions are further reflected in the following proposition, speaking to the

overall effects of liquidity trading on investment exuberance. Again, similar to Proposition

15, we have the mechanical effect and the cross-learning effect in the same direction.

Proposition 17. For liquidity trading, we have the following results.

i) A higher investment beta b I results from a lower market liquidity, a lower variance of common

noisy supply, or a higher variance of idiosyncratic noisy supply. Specifically, b I is decreasing in l,

increasing in t

z

, and decreasing in t

x

.
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ii) A higher price beta bP results from a lower market liquidity, or a higher variance of idiosyncratic

noisy supply. Specifically, bP is decreasing in l and decreasing in t

x

. The effect of the variance of

common noisy supply t

z

on bP is uncertain.

2.5 Investment Inefficiency and Competition

An important question is how firm cross learning affects real investment efficiency. On the

positive side, cross learning allows capital providers to take advantage of more information

that would not be available if they were not able to observe their own and other firms’

asset prices. However, the interests between capital providers and speculators in learning

the two types of shocks are not perfectly aligned. More importantly, each firm’s cross

learning further creates a new pecuniary externality on other firms. These frictions result in

investment inefficiency. In particular, the cross learning effect and the pecuniary externality

associated with cross learning both increase in the number of firms, suggesting that more

competitive industries may exhibit stronger and more inefficient investment exuberance.

This industry-level heterogeneity is particularly helpful to separate aggregate effects specific

to cross learning from other potential mechanisms which may also generate investment

exuberance.

We proceed by two steps in evaluating how cross learning affects investment efficiency.

First, we evaluate the overall investment efficiency and show that any cross-learning equi-

librium always features investment inefficiency. Then we characterize the new pecuniary

externality associated with cross learning for better understanding the origin of such

inefficiency. By doing this, we in particular underscore the implications of competition on

inefficient investment exuberance through the new pecuniary externality.
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2.5.1 Overall Investment Efficiency

We follow Goldstein, Ozdenoren and Yuan (2013) to define investment efficiency by the

ex-ante expected net benefit of the total investments by all of the firms,24 given that capital

providers may learn from all publicly available asset prices:

Definition 7. The investment efficiency of the economy is defined as

R =
Z 1

0
Ridi ,

where

Ri = E
h
E
h

AFi Ii �
c
2

I2
i |Gi

ii

denotes each firm i’s ex-ante expected net benefit of investment, given its capital provider’s information

set under cross learning: Gi = {Pi, {P�i}, sa,i, s f ,i}.

We have the following proposition indicating the universal presence of investment

inefficiency in a cross-learning equilibrium. We focus on unique cross-learning equilibria by

assuming that the noisy supply elasticity l and the information precision ty (of speculators’

signal on the idiosyncratic shock) are high enough.

Proposition 18. There always exists a unique optimal weight f

⇤ > 0 of the speculators on the

signal of the common shock that maximizes investment efficiency. In particular, for a high enough

noisy supply elasticity l and a high enough information precision ty (of the speculators’ signal

on the idiosyncratic shock), the optimal weight is always smaller than that in the corresponding

cross-learning equilibrium, i.e., f

⇤ < f.

Proposition 26 indicates that in a cross-learning equilibrium, the speculators tend to

put an inefficient high weight on the signal about the common shock. This makes capital

providers respond to the common shock too sensitively, leading to inefficient investment

exuberance. This particular inefficiency fits quite in line with what we have observed in

24Consistent with the literature, the private adjustment costs of the capital providers are included in the
first-best welfare calculation, and they are also the only type of investment cost in the present framework.
Thus, although the capital providers do not maximize firms’ total expected values, this fact does not imply any
inefficiency per se.
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typical investment exuberance (for example, Rhodes-Kropf, Robinson and Viswanathan,

2005, Peng, Xiong, and Bollerslev, 2007, Hoberg and Phillips, 2010, Bhattacharyya and

Purnanandam, 2011) that both primary and secondary market investors inefficiently pay

too much attention to common shocks or noisy macroeconomics news while ignoring

informative idiosyncratic news.

To better understand the impacts of cross learning on investment efficiency and po-

tentially shed light on corrective policies, we perform comparative statistics of investment

efficiency with respect to several economic parameters. Again, we focus on the cases in

which a unique cross-learning equilibrium is guaranteed.

Proposition 19. In a cross-learning equilibrium, investment efficiency is higher when the market

liquidity is higher, the precision of idiosyncratic noisy supply is higher, or the capital providers’

information precision on the idiosyncratic productivity shock is higher. Specifically, R is increasing

in l, t

x

, and ts f .

The comparative statics regarding the investment efficiency are intuitive. First, a higher

market liquidity has a corrective effect on the investment efficiency. In other words, in

a deeper asset market, the speculators’ trading positions can more easily be absorbed.

Specifically, when an asset market is more liquid or deeper, it becomes harder for the

same amount of informed trading to impact the asset price. This is beneficial in particular

when cross learning is strong after the arrival of major innovations or other common news

involving high uncertainty, because the inefficient impact from speculators’ overuse of

information about the common shock can be better absorbed.

Importantly, this corrective effect on real investment efficiency helps justify recent

regulatory concerns and practices by the SEC in limiting informed speculators’ trading

positions but at the same time encouraging liquidity provision by less informed retail

investors. These two are hard to be explained as approaches to correct investors’ irrationality

or to sidestep limits to arbitrage. In this sense, our cross-learning mechanism does a better

job in delivering policy implications than typical models featuring bubbles.

Second, increasing investment efficiency in an economy with cross learning calls for
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a better use of information about the idiosyncratic shocks in the economy. Any policies

on financial disclosure or government communication failing to keep this point in mind

may end up crowding out the idiosyncratic news and resulting in investment inefficiency.

This policy implication fits broadly in line with the recent studies that speak to the dark

side of financial disclosures or central bank communications (Di Maggio and Pagano, 2013,

Kurlat and Veldkamp, 2013, Goldstein and Yang, 2014b). Theoretically, the endogenous

overuse of information on the common shock due to multi-firm cross learning results in an

inefficient crowding-out effect on the use of information on the idiosyncratic shock. Thus, it

also complements the idea on the crowding-out effect of public information provision on

the use of private information (see Amador and Weill, 2010).

2.5.2 Competition and Cross Learning

To better understand the origin of investment inefficiency, we further identify a new pecu-

niary externality induced by cross learning. In doing so, we extend our baseline model to

admit finite number of firms. This not only allows us to underscore the efficiency change

associated with different extent of cross learning, but to investigate the relationship between

competition and inefficient investment exuberance which has been a well documented

puzzle in recent empirical literature (see Hoberg and Phillips, 2010, Greenwood and Hanson,

2014, among others). To flesh out the cross-learning channel, we use the number of firms

as a proxy for competition25 and intentionally abstract away from any product market

competition as that in Peress (2010).26 Doing this also helps empirically identify the

aggregate effects specific to cross learning because it predicts industry-level heterogeneity,

that is, differing extent of cross learning in different industries.

We first outline the extended cross-learning framework. A major challenge in identifying

25To use the number of firms to proxy competition is common in the literature, especially when the model
focuses on information (see Vives, 2010, for a survey).

26Peress (2010) offers an interesting analysis on the impacts of monopolistic competition in product markets
on stock market efficiency, but does not consider feedback to real investments or cross learning as we do. He
does not consider the implications on investment exuberance as well. To incorporate product market competition
into our framework is possible and could make our model richer, and we leave it for future research.
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the externality associated with cross learning is to deal with an information endowment

effect. Specifically, when the number of firms increase, the total amount of information

in the economy also increases, leading to an efficiency gain to each firm. This informa-

tion endowment effect confounds the identification of externalities and thus needs to be

controlled properly. To achieve this goal, our extended cross-learning framework still

features a continuum of 1 of firms being able to learn from all asset prices. However, we

assume that the speculators believe that each firm only observes and learns from as many

as n > 1 asset prices, including its own price. This setting delivers an equilibrium weight

f (of the speculators on the information about the common shock) identical to that in a

corresponding economy with n finite firms operating and the speculators fully internalizing

their cross learning, while keeping the total amount of information endowment invariant

with n. Hence, we are able to distinguish the externality associated with cross learning as

the number of firms increases.

We rigorously formulate the idea above as follows. We divide all the firms into n > 1

groups, a continuum of 1/n of firms in each group. The firms still observe and learn from

all the asset prices as in the baseline model, regardless of the grouping. However, the

speculators do not fully internalize firms’ cross learning. Specifically, let i 2 [0, 1/n) denote

one firm in the first group. The speculators believe that for any i, the n firms in the set

{i + k/n|0 6 k 6 n � 1, k 2 Z} only learn from the asset prices of each other but not from

the asset prices of other firms outside the set. Figure 5 offers an illustration of the case when

n = 3, in which the speculators believe that the three red firms (i, i + 1/3, and i + 2/3) cross

learn only from each other and the three blue firms (i0, i0 + 1/3, and i0 + 2/3) cross learn

only from each other, similar for other firm triples.

This setting has several advantages, both economically and technically. First, it casts

industry competition in a straightforward way. Since the speculators are risk neutral, it

looks to them as if there are exactly n firms operating in the economy. Thus, the speculators’

weight in equilibrium is identical to that in a corresponding economy with exactly n

firms and the speculators fully internalizing their cross learning. Second, it helps identify
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Figure 2.5: Extended Cross-Learning Framework

the pecuniary externality induced by cross learning while keeping the total information

endowment fixed. Especially, the efficiency change associated with cross learning takes place

only through the speculators’ endogenous weight over the two types of shocks, making it

possible to distinguish that from the change of firms’ actual information endowment. Last,

this setting offers a smooth transition between the baseline model with full cross learning (as

n goes to infinity) and the self-feedback benchmark (as n equals to 1). This not only makes

our analysis analytically tractable but also helps unify all of the results and intuitions.

We again acknowledge that we are abstracting away from any possible industrial

organization of the firms’ product markets. Rather, we make use of the number of firms as a

proxy for competition, which we believe is the most straightforward and relevant measure.

This also allows us to underscore the cross-learning mechanism by rendering it as the only

form of interaction among firms. In this sense, our model serves as a benchmark for further

research that may take into account more respects of industrial competition along with firm

cross learning.

We proceed to characterize the equilibrium in the extended framework and the corre-

sponding investment efficiency. We still consider symmetric equilibria, and denote by fn the

speculators’ weight on the signal of the common shock when the speculators believe that

each firm only learns from as many as n asset prices, including its own. For convenience,

we call the associated equilibrium an n-learning equilibrium.

Formally, each capital provider i still observes its own asset price Pi and all other firms’

asset prices {P�i}. Same as before, the information content of any asset price is characterized
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by

Pi = exp

0
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equivalent to a signal

zn (Pi) = fna + fi +
q

t

�1
x f

2
n + t

�1
y (z + xi) .

However, in an n-learning equilibrium, the speculators believe that each capital provider

only learns from its own price as well as the other n � 1 firms’ asset prices. Specifically,

from the speculators’ perspective, due to symmetry, each capital provider i has four signals:

her own private signals sa,i and s f ,i, the signal zn(Pi) from its own asset price, and another

signal zn(P�i) coming from the other n � 1 asset prices:27

zn (P�i) = fna +
Âl 6=i fl

n � 1
+
q

t

�1
x f

2
n + t

�1
y

✓
z +

Âl 6=i xl

n � 1

◆
.

From the speculators’ perspective, capital provider i uses these four signals to infer the

sum of the two (log) productivity shocks, a + fi, in making investment decisions. Concretely,

the speculators believe that capital provider i updates her belief as

E[a + fi|Gi] = z0Var(z)�1Cov(a + fi, z) , (2.5.12)

where z = [sa,i, s f ,i, zn(Pi), zn(P�i)]0. As a consequence, the speculators’ perceived investment

sensitivity San to the common shock and Sf n to the idiosyncratic shocks are read off from

the conditional expectation (2.5.12). Following the same approach as before in solving for

the speculators’ optimal weight in trading, we finally get

fn =

✓
San + 1 � fn

l

p
tx+tyf

2
n

◆
tx

ta+tx
✓

Sf n + 1 � 1
l

p
tx+tyf

2
n

◆
ty

tf +ty

. (2.5.13)

Clearly, the equilibrium condition (2.5.13), with the investment sensitivity prescribed by

27When n = 1, only the first three signals are relevant and the n-learning equilibrium degenerates to a
self-feedback equilibrium.

121



condition (2.5.12), is equivalent to that in a corresponding economy with n firms operating

and speculators fully internalizing their cross learning, so is the equilibrium weight fn, while

the expression of investment efficiency can be shown to be the same as that in Definition

9. Therefore, we have the following proposition regarding the equilibrium weight fn and

investment efficiency Rn in an n-learning equilibrium. We still focus on comparable cases in

which all n-learning equilibria are unique.

Proposition 20. For a high enough noisy supply elasticity l, a low enough idiosyncratic noisy

supply shock precision t

x

, and a high enough information precision ty (of the speculators’ signal on

the idiosyncratic shock),

i) for all n > 1, there exists a unique n-learning equilibrium in which the speculators put a

positive weight fn > 0 on the signal of the common productivity shock,

ii) for all n > 1, f

⇤ < f

0(= f1) < fn < f, in particular, fn is increasing in n, where f, f

0 are

the equilibrium weights in the baseline cross-learning equilibrium and in the self-feedback equilibrium,

respectively, and f

⇤ is the optimal weight that maximizes investment efficiency, and

iii) for all n > 1, R < Rn < R⇤, in particular, Rn is decreasing in n, where R is the investment

efficiency in the baseline cross-learning equilibrium and R⇤ is the optimal investment efficiency.

Proposition 20 offers a clear identification of the externality and efficiency loss associated

with cross learning. Under the parameters guaranteeing a unique equilibrium, when the

number of firms increases, cross learning makes the speculators put an increasing weight

fn on the signal of the common shock. Along with the established results in Section

2.4.2, this implies investment exuberance with higher systematic risks. Moreover, since

the information endowment is controlled, an increase in n leads to decreasing investment

efficiency, associated with an increasing extent of cross learning. The key to understand

this is a new externality through the speculators’ weight over the two types of shocks in

response to the capital providers’ cross learning. When each capital provider learns from

other firms’ asset prices, she only cares about her own investment decision and wants to use

other firms’ asset prices for better inferring the common shock. This makes her investment

more sensitive to the common shock, which in turn encourages the speculators to put

122



more weight on the signal of the common shock. However, she does not internalize the

endogenous cost on other firms’ investment decisions because her cross learning makes

asset prices endogenously less informative on other firms’ idiosyncratic productivity shocks,

through the speculators’ endogenous response in terms of allocating weight over the two

shocks. When there are more firms in the economy, the speculators respond more heavily

to the capital providers’ cross learning and each asset price is also used by more firms,

which implies a stronger externality not being internalized by each capital provider in cross

learning.

Along with the results in Section 2.4.2, the new externality associated with cross learning

offers a new perspective to investigate the puzzling fact that more competitive industries

exhibit more inefficient investment exuberance with higher systematic risks. This fact has

recently been documented in Hoberg and Phillips (2010) and shown to be robust after

many relevant controls. As they suggest, however, no single theory in the literature can

accommodate their findings. More recently, Greenwood and Hanson (2014) find a similar

pattern in the cargo ship industry that also applies to other industries. They estimate a

behavioral theory in which firms over-extrapolate exogenous demand shocks and partially

neglect the endogenous investment responses of their competitors. Our fully rational

cross-learning framework helps reconcile these facts by explicitly identifying the externality

associated with competition and its impacts on real investment efficiency. Relatedly, Ozoguz

and Rebello (2013) have empirically identified that firms in more competitive industries

adapt their investment more sensitively to stock prices of their peers, which supports our

theory.

We highlight the externality that we have identified as a new pecuniary externality, taking

effect through the informativeness of prices instead of price levels. In the classical pecuniary

externality literature (see Stiglitz, 1982, Greenwald and Stiglitz, 1986, and Geanakoplos and

Polemarchakis, 1985), agents do not internalize the impacts of their actions on equilibrium

price levels, leading to a welfare loss under various frictions. In particular, the classical

pecuniary externality generates welfare transfers across agents through the levels of prices.
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Instead in our framework, the capital providers do not fully internalize the impacts of

cross learning on equilibrium price informativeness. This leads to a typical “tragedy of the

commons” regarding the use of the price system as an information source under multi-firm

cross learning. This tragedy-of-the-commons observation is absent in existing single-firm

feedback models. In this sense, our pecuniary externality is also reminiscent of the notion

of learning externality in the earlier dynamic learning and herding literature (for example,

Vives, 1997) that an agent, when responding to private information, does not take into

account the benefit of increased informativeness of public information in the future. This

literature, however, does not explicitly consider the role of financial markets and in particular

the feedback from market prices to investments as we do.

The new pecuniary externality associated with cross learning resembles and generalizes

the “mismatch channel” of feedback identified in Goldstein and Yang (2014a). Due to

cross learning, the capital providers already get a relatively better understanding about the

common shock, so that they will want more information about the idiosyncratic shocks

and want to see their own prices more informative about them. But this goes against the

speculators’ incentives in trading (and information aggregation), because the speculators

still find it profitable to put considerable weight on the signal of the common shock in

trading. This conflict of interest between capital providers (or firms) and speculators is

generally present in the feedback literature in different forms (see the survey by Bond,

Edmans and Goldstein, 2012), and Goldstein and Yang (2014a) formally identify it as the

mismatch channel of feedback. Specifically, to uncover this channel, Goldstein and Yang

(2014a) assume that capital providers can perfectly observe one shock but not the other and

they do not consider the possibility of multi-firm cross learning. Thus, the contribution

of our work is to endogenize capital providers’ information advantage on the common

shock through multi-firm cross learning, and then to show that the underlying conflict of

interest becomes more severe as the number of firms get larger. Therefore, our cross-learning

framework nicely resembles the classical notion of pecuniary externalities, in the sense that

many capital providers endogenously ignore the full impacts of their cross learning actions
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on equilibrium prices.

Although our framework allows for an analytical characterization, we also offer nu-

merical examples to help illustrate the pecuniary externality and efficiency loss associated

with different extent of cross learning. We set ta = tf = tsa = ts f = tx = t

z

= 1, ty = 10,

t

x

= 0.1, l = 2, k = 1, and c = 0.5. The left panel of Figure 2.6 depicts the equilibrium

weight fn as n increases as the blue solid line. When n becomes larger, the weight gradually

approaches that in the baseline cross-learning equilibrium, as depicted by the red dashed

line. The right panel of Figure 2.6 depicts the log of the efficiency loss due to cross learning,

measured by log(R⇤/Rn). As shown in the solid blue line, the efficiency loss associated with

cross learning increases in n, suggesting a more severe pecuniary externality as competition

becomes stronger. In the baseline cross-learning equilibrium, the pecuniary externality is

the strongest, as depicted by the dashed red line. These results are robust to a very wide

range of parameters when l and ty are relatively large while t

x

is relatively small (and thus

a unique equilibrium is guaranteed), which are empirically relevant as aforementioned.
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Figure 2.6: Competition on Cross Learning and Efficiency Loss

Admittedly, our identification of the pecuniary externality associated with cross learning

does not attempt to offer a comprehensive evaluation of the merits of competition. Relatedly,

the investment efficiency Rn in an n-learning equilibrium cannot be interpreted as a direct

measure of the investment efficiency in an actual competitive industry with n firms. Our
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point is focused, however, to suggest a new perspective to look at the relationship between

inefficient investment exuberance and competition, a puzzling fact recently documented and

hard to be reconciled with existing theories. We admit that, despite the fact that competition

increases the extent of cross learning, with new adverse implications for investment efficiency,

it may well remain desirable when all other social benefits and costs of competition are

taken into account.

2.6 Discussion and Extension

Our cross-learning framework focuses on the second moments and inefficiency of industry-

wide investment exuberance, which are less understood in the literature. It is convenient to

further extend the present model to generate more implications and to shed light on some

other commonly observed phenomena, which offer additional empirical predictions to help

differentiate cross learning from other well-understood mechanisms.

2.6.1 Growth Opportunities and Systematic Risks under Cross Learning

In a structural asset pricing framework, Berk, Green, and Naik (1999) first argues that

firms with more growth opportunities are systematically more risky and their returns also

comove more. Papanikolaou (2011) and Kogan and Papanikolaou (2014) further propose a

concept of investment-specific technology shocks and argue that growth firms are more risky

because they are more exposed to such shocks. The cross-learning framework can provide

an alternative to look at the systematic risks associated with growth firms or industries.

In the same spirit of the relationship between competition and cross learning, the theory

predicts that industries with more growth opportunities may exhibit stronger extent of cross

learning and higher systematic risks.

We could adapt our baseline model by incorporating both assets in place and growth

opportunities while keeping all other settings. Specifically, each firm has an asset in place

and a growth option, both subject to a common shock and an idiosyncratic shock. However,

the capital provider can only invest in the growth option but not in the asset in place. In this
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setting, a larger growth option (relative to the asset in place) implies a stronger extent of

cross learning and a higher weight of the speculators on the common shock. Consequently,

the common beta becomes higher, implying higher systematic risks. Intuitively, as the size

of growth option becomes higher, the capital providers tend to cross learn more, making

the speculators over-value information about the common shock in trading. This in turn

reinforce capital providers’ cross learning, leading to a higher investment sensitivity to the

common shock even if the shock to growth opportunities does not change per se.

Importantly, the cross-learning framework provides a new micro-foundation for growth

firms’ higher exposure to investment-specific shocks, without assuming that such shocks are

larger for growth firms per se. Consistent with the thesis of Papanikolaou (2011) and Kogan

and Papanikolaou (2014), as firms grow, the uncertainty of their assets in place decreases

relative to growth opportunities, and investment-specific technology shocks become more

positively correlated with their average q, so that they become systematically more risky. In

this sense, our theory helps generate additional testable predictions regarding the aggregate

effects specific to cross learning, highlighting the cross-sectional heterogeneity among

industries with differing growth opportunities.

2.6.2 Over-investment under Cross Learning

Investment exuberance usually exhibits both high systematic risks (second moment) and

over-investment (first moment). Although the latter has been well addressed in the literature,

our framework is easily adaptable to generate so.

We could keep all the settings in our baseline model except for introducing two different

investment technologies. Specifically, each firm now has two mutually exclusive projects,

one only subject to a common shock while the other only subject to an idiosyncratic shock.

We call the former common project and the latter idiosyncratic project. This adapted setting

is in the similar spirit of Dow, Goldstein and Guembel (2011) but enriches it with both cross

learning and the firm’s debate between the common project and the idiosyncratic project.

Following the same equilibrium concept as our baseline model, a cross-learning equi-
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librium in this adapted setting features over-investment in the common project while

under-investment in the idiosyncratic project, compared to the first best. The intuition is the

same as before. When the capital providers are able to cross learn, the speculators again

find it more profitable to put a higher weight on the information about the common shock.

This makes the prices more informative about the common shock and thus encourages the

capital providers to invest more on the common project while less on their idiosyncratic

projects.

Complementary to the existing literature about over-investment, our cross-learning

mechanism has two new implications. First, over-investment is more likely to happen in

technologies or industries that are more sensitive to common shocks, which is reflected by

the common project in our stylized model. This fits quite in line with the recent episodes

of over-investment in the IT industry and housing markets. Second, which is perhaps

more subtle and interesting, over-investment in the common project is always accompanied

by under-investment in the idiosyncratic projects at the same time. This suggests that

over-investment does not necessarily imply an inefficiently large economy scale but rather

an inefficient composition of various economic activities.

2.6.3 Industry Momentum under Cross Learning

The contemporaneous study by Sockin and Xiong (2014b) uses a feedback model to generate

return momentum in a housing cycle context. Although our model does not aim to provide

a general dynamic account for boom-bust cycles, the introduction of multiple firms and the

two types of shocks also help shed light on the understanding of momentum by further

establishing a channel between cross learning and industry momentum.

Industry momentum, first identified by Moskowitz and Grinblatt (1999), suggests that

industry portfolios also exhibit considerable short-term momentum, and it even accounts

for much of the individual stock momentum. As discussed by Moskowitz and Grinblatt

(1999), individual stock momentum may be explained by a number of behavioral theories

focusing on investors’ information barrier or risk appetite. But there have been no formal
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theories that directly speak to the existence and the magnitude of industry momentum.

Our framework can potentially offer a consistent rational theory for both individual stock

momentum and industry momentum, instead highlighting firms’ investment activities and

their cross learning.

In our benchmark three-period model, the standard definition of overall individual

momentum is

Mi = Cov (log(AFi Ii)� log Pi, log Pi) ,

and industry momentum can be defined as

M = Cov
✓

log
Z 1

0
AFi Iidi � log P, log P

◆
.

It is straightforward to show that both individual stock momentum and industry mo-

mentum exist in equilibrium, and their magnitudes increase in the speculators’ weight f

on the information about the common shock. Specifically, Mi and M are always positive

when the noisy supply elasticity l and the information precision ty (of speculators’ signal

on the idiosyncratic shock) are large enough, and they increase in f. Intuitively, when

the speculators put a higher weight on the common shock, the asset prices become more

informative about the common shock and thus firm investment also becomes more sensitive

to the common shock. Therefore, the common shock plays a more important role in

determining both the asset prices and eventual cash flow of the firms, implying both

a stronger individual stock momentum and a stronger industry momentum. Moreover,

according to the results regarding the relationship between cross learning and competition

in Section 3.4.2, both individual stock momentum and industry momentum may be stronger

in more competitive industries, also due to a stronger cross learning effect.

It is worth highlighting that our mechanism to generate individual momentum and

industry momentum is fundamentally different from the prevailing explanations that high-

light overconfidence (Daniel, Hirshleifer, and Subrahmanyam, 1998), sentiment (Barberis,

Shleifer, and Vishny, 1998), or slow information diffusion (Hong and Stein, 1999). In those

models, investors generally ignore some information contents revealed by asset prices. In
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contrast, in our model, the capital providers’ rational cross learning from all available asset

prices plays a central role.

2.7 Conclusion

Firm cross learning behavior is not only empirically important but also theoretically relevant

for commonly observed investment exuberance. We have developed a tractable model to

admit cross learning and delivered a series of predictions regarding the second moments

of investment exuberance. We have illustrated that the high systematic risks associated

with investment exuberance come from a new spiral that coordinate capital providers’

investment sensitivity and speculators’ weight in trading towards the common productivity

shock. Moreover, cross learning may lead to higher investment inefficiency, because capital

providers do not internalize the new externality that other firms’ asset prices become less

informative on their idiosyncratic productivity shocks. In more competitive industries, cross

learning tends to be stronger, potentially leading to more inefficient investment exuberance

with higher systematic risks. Hence, appropriate policy interventions are called for to correct

the inefficiency in industry-wide investment exuberance.
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Chapter 3

Financing Entrepreneurial Production:

Security Design with Flexible

Information Acquistion1

3.1 Introduction

Why are projects with different natures usually financed by different types of securities?

Specifically, both debt and non-debt securities are commonly viewed in different real-world

corporate finance contexts, but it is less clear why debt is optimal for financing some projects

while non-debt securities are optimal for others. This paper provides a new answer to this

question, under a single and natural premise that the investor can acquire costly information

on the entrepreneur’s project before making the financing decision.

The literature of security design usually postulates that an entrepreneur with a project

but without financial resources proposes specific contracts to an investor to get finance.

The entrepreneur is often modeled as an expert who is more informed about the project.

However, this common approach misses a crucial point: in reality some investors are better

able than the entrepreneur to acquire information and thus to assess a project’s uncertain

1Co-authored with Ming Yang.
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market prospects, drawing upon their industry experience. For instance, start-ups seek

venture capital, and most venture capitalists are themselves former founders of successful

start-ups, so they may be better able to determine whether new technologies match the

market. Tirole (2006) points out that one shortcoming of the classical corporate finance

literature is that it overlooks this informational advantage of investors. Our paper addresses

this concern by uncovering the interaction between entrepreneurs’ security design and

investors’ endogenous information acquisition and screening.2 It enables us to provide

a theory of debt and non-debt securities within a single framework, and in particular, to

show under what conditions debt or non-debt securities will be optimal. These results are

consistent with the empirical evidence regarding the finance of entrepreneurial businesses.

In our model, an entrepreneur has the potential to produce but has no money to start the

project, and thus the investor’s endogenous information advantage over the entrepreneur3

leads to a new informational friction. Specifically, in our model, the investor can flexibly

(defined later) acquire costly information about the project’s uncertain cash flow before

making the financing decision. Only when the investor believes that the project is good

enough, will she finance the project. Hence, the entrepreneur’s real production depends on

the investor’s information acquisition, but these two are conducted separately, constituting

the friction at the heart of our model.

Our model predicts standard debt and the combination of debt and equity4 as optimal

securities in different circumstances. When the project’s ex-ante market prospects are

2In our model, screening refers to the decision of whether or not to finance the project after acquiring
information. As our model does not feature entrepreneurs’ private information, our notion of screening is
however different from the notion of separating (different types of entrepreneurs) commonly used in the
literature.

3We do not attempt to deny that entrepreneurs in reality may have private information about their
technologies, which has been discussed extensively in the previous literature. Rather, we highlight the
overlooked fact that investors may acquire information and become more informed about the potential match
between new technologies and the market.

4The formal mathematical definitions of debt, equity, and the combination of debt and equity in our
framework are given in Sections 3.3.1 and 3.3.2. In defining them, we focus on the qualitative aspects of their
cash flow rights but ignore the aspects of control rights. Specifically, debt means the security pays all the cash
flow in low states but a constant face value in high states, while equity means the security payoff and its residual
are both strictly increasing in the fundamental. Consistent with the reality, debt is also more senior than equity
in our framework.

138



already good and clear or the screening cost is high, the optimal security is debt, which

does not induce information acquisition. This prediction is consistent with the evidence

that conventional start-ups and mature private businesses rely heavily on plain-vanilla debt

finance from investors who are not good at screening, such as relatives, friends, and banks

(see Berger and Udell, 1998, Kerr and Nanda, 2009, Robb and Robinson, 2014). The intuition

is clear: since the benefit of screening does not justify its cost, the entrepreneur finds it

optimal to avoid costly information acquisition by using debt, the least information-sensitive

security. The investor thus makes the investment decision based on her prior. This intuition

for the optimality of debt is different from the conventional wisdom, as our mechanism

does not feature adverse selection or signaling.5

In contrast, when the project’s ex-ante market prospects are obscure or the cost of

screening is low, the optimal security is the combination of debt and equity that induces

the investor to acquire information. Regarding cash flow rights only, this is equivalent to

participating convertible preferred stock. This prediction fits well with the empirical facts

(Sahlman, 1990, Gompers, 1999). In particular, convertible preferred stocks have been used

in almost all the contracts between entrepreneurs and venture investors, and nearly half

of them are participating, as documented in Kaplan and Stromberg (2003). Participating

convertible preferred stock is popular in particular for the early rounds of investment

(Kaplan and Stromberg, 2003), when the friction is more severe.

The optimality of the combination of debt and equity is subtle. First, the entrepreneur

wants to induce the investor to screen only if the investor screens in a potentially good

project and screens out bad ones.6 That is, any project with a higher ex-post cash flow

should have a better chance to be financed ex-ante. Only when the investor’s payoff is high

in good states while low in bad states, the investor has the right incentive to distinguish

between these different states by developing such a screening rule, because she only wants

5Notable results regarding debt as the least information-sensitive security to mitigate adverse selection
include Myers and Majluf (1984), Gorton and Pennacchi (1990) and DeMarzo and Duffie (1999).

6Our model features continuous state, but we use the notions of good and bad at times to help develop
intuitions.
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to invest when the likelihood of high payment is high. Consequently, the entrepreneur can

maximally benefit from this by ensuring that her own payoff is also high when the investor’s

is. Therefore, an equity component with payments that are strictly increasing in the project’s

cash flow is offered, encouraging the investor to acquire adequate information to distinguish

between any different states. In addition, the investor’s information after screening may

still be imperfect, albeit perhaps with a better posterior. In other words, the investor might

still end up financing a bad project after screening. Thus, downside protection is necessary

to prevent the investor from rejecting the project without any information acquisition. This

justifies the debt component. These intuitions also suggest that straight or leveraged equity

alone is not optimal for financing entrepreneurial production, consistent with reality (Kaplan

and Stromberg, 2003, Lerner, Leamon and Hardymon, 2012).

One methodological contribution of our work is to characterize the payment structure,

or in visual terms, the “shape”, of the optimal securities without either distributional

assumptions or restrictions on the feasible security space. A new concept, flexible infor-

mation acquisition, helps achieve this goal. For instance, debt, with its flatter shape, is

less likely than equity to prompt screening. Moreover, in screening, a debt holder tends to

pay attention to states with low cash flows, as the payments are constant over states with

high cash flows so there is no point in differentiating the latter. In contrast, levered equity

holders tend to pay attention to states with high cash flows, as they benefits from the upside

payments. An arbitrary security determines the investor’s incentives for screening and

attention allocation in this state-contingent way, and these in turn affect the entrepreneur’s

incentives in designing the security. The traditional approach of exogenous information

asymmetry does not capture these incentives. Recent models of endogenous information

acquisition do not capture such flexibility of incentives adequately, since they only consider

the amount or precision of information (see Veldkamp, 2011, for a review). Our approach

of flexible information acquisition, following Yang (2013, 2015), is based on the literature

of rational inattention (Sims, 2003, Woodford, 2008), but has a different focus. It captures

not only how much but also what kind of information the investor acquires through state-
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contingent attention allocation. In our setting, when screening is desirable, the optimal

security encourages the investor to allocate adequate attention to all states so as to effectively

distinguish potentially good from bad projects, and thus delivers the highest possible ex-

ante profit to the entrepreneur. This mechanism helps generate the exact shape of different

optimal securities.

Our parsimonious framework accommodates a variety of theoretical corporate finance

contexts and real-world scenarios of financing entrepreneurial production. On the one hand,

we view the investor as a screening expert, which is natural but often overlooked.7 As the

cost of screening pertains both to the project’s nature and to the investor’s information

expertise, it also allows us to cover various investors, including family and friends, banks,

and venture capitalists. On the other hand, we highlight two particular aspects of the

entrepreneur, capturing the nature of private businesses that account for most firms. First,

the entrepreneur is financially constrained. Second, her human capital is inalienable, which

means the investor cannot take over the project and the entrepreneur has bargaining power

in designing the security. These settings fit the notion of entrepreneur-led financing proposed

by Admati and Pfleiderer (1994) and the idea in Rajan (2012) that entrepreneurs’ human

capital is important in the early stages of firms’ life cycles. These assumptions are also

completely benign; even relaxing them does not affect our main results.8 This paper, to the

best of our knowledge, is the first to investigate the interplay between security design and

an individual investor’s screening in a corporate finance production setting.

7The acknowledgement of investors’ screening dates back to Knight (1921) and Schumpeter (1942). Apart
from extensive anecdotal evidence (see Kaplan and Lerner, 2010, Da Rin, Hellmann and Puri, 2011, for reviews),
recent empirical literature (Chemmanur, Krishnan and Nandy, 2012, Kerr, Lerner and Schoar, 2014) has also
identified direct screening by various types of investors. Theoretical developments in this direction have been
surveyed in Bond, Edmans and Goldstein (2012). However, most of those papers focus on the role of competitive
financial markets in soliciting or aggregating the information of investors or speculators (for instance, Boot and
Thakor, 1993, Fulghieri and Lukin, 2001, Axelson, 2007, Garmaise, 2007, Hennessy, 2013, on security design)
rather than the role of screening by individual investors. In reality, most firms are private and do not have easy
access to a competitive financial market. A burgeoning security design literature highlights individual investors’
endogenous information advantage directly (Dang, Gorton and Holmstrom, 2011, Yang, 2013), but these models
are built to capture the asset-backed securities market as an exchange economy and not fit for our setting of
financing entrepreneurial production.

8The results of optimal securities continue to hold if the project is transferrable or if the entrepreneur does
not have full bargaining power in designing the security. See subsection 3.3.3 and appendix C.1.2.
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Related Literature. In addition to the security design literature that identifies debt as

the most information-insensitive form of finance (as mentioned in footnote 6), this paper is

related to a series of theoretical papers that predict that non-debt securities (including equity

and convertibles) can be optimal in various circumstances with asymmetric information

(see Brennan and Kraus, 1987, Constantinides and Grundy, 1989, Stein, 1992, Nachman and

Noe, 1994, Chemmanur and Fulghieri, 1997, Inderst and Mueller, 2006, Chakraborty and

Yilmaz, 2011, Chakraborty, Gervais and Yilmaz, 2011, Fulghieri, Garcia and Hackbarth, 2013).

Even closer to the present paper are Boot and Thakor (1993), Manove, Padilla and Pagano

(2001), Fulghieri and Lukin (2001), Axelson (2007), Garmaise (2007), and Hennessy (2013),

all of which highlight the competitive financial markets’ role in soliciting or aggregating

investors’ private information. These papers, however, do not consider an individual

investor’s screening directly. Also different from these papers, our model allows for state-

contingent decisions of information acquisition, which reflects the fact that the investor is

able to acquire information in a very detailed, careful manner. This methodology helps to

model arbitrary feasible securities over continuous states with arbitrary distributions and

information structures, allowing us to characterize the matching between different projects

and different optimal securities in an exhaustive way.

Our model also contributes to the venture contract design literature by highlighting

screening. Security design is one focus of modern research in entrepreneurial finance and

innovation, but the literature mostly focuses on control rights (Berglof, 1994, Hellmann,

1998, Kirilenko, 2001), monitoring (Ravid and Spiegel, 1997, Schmidt, 2003, Casamatta, 2003,

Hellmann, 2006), and refinancing and staging (Admati and Pfleiderer, 1994, Bergemann

and Hege, 1998, Cornelli and Yosha, 2003, Repullo and Suarez, 2004) and tends to ignore

screening. Further, most of these models only focus on one class of optimal security. In

contrast, our model unifies debt and non-debt-like securities in a general framework and

provides a consistent mapping of their optimality to different real-world circumstances.

A new strand of literature on the real effects of rating agencies (see Kashyap and

Kovrijnykh, 2013, Opp, Opp and Harris, 2013) is also relevant. On behalf of investors, the
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rating agency screens the firm, which does not know its own type. Information acquisition

may improve social surplus through ratings and the resulting investment decisions. Unlike

this literature, we study how different shapes of securities interact with the incentives to

allocate attention in acquiring information and therefore the equilibrium financing choice.

The remaining of this paper proceeds as follows. Section 3.2 specifies the economy.

Section 3.3 characterizes the optimal securities. Section 3.4 further characterizes under what

conditions debt or non-debt securities will be optimal. Section 3.5 performs comparative

statics on the optimal securities. Section 3.6 concludes.

3.2 The Model

We present a model focusing on the interplay between security design and flexible screening.

We highlight one friction: the dependence of real production on information acquisition

and the former’s simultaneous separation from the latter.

3.2.1 Financing Entrepreneurial Production

Consider a production economy with two dates, t = 0, 1, and a single consumption good.

There are two agents: an entrepreneur lacking financial resources and a deep-pocket investor,

both risk-neutral. Their utility function is the sum of consumptions over the two dates:

u = c0 + c1, where ct denotes an agent’s consumption at date t. In what follows we use

subscripts E and I to indicate the entrepreneur and the investor, respectively.

The financing process of the entrepreneur’s risky project is as follows. To initiate the

project at date 0, the underlying technology requires an investment of k > 0. If financed,

the project generates a non-negative verifiable random cash flow q at date 1. The project

cannot be initiated partially. Hence, the entrepreneur has to raise k, by selling a security to

the investor at date 0. The payment of a security at date 1 is a mapping s : R+ ! R+ such

that s(q) 2 [0, q] for any q. We focus only on the cash flow of projects and securities rather

than the control rights.
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Security design and information acquisition both happen at date 0. The agents have a

common prior P on the potential project’s future cash flow q, and neither party has any

private information ex-ante.9 The entrepreneur designs the security, and then proposes

a take-it-or-leave-it offer to the investor at price k. Facing the offer, the investor acquires

information about q in the manner of rational inattention (Sims, 2003, Woodford, 2008,

Yang, 2013, 2015), updates beliefs on q, and then decides whether to accept the offer. The

information acquired is measured by reduction of entropy. The information cost per unit

reduction of entropy is µ, defined as the cost of screening. We elaborate this information

acquisition process in more detail in subsection 3.2.2.

The assumptions implicit in the setting reflect the key features of financing entrepreneurial

production, in particular the role of screening. First, the entrepreneur cannot undertake

the project except by external finance.10 This is consistent with the empirical evidence that

entrepreneurs and private firms are often financially constrained (Evans and Jovanovic,

1989, Holtz-Eakin, Joulfaian and Rosen, 1994). Even in mature firms, managers may seek

outside finance where the internal capital market does not work well for risky projects

(Stein, 1997, Scharfstein and Stein, 2000). Second, the investor can acquire information

about the cash flow and thus screen the project through her financing decision. This point

not only accounts for the empirical evidence but also sets this model apart from most

of the previous security design literature, which features the entrepreneur’s exogenous

information advantage. These two points together lead to the dependence and separation of

real production and information acquisition, which is the key friction in our model.

It is worth noting which aspects of finance in the production economy are abstracted

9We can interpret this setting as that the entrepreneur may still have some private information about the
future cash flow, but she does not have any effective ways to signal that to the investor. Signaling has been
extensively discussed in the literature and already well understood, so we leave it aside.

10As common in the corporate finance literature (see Tirole, 2006 for an overview), entrepreneurs are typically
viewed as financially constrained. Alternatively, the entrepreneur may have her own capital but cannot acquire
information, so that she wants to hire an information expert to improve the investment decision. This alternative
situation boils down to a consulting problem. A large literature on the delegation of experimentation (for
example, Manso, 2011) considers such consulting problems in corporate finance, which is beyond the scope of
this paper.
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away, and how much they affect our analysis. First, to focus on screening, we set aside

moral hazard. To ignore moral hazard is common in the security design literature, especially

when hidden information is important (see DeMarzo and Duffie, 1999, for a justification).

Second, we do not focus on the bargaining process and the allocation of control rights. We

assume that the entrepreneur’s human capital is inalienable, so that direct project transfer

is impossible and the entrepreneur has the bargaining power to design the security.11 In

subsection 3.3.3 we formally demonstrate that even if the project is transferrable, it is not

optimal to transfer the project at any fixed price. Moreover, in appendix C.1.2 we discuss

a general allocation of bargaining power between the two agents and we show that our

main results are unaffected unless the investor’s bargaining power is too strong. Third,

consistent with the security design literature, we do not allow for partial financing or

endogenous investment scale choice. Since our theory can admit any prior distribution, a

fixed investment requirement in fact enables us to capture projects with differing natures in

an exhaustive sense. Fourth, we do not model the staging of finance, and we accordingly

interpret the cash flow q as already incorporating the consequences of investors’ exiting.

Hence, each round of investment may be mapped to our model separately with a different

prior. Last, we do not model competition among investors. The last two points pertain to

the structure of financial markets, which is tangential to the friction we consider.

3.2.2 Flexible Information Acquisition

We model the investor’s screening by flexible information acquisition (Yang, 2015). This

captures the nature of screening and allows us to work with arbitrary securities over

continuous states and without distributional assumptions. Fundamentally, the entrepreneur

can design the security’s payoff structure arbitrarily, which may induce arbitrary incentive

of attention allocation by the investor in screening the project. This therefore calls for an

11This notion of entrepreneur-led financing is also common in the literature (Brennan and Kraus, 1987,
Constantinides and Grundy, 1989, Admati and Pfleiderer, 1994). Together with the differentiation argument
in Rajan (2012), this assumption also broadly corresponds to the earlier incomplete contract literature, which
suggests that ownership should go to the entrepreneur when firms are young (Aghion and Tirole, 1994).

145



equally flexible account of screening to capture the interaction between the shape of the

securities and the incentives to allocate attention. To map to the reality, flexible information

acquisition also captures the fact that the investor can acquire information in a very detailed

and careful manner.

The essence of flexible information acquisition is that it captures not only how much

but also which aspects of information an agent acquires. Consider an agent who chooses

a binary action a 2 {0, 1} and receives a payoff u (a, q), where q 2 R+ is the fundamental,

distributed according to a continuous probability measure P over R+. Before making a

decision, the agent may acquire information through a set of binary-signal information

structures, each signal corresponding to one optimal action.12 Specifically, she may choose a

measurable function m : R+ ! [0, 1], the probability of observing signal 1 if the true state is

q, and acquire binary signals x 2 {0, 1} parameterized by m (q); m(q) is chosen to ensure

that the agent’s optimal action is 1 (or 0) when observing 1 (or 0). By choosing different

functional forms of m (q), the agent can make the signal correlate with the fundamental in

any arbitrary way.13 Intuitively, for instance, if the agent’s payoff is sensitive to fluctuations

of the state within some range A ⇢ R+, she would pay more attention to this range by

making m (q) co-vary more with q in A. This gives us a desirable account to model an

agent’s incentive to acquire different aspects of information.

The conditional probability m(·) embodies a natural interpretation of screening. In our

setting of financing entrepreneurial production, conditional on a cash flow q, m(q) is the

probability of the project’s being screened in and thus getting financed. It is state-contingent,

capturing the investor’s incentive to allocate attention in screening a project. In particular,

the absolute value of the first order derivative |dm(q)/dq| represents the screening intensity:

when it is larger, the investor differentiates the states around q better. Thus, in what follows

we call m(·) a screening rule.

12In general, an agent can choose any information structure. But an agent always prefers binary-signal
information structures in binary decision problems. See Woodford (2008) and Yang (2015).

13Technically, this allows agents to choose signals drawn from any conditional distribution of the fundamental.
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We then characterize the cost of information acquisition. As in Woodford (2008) and

Yang (2015), the amount of information conveyed by a screening rule m (·) is defined as the

expected reduction of uncertainty through observation of the signal, where the uncertainty

associated with a distribution is measured by Shannon’s entropy H(·). This reduction from

agents’ prior entropy to expected posterior entropy can be calculated as:

I (m) = E [g (m (q))]� g (E [m(q)]) ,

where g (x) = x · ln x + (1 � x) · ln (1 � x), and the expectation operator E(·) is with respect

to q under the probability measure P.14 Denote by M = {m 2 L (R+, P) : q 2 R+, m (q) 2 [0, 1]}

the set of binary-signal information structures, and c : M ! R+ the cost of information.

The cost is assumed to be proportional to the associated mutual information:

c (m) = µ · I (m) ,

where µ > 0 is the cost of information acquisition per unit of reduction of entropy.15,16

Built upon flexible information acquisition, the agent’s problem is to choose a functional

form of m(q) to maximize expected payoff less information cost. We characterize the optimal

screening rule m(q) in the following proposition. We denote Du(q) = u(1, q)� u(0, q), which

is the payoff gain of taking action 1 over action 0. We also assume that Pr [Du (q) 6= 0] > 0

to exclude the trivial case where the agent is always indifferent between the two actions.

The proof is in Yang (2013) (see also Woodford, 2008, for an earlier treatment).

14Formally, we have

I(m) = H(P)�
Z

x
H(P(·|x))Pxdx ,

where P denotes the prior, x the signal received, P(·|x) the posterior distribution, and Px the marginal
probability of signal x. Under binary-signal structure, standard calculation yields the result above.

15Although the cost c(m) is linear in mutual information I(m), it does not mean it is linear in information
acquisition. Essentially, mutual information I(m) is a non-linear functional of the screening rule m(·) and the
prior P, micro-founded by the information theory.

16The functional form of the information cost, following the literature of rational inattention, is not crucial in
driving our qualitative results. See Woodford (2012) and Yang (2015) for discussions on related properties of
this cost function.
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Proposition 21. Given u, P, and µ > 0, let m⇤(q) 2 M be an optimal screening rule and

p̄

⇤ = E [m⇤(q)]

be the corresponding unconditional probability of taking action 1. Then,

i) the optimal screening rule is unique;

ii) there are three cases for the optimal screening rule:

a) p̄

⇤ = 1, i.e., Prob[m⇤ (q) = 1] = 1 if and only if

E
h
exp

⇣
�µ

�1 · Du (q)
⌘i

6 1 ; (3.2.1)

b) p̄

⇤ = 0, i.e., Prob[m⇤ (q) = 0] = 1 if and only if

E
h
exp

⇣
µ

�1 · Du (q)
⌘i

6 1 ;

c) 0 < p̄

⇤ < 1 and Prob[0 < m⇤(q) < 1] = 1 if and only if

E
h
exp

⇣
µ

�1 · Du (q)
⌘i

> 1 and E
h
exp

⇣
�µ

�1 · Du (q)
⌘i

> 1 ; (3.2.2)

in this case, the optimal screening rule m⇤(q) is determined by the equation

Du (q) = µ ·
�

g0 (m⇤ (q))� g0 (p̄⇤)
�

(3.2.3)

for all q 2 R+, where

g0 (x) = ln
✓

x
1 � x

◆
.

Proposition 21 fully characterizes the agent’s possible optimal decisions of information

acquisition. Case a) and Case b) correspond to the scenarios of optimal action 1 or 0. These

two cases do not involve information acquisition. They correspond to the scenarios in which

the prior is extreme or the cost of information acquisition is sufficiently high. But case c), the

more interesting one, involves information acquisition. In particular, the optimal screening

rule m⇤(q) is not constant in this case, and neither action 1 nor 0 is optimal ex-ante. This

case corresponds to the scenario where the prior is not extreme, or the cost of information

acquisition is sufficiently low. In Case c) where information acquisition is involved, the

148



agent equates the marginal benefit of information with its marginal cost, as indicated by

condition (3.2.3). So doing, the agent chooses the shape of m⇤(q) according to the shape of

payoff gain Du(q) and her prior P.17 In the next section we will see that the shape of m⇤(q)

is crucial in characterizing the way in which the investor screens a project.

3.3 Security Design

Now let us consider the entrepreneur’s security design problem. Denote the optimal

security of the entrepreneur by s⇤(q). The entrepreneur and the investor play a dynamic

Bayesian game. Concretely, the entrepreneur designs the security, and then the investor

screens the project given the security designed. Hence, we apply Proposition 21 to the

investor’s information acquisition problem, given the security, and then solve backwards for

the entrepreneur’s optimal security. To distinguish from the general decision problem in

Section 3.2.2, we denote the investor’s optimal screening rule as ms(q), given the security

s(q); hence the investor’s optimal screening rule is now denoted by m⇤
s (q).

We formally define the equilibrium as follows.

Definition 8. Given u, P, k and µ > 0, the sequential equilibrium is defined as a combination of

the entrepreneur’s optimal security s⇤(q) and the investor’s optimal screening rule ms(q) for any

generic security s(q), such that

i) the investor optimally acquires information given any generic security s(q): ms(q) is prescribed

by Proposition 21,18 and

ii) the entrepreneur designs the optimal security:

s⇤(q) 2 arg max
06s(q)6q

E[ms(q) · (q � s(q))] .

According to Proposition 21, there are three possible investor behaviors, given the

entrepreneur’s optimal security. First, the investor may optimally choose not to acquire

17See Woodford (2008), Yang (2013, 2015) for more examples on this decision problem.

18The specification of belief for the investor at any generic information set after information acquisition is
implied by Proposition 21, provided the definition of ms(q).
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information and simply accept the security as proposed. This implies that the project is

certainly financed. Second, the investor may optimally acquire some information, induced

by the proposed security, and then accept the entrepreneur’s optimal security with a positive

probability. In this case, the project is financed with a probability that is positive but less than

one. Third, the investor may simply reject the security without acquiring information, which

implies that the project is certainly not financed. All the three cases can be accommodated

by the equilibrium definition. This third case, however, represents the outside option

of the entrepreneur, who can always offer nothing to the investor and drop the project.

Accordingly, we focus on the first two cases. The following lemma helps distinguish the

first two types of equilibrium from the third.

Lemma 18. The project can be financed with a positive probability if and only if

E
h
exp(µ�1 · (q � k))

i
> 1 . (3.3.1)

Lemma 18 is an intuitive investment criterion. It implies that the project is more likely

to get financed if the prior of the cash flow is better, if the initial investment k is smaller, or

if the cost of screening µ is lower. When condition (3.3.1) is violated, the investor will reject

the proposed security, whatever it is.

Condition (3.3.1) appears different from the ex-ante NPV criterion, which suggests that

a project should be financed for sure when E [q]� k > 0. In our model with screening, by

Jensen’s inequality, condition (3.3.1) implies that any project with positive ex-ante NPV will

be financed with a positive probability. Moreover, some projects with negative ex-ante NPV

may also be financed with a positive probability. This is consistent with our idea that real

production depends on information acquisition. With the potential of screening, the ex-ante

NPV criterion based on a fixed prior is generalized to a new information-adjusted one to

admit belief updating.

The following Corollary 18 implies that the entrepreneur will never propose to concede

the entire cash flow to the investor if the project is financed. This corollary is straightforward

but worth stressing, in that it helps illustrate the key friction by showing that the interests
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of the entrepreneur and the investor are not perfectly aligned.

Corollary 4. When the project can be financed with a positive probability, s⇤(q) = q is not an

optimal security.

In what follows, we assume that condition (3.3.1) is satisfied, and characterize the

entrepreneur’s optimal security, focusing on the first two types of equilibria with a positive

screening cost µ > 0. As we will see, the entrepreneur’s optimal security differs between

the two cases, which implies that the investor screens the project differently. We further

show that to transfer the project at a given price is always sub-optimal, which also justifies

the security design approach. Finally, for additional intuitions, we consider two limiting

cases, one with infinite and one with zero screening cost.

3.3.1 Optimal Security without Inducing Information Acquisition

In this subsection, we consider the case in which the entrepreneur’s optimal security is

accepted by the investor without information acquisition. In other words, the entrepreneur

finds screening not worthwhile and wants to design a security to deter it. Concretely, this

means Pr [m⇤
s (q) = 1] = 1. We first consider the investor’s problem of screening, given the

entrepreneur’s security, then characterize the optimal security.

Given a security s(q), the investor’s payoff gain from accepting rather than rejecting the

security is

DuI(q) = uI(1, q)� uI(0, q) = s (q)� k . (3.3.2)

According to Proposition 21 and conditions (3.2.1) and (3.3.2), any security s(q) that is

accepted by the investor without information acquisition must satisfy

E
h
exp

⇣
�µ

�1 · (s (q)� k)
⌘i

6 1 . (3.3.3)

If the left-hand side of inequality (3.3.3) is strictly less than one, the entrepreneur could lower

s(q) to some extent to increase her expected payoff gain, without affecting the investor’s

incentives. Hence, condition (3.3.3) always holds as an equality in equilibrium.
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By backward induction, the entrepreneur’s problem is to choose a security s(q) to

maximize her expected payoff

uE(s(·)) = E [q � s(q)]

subject to the investor’s information acquisition constraint

E
h
exp

⇣
�µ

�1 · (s (q)� k)
⌘i

= 1 ,

and the feasibility condition 0 6 s(q) 6 q.19

In this case, the entrepreneur’s optimal security is a debt. We characterize this optimal

security by the following proposition, along with its graphical illustration in Figure 3.1. It is

easy to see that the face value of the debt is unique in this case.

Proposition 22. If the entrepreneur’s optimal security s⇤(q) induces the investor to accept the

security without acquiring information, then it takes the form of a debt:

s⇤(q) = min (q, D⇤)

where the unique face value D⇤ is determined in equilibrium.

It is intuitive that debt is the optimal means of finance when the entrepreneur finds it

optimal not to induce information acquisition. Since screening is not worthwhile, and the

entrepreneur wants to design a security to deter it, debt is the least information-sensitive

form that provides the entrepreneur’s desired expected payoff. From another perspective,

the optimal security enables the investor to break even between acquiring and not acquiring

information. Specifically, it is the flat part of debt that mitigates the investor’s incentive to

acquire information to the extent at which she just gives up acquiring information, while

delivering the highest possible expected payoff to the entrepreneur. This implies that the

19With this feasibility condition, the entrepreneur’s individual rationality constraint E [q � s(q)] > 0 is
automatically satisfied, which is also true for the later case with information acquisition. This comes from the
fact that the entrepreneur has no endowment. It also implies that the entrepreneur always prefers to undertake
the project, which is consistent with real-world practices. However, it is not correct to interpret this as that the
entrepreneur would like to contract with any investor, as we do not model the competition among different
investors.
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Figure 3.1: The Unique Optimal Security without Information Acquisition

optimal security should be as flat as possible when the limited liability constraint is not

binding, which leads to debt.

Interestingly, although in this case the investor only provides material investment (rather

than acquire costly information), the expected payment E[s⇤(q)] exceeds the investment

requirement k. The extra payment exceeding k works as a premium to make the investor

comfortable with accepting the offer with certainty, as otherwise, without screening she

might worry about financing a potentially bad project.

On the other hand, however, the prediction here implies that there is always a limit to

the amount of optimal leverage, even without resorting to costs of financial distress which

is typical in trade-off theories of debt. In our framework, intuitively, this derives from the

separation of real production and information acquisition. As long as the face value is high

enough to prevent costly and unnecessary information acquisition, the entrepreneur wants

to retain as much as possible, inducing a cap on the optimal face value of debt.

The optimality of debt here accounts for the real-world scenarios in which new projects

are financed by fixed-income securities. When a project’s market prospects are good and

thus not much extra information is needed, it is optimal to deter or mitigate investor’s

costly information acquisition by resorting to a debt security, which is the least information-

sensitive. Interestingly, the rationale for debt in our model does not feature adverse selection,
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but rather a cost-benefit trade-off of screening. Empirical evidence suggests that many

conventional businesses and less revolutionary start-ups relying heavily on plain vanilla

debt finance from investors who are not good at screening, such as relatives, friends, and

traditional banks (for example, Berger and Udell, 1998, Kerr and Nanda, 2009, Robb and

Robinson, 2014), as opposed to more sophisticated financial contracts with venture capital

or buyout funds.

The optimality of debt described here is also conceptually different from that in Yang

(2013), who considers security design with flexible information acquisition in a comparable

exchange economy. In that model, a seller has an asset in place and proposes a security to a

more patient buyer to raise liquidity. The buyer can acquire information about the asset’s

cash flow before purchasing. In that model, debt is optimal because it offers the greatest

mitigation of the buyer’s adverse selection and hence helps achieve a higher selling price.

In the present production economy, however, the investment requirement is fixed, and the

optimality of debt derives from the aforementioned cost-benefit analysis of screening (i.e.,

information acquisition).

3.3.2 Optimal Security Inducing Information Acquisition

Here we characterize the entrepreneur’s optimal security that does induce the investor to

acquire information and to accept the security with positive probability but not certainty. In

other words, the entrepreneur finds screening desirable in this case and designs a security

to incentivize it. According to Proposition 21, this means Prob [0 < ms(q) < 1] = 1.

Again, according to Proposition 21 and conditions (3.2.2) and (3.3.2), any generic security

s(q) that induces the investor to acquire information must satisfy

E
h
exp

⇣
µ

�1 (s (q)� k)
⌘i

> 1 (3.3.4)

and

E
h
exp

⇣
�µ

�1 (s (q)� k)
⌘i

> 1 , (3.3.5)

Given such a security s(q), Proposition 21 and condition (3.2.3) also prescribe that the
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investor’s optimal screening rule ms(q) is uniquely characterized by

s (q)� k = µ ·
�

g0 (ms (q))� g0 (ps)
�

, (3.3.6)

where

ps = E [ms (q)]

is the investor’s unconditional probability of accepting the security. In what follows, we

denote by p

⇤
s the unconditional probability induced by the entrepreneur’s optimal security

s⇤(q).

We derive the entrepreneur’s optimal security backwards. Taking account of investor’s

response ms(q), the entrepreneur chooses a security s (q) to maximize

uE (s(·)) = E [ms (q) · (q � s (q))] (3.3.7)

subject to (3.3.4), (3.3.5), (3.3.6), and the feasibility condition 0 6 s (q) 6 q.20

We first offer an intuitive roadmap to investigate the optimal security and the associated

screening rule, highlighting their key properties. Then we follow with a formal proposition

to characterize the optimal security. The detailed derivation is in Appendix C.1.1.21

First, the investor’s optimal screening rule m⇤
s (q), induced by the optimal security s⇤(q),

must increase in q. When the entrepreneur finds it optimal to induce information acquisition,

screening by the investor benefits the entrepreneur. Effective screening makes sense only

if the investor screens in a potentially good project and screens out bad ones; otherwise it

lowers the total social surplus. Under flexible information acquisition, this implies that m⇤
s (q)

should be more likely to generate a good signal and to result in a successful finance when

the cash flow q is higher, while more likely to generate a bad signal and a rejection when q

is lower. Therefore, m⇤
s (q) should be increasing in q. As we will see, the monotonicity of

20Again, the entrepreneur’s individual rationality constraint E [ms (q) · (q � s (q))] > 0 is automatically
satisfied.

21To facilitate understanding, the intuitive investigation of the optimal security is not organized in the same
order as the derivation goes in the Appendix, but all the claims in the main text are guaranteed by the formal
proofs.
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m⇤
s (q) and the shape of s⇤(q) are closely interrelated.

To induce an increasing optimal screening rule m⇤
s (q), the optimal security s⇤(q) must be

increasing in q as well, according to the first order condition of information acquisition (3.3.6).

Intuitively, this monotonicity reflects the dependence of real production on information

acquisition: the entrepreneur is willing to compensate the investor more in the event of

higher cash flow to encourage effective screening. Unlike the classical security design

literature, which often restricts the feasible set to non-decreasing securities, our model

uncovers the intrinsic force that drives the pervasiveness of increasing securities in reality.

We also argue that the non-negative constraint s(q) > 0 is not binding for the optimal

security s⇤(q) for any q > 0. Suppose s⇤(eq) = 0 for some eq > 0. Since s⇤(q) is increasing

in q, for all 0 6 q 6 e
q we must have s⇤(q) = 0. This violates the foregoing argument

that s⇤(q) must be increasing in q. Intuitively, zero payment in states with low cash flows

gives the investor too little incentive to acquire information, which is not optimal for the

entrepreneur. The security with zero payment in states with low cash flows looks closest to

levered common stock, which is the least commonly used security between entrepreneurs

and investors in practice (Kaplan and Stromberg, 2003, Kaplan and Lerner, 2010, Lerner,

Leamon and Hardymon, 2012).

For closer examination of the optimal security, a perturbation argument on the security

design problem gives the entrepreneur’s first order condition. Specifically, denote by r⇤(q)

the marginal contribution to the entrepreneur’s expected payoff uE(s(·)) of any feasible

perturbation to the optimal security s⇤(q).22 As s⇤(q) > 0 for any q > 0, it is intuitive to

show that for any q > 0:

r⇤ (q)

8
><

>:

= 0 if 0 < s⇤(q) < q

> 0 if s⇤(q) = q

,

22Formally, r⇤(q) is the Frechet derivative, the functional derivative used in the calculus of variations, of
uE(s(·)) at s⇤(q). It is analogical to the commonly used derivative of a real-valued function of a single real
variable but generalized to accommodate functions on Banach spaces.
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which is further shown to be equivalent to

(1 � m⇤
s (q)) · (q � s⇤(q) + w⇤)

8
><

>:

= µ if 0 < s⇤(q) < q

> µ if s⇤(q) = q

, (3.3.8)

where w⇤ is a constant determined in equilibrium.

We argue that the optimal security s⇤(q) follows the 45� line in states with low cash

flows and then increases in q with some smaller slope in states with high cash flows. That

is, the residual of the optimal security, q � s⇤(q), also increases in q in states with high cash

flows. According to the entrepreneur’s first order condition (3.3.8) and the monotonicity of

m⇤
s (q), if s⇤(bq) = b

q for some bq > 0, it must be s⇤(q) = q for any 0 < q < b
q.23 Similarly, if

s⇤(bq) < b
q for some bq > 0, then for any q > b

q it must be s⇤(q) < q, again by condition (3.3.8)

and the monotonicity of m⇤
s (q). In addition, Corollary 4 rules out s⇤(q) = q for all q > 0

as an optimal security. Thus, since s⇤(q) is increasing in q, the limited liability constraint

can only be binding in states with low cash flows.24 Importantly, given condition (3.3.8)

and, again the monotonicity of m⇤
s (q), when the limited liability constraint is not binding in

states with high cash flows, not only s⇤(q) but also q � s⇤(q) are increasing in q. In other

words, s⇤(q) is dual monotone when it deviates from the 45� line in states with high cash

flows.

The shape of the optimal security s⇤(q) reflects the friction of the economy. Recall that

the monotonicity of s⇤(q) reflects the dependence of real production on information. The

monotonicity of q � s⇤(q), however, reflects their separation: the entrepreneur wants to

retain as much as possible while incentivizing the investor to screen the project. Specifically,

the area between s⇤(q) and the 45� line not only captures the entrepreneur’s retained

benefit, but also reflects the degree to which the allocation of cash flow is inefficient when

23This argument can be seen by contradiction. Suppose s⇤(q) < q when 0 < q < b
q. By the monotonicity

of m⇤
s (q), we know that 1 � m⇤

s (q) > 1 � m⇤
s (bq). We also know that q � s⇤(q) > b

q � s⇤(bq) = 0. Thus, we have
(1 � m⇤

s (q))(q � s⇤(q) + w⇤) > (1 � m⇤
s (bq))(bq � s⇤(bq) + w⇤) > µ, the last inequality following the second row of

condition (3.3.8) because s⇤(bq) = b
q. But this in turn implies that (1�m⇤

s (q))(q � s⇤(q) +w⇤) > µ, which violates
the first row of condition (3.3.8) because s⇤(q) < q requires (1 � m⇤

s (q))(q � s⇤(q) + w⇤) = µ, a contradiction.

24In the formal proofs we further show that the limited liability constraint must be binding for some states
(0, bq) with bq > 0.
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screening is desirable. This is intuitive: dependence implies that the investor should get

all the cash flow, but separation precludes proposing such a deal, as shown in Corollary

4. The competition of the two forces is alleviated in a most efficient way: rewarding the

investor more but also retaining more in better states. In this sense, again, our prediction of

dual monotonicity derives endogenously from the friction of the economy, whereas in the

previous literature it is commonly posited by assumptions.

Formally, the following proposition characterizes the optimal security s⇤(q) that induces

the investor to acquire information.

Proposition 23. If the entrepreneur’s optimal security s⇤(q) induces the investor to acquire

information, then it takes the following form:

s⇤ (q) =

8
><

>:

q if 0 6 q 6 b
q

bs (q) if q > b
q

,

where bq is determined in equilibrium and the unconstrained part bs(q) satisfies:

i) bq < bs(q) < q;

ii) 0 < dbs(q)/dq < 1.25

Finally, the corresponding optimal screening rule satisfies dm⇤
s (q)/dq > 0.

Proposition 23 offers a clear prediction on the entrepreneur’s optimal security when

screening is desirable. The form of this security most closely resembles participating

convertible preferred stock, with dbs(q)/dq as the conversion ratio, which grants holders the

right to receive both the face value and their equity participation as if it was converted, in the

real-world event of a public offering or sale. The payoff structure shown in Figure 3.2 may

25In Appendix C.1.1, we provide the implicit function that determines dbs(q)/dq and further show that
d2bs(q)/dq

2 < 0, which implies that the unconstrained part is concave, as illustrated in Figure 3.2. Specifically,
we interpret this as a state-contingent conversion ratio, with which the entrepreneur retains more shares in
better states. Kaplan and Stromberg (2003) have documented the frequent use of contingent contracts in venture
finance and private equity buyouts, which is consistent with the state-contingent conversion ratio described
here.
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Figure 3.2: The Unique Optimal Security with Information Acquisition

be also interpreted as debt plus equity (common stock),26 or participating convertible debt.27

This prediction is consistent with the empirical evidence of venture contracts documented in

Kaplan and Stromberg (2003), who find that 94.4% of all financing contracts are convertible

preferred stock,28 among which 40.8% are participating, and the participating feature is

especially frequent in the earlier rounds of investment. Kaplan and Stromberg (2003) suggest

that participating is preferable even to straight convertible preferred stock for screening

purpose. Our model implies the same: straight convertible preferred stock is better than

debt but still not optimal, because its flat payoffs in intermediate states do not provide

enough incentive for the investor to differentiate these states. Our prediction also fits in

line with earlier evidence (Sahlman, 1990, Bergemann and Hege, 1998, Gompers, 1999) on

the popularity of participating convertible preferred stock and the combination of debt and

equity in financing young firms and new projects. For brevity, in what follows we refer to

26The package of redeemable preferred stock (can be viewed as a form of debt) and common stock is used
as equivalent to participating convertible preferred stock in practice. But the package is not popular, since it
is harder to assign reasonable value to each component of the package. See Lerner, Leamon and Hardymon
(2012) for more detailed discussion on this point. Also see Stein (1992) and Cornelli and Yosha (2003) for
theoretical expositions on the advantage of convertible securities over the combination of debt and equity when
characteristics other than the cash flow rights are taken into account.

27Compared to equity (common stock), debt and preferred stock are identical in our model, as the model
only features two tranches and no dividends.

28If we include convertible debt and the combination of debt and equity, this number increases to 98.1%.
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the optimal security in this case as convertible preferred stock or the combination of debt

and equity, and use the two terms interchangeably.

Flexible information acquisition plays an important role in predicting the shape of

convertible preferred stock. When screening is desirable, on the one hand, a globally

increasing security incentivizes the investor to pay sufficient attention to all states so

as to discriminate between potentially good and bad projects. On the other hand, a

higher conversion ratio dbs(q)/dq induces the investor to screen the underlying project more

intensively, at a higher cost to the entrepreneur.29 Hence, the entrepreneur weighs the benefit

of screening against its cost by choosing the optimal conversion ratios on a state-contingent

basis to ensure the highest possible ex-ante profit.

Our prediction of the multiple of convertible preferred stock, defined as the ratio of

the face value bq to the investor’s initial investment k, is also consistent with the empirical

evidence (Kaplan and Stromberg, 2003, Lerner, Leamon and Hardymon, 2012). The multiple

is a key characteristic of convertible preferred stock, sometimes taken as analogous to

investment returns.

Corollary 5. The multiple of convertible preferred stock, as the optimal security s⇤(q) inducing

information acquisition, is greater than one, that is, bq > k.

Like the debt case, this property again derives from the fact that the entrepreneur should

offer the investor a premium for accepting the offer with positive probability. Even after

screening, the investor’s information is still imperfect. Thus, this premium makes the

investor comfortable with not rejecting the offer, because even with information acquisition

the investor may still end up financing a potentially bad project.

Finally, comparison of the production with an exchange economy helps show why

our model can predict both debt and non-debt securities. In a production economy (a

primary financial market), costly information contributes to the output, whereas in an

exchange economy (a secondary financial market) it only helps reallocate existing resources.

29In the Appendix C.1.1, we formally show that the screening intensity |d bm(q)/dq| in the converting region
is increasing in dbs(q)/dq.
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Specifically, in an exchange economy as modeled in Dang, Gorton and Holmstrom (2011)

and Yang (2013), information is socially wasteful for the following two reasons. First, the

information acquisition leads to endogenous adverse selection and results in illiquidity.

Second, information is costly per se. As a result, to discourage information acquisition is

desirable. In the present paper, however, the entrepreneur and the investor jointly tap the

project’s cash flow if the investor accepts the proposed security, not if the security is rejected.

Thus, the present model features a production economy in which the social surplus may

depend positively on costly information. In this case, adverse selection is no longer the

focus. Instead, the entrepreneur may want to design a security that encourages the investor

to acquire information favorable to the entrepreneur. That is, debt may no longer be optimal

when information acquisition is desirable.30

3.3.3 Project Transfer

This subsection considers the potential for transferring the project at a fixed non-negative

price and shows that it is not optimal even though agents are risk neutral. It can be seen

as tantamount a scenario in which the entrepreneur works for the investor for a fixed

wage, without moral hazard on the entrepreneur’s side. We show that even if the project is

transferrable, the entrepreneur still finds it not optimal.

The key to understand this idea is to posit project transfer as one of the feasible securities,

as in Figure 3.3, and show that this security is not optimal. When the entrepreneur proposes

a project transfer to the investor at a fixed price p > 0, it is equivalent to proposing a security

s(q) = q � p without the non-negative constraint s(q) > 0. To see why, notice that if the

investor accepts the offer of transfer and undertakes the project, she gets the entire cash

flow q and pay p as an upfront cost. This interpretation allows us to analyze project transfer

in our security design framework.

30This contrast is reminiscent of Hirshleifer (1971), which distinguishes between information value in an
exchange and in a production economy. Earlier mechanism design literature on information gathering also
hints at this difference, suggesting that the contribution of information provision on liquidity would differ
accordingly (Cremer and Khalil, 1992, Cremer, Khalil and Rochet, 1998a,b).
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To see why the equivalent security s(q) = q � p is feasible but not optimal, observe

that the non-negative constraint s(q) > 0 is not binding in either case of security design,

as shown in Section 3.3.1 and Section 3.3.2. Hence, we may also consider a larger set of

feasible securities, which is still restricted by the limited liability constraint s(q) 6 q but

allows negative payoffs to the investor. As debt and the combination of debt and equity are

still the only two optimal securities in this generalized problem, and s(q) = q � p (project

transfer) is feasible, we conclude that project transfer is not optimal to the entrepreneur at

any transfer price p. Intuitively, project transfer is not optimal because it does not follow

the least costly way to compensate the investor, whether or not information acquisition is

induced.

Proposition 24. Transferring a project at a fixed price p > 0 is always sub-optimal for the

entrepreneur.

The timeline and sequence of moves in the economy is important for Proposition 24.

Consider an alternative sequence in which the investor acquires information only after

the transfer. In this economy friction is no longer present, because real production and

information acquisition are both performed by the investor after the transfer. With this

timeline, project transfer is optimal to the entrepreneur through setting a price that is

equivalent to the expected profit of the investor. In this case, the entrepreneur’s bargaining
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power is too strong in the sense that she can prevent the investor from acquiring information

when proposing the transfer deal, which essentially removes the friction from the economy.

In practice, however, it is common (and reasonable) for investors to have the option of

acquiring information about the project before the transfer. This justifies our sequence of

moves and suggests that transfer is not optimal when screening is inevitable.

3.4 Optimal Securities in Different Circumstances

A natural question is: in our production economy, when is debt optimal, and when is the

combination of debt and equity (convertible preferred stock) optimal? Having characterized

the optimal securities with and without inducing screening, we take them together and

determine the optimal security given the characteristics of the production economy. This

implies that the entrepreneur chooses different optimal securities and thus different capital

structures in order to finance projects with differing natures. We focus on cases where the

project can be financed with a positive probability and thus security design makes sense,

that is, when condition (3.3.1) is satisfied.

3.4.1 NPV Dimension

We first investigate how the optimal security varies when the ex-ante NPV of the project is

different.

Proposition 25. Consider the ex-ante NPV (i.e., E[q]� k) of the project:

i). if E[q]� k 6 0, the optimal security s⇤(q) is convertible preferred stock; and

ii). if E[q]� k > 0, s⇤(q) may be either convertible preferred stock or debt.

Intuitively, a negative NPV project can only be financed by convertible preferred stock:

only through screening could the investor’s belief be updated. This is consistent with the

conventional wisdom that a negative NPV project can never be financed by debt with a

given, fixed belief.
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Interestingly, convertible preferred stock may be optimal for financing both negative-

and positive-NPV projects, but the underlying mechanisms of screening are subtly different.

In both cases, the dependence of real production on information acquisition is strong.

When the project has a zero or negative NPV, convertible preferred stock is used to

encourage the investor to screen in a potentially good project. The investor will never finance

the project without screening it, because it incurs an expected loss even if the entrepreneur

promises the entire cash flow. Thus, if it is to be financed, the only way is to use convertible

preferred stock to encourage screening. This implies that the dependence of real production

on information acquisition is strong due to the relatively poor prior, and thus the friction is

accordingly severe. When the investor acquires information, she may expect either a good

signal, which leads to a deal, or a bad signal, which results in a rejection, but the ex-ante

probability of financing the project becomes positive since a potentially good project can be

screened in. Hence, the entrepreneur is better off by proposing convertible preferred stock.

In contrast, when the project has a positive NPV, convertible preferred stock may still be

used, but now the aim is to encourage the investor to screen out a potentially bad project.

Here, the dependence of real production on information acquisition is still strong due to

a relatively mediocre prior. In the status quo where the investor is unable to screen the

project, the entrepreneur can finance the positive-NPV project certainly (i.e., with probability

one) by proposing debt with a sufficiently high face value. However, when the investor can

acquire information, such certain financing (with probability one) could be too expensive,

because it leaves too little for the entrepreneur. Instead, the entrepreneur could retain more

by offering convertible preferred stock, less generous, and invite the investor to screen the

project. Although this results in less than certain financing for the project, the entrepreneur’s

total expected profit could be higher, since a potentially bad project may be screened out,

which justifies convertible preferred stock as optimal.

Finally, debt may be optimal for some positive-NPV projects. When the prior is suffi-

ciently good, the dependence of real production on information acquisition is weak, and

thus the benefit from screening does not justify the cost. In this case, it is optimal for the
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entrepreneur to propose debt to deter costly screening while still retaining enough profit.

3.4.2 The Efficiency Dimension

We then go deeper to investigate how the optimal security varies when the extent of the

informational friction in the economy changes. This helps reveal the mechanism of this

model at a more fundamental level.

To understand how the optimal security evolves with the severity of friction, we consider

a frictionless centralized economy in which real production and information acquisition are

aligned. We define a new efficiency dimension with help of this centralized economy. If and

only if the friction in the decentralized economy is not severe in the sense that an optimal

security can achieve efficiency, the optimal security is debt and screening is not induced

in equilibrium. If and only if the friction is severe in the sense that an optimal security

cannot achieve efficiency, the optimal security is convertible preferred stock and screening

is induced. This dichotomy again highlights the close interconnection of the shape of the

optimal security, the role of screening, and the extent of friction in the production economy.

First let us define the expected social surplus and the efficiency dimension. In the

decentralized economy, the expected surplus is the difference between the expected profit of

the project and the cost of screening, both of which are functions of the screening rule. Thus,

an optimal security achieves efficiency if the induced optimal screening rule maximizes

expected social surplus in equilibrium.

Definition 9. An optimal security in the decentralized economy achieves efficiency if and only if

the associated optimal screening rule m⇤
s (q) satisfies:

m⇤
s (q) 2 arg max

06m(q)61
E[m(q) · (q � k)]� µ · I(m(q)) . (3.4.9)

To facilitate discussion, we characterize a frictionless centralized economy to help

benchmark the friction in the corresponding decentralized economy. In the centralized

economy, u, Q, P, k and µ are given as the same. However, we assume that the entrepreneur

has sufficient initial wealth and can also screen the project. Thus, real production still
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depends on information acquisition, but the two are aligned. In this economy, security design

is irrelevant. The entrepreneur’s problem is to decide whether to undertake the project

directly, to screen it, or to abandon it. The entrepreneur’s payoff gain from undertaking the

project rather than abandoning it is

DuI(q) = uI(1, q)� uI(0, q) = q � k .

We denote an arbitrary screening rule in the centralized economy by mc(q) and the

optimal screening rule by m⇤
c (q). Thus, the entrepreneur’s problem in the centralized

economy is

max
06mc(q)61

E[mc(q) · (q � k)]� µ · I(mc(q)) . (3.4.10)

By construction, the entrepreneur’s objective (3.4.10) in the centralized economy is

exactly the expected social surplus in the decentralized economy. Hence, we can exam-

ine the centralized economy to analyze the efficiency of equilibria in the corresponding

decentralized economy.

Since the optimal screening rules are unique for both the centralized and the decen-

tralized economy, efficiency is achieved if and only if information is acquired in the same

manner in both.

Lemma 19. An optimal security in the decentralized economy achieves efficiency if and only if the

associated optimal screening rule m⇤
s (q) satisfies

Prob[m⇤
s (q) = m⇤

c (q)] = 1 ,

where m⇤
c (q) is the optimal screening rule in the corresponding centralized economy.

The efficiency concept in Lemma 19 demonstrates the role of screening in the production

economy and provides a natural measure of the severity of friction in the decentralized

economy. Fundamentally, we may view the expected social surplus (3.4.10) or (3.4.9) in

our production economy as a production function, with information characterized by the

screening rule mc(q) or m(q) as the sole input. This again fits with the idea that real

production depends on information acquisition. Consequently, efficiency is achieved if and
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only if the optimal security in the decentralized economy delivers the same equilibrium

allocation of input, information acquisition, as the centralized economy. If the optimal

security does this, friction in the decentralized economy is not severe, as it can be effectively

removed by optimal security design. Otherwise, friction is severe, in that it cannot be

completely removed even by an optimal security.

By the efficiency concept in Definition 9 and Lemma 19, we can characterize the optimal

securities over the efficiency dimension, as follows.

Proposition 26. In the decentralized production economy:

i) the optimal security s⇤(q) is debt if and only if friction in the decentralized economy is not

severe, i.e., an optimal security achieves efficiency; and

ii) s⇤(q) is convertible preferred stock if and only if the friction is severe, i.e., an optimal security

cannot achieve efficiency.

These results are important because they answer the question why different projects

should be financed by different types of securities by pointing to its origin: the friction

between real production and information acquisition. In the decentralized economy, real

production is performed by the entrepreneur while information acquisition by the investor.

This separation is always present, unchanged despite the different exogenous characteristics

of the economy. Hence, the severity of the friction is reflected in the extent to which real

production depends on information acquisition. If the friction is severe, the dependence is

strong, which makes screening worthwhile and makes convertible preferred stock optimal.

Similarly, if the friction is not severe, the dependence is weak, screening does not justify its

cost, and debt is optimal.

Our predictions help unify the empirical evidence. They are particularly suited for

entrepreneurial businesses. Debt financing is popular for conventional projects and for

investors who have less expertise in screening, i.e., when the informational friction is not

severe. Instead, financing with convertible preferred stock (or the combination of debt and

equity) is common for innovative projects, especially in the early rounds, which benefit

more from screening, that is, when the friction is severe.

167



3.5 Comparative Statics of the Optimal Security

For additional intuitions, we look at numerical comparative statics on the shape of the

optimal securities with respect to two empirical dimensions: the profitability of the project

and its uncertainty.31 When the environment varies, the role of screening changes, and

the way in which the entrepreneur incentivizes screening changes accordingly, producing

different shapes of optimal securities.

3.5.1 Project Profitability

First, we consider the effects of variations in the project’s profitability on the shape of

the optimal security s⇤(q), holding constant the project’s market prospects (i.e., the prior

distribution of the cash flow q), and the cost of screening, µ. Thus, a decrease in the

investment requirement k implies that the project is more profitable ex-ante.

We show the results in Figure 3.4. The investment k takes three increasing values: 0.4,

0.475, and 0.525. When k = 0.4, the optimal security is debt; for two other projects with

larger k, one with positive and one with negative ex-ante NPV, it is convertible preferred

stock. In particular, the face value bq and the conversion ratios dbs(q)/dq of the convertible

preferred stock are both increasing in k. For the prior of the cash flow q, we take a normal

distribution with mean 0.5 and standard deviation 0.125, and then truncate and normalize

this distribution to the interval [0, 1]. The screening cost µ is fixed at 0.2.

The comparative statics with respect to the profitability of the project serve as a detailed

illustration of Proposition 25. When the project is sufficiently profitable ex-ante (k = 0.4),

the friction is not severe and the project will be financed by debt without inducing screening.

When the project looks mediocre in terms of its profitability but still has a positive ex-

ante NPV (k = 0.475), the friction becomes severe, and information acquisition becomes

31We are not aware of any analytical comparative statics pertaining to functionals. An analytical comparative
statics requires a total order, which is not applicable for our security space. Even for some ordered characteristics
of the optimal security, for instance, the face value, analytical comparative statics are not achievable. Thus, we
rely on numerical results to deliver intuitions and leave analytical work to future research. Numerical analysis
in our framework is tractable but already fairly technical. The algorithm and codes are available upon request.
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Figure 3.4: Change of Investment with E[q] = 0.5, µ = 0.2

worthwhile to screen bad projects out, so that convertible preferred stock becomes optimal.

When the project is not profitable in the sense that its NPV is negative (k = 0.525), the

friction is more severe, and the only way for the entrepreneur to obtain financing is to

propose convertible preferred stock and expect a potentially good project to be screened in.

For this type of project, in particular, screening is more valuable, and hence the entrepreneur

is willing to compensate the investor more generously to induce more effective screening,

as seen in Figure 3.4.

3.5.2 Project Uncertainty

We then consider how varying the degree of the project’s uncertainty affects the optimal

security s⇤(q). Concretely, we consider different prior distributions of the cash flow q with

the same mean, ranked by second order stochastic dominance.32 We also hold constant

the investment requirement k and the cost of screening µ. Note that, the effect of varying

uncertainty cannot be accounted for by any argument involving risks, because both the

entrepreneur and the investor are risk-neutral. Instead, we still focus on friction and the

role of screening to explain these effects.

32There are other ways to measure the project’s uncertainty. For comparative statics, our idea is to find a
partial order of uncertainty over the space of distributions, while to keep the project’s ex-ante NPV constant.
Thus, second order stochastic dominance is a natural choice.
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Interestingly, the comparative statics with respect to uncertainty depend on the sign of

the project’s ex-ante NPV. As implied by Proposition 25, the role of screening differs when

these signs differ. This further leads to different patterns of comparative statics when the

degree of uncertainty varies.

First, we consider projects with positive ex-ante NPV and increasing uncertainty. The

results are shown in Figure 3.5, the left panel illustrating the priors of the cash flow q

and the right panel the evolution of the optimal security. When the project is the least

uncertain, the optimal security is debt. For more uncertain projects convertible preferred

stock becomes optimal, while the face value bq and the conversion ratios dbs(q)/dq are both

increasing in uncertainty. For the priors, we take normal distributions with mean 0.5 and

standard deviations 0.125 and 0.25, and then truncate and normalize them to the interval

[0, 1]. We also construct a third distribution, in which the project is so uncertain that the

cash flow has a greater probability of taking extreme values in [0, 1]. The investment is

k = 0.4, and the cost of screening is µ = 0.2.
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Figure 3.5: Change of Uncertainty: k = 0.4 < E[q] = 0.5, µ = 0.2

The comparative statics in this case demonstrate how varying uncertainty affects the

screening-out of bad projects, given positive ex-ante NPV. When the project is least uncertain,

it is least likely to be bad, which implies that screening-out is least relevant and debt

financing is accordingly optimal. When uncertainty increases, the project is more likely to
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be bad, and screening-out becomes more valuable. Hence, the entrepreneur finds it optimal

to propose a more generous convertible preferred stock to induce screening-out.

Next we consider projects with negative ex-ante NPV, focusing on those that may be

financed with a positive probability due to screening-in through convertible preferred stock.

The results are shown in Figure 3.6: both the face value bq and the conversion ratio dbs(q)/dq

of the convertible preferred stock are decreasing in uncertainty. The priors are generated as

we did in Figure 3.5. The investment is k = 0.525 and the cost of screening is µ = 0.2.
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Figure 3.6: Change of Uncertainty: k = 0.525 > E[q] = 0.5, µ = 0.2

The comparative statics in this case are also intuitive, according to the role of screening-

in. Given negative ex-ante NPV, the investor screens in potentially good projects. In

contrast to the positive-NPV case, here the increase in uncertainty means that the ex-ante

negative-NPV project is more likely to be good. Thus, to acquire costly information to

screen in a potentially good project becomes less necessary. Therefore, the entrepreneur

wants to propose a less generous convertible preferred stock for less costly screening. Not

surprisingly, the resulting convertible preferred stock moves away from the 45� line when

the project is more uncertain.
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3.6 Conclusion

This paper posits a new type of informational friction to investigate security design. Real

production depends on information acquisition, but these two functions are performed

separately by entrepreneur and investor. We predict that debt, which does not induce

screening, is optimal when the dependence is weak and the friction is therefore not severe,

whereas the combination of debt and equity (participating convertible preferred stock),

which does induce screening, is optimal when the dependence is strong and the friction

accordingly severe. These predictions are supported by the empirical evidence.

This paper contributes to the security design literature in several respects, as well as to the

broader corporate finance and contract design literature. By flexible information acquisition,

we can work with arbitrary securities over continuous states while dispensing with usual

distributional assumptions, thus offering an exhaustive examination at the question why

projects with different natures should be financed by different types of securities.
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Appendix A

Appendix to Chapter 1

A.1 Institutional Background

In this appendix, I depict the current trends of U.S. corporate bond mutual funds. These

trends show that these funds are growing rapidly in size, investing in more illiquid assets,

and holding less cash relative to their assets. The settings in my model are consistent with

these trends.
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bond markets (data from Barclays Research).

Figure A.1: Trends in Corporate Bond Mutual Funds
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It is worth noting that, although the trends illustrated here suggest increasing financial

stability risks of mutual funds and potentially large fire sale losses when runs occur, the

mechanism of this paper is general and does not rely on the trends.

A.2 The Analysis of the Intermediate Cash-to-Assets Ratio Region

Gm

In this appendix, I provide a complete equilibrium analysis of the stage game when the

fund starts at the intermediate cash-to-assets ratio region Gm.

Again, I first characterize how shareholder runs affect the fund’s forced fire sales on

dates 2t and 2t + 1, respectively. For convenience, I define

b
l2t ⌘

x2t � µE(Ra2t + x2t)
µL(Ra2t + x2t)

.

By construction, within the intermediate region, there is always bl2t 2 [0, 1) . The economic

meaning of bl2t will become clear shortly.

Lemma 20. When h2t 2 Gm, there are:

i) if l2t 2 [0, bl2t], then

q2t(l2t) = 0 ,

q2t+1(l2t) =
(µE + µL)(Ra2t + x2t)� x2t

bpL(l2t)
, (A.2.1)

where q2t+1 is increasing in l2t, and,

ii) if l2t 2 (bl2t, 1], then

q2t(l2t) =
(µE + l2tµL)(Ra2t + x2t)� x2t

bpE(l2t)
, (A.2.2)

q2t+1(l2t) =
(1 � l2t)µL ·

R(a2t � q2t)
1 � µE � l2tµL

bpL(l2t)
, (A.2.3)

where q2t is increasing in l2t but q2t+1 is decreasing in l2t.
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Moreover, q2t + q2t+1 is increasing in l2t for all l2t 2 [0, 1].

I first discuss the intuition behind the results when l2t 6 b
l2t. In this case, the fund

has enough cash to satisfy all the µE + l2tµL redeeming shareholders on date 2t at the

initial NAV. Thus, no illiquid assets are forced to sell on date 2t, that is, q2t(l2t) = 0.

However, in the intermediate region the fund does not have enough cash to satisfy all the

late shareholders on the odd date. Specifically, the cash gap at the beginning of date 2t + 1

is indicated by the numerator of (A.2.1). Following the same intuition of Lemma 4, the fund

manager will close the gap by selling at the effective price bpL(l2t). As l2t increases, the

effective selling price bpL(l2t) becomes lower, suggesting that the fund will be forced to sell

more on date 2t + 1, that is, q2t+1 becomes larger.

The situation becomes different when l2t > b
l2t. Compared to Lemma 4, the two

conditions (A.2.2) and (A.2.3) are exactly the same as conditions (1.3.6) and (1.3.7) there.

This is because when l2t > b
l2t the cash position x2t becomes inadequate to satisfy the

µE + l2tµL redeeming shareholders on date 2t at the initial NAV, so that the stage game

effectively jumps into the low cash-to-assets ratio region. The monotonicity of q2t, q2t+1, and

(q2t + q2t+1) all follows the same intuition there.

It is worth noting that, regardless of whether l2t 6 bl2t or l2t > bl2t, more late shareholder

runs always lead to unambiguously higher forced fire sales within the entire stage (including

both date 2t and 2t + 1).

Similarly, I can characterize the NAVs in the intermediate region. When l2t 2 [0, bl2t], by

Lemma 20 there is

NAV2t(l2t) = Ra2t + x2t , (A.2.4)

and

NAV2t+1(l2t) =
R

illiquid assets remained
z }| {
(a2t � q2t+1(l2t)� s2t+1) +

cash remainedz }| {
x2t � (µE + l2tµL)(Ra2t + x2t) +

cash raised and rebuiltz }| {
dLR(q2t+1(l2t) + s2t+1)

1 � (µE + l2tµL)| {z }
shareholders remained on date 2t + 1

= NAV2t �
(1 � dL)R (q2t+1(l2t) + s2t+1)

1 � µE � l2tµL
. (A.2.5)
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where q2t+1(l2t) is given in (A.2.1). Clearly, the NAV on date 2t as in (A.2.4) is also constant

and the same as (1.3.1) in the high region. The NAV on date 2t + 1 as in (A.2.5) also features

the same expression as (1.3.3) in the high region. These suggest that shareholders’ strategic

interaction in this sub-region is the same as that in the high region.

When l2t 2 (bl2t, 1], by Lemma 20 there are

NAV2t(l2t) = Ra2t + x2t � (1 � dE)Rq2t(l2t) , (A.2.6)

and

NAV2t+1(l2t) =
R (a2t � q2t(l2t)� q2t+1(l2t)� s2t+1) + dLR (q2t+1(l2t) + s2t+1)

1 � µE � l2tµL
, (A.2.7)

where q2t(l2t) and q2t+1(l2t) are given in (A.2.2) and (A.2.3). Note that, the NAVs as in

(A.2.6) and (A.2.7) are exactly the same as (1.3.9) and (1.3.10) in the low region, suggesting

that shareholders’ strategic interaction in this sub-region is the same as that in the low

region.

Formally, the following lemma tells us that the stage game in the intermediate region

indeed features a switch from strategic complementarity to substitutability.

Lemma 21. When h2t 2 Gm, there are:

i) if l2t 2 [0, bl2t], late shareholders’ run decision l2t exhibits strategic complementarity for any

feasible s2t+1 2 [0, a2t � q2t+1(l2t)], and the strategic complementarity becomes stronger as s2t+1

increases, and,

ii) if l2t 2 (bl2t, 1], late shareholders’ run decision l2t exhibits strategic substitutability for

any l2t satisfying qNAV2t(l2t) > NAV2t+1(l2t) and any feasible s2t+1 2 [0, a2t � q2t(l2t) �

q2t+1(l2t)], and the strategic substitutability becomes weaker as s2t+1 increases.

Not surprisingly, Lemma 21 can be understood in view of Lemma 3 (in the analysis

for the high region) and Lemma 5 (in the analysis for the low region). In the first sub-

region [0, bl2t], shareholders who run can get the endogenously fixed NAV on date 2t at

the expense of shareholders who wait. More running shareholders or a more rapid cash

rebuilding policy implies a larger magnitude of predictable decline in the NAV on date
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2t + 1, leading to a stronger strategic complementarity. In the second sub-region, however,

running shareholders have to accept an endogenously lower NAV themselves because the

fund is forced to sell its illiquid assets on date 2t, when the fire sale price is extremely low.

The resulting higher fire sale losses suggest that more shareholder runs make the other

shareholders who plan to wait less likely to run. But again, more rapid cash rebuilding still

gives rise to a larger magnitude of predictable decline in the NAV on date 2t + 1 and thus

reinforces the run incentive.

Because of the switch of strategic interaction, shareholders’ equilibrium run behaviors

exhibit a richer pattern. Despite the complicated equilibrium construction in the intermediate

region, it still indicates that fund cash rebuilding leads to runs and more rapid cash

rebuilding triggers more severe runs in equilibrium.

Proposition 27. When h2t 2 Gm, late shareholders’ equilibrium run behaviors are given by the

following five cases:

i) none of the late shareholders runs, that is, l2t = 0, if

s2t+1 < sm ⌘ Ra2t � q(1 � µE � bl2tµL)(Ra2t + x2t)
(1 � dL)R

� q2t+1(bl2t) ,

ii) if

s2t+1 > sm ⌘ Ra2t � q(1 � µE)(Ra2t + x2t)
(1 � dL)R

� q2t+1(0) , then ,

a) all of the late shareholders run, that is, l2t = 1, if

s2t+1 > sm ⌘ Ra2t � q(1 � µE � µl)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE � µl))Rq2t(1)
(1 � dL)R

,

b) some of the late shareholder runs, that is, l2t =
ee
l2t 2 [bl2t, 1), if

s2t+1 6 sm ,

where eel2t is the solution to

s2t+1 =
Ra2t � q(1 � µE � eel2tµl)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE � eel2tµl))Rq2t(

ee
l2t)

(1 � dL)R
� q2t+1(

ee
l2t) ,

iii) if sm 6 s2t+1 6 sm, then,
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c) l2t 2 {0, el2t, 1}, if

s2t+1 > sm ,

where el2t is the solution to

s2t+1 =
(1 � q)(1 � µE � el2tµL)(Ra2t + x2t)

(1 � dL)R
� q2t+1(el2t) ,

d) l2t 2 {0, el2t,
ee
l2t}, if

s2t+1 6 sm ,

where el2t is given in Case c) and eel2t is given in Case b).

All of the q2t(l2t) and q2t+1(l2t) are given in Lemma 20. Moreover, sm > 0 and sm > sm.

The intuition behind Proposition 27 is clear in view of Propositions 1 and 2. By Lemma 21,

the stage game in the intermediate region starts with strategic complementarity when only a

small fraction of late shareholders decides to run. Hence, it is the strategic complementarity

in the first sub-region [0, bl2t] that determines whether any late shareholder will run at all.

As in Case i), when bl2t of the late shareholders decide to run, if the utility gain of running

over waiting is still not positive, none of the late shareholders will ever run. In Case ii), the

utility gain of running over waiting is already positive even if no one runs, so that at least

b
l2t of the late shareholders will run due to the strategic complementarity in the sub-region

[0, bl2t]. However, as the stage game switches to the second sub-region (bl2t, 1], there can be

strategic substitutability. In sub-case a), the fund uses a rapid cash rebuilding policy so that

all of the late shareholders run despite the strategic substitutability, while in sub-case b) the

substitutability is strong so that l2t =
ee
l2t 2 [bl2t, 1) of the late shareholders are going to run.

Finally, in Case iii), the strategic complementarity in the first sub-region [0, bl2t] is moderate.

When this happens, the worst equilibrium will be determined by the magnitude of strategic

substitutability in the sub-region (bl2t, 1], as shown in Case c) and Case d).

Interestingly, Proposition 2 suggests that the risk of shareholder runs can be higher in the

intermediate region than that in the low region (with the same set of cash rebuilding policy

s2t+1 and other model parameters). This is because the run threshold sm in Proposition 27
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can be smaller than sl in Proposition 2. This predication may be surprising given that the

fund has more cash in the intermediate region. But it is intuitive in view of the strategic

complementarity in the intermediate region. Concretely, when the fund starts from either

the low or the intermediate region, there are forced fire sales on date 2t + 1. But only

when starting from the intermediate region, can some of the running shareholders get an

endogenously fixed NAV on date 2t. As a result, shareholders may be more willing to

run to get the higher NAV on date 2t when the fund starts from the intermediate region,

compared to the case when if the fund starts from the low region where they would always

have to accept a lower NAV on date 2t if they run.

As usual, I show how shareholder runs increase the risk of forced fire sales by exploring

the laws of motions in the intermediate region.

Corollary 6. When h2t 2 Gm, the law of motions of (a2t, x2t) is given by

a2t+2 = a2t � (q2t(l2t) + q2t+1(l2t))� s2t+1 , and , (A.2.8)

x2t+2 = bpL(l2t)s2t+1 , (A.2.9)

where l2t is the equilibrium run probability induced by (a2t, x2t) and s2t+1, as characterized in

Proposition 27.

Similarly, Corollary 6 is easier to understand in view of Corollary 2; the two laws of

motions (A.2.8) and (A.2.9) share the same mathematical expressions with (1.3.11) and

(1.3.12) in the low region.1 They again suggest two different costs of shareholder runs: more

forced fire sales in the current stage and higher risk of future-stage fire sales.

A.3 A Micro-foundation for the Pattern of Selling Prices

In this appendix, I show that the pattern of selling prices in the baseline model can emerge

endogenously by modeling the slow-moving of liquidity providers in the spirit of Grossman

1However, it is worth noting that the equilibrium determination and the endogenous functions of q2t(l2t)
and q2t+1(l2t) are still different between the two regions. So that the intermediate region still features a different
law of motions of (a2t, x2t).
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and Miller (1988) and Duffie (2010). It shows that the reduced-form assumption can

be rationalized as the outcome of a full-fledged equilibrium model with both liquidity

demanders and providers. To make the idea more transparent, I set the micro-foundation

in continuous time.2 I follow the building blocks in Duffie, Garleanu and Pedersen (2005,

2007), Weill (2007) and Lagos, Rocheteau and Weill (2011) to model the gradual entry of

liquidity providers and focus on the equilibrium price implications.

Time is continuous and infinite. A probability space (W,F , P) is fixed with an informa-

tion filtration {Ft, t > 0} satisfying the usual measurability conditions (Sun, 2006). There is

a common discount rate r > 0. There is a continuum of 1 of risk-neutral, infinitely lived,

and competitive investors. There is a centralized market with many different assets. The

total supply of all assets is S 2 [0, 1). Investors can hold at most one unit of assets and

cannot short sell the assets. There is also a riskfree saving account with return r, which can

be interpreted as cash equivalents. Under usual non-arbitrage conditions, this implies that

the fundamental value of the assets is 1/r.

There are two types of investors: liquidity providers and liquidity demanders. Liquidity

providers enjoy a high utility flow per time by holding one unit of assets, which is normalized

to 1, while liquidity demanders enjoy a low utility flow d 2 (0, 1).

At the beginning, the economy is hit by an unanticipated liquidity shock that makes all

investors liquidity demanders. However, as time goes by, they will randomly and pairwise

independently switch to liquidity providers.3 Specifically, the times at which investors

switch to liquidity providers are i.i.d. exponentially distributed with a parameter a. Denote

the endogenous population of liquidity providers by r(t). By the exact law of larger numbers

(Sun, 2006, Theorem 2.16), there is

r(t) = 1 � exp(�at) . (A.3.10)

2This baseline model is set in discrete time to highlight the discrete nature of daily redemptions and the
end-of-day NAV. But in the micro-foundation, the discrete nature is no longer important. As a result, setting a
continuous-time model incurs no loss of generality but makes the derivation mathematically more convenient.

3This dynamic process is in the spirit of Grossman and Miller (1988), in which liquidity providers only enter
the market one period after the initial liquidity shock.
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Intuitively, this implies that there is no liquidity provider available right at the shock time

(i.e., t = 0), while there will be more and more liquidity providers stepping into the market

after the shock.

In this simple framework, the following proposition shows the pattern of asset selling

price over time:

Proposition 28. The asset selling price at time t is characterized by

p(t) =
d + (1 � d) exp(�r(tS � t))

r
,

where tS satisfies r(tS) = S and r(·) is given by (A.3.10).

Intuitively, the selling price drops discontinuously at t = 0 from the fundamental value,

but rebounds gradually over time (as more liquidity providers become available) until it

gets back to the fundamental value at time tS. When the next shock comes, this process

repeats itself, giving rise to the price pattern in the baseline model.

It is instructive to provide the proof here to help build intuition. First of all, I show

that there is a time at which the selling positions can be completely absorbed by liquidity

providers so that the price goes back to the fundamental. Specifically, condition (A.3.10)

shows that more liquidity providers step into the market as time goes by after the shock.

Denote the endogenous time by which liquidity providers can absorb all the asset supply by

tS, which implies that r(tS) = S. Since r(tS) is monotone, this uniquely determines tS. This

corresponds to the baseline model that if the game ends (i.e., there are no future shocks),

the asset selling price will ultimately reflect the fundamental value.

Then I show that, between the shock time 0 and the full recovery time tS (before the

next possible shock), the asset selling price first drops and then rebounds gradually, as

that in the baseline model. Note that, at any time t between 0 and tS, there are no enough

liquidity providers in the market, so that the marginal investor is a liquidity demander

who has a low valuation of the assets. Since this liquidity demander is infinitely lived, the
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Hamilton-Jacobi-Bellman equation leads to:

rp(t)dt = ddt + p(t) (A.3.11)

This condition has an intuitive interpretation. At any time t between 0 and tS, the left

hand side of (A.3.11) denotes the return of selling the unit of assets at t and investing the

proceeds in cash equivalents in the time interval [t, t + dt), while the right hand side denotes

the valuation flow by holding one unit of assets in the time interval [t, t + dt) plus the

proceeds from selling it after that. In any equilibrium path, the liquidity demander should

be indifferent between these two options of selling earlier or later. Therefore, solving the

differential equation implied by (A.3.11) with the boundary conditions yields the equilibrium

selling price. This concludes the proof.

Fundamentally, this micro-foundation follows the spirit of Grossman and Miller (1988)

and Duffie (2010), but differs in an important way. Specifically, liquidity providers in their

models share risks with liquidity demanders, while in both my baseline model and the

micro-foundation, all the investors are risk neutral.4 However, similar selling price pattern

emerges. This is because liquidity providers in my model have higher valuation of the

underlying assets, which more resembles the notion of natural buyers in Shleifer and Vishny

(1992, 1997) and thus is closer to the fire sale interpretation in the baseline model. Like that

in Grossman and Miller (1988) and Duffie (2010), liquidity providers step into the market

only gradually after the shock, implying that only a few liquidity providers are present in

the market right after the shock. Hence, investors who want to sell the assets right after

the shock have to incur an extremely low fire sale price. As time goes by (but before the

next possible shock comes), more liquidity providers with high valuation of the underlying

assets step into the market, implying that it becomes increasingly easier for the liquidity

demanders to find a better selling price.

This micro-foundation has other nice properties, which are also consistent with other

4This assumption of risk neutrality also appears in other search-based models (see Duffie, Garleanu and
Pedersen, 2005, Weill, 2007, Lagos, Rocheteau and Weill, 2011, among many others).
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ingredients of the baseline model. First, different from Grossman and Miller (1988), all

investors in the micro-foundation are infinitely lived and perfectly forward-looking. This

implies that the resulting selling price pattern does not come from any myopia of the

investors. Second, as suggested by Duffie, Garleanu and Pedersen (2005, 2007) and many

follow-up models, the setting of low and high valuations parsimoniously captures many

potential benefits and costs of holding the assets and the resulting trading motives, which

are consistent with the baseline model. When a mutual fund experiences a large redemption,

holding the illiquid assets would incur more costs and thus imply a lower valuation.

A.4 Proofs

In this appendix, I provide proofs for all the results in the main text.

Proof of Lemma 1. First, in the high cash-to-assets ratio region, the fund needs to sell no

illiquid assets on either date 2t or 2t + 1. Since no fire sale losses are incurred in this region,

both early and late shareholders are able to get the same NAV as that at the beginning of

date 2t, that is,

NAV2t = NAV2t+1 =
Ra2t + x2t

n2t
.

Moreover, the initial cash position should be large enough to meet the redemption needs of

all shareholders on dates 2t and 2t + 1 at such a constant NAV:

x2t > (µE + µL)n2t ·
Ra2t + x2t

n2t
,

yielding

h2t >
(µE + µL)R
1 � µE � µL

, (A.4.12)

the criterion for the high region.

Then, in the intermediate region, as no fire sale is incurred on date 2t, the initial cash

position is high enough to meet the redemption needs of early shareholders at the initial
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NAV but insufficient to meet late shareholders’ redemption needs:

µEn2t ·
Ra2t + x2t

n2t
6 x2t < (µE + µL)n2t ·

Ra2t + x2t

n2t
,

which leads to
µER

1 � µE
6 h2t <

(µE + µL)R
1 � µE � µL

, (A.4.13)

the criterion for the intermediate region.

Finally, in the low region, the cash position is even inadequate to meet early shareholders’

redemption needs at the initial NAV. This means

x2t < µEn2t ·
Ra2t + x2t

n2t
,

which yields

h2t <
µER

1 � µE
, (A.4.14)

the criterion for the intermediate region.

It is straightforward to check that (A.4.12), (A.4.13), and (A.4.14) are also sufficient

conditions. This concludes the proof.

Proof of Lemma 2. Suppose l2tµL late shareholders decide to run. This situation is equiv-

alent to a counterfactual in which there are initially µ

0
E = µE + l2tµL early shareholders and

µ

0
L = (1 � l2t)µL late shareholders but no late shareholder runs. Since µ

0
E + µ

0
L = µE + µL,

by Lemma 1, q2t = q2t+1 = 0 is true in the counterfactual situation and so is true in the

original situation with l2tµL late shareholders running. This concludes the proof.

Proof of Lemma 3. By Lemma 2 and the definition of DuL(l2t):

DuL(l2t) = qNAV2t � NAV2t+1 = (q � 1)(Ra2t + x2t) +
(1 � dL)Rs2t+1

1 � µE � l2tµL
.

Taking derivatives yields:

∂DuL(l2t)
∂l2t

=
(1 � dL)µLRs2t+1

(1 � µE � l2tµL)2 > 0 ,
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which takes value 0 when s2t+1 = 0, and

∂

2DuL(l2t)
∂l2t∂s2t+1

=
(1 � dL)µLR

(1 � µE � l2tµL)2 > 0 .

This concludes the proof.

Proof of Proposition 1. By Lemma 3, the stage game exhibits strategic complementarity

when s2t+1 > 0. Also notice that any shareholder runs only if qNAV2t > NAV2t+1. Thus, in

Case i), none of the late shareholders runs if

qNAV2t < NAV2t+1(1) , (A.4.15)

in which NAV2t+1(l2t) is a function of l2t. Solving inequality (A.4.15) leads to

s2t+1 <
(1 � q)(1 � µE � µL)(Ra2t + x2t)

(1 � dL)R
⌘ sh .

Alternatively, in Case ii), all of the late shareholders run if

qNAV2t > NAV2t+1(0) , (A.4.16)

the solution of which is

s2t+1 >
(1 � q)(1 � µE)(Ra2t + x2t)

(1 � dL)R
⌘ sh .

Finally, in Case iii), if neither (A.4.15) nor (A.4.16) holds, there exists a el2t 2 [0, 1] that

solves

qNAV2t = NAV2t+1(el2t) .

Note that, el2t constructs an equilibrium because by definition DuL(el2t) = 0 and thus

no shareholder would have an incentive to deviate from it. In addition, in this case, again

by Lemma 3, there are qNAV2t > NAV2t+1(1) and qNAV2t 6 NAV2t+1(0), which means

l2t = 1 and l2t = 0 are also two equilibria when (A.4.15) and (A.4.16) are both violated.

This concludes the proof.

Proof of Corollary 1. By Lemma 2, q2t(l2t) = q2t+1(l2t) = 0 for any arbitrary l2t 2
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[0, 1] . Thus, the evolution of the asset position directly follows:

a2t+2 = a2t � q2t � q2t+1 � s2t+1 = a2t � s2t+1 .

For the evolution of the cash position, the fund pays all the redeeming shareholders by

cash at the respective end-of-day NAVs on date 2t and 2t + 1, and rebuilds its cash buffer

on date 2t + 1. Note that there will be no cash raised by forced fire sales. Thus:

x2t+2 = x2t � (µE + l2tµL)NAV2t � (1 � l2t)µLNAV2t+1 + pLs2t+1

= x2t � (µE + µL)(Ra2t + x2t) + dLRs2t+1 +
(1 � l2t)µL(1 � dL)Rs2t+1

1 � µE � l2tµL
.

This concludes the proof.

Proof of Lemma 4. Recall that, when forced fire sales occur, the fund sells up to a point at

which it can satisfy the redemptions at the end-of-day NAV, which will take into account

the losses from forced fire sales. On the one hand, on date 2t the fund starts with a cash

position x2t. Hence, on date 2t, q2t solves

x2t + pEq2t = (µE + l2tµL)[(a2t � q2t)R + x2t + pEq2t] ,

yielding

q2t(l2t) =
(µE + l2tµL)(Ra2t + x2t)� x2t

[dE + (1 � dE)(µE + l2tµL)] R
. (A.4.17)

On the other hand, on date 2t + 1, by construction, the fund has no cash at all at the

beginning. Hence, q2t+1 solves

pLq2t+1 = (1 � l2t)µL
(a2t � q2t � q2t+1)R + pLq2t+1

1 � µE � l2tµL
,

yielding

q2t+1 =
(1 � l2t)µL(a2t � q2t)

(1 � µE � l2tµL)dL + (1 � l2t)µL(1 � dL)
. (A.4.18)

192



Plugging (A.4.17) into (A.4.18) leads to

q2t+1(l2t) =
(1 � l2t)µL ·

R(a2t � q2t)
1 � µE � l2tµL

dL +
(1 � l2t)µL(1 � dL)

1 � µE � l2tµL

�
R

. (A.4.19)

For the monotonicity of q2t(l2t), taking derivative of (A.4.17) leads to

∂q2t(l2t)
l2t

=
µL(dERa2t + x2t)

[µE(1 � dE) + (1 � l2tµL)dE + l2tµL]2
> 0 ,

implying that q2t(l2t) is increasing in l2t. Similar procedures based on (A.4.17) and (A.4.19)

show that q2t+1(l2t) is decreasing in l2t while q2t(l2t) + q2t+1(l2t) is increasing in l2t. This

concludes the proof.

Proof of Lemma 5. By Lemma 4 and the definition of DuL(l2t):

DuL(l2t) = qNAV2t � NAV2t+1

= q[(Ra2t + x2t)� (1 � dE)Rq2t]�
(Ra2t + x2t)� Rq2t � (1 � dL)R(q2t+1 + s2t+1)

1 � µE � l2tµL
,(A.4.20)

in which q2t and q2t+1 are functions of l2t by Lemma 4. It is straightforward that DuL(l2t)

is larger when s2t+1 increases. To focus on the value of l2t that satisfies qNAV2t > NAV2t+1,

there is no loss of generality to consider q = 1, and the analysis for a general q naturally

follows by considering subsets of l2t. Now plug (A.4.17) and (A.4.18) into (A.4.20) and then

take derivative with respect to l2t. After rearrangement, this yields:

∂DuL(l2t)
∂l2t

= �
(1 � dL)µL

 
x2tC1 �

R
�
s2t+1C2 � a2tdE(1 � µE � l2tµL)2C1

�

(1 � µE � l2tµL)2

!

((1 � l2t)µL + dL(1 � µE � µL))2(µE + l2tµL + dE(1 � µE � l2tµL))2 ,

(A.4.21)

where

C1 = (1 � dE)(1 � l2t)
2
µ

2
L + dL(1 � µE � µL)(µE + µL) + dEdL(1 � µE � µL)

2 > 0 ,

C2 = ((1 � l2t)µL + dL(1 � µE � µL))
2 (µE + l2tµL + dE(1 � µE � l2tµL))

2 > 0 .
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Consider

C = x2tC1 �
R
�
s2t+1C2 � a2tdE(1 � µE � l2tµL)2C1

�

(1 � µE � l2tµL)2

for any 0 6 x2t < µEn2t(Ra2t + x2t) and any 0 6 s2t+1 6 a2t � q2t(l2t)� q2t+1(l2t). Since

C1 > 0, there is x2tC1 > 0 and thus

C >
R
�
a2t
�
dE(1 � µE � l2tµL)2C1 � C2

��

(1 � µE � l2tµL)2 . (A.4.22)

Notice that C1 and C2 are only functions of l2t, µE, µL, dE, dL, and are independent of

a2t and x2t. By construction,

dE(1 � µE � l2tµL)
2C1 � C2 > 0

for any l2t 2 [0, 1].

As a result, since a2t > 0 and R > 0, inequality (A.4.22) implies that C > 0. Plugging

back to (A.4.21) finally yields
∂DuL(l2t)

∂l2t
< 0 ,

implying strategic substitutability.

It is straightforward that DuL(l2t) is larger when s2t+1 increases. Also, by definition,

C is decreasing in s2t+1 when 0 6 s2t+1 6 a2t � q2t(l2t)� q2t+1(l2t). By (A.4.21) and the

derivation above, the strategic substitutability becomes weaker when s2t+1 increases. This

concludes the proof.

Proof of Proposition 2. Notice that any shareholder runs only if qNAV2t > NAV2t+1.

Also by Lemma 5, the stage game exhibits strategic substitutability whenever an incentive

to redeem earlier exists. Thus, in Case i), none of the late shareholders runs if

qNAV2t(0) < NAV2t+1(0) , (A.4.23)

which implies that qNAV2t(l2t) < NAV2t+1(l2t) for any l2t by using the expressions in

Lemma 4. Thus, solving inequality (A.4.23) leads to
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s2t+1 <
Ra2t � q(1 � µE)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE))Rq2t(0)

(1 � dL)R
� q2t+1(0) ⌘ sl .

Alternatively, in Case ii), all of the late shareholders run if

qNAV2t(1) > NAV2t+1(1) , (A.4.24)

which implies that qNAV2t(l2t) > NAV2t+1(l2t) for any l2t despite the underlying strategic

substitutability suggested by Lemma 5. Solving inequality (A.4.24) leads to

s2t+1 >
Ra2t � q(1 � µE � µL)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE � µL))Rq2t(1)

(1 � dL)R
⌘ sl .

Using the expressions in Lemma 4, plugging q2t(0), q2t+1(0) and q2t(1) into the definition

of sl and sl directly yields sl > 0 and sl > sl .

Finally, in Case iii), there exists some el2t 2 [0, 1] that solves

qNAV2t(el2t) = NAV2t+1(el2t) ,

where el2t constructs an equilibrium because by definition DuL(el2t) = 0 and thus no

shareholder would have an incentive to deviate from it. This leads to

s2t+1 =
Ra2t � q(1 � µE � el2tµl)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE � el2tµl))Rq2t(el2t)

(1 � dL)R
� q2t+1(el2t) .

This concludes the proof.

Proof of Corollary 2. By Lemma 4, q2t(l2t) > 0 for any arbitrary l2t 2 [0, 1] and q2t+1(l2t) >

0 for any arbitrary l2t 2 [0, 1). Thus, the evolution of the asset position directly follows:

a2t+2 = a2t � q2t(l2t)� q2t+1(l2t)� s2t+1 .

For the evolution of the cash position, notice that all the proceeds from forced fire sales
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q2t(l2t) and q2t(l2t+1) go to the redeeming shareholders. Also, by definition of the low

cash-to-assets region, the fund starts with no cash on date 2t + 1. Thus:

x2t+2 = pL(q2t+1(l2t) + s2t+1)� (1 � l2t)µLNAV2t+1

= dLRs2t+1 +
(1 � l2t)µL(1 � dL)Rs2t+1

1 � µE � l2tµL
.

This concludes the proof.

Proof of Proposition 3. The existence of a Markov equilibrium of the fully dynamic game

follows a special case of Theorem 2 and Corollary 6 in Khan and Sun (2002). The key is

to find a measurable selection of Nash equilibria in each stage game determined by the

state variables (a2t, x2t). The Arsenin-Kunugui Theorem (see Kechris, 1995 for a textbook

treatment) guarantees that any usual equilibrium selection mechanism such as selecting the

best, the worst or the one based on the global game approach is measurable.

Under any Markov strategy profile, by definition, the strategies of both the fund manager

and all the shareholders are functions of the two state variables (a2t, x2t), and their strategies

are mutually best responses as well. In other words, strategies played in the past stages

influence current-stage strategies only through the two state variables. For convenience, in

what follows I call a stage game (a2t, x2t) when the fund starts from the portfolio position

(a2t, x2t) on date 2t.

Consider any arbitrary f 2 (0, 1). Define a02t = fa2t, x02t = fx2t, and s02t+1 = fa2t+1. By

Lemma 1, game (a2t, x2t) and game (a02t, x02t) start from the same cash-to-assets ratio region.

By Propositions 1, 2, and 27, if l2t constructs a run equilibrium in game (a2t, x2t) under

the cash rebuilding policy s2t+1, it must also construct a run equilibrium in game (a02t, x02t)

under the cash rebuilding policy s02t+1. Hence, by Lemmas 2, 4, and 20, the equilibrium

amounts of forced fire sales in game (a02t, x02t) must be q02t = fq2t, q02t+1 = fq2t+1, where q2t

and q2t+1 are the equilibrium amounts of forced fire sales in game (a2t, x2t).

Then consider the dynamics. Fix a consistent equilibrium selection mechanism if multiple

equilibria occur. Let (a2t+2, x2t+2) be the next stage game when game (a2t, x2t) is played
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under the cash rebuilding policy s2t+1. By Corollaries 1, 2 and 6, the next stage game must be

(a02t+2, x02t+2), where a02t+2 = fa2t+2 and x02t+2 = fx2t+2, if the current stage game (a02t, x02t) is

played under the cash rebuilding policy s02t+1. Therefore, if s2t+1(a2t, x2t) is the optimal cash

rebuilding policy in stage t for game (a2t, x2t), s02t+1(a02t, x02t) = fs2t+1(a2t, x2t) must be the

optimal cash rebuilding policy in stage t for game (a02t, x02t). Hence, V(a02t, x02t) = fV(a2t, x2t)

is indeed the value function for the dynamic game with a starting position (a02t, x02t).

Finally, it is straightforward to see that V(0, 0) = 0. This concludes the proof.

Proof of Lemma 6. If a2t = 0, it is trivial that s⇤2t+1(a2t, x2t) = 0. So it is only worth

considering a strictly positive a2t.

On the one hand, consider a perturbation # > 0 of cash rebuilding around s⇤2t+1(a2t, x2t) =

0. On date 2t + 1 (in stage t), regardless of the starting portfolio position (a2t, x2t), the

effective selling price on 2t + 1 is at most bpL(0) > 0. Thus, the fire sale loss in stage t is at

least
#(1 � dL)R
bpL(0)

> 0 .

On other other hand, consider an initial cash gap # on date 2t + 2 (in stage t + 1).

Regardless of the starting portfolio position (a2t+2, x2t+2), the effective selling price on 2t + 2

is at least bpE(0) > 0, and the physical selling price in stage t + 1 is at least dER. Thus, the

expected fire sale loss in stage t + 1 due to this cash gap is at most

#(1 � dE)R
bpE(0)

> 0 .

Therefore, for any p satisfying

p > 1 � (1 � dL)bpE(0)
(1 � dE)bpL(0)

2 (0, 1) ,

it is optimal to choose s⇤2t+1(a2t, x2t) = 0. This concludes the proof.

Proof of Lemma 7. This directly follows late shareholders’ utility function.

Proof of Lemma 8. First consider the case of h2t 2 Gh. By Proposition 1, q = 1 implies that

sh = 0. Again by Proposition 1, there is l2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t).
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Then consider the case of h2t 2 Gl . Similarly, by Proposition 2, q = 1 implies that sl = 0.

Again by Proposition 2, there is l2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t).

Finally, consider the case of h2t 2 Gm. By Proposition 27, q = 1 implies that sm = sm = 0.

Again by Proposition 27, there is l2t = 1 for any s2t+1 > 0 regardless of (a2t, x2t). This

concludes the proof.

Proof of Proposition 4. I consider two cases according to the starting cash-to-assets ratio

on date 2t.

Case 1. h2t 2 Gl [ Gm [ Ghl . First, consider a perturbation �# < 0 of cash rebuilding

around s

⇤
2t+1 that satisfies h

⇤
2t+2 = µER/(1 � µE). On date 2t + 1 (in stage t), since there are

no runs (by Lemma 7), the effective selling price on 2t + 1 is bpL(0). Thus, the fire sale loss

saved in stage t is
#(1 � dL)R
bpL(0)

> 0 .

Now consider the same cash gap # on date 2t + 2 (under the perturbed cash rebuilding

policy (s⇤
2t+1,�#). This implies that h2t+2 2 Gl . Since there are no runs, the fund has to fire

sell its assets on date 2t + 2 at the effective selling price bpE(0) > 0. Hence, the expected

increase of fire sale loss in stage t + 1 due to this cash gap # is

#(1 � dE)R
bpE(0)

> 0 .

Since dE < dL and bpE(0) < bpL(0), there is

#(1 � dL)R
bpL(0)

< (1 � p)
#(1 � dE)R
bpE(0)

for a sufficiently small but positive p, implying that the perturbation �# is not profitable.

Next, consider another perturbation # > 0 of cash rebuilding around s

⇤
2t+1 that satisfies

h

⇤
2t+2 = µER/(1 � µE). On date 2t + 1 (in stage t), similarly, the fire sale loss increased in

stage t is
#(1 � dL)R
bpL(0)

> 0 .

Under the perturbed cash rebuilding policy (s⇤
2t+1, #) the fund gets # more cash in stage
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t + 1. This implies that h2t+2 2 Gm. Since there are no runs, the fund does not have to fire

sell its assets on date 2t + 2. Rather, the marginal cash saves the fund’s active asset sales on

date 2t + 3 at the effective selling price bpL(0) > 0. Hence, the expected fire sale saved in

stage t + 1 due to this marginal cash # is also

#(1 � dL)R
bpL(0)

> 0 .

Since p 2 (0, 1), this perturbation # is also not profitable. This verifies the optimality of

h

⇤
2t+2 = µER/(1 � µE) when h2t 2 Gl [ Gm [ Ghl .

Case 2. h2t 2 Ghm [ Ghh. Consider a perturbation # > 0 of cash rebuilding around

s

⇤
2t+1 = 0. On date 2t + 1 (in stage t), similarly, the fire sale loss increased in stage t is

#(1 � dL)R
bpL(0)

> 0 .

Similarly, under the perturbed cash rebuilding policy (s⇤
2t+1, #) the fund gets # more cash

in stage t + 1. The expected fire sale loss saved in stage t + 1 due to this marginal cash # is

also
#(1 � dL)R
bpL(0)

> 0 .

Since p 2 (0, 1), this perturbation # is again not profitable. This verifies the optimality of

s

⇤
2t+1 = 0 when h2t 2 Ghm [ Ghh. This finally concludes the proof.

Proof of Proposition 5. I consider two cases according to the starting cash-to-assets ratio

on date 2t.

Case 1. h2t 2 Gl [ Gm [ Ghl [ Ghm. First, consider a perturbation �# < 0 of cash

rebuilding around s

⇤
2t+1 that satisfies h

⇤
2t+2 = (µE + µL)R/(1 � µE � µL). On date 2t + 1 (in

stage t), since l2t = 1 (by Lemma 8), the effective selling price on 2t + 1 is bpL(1). Thus, the

fire sale loss saved in stage t is
#(1 � dL)R
bpL(1)

> 0 .

Now consider the same cash gap # on date 2t + 2 (under the perturbed cash rebuilding

policy (s⇤
2t+1,�#). This implies that h2t+2 2 Gl [ Gm. Since l2t+2 = 1, by Lemmas 4 and 20
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the fund always has to fire sell its assets on date 2t+ 2 at the effective selling price bpE(1) > 0,

even if h2t+2 2 Gm. Hence, the expected increase of fire sale loss in stage t + 1 due to this

cash gap # is
#(1 � dE)R
bpE(1)

> 0 .

Since dE < dL and bpE(1) < bpL(1), there is

#(1 � dL)R
bpL(1)

< (1 � p)
#(1 � dE)R
bpE(1)

for a sufficiently small but positive p. Hence, the perturbation �# is not profitable.

Next, consider another perturbation # > 0 of cash rebuilding around s

⇤
2t+1 that satisfies

h

⇤
2t+2 = (µE + µL)R/(1 � µE � µL). On date 2t + 1 (in stage t), similarly, the fire sale loss

increased in stage t is
#(1 � dL)R
bpL(1)

> 0 .

Under the perturbed cash rebuilding policy (s⇤
2t+1, #) the fund gets # more cash in stage

t + 1. This implies that h2t+2 2 Gh. Hence, by Lemma 2, regardless of runs the fund does

not have to fire sell its assets on date 2t + 2. Rather, the marginal cash saves the fund’s

active asset sales on date 2t + 3 at the effective selling price bpL(1) > 0. Hence, the expected

fire sale saved in stage t + 1 due to this marginal cash # is also

#(1 � dL)R
bpL(1)

> 0 .

Since p 2 (0, 1), this perturbation # is also not profitable. This verifies the optimality of

h

⇤
2t+2 = (µE + µL)R/(1 � µE � µL) when h2t 2 Gl [ Gm [ Ghl [ Ghm.

Case 2. h2t 2 Ghh. Consider a perturbation # > 0 of cash rebuilding around s

⇤
2t+1 = 0.

On date 2t + 1 (in stage t), similarly, the fire sale loss increased in stage t is

#(1 � dL)R
bpL(1)

> 0 .

Similarly, under the perturbed cash rebuilding policy (s⇤
2t+1, #) the fund gets # more cash

in stage t + 1. The expected fire sale loss saved in stage t + 1 due to this marginal cash # is
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also
#(1 � dL)R
bpL(1)

> 0 .

Since p 2 (0, 1), this perturbation # is again not profitable. This verifies the optimality of

s

⇤
2t+1 = 0 when h2t 2 Ghh. This finally concludes the proof.

Proof of Proposition 6. This proof proceeds in three steps. First, I show that when q is

sufficiently small, the equilibrium is the same as that characterized by Proposition 4. Second,

I characterize the equilibrium when q takes an intermediate value. Lastly, I show that when

q is sufficiently large, the equilibrium is the same as that characterized by Proposition 5.

Step 1. Recall that when q = 0, the equilibrium cash rebuilding policy is characterized

by Proposition 4. By Propositions 1, 2, and 27, sh, sl , and sm are all continuous in q. Hence,

there exists a q > 0 (explicit expression will be calculated in the next step) such that when

q 2 (0, q], none of the late shareholders chooses to run in any region if the fund still follows

the cash rebuilding policy as described in Proposition 4. In addition, the proof of Proposition

4 only relies on the fact that there are no shareholder runs. This confirms that the cash

rebuilding policy as described in Proposition 4 is still optimal when q 2 (0, q], which in turn

confirms the late shareholders’ run decision l2t = 0.

Step 2. By the definition of q, when q > q there exists a non-zero-measure set Grun

in which at least some of the late shareholders will run given the cash rebuilding policy

described in Proposition 4. I first show that Grun takes the form of

Grun = Gl [ Gm , (A.4.25)

where Gm ✓ Gm is connected and

inf Gm =
µER

1 � µE
.

To see this, first recall the definition of sl :

sl =
Ra2t � q(1 � µE)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE))Rq2t(0)

(1 � dL)R
� q2t+1(0) .

Note that, for every pair of (a2t, x2t) and h2t+2, there is an implied s2t+1. Using that as
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the threshold sl and solving for q backward yields that, under the cash rebuilding policy

h2t+2 = µER/(1 � µE), when

q >
dL

µE + µL + dL(1 � µE � µL)
⌘ q 2 (0, 1)

there must be l2t > 0 for h2t 2 Gl .

Similarly, consider the definitions of sm and sh. Also under the cash rebuilding policy

h2t+2 = µER/(1 � µE), solving for the threshold q backward yields that, when

q >
dL

µE + µL + dL(1 � µE � µL)
= q

there must be l2t > bl2t for h2t 2 Gm, while when

q >
dL + µL � dLµL

µE + µL + dL(1 � µE � µL)
⌘ q 2 (0, 1)

there must be l2t > 0 for h2t 2 Gh.

Notice that

q < q .

Thus, under the cash rebuilding policy h2t+2 = µER/(1 � µE), when q 2 (q, q), there is

l2t = 0 when h2t 2 Gh. This confirms the claim in (A.4.25).

Now define

h(ľ) ⌘ (µE + ľµL)R
1 � µE � ľµL

2 Gm .

For any ľ 2 (0, 1), consider the following cash rebuilding policy:

h2t+2 = h(ľ) .

Since
µER

1 � µE
< h(ľ) <

(µE + µL)R
1 � µE � µL

,

there exists a q̌ 2 (q, q) such that when q = q̌, there is
8
><

>:

l2t > 0 iff h2t < h(ľ) ,

l2t = 0 iff h2t > h(ľ) .
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Thus, it is natural to define that

Gm ⌘
⇢

h2t|
µER

1 � µE
6 h2t < h(ľ)

�
,

and

Ghm ⌘
⇢

h2t|h2t >
(µE + µL)R
1 � µE � µL

and
µER

1 � µE
6 h2t+2 < h(ľ) for s2t+1 = 0

�
.

Now I confirm that h

⇤
2t+2 = h(ľ) is the optimal cash rebuilding policy when q = q̌ and

h2t 2 Gm. First, consider a perturbation �# < 0 of cash rebuilding around s

⇤
2t+1 that satisfies

h

⇤
2t+2 = h(ľ). On date 2t + 1 (in stage t), since l2t = 1 (by Lemma 8), the effective selling

price on 2t + 1 is bpL(ľ). Thus, the fire sale loss saved in stage t is

#(1 � dL)R
bpL(ľ)

> 0 .

Now consider the same cash gap # on date 2t + 2 (under the perturbed cash rebuilding

policy (s⇤
2t+1,�#). This implies that h2t+2 2 Ghm. Since l2t+2 > ľ, the fund always has to

fire sell its assets on date 2t + 2 at most at the effective selling price bpE(ľ) > 0. Hence, the

expected increase of fire sale loss in stage t + 1 due to this cash gap # is at least

#(1 � dE)R
bpE(ľ)

> 0 .

Since bpE(ľ) < bpL(ľ), there is

#(1 � dL)R
bpL(ľ)

< (1 � p)
#(1 � dE)R
bpE(ľ)

for a sufficiently small but positive p. Hence, the perturbation �# is not profitable.

Next, consider another perturbation # > 0 of cash rebuilding around s

⇤
2t+1 that satisfies

h

⇤
2t+2 = h(ľ). On date 2t + 1 (in stage t), similarly, the fire sale loss increased in stage t is

#(1 � dL)R
bpL(ľ)

> 0 .

Under the perturbed cash rebuilding policy (s⇤
2t+1, #) the fund gets # more cash in stage

t + 1. This implies that h2t+2 2 Gh. Since there will be no runs on date 2t + 2, the marginal
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cash saves the fund’s active asset sales on date 2t + 3 at the effective selling price bpL(1) > 0.

Hence, the expected fire sale saved in stage t + 1 due to this marginal cash # is

#(1 � dL)R
bpL(1)

> 0 .

Since bpL(ľ) < bpL(1) (and also p 2 (0, 1)), this perturbation # is also not profitable.

This verifies the optimality of h

⇤
2t+2 = (µE + µL)R/(1 � µE � µL) when h2t 2 Gm. This

analysis can be readily extended to other subset of Gl [ Gm [ Ghl [ Ghm as well as Ghm [ Ghh

following the same argument.

Finally, define

q ⌘ q̌(ľ = 1) 2 (q, q) .

By construction, when q = q, there are l2t > 0 for h2t 2 Gl [ Gm while l2t = 0 for

h2t 2 Gh under the corresponding optimal cash rebuilding policy h

⇤
2t+2 = h(1).

Step 3. This step shows that when q > q there can not be equilibria other than that

descried by Proposition 5. In this step, I use Figure A.2 to help illustrate the idea. I first

show that, when q > q, there must be Grun = Gl [ Gm [ Gh. Note that, by Step 2, there must

be Gl [ Gm ✓ Grun when q > q, and thus it suffices to show that it cannot be that

sup Grun < sup Gh .

I prove this by contradiction. First suppose sup Grun 2 Ghl [ Ghm. Define

Gh1 ⌘ Grun/(Gl [ Gm) .

By the argument in the proof of Proposition 5, when h2t 2 Grun the equilibrium cash

rebuilding policy still features

h

⇤
2t+2 =

(µE + µL)R
1 � µE � µL

. (A.4.26)

However, because sup Grun 2 Ghl [ Ghm, one can now find another non-zero-measure

connected set Gh2 ✓ Ghl [ Ghm that satisfies

inf Gh2 = sup Gh1 ,
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Run

Figure A.2: Hypothetical Equilibrium Cash Rebuilding Policy

in which shareholders will not run under the cash rebuilding policy (A.4.26).

By construction, the optimal cash rebuilding policy when h2t 2 Gh2 should be

h

⇤
2t+2 > sup Gh1 >

(µE + µL)R
1 � µE � µL

. (A.4.27)

To see this, consider a perturbation �# of cash rebuilding around this cash rebuilding policy.

On date 2t + 1 (in stage t), since there are no runs when h2t 2 Gh2, the effective selling price

on 2t + 1 is bpL(0). Thus, the fire sale loss saved in stage t is

#(1 � dL)R
bpL(0)

> 0 .

Now consider the same cash gap # on date 2t + 2 (under the perturbed cash rebuilding

policy (s⇤
2t+1,�#). This implies that h2t+2 2 Gh1. Because of shareholder runs on date 2t + 2,

the fund will sell its assets at the effective selling price bpL(1) > 0. Hence, the expected
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increase of fire sale loss in stage t + 1 due to this cash gap # is

#(1 � dL)R
bpL(1)

> 0 .

Since bpL(1) < bpL(0), there is

#(1 � dL)R
bpL(0)

< (1 � p)
#(1 � dL)R
bpL(1)

for a sufficiently small but positive p, implying that the perturbation �# is not profitable.

However, under the new, more rapid cash rebuilding policy (A.4.27), by the definition of

sh, there must be a subset of Gh2 in which late shareholders are going to run. This violates

the definition of Gh2: a contradiction.

Now instead suppose inf Ghh 6 sup Grun < sup Gh. Again by the monotonicity and

continuity of sh in a2t and x2t, there is no loss of generality to assume that sup Grun =

inf Ghh + e, where e > 0 is arbitrarily small. Similarly, the optimal cash rebuilding policy

when h2t = inf Ghh + e should be

h

⇤
2t+2 = inf Ghh >

(µE + µL)R
1 � µE � µL

. (A.4.28)

However, when h2t = sup Ghm = inf Ghh, the optimal cash rebuilding policy already

leads to runs. By the definition of sh, there must be shareholder runs when h2t = inf Ghh + e

under the cash rebuilding policy (A.4.28). This is again a contraction. As a result, there

must be Grun = Gl [ Gm [ Gh.

Finally, by Proposition 5, the optimal cash rebuilding policy must be the same as

described there because the pattern of shareholder runs is the same as described by Lemma

8. This ultimately concludes the proof.

Proof of Proposition 7. It directly follows Propositions 4, 5, and 6 that for any q, the

proposed cash rebuilding policy

h

⇤
2t+2 <

µER
1 � µE

is not optimal when there is no commitment device. Here I provide a sufficient condition

that it can be optimal if a commitment device is introduced.
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Consider q as defined in Proposition 6. By definition, when q = q + e, where e > 0 is

arbitrarily small, and h2t+2 = µER/(1 � µE), there is l2t > 1 for any h2t 2 Gl . Consider

a perturbation �# < 0 of cash rebuilding around h2t+2 = µER/(1 � µE) when h2t =

µER/(1 � µE), where the perturbation is chosen such that there is l2t = 0 for any h2t 2 Gl .

On the one hand, since l2t+2 = 0, the cash gap resulted from this perturbation on date

2t + 2 leads to the following expected increase of fire sale loss in stage t + 1:

#(1 � dE)R
bpE(0)

.

On the other hand, when a commitment device is introduced, the determination of h2t+2

on 2t directly affects q2t and q2t+1 through l2t. Thus, under the proposed perturbation

�# < 0, there are no runs on date 2t, and thus the fire sale loss saved in stage t is

Dq2t(1 � dE)R +

✓
#

bpL(l2t)
+ Dq2t+1

◆
(1 � dL)R ,

where l2t solves

#

bpL(l2t)
=

Ra2t � q(1 � µE � l2tµl)(Ra2t + x2t)� (1 � q(1 � dE)(1 � µE � l2tµl))Rq2t(l2t)
(1 � dL)R

� q2t+1(l2t) ,

and Dq2t = q2t(l2t)� q2t(0) and Dq2t+1 = q2t+1(0)� q2t+1(l2t).

Note that Dq2t(1 � dE)R + Dq2t+1(1 � dL)R > 0. Thus, if

Dq2t(1 � dE) + Dq2t+1(1 � dL) > (1 � p)
#(1 � dE)
bpE(0)

� #(1 � dL)
bpL(l2t)

satisfies, it is optimal for the fund to choose a less rapid cash rebuilding policy h2t+2 <

µER/(1 � µE). This concludes the proof.

Proof of Proposition 8. This directly follows Propositions 4, 5, and 6. Under a Markov

strategy profile, because the equilibrium is stationary, it suffices to show that a higher q

leads to higher total fire sale losses within stage t for any given positive (a2t, x2t). I then

consider two cases.

Case 1. h2t 2 Gl [ Gm. By Propositions 4, 5, and 6, the optimal cash rebuilding policy is

always h

⇤
2t+2(q) > 0 where h

⇤
2t+2(q) is increasing in q. By definition, h2t+2 = 0 if s2t+1 = 0.
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Thus, the total fire sale losses in stage t is given by

Lt(q) = (1 � dE)Rq2t + (1 � dL)Rq2t+1 +
h

⇤
2t+2

bpL + h

⇤
2t+2

(1 � dL)R(a2t � q2t � q2t+1) ,

where q2t, q2t+1, and bp are both functions of l0 and in turn functions of q. Propositions 4, 5,

and 6 also imply that l2t is increasing in q for any given positive (a2t, x2t). Hence, it follows

Lemmas 4 and 20 that L(q) is increasing in q.

Case 2. h2t 2 Gh. By Lemma 2, q2t = q2t+1 = 0 regardless of l2t or q. Thus, the total fire

sale losses in stage t is given by

Lt(q) = (1 � dL)Rs⇤2t+1 .

Define h2t+2 as the target cash-to-assets ratio if s2t+1 = 0 and h2t 2 Gh. By Propositions

4, 5, and 6, the difference h

⇤
2t+2(q)� h2t+2 is increasing in q. Moreover, bpL is decreasing in

l2t and thus decreasing in q. This implies that s⇤2t+1 is increasing in q and so is L(q) in this

case. This finally concludes the proof.

Proof of Proposition 9. Recall that, the Bellman equation for the non-commitment case

is:

V(a2t, x2t) = �(1 � dE)Rq2t � (1 � dL)Rq2t+1 + max
s⇤2t+1

[�(1 � dL)Rs2t+1 + (1 � p)V(a2t+2, x2t+2)] .

(A.4.29)

When a commitment device is introduced, the Bellman equation instead becomes:

V(a2t, x2t) = max
s⇤2t+1

[�(1 � dE)Rq2t � (1 � dL)R(q2t+1 + s2t+1) + (1 � p)V(a2t+2, x2t+2)] . (A.4.30)

Also, the fund manager’s objective function, which is to minimize the total expected fire

sale losses, can be re-written as

max
{s⇤2t+1}•

t=t

Et

T�1

Â
t=t

[�(1 � dE)Rq2t � (1 � dL)R(q2t+1 + s2t+1)] ,
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where the expectation is taken over the random variable T,5 which is in turn govern by

probability p. By the Principle of Optimality, the solution to (A.4.30) maximizes the fund

manager’s objective function, while the solution to (A.4.29) is feasible for the sequential

problem associated with (A.4.30). This concludes the proof.

Proof of Proposition 10 and Corollary 3. First, according to the starting cash-to-assets

ratio h2t, I still divide the stage game into three different regions. Without loss of generality,

I consider n2t = 1 as in the baseline model. Suppose the fund does not rebuild its cash

buffer and no late shareholder is going to run, that is, s2t+1 = 0 and l2t = 0. Then there

are three regions of the cash-to-assets ratio h2t in the stage-t game. In these three regions,

the amounts of illiquid assets that the fund has to sell passively on dates t and t + 1 are

characterized by:
8
>>>>>>>>>><

>>>>>>>>>>:

High Region Gk

h : qk

2t = 0, qk

2t+1 = 0 ,

Intermediate Region Gk

m: qk

2t = 0, qk

2t+1 > 0 ,

Low Region Gk

l : qk

2t > 0, qk

2t+1 > 0 .

I use the superscript k to indicate the existence of the redemption fees. Note that, if a

starting position (a2t, x2t) falls into a region Gj, j 2 {h, m, l}, it does not necessarily falls into

the same region Gk

j when redemption fees are introduced. But by construction, there is

Gk

h [ Gk

m [ Gk

l = Gh [ Gm [ Gl ,

and

Gk

j \ Gk

k = ?, j 6= k .

Thus it suffices to consider the three regions Gk

h , Gk

m, and Gk

l separately. Here I provide a

complete analysis of the high region Gk

h and the derivation for the other two regions directly

5To be precise, the random variable T here denotes the stage (rather than the date) before which the game
ends.
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follows.

In the high region Gk

h , when qk

2t = 0 and l2t = 0, there is

NAVk

2t = Ra2t + x2t ,

and

NAVk

2t+1 =
1 � kµE

1 � µE
(Ra2t + x2t) .

Thus, qk

2t = 0 and qk

2t+1 = 0 imply

h2t >

✓
kµE + kµL

1 � kµE

1 � µE

◆
R

1 � kµE � kµL
1 � kµE

1 � µE

.

This suggests that Gh ✓ Gk

h . This also suggests that Lemma 2 still holds. That means, for

any l2t:

NAVk

2t(l2t) = Ra2t + x2t .

Meanwhile, when shareholder runs and cash rebuilding are introduced, there is

NAVk

2t+1(l2t) =
R(a2t � s2t+1) + x2t � k(µE + l2tµL)(Ra2t + x2t) + dLRs2t+1

1 � µE � l2tµL
.

Therefore, when q = 1, late shareholders’ run incentives are governed by

DNAVk(l2t) =
dLRs2t+1

1 � µE � l2tµL
� (1 � k)(µE + l2tµL)(Ra2t + x2t)

1 � µE � l2tµL
. (A.4.31)

Clearly, when there are no redemption fees, that is, when k = 1, this goes back to wedge

(1.3.3) in the baseline model. For any k 2 (0, 1) and any l2t 2 [0, 1], the second term in

(A.4.31) is strictly positive. This directly implies that for any feasible s2t+1, there is l

k

2t 6 l2t,

where l

k

2t is the equilibrium run probability in the game with the redemption fee while l2t

is that in the game without redemption fees, leading to the results in Proposition 10.

Also, for any (a2t, x2t) and any k 2 (0, 1), define

s = inf
l2t2[0,1]

inf
s2t+1

{s2t+1|DNAVk(s2t+1; l2t) > 0} .

By construction, there is s > 0. Then the result follows because DNAVk(l2t) is strictly
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increasing in s2t+1. This leads to the results in Corollary 3 and finally concludes the

proof.

Proof of Proposition 11. Under in-kind redemptions, any shareholder who redeems on

date t will get at/nt unit of assets and xt/nt unit of cash. Since there will be no forced fire

sales at the fund level, the fund will no longer manage its cash buffer. This implies ht = h0

for any date t, where h0 is the initial cash-to-assets ratio.

Consider any late shareholder on any odd date 2t + 1. If she redeems and consumes

on date 2t + 1, she gets dLRa0/n0 + x0/n0, while if she redeemed and consumed on date

2t, she would get dERa0/n0 + x0/n0. Since dL > dE, no late shareholder will ever run in an

equilibrium.

Now I consider total fire sale losses when q = 0. There is no loss of generality to consider

h2t = µER/(1 � µE), which is the steady-state cash-to-assets ratio in the baseline model.

Again due to the scale-invariance of the dynamic game, it suffices to consider an arbitrary

state t. In the baseline model, by Proposition 4, the fire sale losses in stage t under the

optimal cash rebuilding policy are:

Lt = (1 � dL)R(q2t+1 + s⇤2t+1)

=

(1 � dL)RµE

0

@a2t �
µL(Ra2t + x2t)⇣
dL +

µL(1�dL)
1�µE

⌘

1

A

(1 � µE)dL + µL(1 � dL) + µE
+

(1 � dL)RµL(Ra2t + x2t)⇣
dL +

µL(1�dL)
1�µE

⌘ , (A.4.32)

while the fire sale losses in stage t under in-kind redemptions are

Lin�kind
t = (1 � dE)RµEa2t + (1 � dL)RµLa2t . (A.4.33)

Note that, when µL = 0, (A.4.32) reduces to

Lt =
(1 � dL)RµEa2t

(1 � µE)dL + µE
,

while (A.4.33) reduces to

Lin�kind
t = (1 � dE)RµEa2t .
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Clearly, when dL is sufficiently larger than dE such that

1 � dE >
1 � dL

(1 � µE)dL + µE
,

there is Lin�kind
t > Lt. Since fire sale losses are continuous in µL, and by Proposition 6 they

are also continuous in q, this concludes the proof.

Proof of Proposition 12. This directly follows the proof of Proposition 10. The only

difference is that under redemption fees any individual redeeming shareholder gets kNAVt

on date t while she gets NAVt (if not being denied) under redemption restrictions. In

expectation, any shareholder gets zNAVt when she redeems her shares under redemption

restrictions. As such, this proof is identical to that of Proposition 10.
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Appendix B

Appendix to Chapter 2

B.1 Proofs

This appendix provides all proofs omitted above with auxiliary results.

Proof of Lemma 9. According to the equilibrium definition, any speculator (i, j) longs

one share of asset i when fixij + yij > µi and shorts one share otherwise. Equivalently,

speculator (i, j) longs one share of asset i when

fixij + yijq
t

�1
x f

2
i + t

�1
y

>
µi � (fia + fi)q

t

�1
x f

2
i + t

�1
y

,

and shorts one share otherwise. Thus, in asset market i, all speculators’ aggregate demand

is

Di = 1 � 2F

0

@ µi � (fia + fi)q
t

�1
x f

2
i + t

�1
y

1

A .

Hence, in equilibrium, market clearing implies

1 � 2F

0

@ µi � (fia + fi)q
t

�1
x f

2
i + t

�1
y

1

A = 1 � 2F(z + xi � l log Pi) ,
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which further implies that the equilibrium price in asset market i is

Pi = exp

0

@ fi

l

q
t

�1
x f

2
i + t

�1
y

a +
1

l

q
t

�1
x f

2
i + t

�1
y

fi +
z + xi

l

� µi

l

q
t

�1
x f

2
i + t

�1
y

1

A .

This concludes the proof.

Proof of Lemma 10. In a symmetric equilibrium, the capital providers put a same weight

f on the information of the common shock in any asset market i. Thus, by Lemma 9, for

asset price Pi, its equivalent signal in predicting the common shock a becomes

za(Pi) = a +
1
f

fi +

q
t

�1
x f

2 + t

�1
y

f

(z + xi) .

Since fi and xi are both i.i.d. and have zero means, the aggregate price P is equivalent to

the following signal

za(P) =
Z 1

0

0

@a +
1
f

fi +

q
t

�1
x f

2 + t

�1
y

f

(z + xi)

1

Adi = a +

q
t

�1
x f

2 + t

�1
y

f

z

in predicting the common shock a. It immediately follows the construction of the other

signal z f ,i(P) in predicting the idiosyncratic shock.

Finally, it is easy to verify that any combination of the asset prices {Pi, i 2 [0, 1]} cannot

be more informative in predicting the two productivity shocks. This concludes the proof.

Proof of Lemma 11. From the capital providers’ problem (2.2.1), the first order condition is

Ii =
k

c
E[exp(a + fi)|Gi]

=
k

c
exp

✓
E[a + fi|Gi] +

1
2

Var[a + fi|Gi]

◆
.

By Lemma 10, we know that sa,i and za(P) are only informative about the common

shock a and s f ,i and z f ,i(P) are only informative about the idiosyncratic shock fi. Applying

Bayesian updating immediately leads to the following optimal investment policy

Ii =
k

c
exp

"
tsasa,i + tpaza(P)

ta + tsa + tpa
+

1
2(ta + tsa + tpa)

+
tf s f ,i + tp f z f ,i(P)

tf + ts f + tp f
+

1
2(tf + ts f + tp f )

#
.
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This concludes the proof.

Proof of Lemma 12. This is a direct application of Lemma 10 to Definition 4.

Proof of Proposition 13. We proceed step by step.

Step 1: Proof of the existence of the solution.

Following the equilibrium condition (2.3.10) for the cross-learning case, let

g(f) = f � a1 � g1

a2 � g2
= f �

tsa+tpa
ta+tsa+tpa

+ 1 � f

l

p
t

�1
x f

2+t

�1
y

ts f +tp f
tf +ts f +tp f

+ 1 � 1
l

p
t

�1
x f

2+t

�1
y

tx
ta+tx

ty
tf +ty

,

where tpa is given by (2.3.5) and tp f is given by (2.3.7), both being function of f. It is easy to

check that lim
f!�• g(f) < 0 and lim

f!+• g(f) > 0 by the following two equations:

lim
f!�•

tsa+tpa
ta+tsa+tpa

+ 1 � f

l

p
t

�1
x f

2+t

�1
y

ts f +tp f
tf +ts f +tp f

+ 1 � 1
l

p
t

�1
x f

2+t

�1
y

tx
ta+tx

ty
tf +ty

=
tx

ta+tx
ty

tf +ty

tsa+t

z

tx
ta+tsa+t

z

tx
+ 1 �

p
tx

l

ts f
tf +ts f

+ 1
,

and

lim
f!+•

tsa+tpa
ta+tsa+tpa

+ 1 � f

l

p
t

�1
x f

2+t

�1
y

ts f +tp f
tf +ts f +tp f

+ 1 � 1
l

p
t

�1
x f

2+t

�1
y

tx
ta+tx

ty
tf +ty

=
tx

ta+tx
ty

tf +ty

tsa+t

z

tx
ta+tsa+t

z

tx
+ 1 �

p
tx

l

ts f
tf +ts f

+ 1
.

The analysis above indicates that there always exists a solution of f to the equilibrium

condition (2.3.10), i.e., g(f) = 0, by the intermediate value theorem. Especially, when

l > 1/
p

t

�1
x , we know that

f (0) = �
tsa+tpa

ta+tsa+tpa
+ 1

ts f +tp f
tf +ts f +tp f

+ 1 � 1
l

p
t

�1
x

tx
ta+tx

ty
tf +ty

< 0 .

We conclude that there always exists a positive solution f > 0 as long as l is large

enough.

Step 2: Proof of the uniqueness of the solution when tf is large enough.

By simple algebra, the equilibrium condition (2.3.10) is re-expressed as
0

@ tsa + tpa

ta + tsa + tpa
+ 1 � f

l

q
t

�1
x f

2 + t

�1
y

1

A tx
ta + tx

= f

0

@
ts f + tp f

tf + ts f + tp f
+ 1 � 1

l

q
t

�1
x f

2 + t

�1
y

1

A ty

tf + ty
.

(B.1.1)
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Applying Taylor expansion to the terms in equation (B.1.1) with respect to t

�1
y yields:

tsa + tpa

ta + tsa + tpa
= � ta

ta + tsa + tpa
� ta

(ta + tsa + tpa)2
t

z

t

�2
x f

2
t

�1
y + o(t�1

y ) ,

ts f + tp f

tf + ts f + tp f
= 1 �

tf

tf + ts f + tp f
�

tf

(tf + ts f + tp f )
2

t

x

t

�2
x f

4
t

�1
y + o(t�1

y ) ,

f

l

q
t

�1
x f

2 + t

�1
y

=
1

l

q
t

�1
x

� 1

2lt

� 3
2

x f

2
t

�1
y + o(t�1

y ) ,

and
1

l

q
t

�1
x f

2 + t

�1
y

=
1

lf

q
t

�1
x

� 1

2lt

� 3
2

x f

3
t

�1
y + o(t�1

y ) .

Plugging them back into equation (B.1.1), we have:

tx
ta+tx

tf +ty
ty

"
2 � ta

ta+tsa+tpa
� ta

(ta+tsa+tpa)2
t

z

t

�2
x f

2 t

�1
y � 1

l

p
t

�1
x

+ 1

2lt

� 3
2

x f

2
t

�1
y + o(t�1

y )

#

= f

"
2 � tf

tf +ts f +tp f
� tf

(tf +ts f +tp f )
2

t

x

t

�2
x f

4 t

�1
y � 1

lf

p
t

�1
x

+ 1

2lt

� 3
2

x f

3
t

�1
y + o(t�1

y )

#
,

which becomes a cubic equation of f when ty goes to infinity:
✓

tsa + txt

z

ta + tsa + txt

z

+ 1 �
p

tx

l

◆
tx

ta + tx
=

ts f f

3 + txt

x

f

tf f

2 + ts f f

2 + txt

x

+ f �
p

tx

l

. (B.1.2)

Note that, the left hand side of equation (B.1.2) does not depends on f. Denote by h(f)

the right hand side of (B.1.2), and its first order derivative with respect to f is given by

∂h(f)
∂f

= 1 �
tf f

2

tf f

2 + ts f f

2 + txt

x

+ 1 �
2tf txt

x

f

2

(tf f

2 + ts f f

2 + txt

x

)2 > 0 ,

which indicates that the right hand side of equation (B.1.2) is increasing in f and thus we

have a unique solution to equation (B.1.2). Therefore, since g(f) is a continuous function

of ty, there always exists one unique solution to g(f) = 0, i.e., equation (B.1.1), when ty is

large enough. This concludes the proof.

Proof of Proposition 14. This proof is similar to the proof of Proposition 13. In the
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benchmark case without cross learning, the equilibrium condition (2.3.11) is re-expressed as
0

@ tsa + tpa

ta + tsa + tpa
+

tp f

tf + ts f + tp f
f

0 + 1 � f

l

q
t

�1
x f

2 + t

�1
y

1

A tx

ta + tx

= f

0

@ ts f + tp f

tf + ts f + tp f
+

tpa

ta + tsa + tpa

1
f

0 + 1 � 1

l

q
t

�1
x f

2 + t

�1
y

1

A ty

tf + ty
,

which further reduces to
✓

tsa

ta + tsa
+ 1 �

p
tx

l

◆
tx

ta + tx
= f

✓
ts f

tf + ts f
+ 1 �

p
tx

lf

◆
, (B.1.3)

when ty goes to infinity, t

x

goes to zero and l >
p

tx. Since the right hand side of equation

(B.1.3) is increasing inf f, we know that there must exist one unique solution to equation

(B.1.3).

On the other hand, when t

x

goes to zero (and when ty goes to infinity and l >
p

tx),

equation (B.1.2) in the case with cross learning becomes
✓

tsa + tpa

ta + tsa + tpa
+ 1 �

p
tx

l

◆
tx

ta + tx
= f

✓
ts f

tf + ts f
+ 1 �

p
tx

lf

◆
. (B.1.4)

We compare between the two equations (B.1.3) and (B.1.4). It is clear that their right

hand sides are the same, while the left hand side of (B.1.3) (for the benchmark case without

cross learning) is smaller than the left hand side of (B.1.4) (for the case with cross learning).

By the continuity with respect to ty and t

x

of the two equilibrium conditions (2.3.11) and

(2.3.10) in the two cases, we conclude that the equilibrium f

0 in the benchmark case without

cross learning is always lower than the equilibrium f is the problem with cross learning, as

long as l >
p

tx, ty is large enough, and t

x

is small enough.

Proof of Lemma 13. We first consider the investment beta b I . Recall the investment policy

(2.3.8), we have

log Ii =
tsasa,i + tpaza(P)

ta + tsa + tpa
+

1
2(ta + tsa + tpa)

+
tf s f ,i + tp f z f ,i(P)

tf + ts f + tp f
+

1
2(tf + ts f + tp f )

.
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Following the definition of b I and after some algebra, we reach

b I =
Sa/ta � tsa

(ta+tsa+tpa)2

Sa/ta + Sf /tf
.

To simplify the analysis, let g1 = Sa/ta , g2 = tsa/
�
ta + tsa + tpa

�2 , and g3 = Sf /tf . By

Lemma 12, it is straightforward that g1 is increasing in f and both g2 and g3 are decreasing

in f. Thus, as f > 0, we also have that g1 is increasing in f

2 and both g2 and g3 are

decreasing in f

2. Furthermore, we have

∂b I

∂f

2 =
g01 � g02
g1 + g3

� (g1 � g2)(g01 + g03)
(g1 + g3)2

=
[(g01 � g02)g1 � (g1 � g2)g01] + (g01 � g02)g3 � (g1 � g2)g03

(g1 + g3)2 ,

where g01, g02 and g03 stands for the first order derivative with respect to f

2.

Since we know that g01 � g02 > g01 (due to the fact that g2 is decreasing in f

2) and

g1 > g1 � g2, we have (g01 � g02)g1 � (g1 � g2)g01 > 0. Meanwhile, we have g01 > 0, g02 < 0,

and g3 > 0, so that (g01 � g02)g3 > 0. Lastly, since g1 > g2 and g03 < 0, we also know that

(g1 � g2)g03 < 0. Therefore, we conclude that ∂b I/∂f

2 > 0, i.e., b I is an increasing function

of f when f > 0.

We then consider the price beta bP. Recall the pricing function (2.3.1), we have

log Pi =
f

l

q
t

�1
x f

2 + t

�1
y

a +
1

l

q
t

�1
x f

2 + t

�1
y

fi +
z + xi

l

� µ

l

q
t

�1
x f

2 + t

�1
y

.

Following the definition of bP and after some algebra, we reach that

bP =

f

2

t

�1
x f

2+t

�1
y

1
ta
+ 1

t

z

f

2

t

�1
x f

2+t

�1
y

1
ta
+ 1

t

z

+ 1
t

�1
x f

2+t

�1
y

1
tf
+ 1

t

x

.

To simplify, let

h1 =
f

2

t

�1
x f

2 + t

�1
y

1
ta

+
1
t

z

(B.1.5)

and

h2 =
1

t

�1
x f

2 + t

�1
y

1
tf

+
1
t

x

. (B.1.6)
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It is straightforward that h1 is increasing in f and h2 is decreasing in f. Hence, we have

∂bP

∂f

2 =
�g1

∂g2
∂f

2

(g1 + g2)2 > 0 ,

which indicates that bP is an increasing function of f when f > 0.

Proof of Lemma 14. We first consider common investment correlation bA. Recall the

investment policy (2.3.8) and the definition of bA, we have

bA =
Cov(log Ii, log A)p

Var(log Ii)
p

Var(log A)

=

tsa+tpa
ta+tsa+tpa

p
ta

r
tsa+tpa

ta+tsa+tpa
1
ta
+

tf +tp f
tf +ts f +tp f

1
tf

=
Sa

p
ta

q
Sa/ta + Sf /tf

.

It is convenient for us to consider instead

1
tab

2
A
=

Sa/ta + Sf /tf

S2
a

=
1

taSa
+

Sf

tf S2
a

.

By Lemma 12, since Sa is increasing in f

2 and Sf is decreasing in f

2 when f > 0, it

is straightforward that 1/tab

2
A is decreasing in f

2. This indicates that bA is an increasing

function of f when f > 0.

We then consider the idiosyncratic investment correlation bF. Again, recall the invest-

ment policy (2.3.8) and the definition of bF, we have

bF =
Cov(log Ii, log Fi)p

Var(log Ii)
p

Var(log Fi)

=

tf +tp f
tf +ts f +tp f

p
tf

r
tsa+tpa

ta+tsa+tpa
1
ta
+

tf +tp f
tf +ts f +tp f

1
tf

=
Sf

p
tf

q
Sa/ta + Sf /tf

.

Similarly, it is convenient for us to consider instead

1
tf b

2
F
=

Sa/ta + Sf /tf

S2
f

=
Sa

taS2
f
+

1
tf S f

,

which is decreasing in f

2, again by Lemma 12. Hence, we conclude that bF is an increasing

function of f as well, when f > 0.
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Proof of Lemma 15. We focus on the case when ty and l are large enough so that a unique

solution of f is guaranteed. Recall that the reduced equilibrium condition (B.1.2) (in the

proof of Proposition 13):
✓

tsa + txt

z

ta + tsa + txt

z

+ 1 �
p

tx

l

◆
tx

ta + tx
=

ts f f

3 + txt

x

f

tf f

2 + ts f f

2 + txt

x

+ f �
p

tx

l

.

It is clear that the left hand side of (B.1.2) is decreasing in ta. Hence, when ta increase,

the right hand side of (B.1.2) decreases as well. On the other hand, we have already known

that the right hand side of (B.1.2) is increasing in f. Hence, in equilibrium, f decreases. This

indicates that f is a decreasing function of ta.

Proof of Proposition 15. We still focus on the case when ty and l are large enough so

that a unique solution of f is guaranteed.

We first consider the investment beta

b I =
Sa � g

Sa + taS f /tf
,

where

g =

✓
tsa

ta + tsa + tpa

◆2
ta

tsa
. (B.1.7)

It is instructive for us to decompose the total effects of the changing of ta on b I into two

parts: the mechanical effect and the cross-learning effect:

db I(ta, f)
dta

=
∂b I(ta, f)

∂ta
+

∂b I(ta, f)
∂f

∂f

∂ta
.

The sign of the second term, the cross-learning effect, is straightforward by Lemma 13

and Lemma 15. Specifically, Lemma 13 indicates that ∂b I(ta, f)/∂f > 0 and Lemma 15

indicates that ∂f/∂ta < 0, so that the cross-learning effect is negative in this case.

For the first term, the mechanical effect, by the facts that tpa = txt

V

when ty goes

to infinity and that Sf is independent of ta, we know that ∂b I(ta, f)/∂ta < 0, i.e., the

mechanical effect is negative as well.

Taking the two effects together, we know that the total effect is also negative, i.e.,

db I(ta, f)/dta < 0.
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We then consider the price beta

bP =

f

2

t

�1
x f

2+t

�1
y

1
ta
+ 1

t

z

f

2

t

�1
x f

2+t

�1
y

1
ta
+ 1

t

z

+ 1
t

�1
x f

2+t

�1
y

1
tf
+ 1

t

x

=
h1

h1 + h2
,

where h1 and h2 are already defined in (B.1.5) and (B.1.6) (in the proof of Lemma 13).

Again, we decompose the total effects of the changing of ta on bP into two parts: the

mechanical effect and the cross-learning effect:

dbP(ta, f)
dta

=
∂bP(ta, f)

∂ta
+

∂bP(ta, f)
∂f

∂f

∂ta
.

First, it is straightforward to see that the mechanical effect ∂bP(ta, f)/∂ta is negative,

because bP is an increasing function of h1 that is in turn decreasing in ta at the same

time. Furthermore, Lemma 13 indicates that ∂bP(ta, f)/∂f > 0 and Lemma 15 indicates

that ∂f/∂ta < 0, which together imply that the cross-learning effect is negative as well.

Therefore, we conclude that the total effect is also negative, i.e., dbP(ta, f)/dta < 0.

Proof of Lemma 16. The proof is similar to the proof of Lemma 15. We again focus on the

case when ty and l are large enough so that a unique solution of f is guaranteed. In this

case, we recall the reduced equilibrium condition (B.1.2) (in the proof of Proposition 13):
✓

tsa + txt

z

ta + tsa + txt

z

+ 1 �
p

tx

l

◆
tx

ta + tx
=

ts f f

3 + txt

x

f

tf f

2 + ts f f

2 + txt

x

+ f �
p

tx

l

.

It is clear that the left hand side of (B.1.2) is increasing in tsa. Hence, when tsa increase,

the right hand side of (B.1.2) increases as well. On the other hand, we have already known

that the right hand side of (B.1.2) is increasing in f. Hence, in equilibrium, f increases. This

indicates that f is an increasing function of tsa.

The analysis is similar for ts f . The right hand side of (B.1.2) is increasing in ts f , while

the left hand side is independent of ts f . Thus, when ts f increase, f decreases to ensure a

constant right hand side of (B.1.2). This indicates that f is a decreasing function of ts f .

Proof of Proposition 16. We first consider the comparative statics with respect to tsa. For
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the investment beta b I , we have

b I = 1 �
Sf /tf + g/ta

Sa/ta + Sf /tf
,

where g is already defined in (B.1.7) (in the proof of Proposition 15).

We also decompose the total effects of the changing of tsa on b I into two parts: the

mechanical effect and the cross-learning effect:

db I(tsa, f)
dtsa

=
∂b I(tsa, f)

∂tsa
+

∂b I(tsa, f)
∂f

∂f

∂tsa
.

Clearly, Lemma 13 and Lemma 16 indicate that the second term, the cross-learning effect,

is positive. For the first term, the mechanical effect, we first know that Sa is increasing in tsa,

given f fixed. Also, it is easy to show that g/ta is increasing in tsa (given f fixed) when

tsa < ta + txt

z

, and decreasing in tsa (also given f fixed) when tsa > ta + txt

z

. Hence, we

conclude that when tsa > ta + txt

z

, the mechanical effect is positive, and thus the total

effect db I(tsa, f)/dtsa is positive as well. When tsa < ta + txt

z

, the mechanical effect is

ambiguous and so is the total effect.

For the price beta bP, there is only cross-learning effect but no mechanical effect. Hence,

by Lemma 13 and Lemma 16 we have that

dbP(tsa, f)
dtsa

=
∂bP(tsa, f)

∂f

∂f

∂tsa
> 0 .

We then consider the comparative statics with respect to ts f in a similar manner. For the

investment beta b I , we have

b I =
Sa/ta � g/ta

Sa/ta + Sf /tf
.

By the similar decomposition and again by Lemma 13 and Lemma 16, we know that

both the mechanical effect and the cross-learning effect in this case are negative. So that the

total effect is also negative:

db I(ts f , f)

dts f
=

∂b I(ts f , f)

∂ts f
+

∂b I(ts f , f)

∂f

∂f

∂ts f
< 0 .

For the price bP, again, there is only cross-learning effect but no mechanical effect.
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Hence, by Lemma 13 and Lemma 16 we have that

dbP(ts f , f)

dts f
=

∂bP(ts f , f)

∂f

∂f

∂ts f
< 0 .

This concludes the proof.

Proof of Lemma 17. We focus on the case when ty and l are large enough so that a unique

solution of f is guaranteed. We first consider the effect of l. Re-express the reduced

equilibrium condition (B.1.2) (in the proof of Proposition 13):
✓

tsa + txt

z

ta + tsa + txt

z

+ 1
◆

tx

ta + tx
+

p
tx

l

ta

ta + tx
=

ts f f

3 + txt

x

f

tf f

2 + ts f f

2 + txt

x

+ f . (B.1.8)

It is clear that the left hand side of (B.1.8) is decreasing in l while the right hand side is

independent of l. Hence, when l increases, f decreases in equilibrium.

We then consider the effects of t

z

and t

x

. Again recall the reduced equilibrium condition

(B.1.2):
✓

tsa + txt

z

ta + tsa + txt

z

+ 1 �
p

tx

l

◆
tx

ta + tx
=

ts f f

3 + txt

x

f

tf f

2 + ts f f

2 + txt

x

+ f �
p

tx

l

.

On the one hand, the left hand side of (B.1.2) is increasing in t

z

, while the right hand

side is independent of t

z

, so that f is increasing in t

z

in equilibrium. On the other hand,

the right hand side of (B.1.2) is increasing in t

x

while the left hand side is independent of t

x

,

so that f is decreasing in t

x

in equilibrium.

Proof of Proposition 17. We first consider the comparative statics with respect to l. Since

l has no mechanical effect on ether b I or bP, we focus on the cross-learning effect along. By

Lemma 13 and Lemma 17, we know that both bP and b I are decreasing in l.

We then consider the comparative statics with respect to t

z

. For the investment beta b I ,

we have

b I =
Sa � g

Sa + taS f /tf
,

where g is defined in (B.1.7) (in the proof of Proposition 15).

Again, we decompose the total effects of the changing of t

z

on b I into two parts: the
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mechanical effect and the cross-learning effect:

db I(t
z

, f)

dt

z

=
∂b I(t

z

, f)

∂t

z

+
∂b I(t

z

, f)

∂f

∂f

∂t

z

.

By Lemma 13 and Lemma 17, we know that the cross-learning effect is positive. For

the mechanical effect, when f is fixed, it is easy to show that ∂b I(t
z

, f)/∂tpa > 0. Since we

know that ∂tpa/∂t

z

> 0, we get that the mechanical effect is also positive. Hence, the total

effect db I(t
z

, f)/dt

z

is positive.

However, the total effect on the price beta bP is ambiguous in this case. We have

bP =
h1

h1 + h2
,

where h1 and h2 are already defined in (B.1.5) and (B.1.6) (in the proof of Lemma 13).

Decomposition gives

dbP(t
z

, f)

dt

z

=
∂bP(t

z

, f)

∂t

z

+
∂bP(t

z

, f)

∂f

∂f

∂t

z

.

Lemma 13 and Lemma 17 give a positive cross-learning effect, i.e., the second term.

However, it is easy to show that the first term, the mechanical effect, is negative. Hence, the

total effect is ambiguous and is determined by other model parameters.

We finally consider the comparative statics with respect to t

x

. Similarly, we follow the

decomposition above. For the investment beta b I , by Lemma 13 and Lemma 17, we know

that the cross-learning effect is negative. For the mechanical effect, when f is fixed, it

is easy to show that ∂b I(t
x

, f)/∂tp f > 0. Since we know that ∂tp f /∂t

x

> 0, we get that

the mechanical effect is also negative. Hence, the total effect db I(t
x

, f)/dt

x

is negative.

Following similar arguments and again by Lemma 13 and Lemma 17, we know that both

the mechanical effect and the cross-learning effect on the price beta bP are also negative, so

that the total effect on bP is negative as well.

Proof of Proposition 26. Following the definition of real investment efficiency, we know

that

R =
Z 1

0
Ridi ,
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where

Ri = E
h

AFi Ii �
c
2

I2
i

i
=

k(2 � k)
2c

E [AFiE [AFi|Gi]] ,

and

E[AFi|Gi] = exp

"
tsasa,i + tpaza(P)

ta + tsa + tpa
+

1
2(ta + tsa + tpa)

+
tf s f ,i + tp f z f ,i(P)

tf + ts f + tp f
+

1
2(tf + ts f + tp f )

#
.

Since k and c are constant, without loss of generality, we set k = 1 and c = 0.5 to ease

the exposition. After some tedious algebra, the investment efficiency R is re-expressed in a

much simpler and more intuitive form:

R = exp
✓

1 + Sa

ta
+

1 + Sf

tf

◆
. (B.1.9)

We solve for the socially optimal f

⇤ that maximizes R. Taking the first order condition

gives

∂ log R
∂(f2)

=
t

2
x t

z

ty

(ta + tsa + tpa)2
1

(tx + tyf

2)2 �
txt

2
y t

x

(tf + ts f + tp f )
2

1
(tx + tyf

2)2 = 0 , (B.1.10)

which reduces to
(ta + tsa + tpa)2

(tf + ts f + tp f )
2 =

txt

z

tyt

x

. (B.1.11)

Since tpa is increasing in f

2 while tp f is decreasing in f

2, we know that the left hand

side of (B.1.11) is increasing in f

2. Therefore, there is a unique non-negative solution of f

⇤.

We further compare between the socially optimal weight f

⇤ and the weight f in the

cross-learning equilibrium, focusing on the case in which ty and l are large enough so

that there is always a unique positive solution of f. We re-express the first order condition

(B.1.10) as
∂ log R
∂(f2)

=
txt

2
y

(ta + tsa + tpa)2

"
txt

z

ty
�

(ta + tsa + tpa)2
t

x

(tf + ts f + tp f )
2

#
= 0 . (B.1.12)

When ty goes to infinity, txt

z

/ty goes to 0, and we also have

 
ta + tsa + tpa

tf + ts f + tp f

!2

=

✓
ta + tsa + txt

z

tf + ts f + txt

z

/f

2

◆2
> 0 .

Hence, when ty and l are large enough, the left hand side of (B.1.12) is always negative.
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Therefore, we conclude that the cross-learning equilibrium f is always larger than the

socially optimal f

⇤ when ty and l are large enough.

Proof of Proposition 19. Recall the expression of investment efficiency (B.1.9):

R = exp
✓

1 + Sa

ta
+

1 + Sf

tf

◆
.

We again focus on the case when ty and l are large enough so that a unique solution

of f is guaranteed. We first consider the comparative statics with respect to l. Lemma 12

implies that ∂Sf /∂f < 0 and Lemma 17 implies that ∂f/∂l < 0. Since there is no direct

effect of l on Sf , we know that Sf is increasing in l in equilibrium. Moreover, because the

effect of f on Sa is negligible when ty is sufficiently large, we eventually know that that R is

an increasing function of l.

We then consider t

x

. Similarly, Lemma 12 implies that ∂Sf /∂f < 0 and Lemma 17

implies that ∂f/∂t

x

< 0, so that Sf , and thus R is increasing in t

x

in equilibrium.

We finally consider ts f . It is clear that ∂Sf /∂ts f > 0, i.e., the mechanical effect is positive.

For the cross-learning effect, Lemma 12 implies that ∂Sf /∂f < 0 and Lemma 16 implies

that ∂f/∂t

x

< 0. Hence, the total effect is positive as well, i.e., Sf is increasing in ts f

in equilibrium. Since the effect of f on Sa is negligible when ty is sufficiently large, we

eventually know that that R is an increasing function of ts f .

Proof of Proposition 20. Part i) is straightforward following the proofs of Proposition

13 and Proposition 14. For part ii), we make use of the conditional expectation (2.5.12).

Specifically, we have

Var(z) =

2

66666664

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

3

77777775

,
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where

s11 = t
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2
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,

s44 =
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2
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�1
a + (t�1

x f

2
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�1
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t

�1
z
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�1
x
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!
,

and

Cov(z, a + fi) = [t�1
a , t

�1
f , fnt

�1
a + t

�1
f , fnt

�1
a ] .

By condition (2.5.12), we get the expressions of San and Sf n after some tedious algebra

and plug them into the equilibrium condition. Denote by RHS the right hand side of the

equilibrium condition (2.5.13) and we get

∂ lim
ty!• RHS(fn, n)

∂n
= C1C2C3C4C5(C6 + C7 + C8)

2 , (B.1.13)
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where
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4
ntf (tf + 2ts f )((ta + tsa)t
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2
ntxt

x

((ta + tsa)(3tf + 2ts f )tz

+ ((2n � 1)tf + 2ts f )(ta + tsa + txt

z
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x

) .

Note that, only the first term C1 has a negative component. However, when t

x

is small

enough, C1 is always strictly positive, so is the entire derivative (B.1.13). It implies that when

ty is large enough and t

x

is small enough, the equilibrium fn is increasing in n. Also, the

proof of Proposition 26 directly implies that f

0(= f1) > f

⇤, so that fn > f

⇤ for all n > 1.

Finally, for part iii), by the proof of Proposition 26, in particular condition (B.1.9), we

know that

Rn = exp
✓

1 + Sa(fn)
ta

+
1 + Sf (fn)

tf

◆
,

where Sa and Sf are the capital providers’ investment sensitivities in the baseline cross-

learning case pinned down by however the equilibrium weight in the corresponding n-

learning equilibrium. By Lemma 12, it follows that R < Rn < R⇤ for all n > 1. This

concludes the proof.
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Appendix C

Appendix to Chapter 3

C.1 Derivation, Extensions, and Proofs

C.1.1 Derivation of Convertible Preferred Stock as the Optimal Security

This appendix derives the optimal security s⇤(q) when it induces information acquisition.

We proceed by two steps.

First, we solve for an “unconstrained” optimal security without the feasibility condition

0 6 s(q) 6 q. We denote the solution by bs(q). We also denote the corresponding screening

rule by bms(q). The unconstrained optimal security recovers the unconstrained part bs(q)

of the eventual optimal security in Proposition 23. After that, we resume the feasibility

condition and characterize the optimal security s⇤(q).

Lemma 22. In an equilibrium with information acquisition, the unconstrained optimal security bs(q)

and its corresponding screening rule bms(q) are determined by

bs (q)� k = µ ·
�

g0 ( bms (q))� g0 (p⇤
s )
�

, (C.1.1)

where

p

⇤
s = E [m⇤

s (q)] ,
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and

(1 � bms(q)) · (q � bs(q) + w⇤) = µ , (C.1.2)

where

w⇤ = E


(q � s⇤ (q))

g00 (p⇤
s )

g00 (m⇤
s (q))

� ✓
1 � E


g00 (p⇤

s )
g00 (m⇤

s (q))

�◆�1

,

in which p⇤s and w⇤ are two constants determined in equilibrium, and s⇤(q) and m⇤
s (q) are the

solutions of the original constrained problem.

Lemma 22 exhibits the relationship between the unconstrained optimal security bs(q)

and the corresponding screening rule bms(q). Condition (C.1.1) specifies how the investor

responses to the unconstrained optimal security by adjusting her screening rule. On the

other hand, condition (C.1.2) is derived from the entrepreneur’s optimization problem. It

indicates the entrepreneur’s optimal choices of payments across states, given the investor’s

screening rule. In equilibrium, bs(q) and bms(q) are jointly determined.

Although it is not tractable to fully solve the system of equations (C.1.1) and (C.1.2), we

are able to deliver important analytical characteristics of the unconstrained optimal security

bs(q) and the corresponding screening rule bms(q).

Lemma 23. In an equilibrium with information acquisition, the unconstrained optimal security bs(q)

and the corresponding screening rule bms(q) satisfy

∂

bms (q)
∂q

= µ

�1 · bms (q) · (1 � bms (q))
2 > 0 , (C.1.3)

and
∂

bs (q)
∂q

= 1 � bms (q) 2 (0, 1) . (C.1.4)

We have several interesting observations from Lemma 23. First, condition (C.1.3) implies

that the unconstrained optimal screening rule bms (q) is strictly increasing. Second, condition

(C.1.4) implies that the unconstrained optimal security bs (q) is also strictly increasing. These

are because, according to Proposition 21, we have Prob[0 < bms (q) < 1] = 1 in this case, and

thus the right hand sides of (C.1.3) and (C.1.4) are positive. It follows immediately that the

residual of the unconstrained optimal security, q � bs (q), is also strictly increasing. Last, the
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unconstrained optimal security bs (q) is strictly concave. This is because conditions (C.1.3)

and (C.1.4) imply that

∂

2bs(q)
∂q

2 = �µ

�1 · bms (q) · (1 � bms (q))
2 < 0 .

Therefore, the unconstrained optimal security bs(q) is an increasing concave function of q.

Given Lemma 23, it is instructive to have the following lemma to illustrate the possible

relative positions between the unconstrained optimal security and the feasibility constraints.

Lemma 24. Three possible relative positions between the unconstrained optimal security bs(q) and

the feasibility constraints 0 6 s(q) 6 q may occur in equilibrium, in the q ⇠ s space:

i) bs(q) intersects with the 45� line s = q at (bq, bq), bq > 0, and does not intersect with the

horizontal axis s = 0;

ii) bs(q) goes through the origin (0, 0), and does not intersect with either the 45� line s = q or the

horizontal axis s = 0 for any q 6= 0;

iii) bs(q) intersects with the horizontal axis s = 0 at (eq, 0), eq > 0, and does not intersect with the

45� line s = q.

In the three different cases, the actual optimal security s⇤(q) will be constrained by the

feasibility condition in different ways. For example, s⇤(q) will be constrained by the 45� line

s = q in Case i) while by the horizontal axis s = 0 in Case iii). By imposing the feasibility

conditions, we have the following characterization for s⇤(q):

Lemma 25. In an equilibrium with information acquisition, the corresponding optimal security

s⇤(q) satisfies

s⇤(q) =

8
>>>><

>>>>:

q if bs(q) > q

bs(q) if 0 6 bs(q) 6 q

0 if bs(q) < 0

,

where bs(q) is the corresponding unconstrained optimal security.

Lemma 25 is helpful because it tells us how to construct an optimal security s⇤(q) from

its corresponding unconstrained optimal security bs(q). Concretely, s⇤(q) will follow bs(q)
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when the latter is within the feasible region 0 6 s 6 q. When bs(q) goes out of the feasible

region, the resulting optimal security will follow one of the feasibility constraints that is

binding.

We apply Lemma 25 to the three cases of the unconstrained optimal security bs(q)

described in Lemma 24. This gives the three potential cases of the optimal security s⇤(q),

respectively.

Lemma 26. In an equilibrium with information acquisition, the optimal security s⇤(q) may take one

of the following three forms:

i) when the corresponding unconstrained optimal security bs(q) intersects with the 45� line s = q

at (bq, bq), bq > 0, we have

s⇤ (q) =

8
><

>:

q if 0 6 q < b
q

bs (q) if q > b
q

;

ii) when the corresponding unconstrained optimal security bs(q) goes through the origin (0, 0),

we have s⇤ (q) = bs (q) for q 2 R+ ;

iii) when the corresponding unconstrained optimal security bs(q) intersects with the horizontal

axis s = 0 at (eq, 0), eq > 0, we have

s⇤ (q) =

8
><

>:

0 if 0 6 q < e
q

bs (q) if q > e
q

.

The optimal security s⇤(q) takes different shapes in the three potential cases. In Case i),

s⇤(q) follows a debt in states with low cash flows but increases in states with high cash flows.

In Case iii), s⇤(q) has zero payment in states with low cash flows, while is an increasing

function in states with high cash flows. Case ii) lies in between as a knife-edge case.

We proceed by determining whether these three potential cases are valid solutions to

the entrepreneur’s problem in an equilibrium with information acquisition. Interestingly,

not all the three cases can occur in equilibrium.

Lemma 27. If the entrepreneur’s optimal security s⇤(q) induces the investor to acquire information

in equilibrium, then it must follow Case i) in Lemma 26, which corresponds to a participating
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convertible preferred stock with a face value bq > 0.

Together with the lemmas already established, Lemma 27 immediately leads to Proposi-

tion 23. Intuitively, Case ii) and Case iii) in Lemma 26 cannot sustain an equilibrium with

information acquisition because the investor is underpaid. Recall that the investor provides

two types of inputs. The first is the investment required to initiate the project, and the

second is the costly information to screen the project. As a result, the entrepreneur wants

to make sure that the investor is sufficiently compensated for both inputs to be willing to

accept the security. This argument is further strengthened by Corollary 5, which suggested

that bq should be larger than the investment requirement k.

C.1.2 General Allocation of Bargaining Power

This appendix extends our baseline model to a more general setting that allows for the

arbitrary allocation of bargaining power between the entrepreneur and the investor. It

demonstrates that our framework and qualitative results are robust to the allocation of

bargain power.

Without loss of generality, let the entrepreneur’s bargaining power in security design

be 1 � a and the investor’s a. Suppose a third party in the economy knows a, designs the

security and proposes it to the investor. The investor acquires information according to the

security and decides whether or not to accept this offer. The third party’s objective function

is an average of the entrepreneur’s and the investor’s utilities, weighted according to the

bargaining power of each. When a = 0, this reduces to our baseline model. The derivations

for the results are the same as in the baseline model.

In this setting, the third-party’s objective function, that is, the payoff gain, is

uT(s(q)) = a · (E[(s(q)� k) · m(q)]� µ · I(m)) + (1 � a) · E[(q � s(q)) · m(q)] .

We can show that, with information acquisition, the equation that governs information
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acquisition is still the same as condition (3.3.6):

s (q)� k = µ ·
�

g0 (ms (q))� g0 (ps)
�

,

while the equation that characterizes the optimality of the unconstrained optimal security

becomes

r(q) = (2a � 1) · m(q) + (1 � a) · µ

�1 · m(q) · (1 � m(q)) · (q � s(q) + w) .

The following two propositions characterize the optimal security in the general setting.1

Proposition 29. When 0 6 a < 1/2 and information acquisition happens in equilibrium, the

unconstrained optimal security bs(q) and the corresponding screening rule bms(q) satisfy

dbs (q)
dq

=
1 � bms (q)

1 � a

1�a

bms(q)
2 (0, 1)

and
d bms (q)

dq

=
µ

�1 · bms (q) · (1 � bms (q))
2

1 � a

1�a

bms(q)
> 0 .

Also, all the results from Lemma 24 to Lemma 27 and from Proposition 21 to Proposition 26 still

hold.

Proposition 30. When 1/2 6 a 6 1, the optimal security features s⇤(q) = q.

Our generalized results show that when the investor has some bargaining power, but

not too much, all the qualitative results remain unchanged. But if the investor’s bargaining

power is strong, the optimal security is most favorable to the investor: a complete takeover.

This is intuitive considering the situation from the standpoint of friction. If the entrepreneur

dominates, she will still plays a considerable role in real production, which depends on the

investor’s information acquisition. Thus, the presence of friction still calls for a meaningful

security design that follows our interaction between the shape of the securities and the

incentive for screening. On the contrary, if the investor dominates, she may take over the

1The proofs for the extended model follow those for the benchmark model closely, so we do not repeat them in the
appendix.
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project and effectively eliminate the friction. In this case, real production and information

acquisition are joined and security design becomes less relevant. This corresponds to the

empirical fact that buyouts and takeovers are common for mature companies, where the role

of entrepreneurs and founders is no longer inalienable, a point also highlighted in Rajan

(2012) and Lerner, Leamon and Hardymon (2012).

C.1.3 Proofs

This appendix provides all proofs omitted above.

Proof of Lemma 18. We first prove the “only if” part. Suppose that

E
h
exp(µ�1(q � k))

i
6 1 .

According to Proposition 21, even if the entrepreneur proposes all the future cash flow

to the investor, the investor will still reject the offer without acquiring information. Since

s(q) 6 q, the project cannot be initiated in this case.

Then we prove the “if” part. Let t 2 (0, 1). Since E
⇥
exp(µ�1(t · q � k))

⇤
is continuous in

t, there exists t < 1 such that

E
h
exp(µ�1(t · q � k))

i
> 1 .

Hence, according to Proposition 21, the security st(q) = t · q would be accepted by the

investor with a positive probability. Moreover, let mt(q) be the corresponding screening rule.

As st(q) would be accepted with a positive probability, mt(q) cannot be always zero. Hence,

the entrepreneur’s expected payoff is E[(1 � t) · q · mt(q)], which is strictly positive.

Note that the security st(q) is a feasible security. Hence, the optimal security s⇤(q) will

also be accepted with a positive probability and deliver a positive expected payoff to the

entrepreneur. This concludes the proof.

Proof of Corollary 4. The proof is straightforward following the above proof of Lemma

18. Proposing s⇤(q) = q gives the entrepreneur a zero payoff, while proposing st(q) = t · q
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constructed in the proof of Lemma 18 gives her a strictly positive expected payoff. This

suggests that s⇤(q) = q is not optimal.

Proof of Proposition 22. The Lagrangian of the entrepreneur’s problem is

L = E
h
q � s(q) + l ·

⇣
1 � exp

⇣
µ

�1 · (k � s(q))
⌘⌘

+ h1(q) · s(q) + h2(q) · (q � s(q))
i

,

where l, h1(q) and h2(q) are multipliers.

The first order condition is

dL

ds(q)
= �1 + l · µ

�1 · exp
⇣

µ

�1 · (q � s(q))
⌘
+ h1(q)� h2(q) = 0 . (C.1.5)

We first consider a special case that is helpful for us to solve the optimal security. If

0 < s(q) < q, the two feasibility conditions are not binding. Thus h1(q) = h2(q) = 0, and

the first order condition is simplified as

�1 + l · µ

�1 · exp
⇣

µ

�1 · (k � s(q))
⌘
= 0 .

By rearrangement, we get

s(q) = k � µ · ln(l�1 · µ) . (C.1.6)

We denote the right hand side of (C.1.6), which is irrelevant of q, as D⇤. By definition,

we have D⇤ > 0. Also, it is straightforward to have

� 1 + l · µ

�1 · exp
⇣

µ

�1 · (k � D⇤)
⌘
= 0 . (C.1.7)

In what follows, we characterize the optimal solution s⇤(q) for different regions of q.

First, we consider the region of q > D⇤. We show that 0 < s⇤(q) < q in this region by

contradiction.

If s⇤(q) = q > D⇤, we have h1(q) = 0 and h2(q) > 0. From the first order condition

(C.1.5) we obtain

� 1 + l · µ

�1 · exp
⇣

µ

�1 · (k � q)
⌘
= h2(q) > 0 . (C.1.8)
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On the other hand, as q > D⇤, we have

� 1 + l · µ

�1 · exp
⇣

µ

�1 · (k � D⇤)
⌘
> �1 + l · µ

�1 · exp
⇣

µ

�1 · (k � q)
⌘

. (C.1.9)

Conditions (C.1.7), (C.1.8), and (C.1.9) construct a contradiction. So we must have

s⇤(q) < q if q > D⇤.

Similarly, if s⇤(q) = 0, we have h1(q) > 0 and h2(q) = 0. Again from the first order

condition (C.1.5) we obtain

� 1 + l · µ

�1 · exp
⇣

µ

�1 · k
⌘
= �h1(q) 6 0 . (C.1.10)

On the other hand, as D⇤ > 0, we have

� 1 + l · µ

�1 · exp
⇣

µ

�1 · (k � D⇤)
⌘
< �1 + l · µ

�1 · exp
⇣

µ

�1 · k
⌘

. (C.1.11)

Conditions (C.1.7), (C.1.10), and (C.1.11) construct another contradiction. So we must

have s⇤(q) > 0 if q > D⇤.

Therefore, we have shown that 0 < s⇤(q) < q for q > D⇤. From the discussion above for

this specific case, we conclude that s⇤(q) = D⇤ for q > D⇤.

We then consider the region of q < D⇤. We show that s⇤(q) = q in this region.

Since s⇤(q) 6 q < D⇤, we have

� 1 + l · µ

�1 · exp
⇣

µ

�1 · (k � s⇤(q))
⌘
> �1 + l · µ

�1 · exp
⇣

µ

�1 · (k � D⇤)
⌘

. (C.1.12)

From condition (C.1.7), the right hand side of this inequality (C.1.12) is zero. Together

with the first order condition (C.1.5), the inequality (C.1.12) implies that h1(q) = 0 and

h2(q) > 0. Therefore, we have s⇤(q) = q in this region.

Also, from the first order condition (C.1.5) and condition (C.1.7), it is obvious that

s⇤(D⇤) = D⇤.

To sum up, the entrepreneur’s optimal security without inducing the investor to acquire

information features a debt with face value D⇤ determined by condition (C.1.6).

We need to check that there exists D⇤ > 0 and the corresponding multiplier l > 0 such
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that

E
h
exp

⇣
�µ

�1 · (min(q, D⇤)� k)
⌘i

= 1 , (C.1.13)

where D⇤ is determined by condition (C.1.6).

Consider the left hand side of condition (C.1.13). Clearly, it is continuous and monotoni-

cally decreasing in D⇤. When D⇤ is sufficiently large, the left hand side of (C.1.13) approaches

E
⇥
exp

�
�µ

�1 · (q � k)
�⇤

, a number less than one, which is guaranteed by condition (3.3.3)

as well as the feasibility condition s(q) 6 q. On the other hand, when D⇤ = 0, it approaches

exp
�
µ

�1 · k
�
, which is strictly greater than one. Hence, there exists D⇤ > 0 such that

condition (C.1.13) holds.

Moreover, from condition (C.1.6), we also know that D⇤ is continuous and monotonically

increasing in l. When l approaches zero, D⇤ approaches negative infinity, while when l

approaches positive infinity, D⇤ approaches positive infinity as well. Hence, for any D⇤ > 0

there exists a corresponding multiplier l > 0.

Last, suppose D⇤ 6 k. It is easy to see that this debt would be rejected by the investor

due to Proposition 21, a contradiction.

Finally, by condition (3.3.3) again, since the optimal security s⇤(q) satisfies

E
h
exp

⇣
�µ

�1 · (s⇤ (q)� k)
⌘i

= 1 ,

Jensen’s inequality implies that E[s⇤(q)] > k given µ > 0. This concludes the proof.

Proof of Lemma 22. We derive the entrepreneur’s optimal security s⇤ (q) and the corre-

sponding unconstrained optimal security bs(q) through variational methods. Specifically, we

characterize how the entrepreneur’s expected payoff responds to the perturbation of her

optimal security.

Let s (q) = s⇤ (q) + a · # (q) be an arbitrary perturbation of the optimal security s⇤ (q).

Note that the investor’s optimal screening rule ms (q) appears in the entrepreneur’s expected

payoff uE(s(·)), according to condition (3.3.7), and it is implicitly determined by the proposed

security s (q) through the functional equation (3.3.6). Hence, we need to first characterize

how ms (q) varies with respect to the perturbation of s⇤ (q). Taking derivative with respect
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to a at a = 0 for both sides of (3.3.6) leads to

µ

�1
# (q) = g00 (m⇤

s (q)) ·
∂ms (q)

∂a

����
a=0

� g00 (p⇤
s ) · E

∂ms (q)
∂a

����
a=0

.

Take expectation of both sides and we get

E


∂ms (q)

∂a

����
a=0

�
= µ

�1 ·
⇣

1 � E
h�

g00 (m⇤
s (q))

��1
i
· g00 (p⇤

s )
⌘�1

· E
h�

g00 (m⇤
s (q))

��1
# (q)

i
.

Combining the above two equations, for any perturbation s (q) = s⇤ (q) + a · # (q), the

investor’s screening rule ms (·) is characterized by

∂ms (q)
∂a

����
a=0

= µ

�1 ·
�

g00 (m⇤
s (q))

��1
# (q)

+
µ

�1 · (g00 (m⇤
s (q)))

�1 · E
h
(g00 (m⇤

s (q)))
�1

# (q)
i

(g00 (p⇤
s ))

�1 � E
h
(g00 (m⇤

s (q)))
�1
i . (C.1.14)

We interpret condition (C.1.14). The first term of the right hand side of (C.1.14) is the

investor’s local response to # (q). It is of the same sign as the perturbation # (q). When the

payment of the security increases at state q, the investor is more likely to accept the security

at this state. The second term measures the investor’s average response to perturbation # (q)

over all states. It is straightforward to verify that the denominator of the second term is

positive due to Jensen’s inequality. As a result, if the perturbation increases the investor’s

payment on average over all states, she is more likely to accept the security as well.

Now we can calculate the variation of the entrepreneur’s expected payoff uE(s(·)),

according to condition (3.3.7). Taking derivative of uE(s(·)) with respect to a at a = 0 leads

to
∂uE(s(·))

∂a

����
a=0

= E


∂ms (q)

∂a

����
a=0

(q � s (q))
�
� E [m⇤

s (q) · # (q)] . (C.1.15)

Substitute (C.1.14) into (C.1.15) and we get

∂uE(s(·))
∂a

����
a=0

= E [r (q) · # (q)] , (C.1.16)

where

r (q) = �m⇤
s (q) + µ

�1 ·
�

g00 (m⇤
s (q))

��1 · (q � s⇤ (q) + w⇤) (C.1.17)
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and

w⇤ = E


(q � s⇤ (q))

g00 (p⇤
s )

g00 (m⇤
s (q))

� ✓
1 � E


g00 (p⇤

s )
g00 (m⇤

s (q))

�◆�1

.

Note that w⇤ is a constant that does not depend on q and will be endogenously de-

termined in the equilibrium. Besides, r (q) is the Frechet derivative of the entrepreneur’s

expected payoff uE(s(·)) at s⇤(q), which measures the marginal contribution of any pertur-

bation to the entrepreneur’s expected payoff when the security is optimal. Specifically, the

first term of (C.1.17) is the direct contribution of perturbing s⇤(q) disregarding the variation

of m⇤
s (q), and the second term measures the indirect contribution through the variation of

m⇤
s (q). This Frechet derivative r(q) plays an important role in shaping the entrepreneur’s

optimal security.

To further characterize the optimal security, we discuss the Frechet derivative r(q) in

detail. Recall that the optimal security would be restricted by the feasibility condition

0 6 s⇤(q) 6 q. Let

A0 = {q 2 Q : q 6= 0, s⇤ (q) = 0} ,

A1 = {q 2 Q : q 6= 0, 0 < s⇤ (q) < q} ,

A2 = {q 2 Q : q 6= 0, s⇤ (q) = q} .

Clearly, {A0, A1, A2} is a partition of Q\ {0}. Since s⇤ (q) is the optimal security, we have

∂uE(s(·))
∂a

����
a=0

6 0

for any feasible perturbation # (q).2 Hence, condition (C.1.16) implies

r (q)

8
>>>><

>>>>:

6 0 if q 2 A0

= 0 if q 2 A1

> 0 if q 2 A2

. (C.1.18)

According to Proposition 21, when the optimal security s⇤(q) induces the investor to

acquire information, we have 0 < m⇤
s (q) < 1 for all q 2 Q. Hence, condition (C.1.18) can be

2A perturbation #(q) is feasible with respect to s⇤(q) if there exists a > 0 such that for any q 2 Q, s⇤ (q) + a · # (q) 2 [0, q].
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rearranged as

r (q)
m⇤

s (q)
= �1 + µ

�1 · (1 � m⇤
s (q)) · (q � s⇤ (q) + w⇤)

8
>>>><

>>>>:

6 0 if q 2 A0

= 0 if q 2 A1

> 0 if q 2 A2

. (C.1.19)

Recall condition (3.3.6), given the optimal security s⇤ (q), the investor’s optimal screening

rule m⇤
s (q) is

s⇤ (q)� k = µ ·
�

g0 (m⇤
s (q))� g0 (p⇤

s )
�

, (C.1.20)

where

p

⇤
s = E [m⇤

s (q)]

is the investor’s unconditional probability of accepting the optimal security s⇤ (q). Condi-

tions (C.1.19) and (C.1.20) as a system of functional equations jointly determine the optimal

security s⇤ (q) when it induces the investor’s information acquisition.

Finally, when we focus on the unconstrained optimal security bs(q), note that is would

not be restricted by the feasibility condition. Hence, the corresponding Frechet derivative

r(q) would be always zero at the optimum. On the other hand, the investor’s optimal

screening rule would not be affected. As a result, conditions (C.1.20) and (C.1.19) become

bs (q)� k = µ ·
�

g0 ( bms (q))� g0 (p⇤
s )
�

,

where

p⇤s = E [m⇤
s (q)] ,

and

(1 � bms(q)) · (q � bs(q) + w⇤) = µ ,

where

w⇤ = E


(q � s⇤(q))

g00 (p⇤
s )

g00 (m⇤
s (q))

� ✓
1 � E


g00 (p⇤

s )
g00 (m⇤

s (q))

�◆�1

,

in which p⇤s and w⇤ are two constants that do not depend on q. This concludes the proof.

Proof of Lemma 23. From Lemma 22, (bs(q), bms(q)) satisfies the two equations (C.1.1) and
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(C.1.2). By condition (C.1.2), we get

bms(q) = 1 � µ

q � bs (q) + w⇤ . (C.1.21)

Substituting (C.1.21) into (C.1.1) leads to

µ

�1 (bs(q)� k) = g0
✓

µ

q � bs (q) + w⇤

◆
� g0 (p⇤

s ) .

Taking derivatives of both sides of the above equation with respect to q leads to

µ

�1 · dbs (q)
dq

= g00 ( bms (q)) ·
d bms (q)

dq

= g00 ( bms (q)) ·
µ ·
⇣

1 � dbs(q)
dq

⌘

(q � bs (q) + w⇤)2

=
1 � dbs(q)

dq

q � bs (q) + w⇤ � µ

,

where we use

g00 (x) =
1

x (1 � x)

while deriving the third equality. Rearrange the above equation, and we get

dbs (q)
dq

=
µ

q � bs (q) + w⇤

= 1 � bms (q) ,

where the last equality follows (C.1.21).

Again, taking derivatives of both sides of the above equation with respect to q leads to

µ

�1 · dbs (q)
dq

= g00 ( bms (q)) ·
d bms (q)

dq

=
1

bms (q) (1 � bms (q))
· d bms (q)

dq

.

Hence

d bms (q)
dq

= µ

�1 · bms (q) · (1 � bms (q)) ·
dbs (q)

dq

= µ

�1 · bms (q) · (1 � bms (q))
2 .
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This completes the proof.

Proof of Lemma 24. From Lemma 23, it is easy to see that the slope of bs(q) is always less

than one. Hence, Lemma 24 is straightforward.

Proof of Lemma 25. We proceed by discussing three cases.

Case 1: We show that bs(q) > q implies s⇤(q) = q.

Suppose s⇤(q) < q. Then we have s⇤(q) < bs(q). Since both (s⇤(q), m⇤
s (q)) and (bs(q), bms(q))

satisfy condition (3.3.6), we must have m⇤
s (q) < bms(q). Therefore,

r(q)
m⇤

s (q)
= �1 + µ

�1 · (1 � m⇤
s (q)) · (q � s⇤(q) + w⇤)

> �1 + µ

�1 · (1 � bms(q)) · (q � bs(q) + w⇤)

= 0 ,

which implies s⇤(q) = q, a contradiction.

Note that, the logic for the inequality above is as follows. Since (bs(q), bms(q)) satisfies

condition (C.1.2), we must have q � bq + w⇤ > 0. Hence, bs(q) > s⇤(q) implies that

q � s⇤(q) + w⇤ > q � bs(q) + w⇤ > 0 .

Also by noting that

1 � m⇤
s (q) > 1 � bms(q) > 0 ,

we get the inequality above.

Hence, we have s⇤(q) = q in this case.

Case 2: We show that bs(q) < 0 implies s⇤(q) = 0.

Suppose s⇤(q) > 0. Then we have s⇤(q) > bs(q). By similar argument we know that

m⇤
s (q) > bms(q). Therefore,

r(q)
m⇤

s (q)
= �1 + µ

�1 · (1 � m⇤
s (q)) · (q � s⇤(q) + w⇤)

< �1 + µ

�1 · (1 � bms(q)) · (q � bs(q) + w⇤)

= 0 ,
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which implies s⇤(q) = 0. This is a contradiction. Hence, we have s⇤(q) = 0 in this case.

Case 3: We show that 0 6 bs(q) 6 q implies s⇤(q) = bs(q).

Suppose bs(q) < s⇤(q). Then similar argument suggests r(q)/m⇤
s (q) < 0, which implies

s⇤(q) = 0 < bs(q). This is a contradiction.

Similarly, suppose s⇤(q) < bs(q). Similar argument suggests that r(q)/m⇤
s (q) > 0, which

implies s⇤(q) = q > bs(q). This is, again, a contradiction. Hence, we have s⇤(q) = bs(q) in this

case.

This concludes the proof.

Proof of Lemma 26. Apply Lemma 24 to Lemma 25, then Lemma 26 is straightforward.

Proof of Lemma 27. We prove by contradiction. Suppose that the last two cases in Lemma

26 can occur in equilibrium. Hence, there exists a eq > 0, such that s⇤(q) = 0 when 0 6 q 6 e
q

and s⇤(q) = bs(q) when q > e
q.

Note that, s⇤(q) is strictly increasing when q > e
q. Also, since we focus on the equilibrium

with information acquisition, there must exist a q

00 such that s⇤(q00) > k; otherwise the

optimal security would be rejected without information acquisition. Therefore, there exists

a q

0 > e
q such that s⇤(q0) = bs(q0) = k. Recall condition (C.1.1), we have

m⇤
s (q

0) = p̄

⇤
s .

Moreover, notice that we have s⇤(q0) 2 (0, q

0), we have

0 = r(q0) = �m⇤
s (q

0) + µ

�1 · m⇤
s (q

0) · (1 � m⇤
s (q

0)) · (q0 � s⇤(q0) + w⇤)

= �p̄

⇤
s + µ

�1 · p̄

⇤
s · (1 � p̄

⇤
s ) · (q0 � k + w⇤)

= µ

�1 · p̄

⇤
s · (1 � p̄

⇤
s ) · (q0 � k) + E[r(q)] ,
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where

E[r(q)] = �p̄

⇤
s + µ

�1
✓

E


(q � s(q)) · g00(p̄⇤

s ))
g00(m(q))

�
/g00(p̄⇤

s ) + w⇤E


1

g00(m(q))

�◆

= �p̄

⇤
s + µ

�1
✓

w⇤ ·
✓

1 � E


g00(p̄⇤

s )
g00(m(q))

�◆
/g00(p̄⇤

s ) + w⇤E


1

g00(m(q))

�◆

= �p̄

⇤
s +

µ

�1w⇤

g00(p̄⇤
s )

= �p̄

⇤
s + µ

�1 · p̄

⇤
s · (1 � p̄

⇤
s ) · w⇤ .

We can express the expectation term E[r(q)] in another way. Note that, for any q 2 [0, eq],

by definition we have

r(q) = �m⇤
s (q) + µ

�1 · m⇤
s (q) · (1 � m⇤

s (q)) · (q � s⇤(q) + w⇤)

= � bms(eq) + µ

�1 · bms(eq) · (1 � bms(eq)) · (q � 0 � eq + eq + w⇤)

= r(eq)� µ

�1 · bms(eq) · (1 � bms(eq)) · (eq � q)

= �µ

�1 · bms(eq) · (1 � bms(eq)) · (eq � q) .

Also, as s⇤(q) = bs(q) for any q > e
q, we have r(q) = 0 for all q > e

q. Hence,

E[r(q)] = �µ

�1 · bms(eq) · (1 � bms(eq))
Z e

q

0
(eq � q)dP(q) .

Therefore, we have

µ

�1 · p̄

⇤
s · (1 � p̄

⇤
s ) · (q0 � k) = �E[r(q)] (C.1.22)

= µ

�1 · bms(eq) · (1 � bms(eq))
Z e

q

0
(eq � q)dP(q) . (C.1.23)

Now we take the tangent line of s⇤(q) at q = e
q. The tangent line intersects s = k at eq0,

which is given by
k

e
q

0 � eq
=

ds⇤(q)
dq

����e
q

= 1 � bms(eq) .

Hence, we have

e
q

0 = e
q +

k
1 � bms(eq)

. (C.1.24)
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Also, note that we have shown that for any q > e
q, we have

ds⇤(q)
dq

=
dbs(q)

dq

= 1 � bms(q) = 1 � m⇤
s (q) .

Hence,
d2s⇤(q)

dq

2 = �µ

�1 · m⇤
s (q) · (1 � m⇤

s (q))
2 < 0 .

Therefore, s⇤(q) is strictly concave for q > e
q, and we also have eq0 < q

0. Consequently, by

condition (C.1.24) and then conditions (C.1.22) and (C.1.23), we have

p̄

⇤
s · (1 � p̄

⇤
s ) ·

 
e
q +

bms(eq)
1 � bms(eq)

· k

!
= p̄

⇤
s · (1 � p̄

⇤
s ) · (eq0 � k)

< p̄

⇤
s · (1 � p̄

⇤
s ) · (q0 � k)

= bms(eq) · (1 � bms(eq))
Z e

q

0
(eq � q)dP(q) .

On the other hand, by Jensen’s inequality, we know that

p̄

⇤
s · (1 � p̄

⇤
s ) > E [m⇤

s (q) · (1 � m⇤(q))] .

Therefore, we have

bms(eq) · (1 � bms(eq))
Z e

q

0
(eq � q)dP(q) > p̄

⇤
s · (1 � p̄

⇤
s ) ·

 
e
q +

bms(eq)
1 � bms(eq)

· k

!

> E [m⇤
s (q) · (1 � m⇤(q))] ·

 
e
q +

bms(eq)
1 � bms(eq)

· k

!
.

Expand the expectation term above and rearrange, we get

bms(eq)2 · k · Prob[q 6 e
q] +

Z +•

e
q

m⇤
s (q) · (1 � m⇤

s (q))dP(q) ·
 
e
q +

bms(eq)
1 � bms(eq)

· k

!

< bms(eq) · (1 � bms(eq))
Z e

q

0
(�q)dP(q)

6 0 .

Nevertheless, the left hand side of the above inequality should be positive, which is a

contradiction. This concludes the proof.

Proof of Proposition 24. We first consider the case with a positive transfer price p > 0.
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Suppose the corresponding security s(q) = q � p is optimal in a generalized security design

problem without the non-negative constraint. However, this security can be accommodated

by neither Proposition 22 or Proposition 23, which exclusively characterize the optimal

security in the generalized security design problem, a contradiction.

By Corollary 4, we also know that the security s(q) = q that represents transfer with a

zero price is not optimal. This concludes the proof.

Proof of Corollary 5. First, note that s⇤(q) is strictly increasing and continuous. Also,

note that there exists a q

00 such that s⇤(q00) > k; otherwise, the offer will be rejected without

information acquisition.

Therefore, there exists a unique q

0 such that s⇤(q0) = k, which ensures that m⇤
s (q

0) = p̄

⇤
s ,

and

r(q0) = �p̄

⇤
s + µ

�1 · p̄

⇤
s · (1 � p̄

⇤
s ) · (q0 � s⇤(q0) + w⇤)

= µ

�1 · p̄

⇤
s · (1 � p̄

⇤
s ) · (q0 � s⇤(q0)) + E[r(q)] .

Note that E[r(q)] > 0 and q

0 � s⇤(q0) > 0, we have q

0 < b
q. As q

0 = s⇤(q0) = k, it follows

that bq > q

0 = k. This concludes the proof.

Proof of Proposition 25. When we have E[q] 6 k and

E
h
exp(µ�1(t · q � k))

i
> 1 ,

according to Proposition 21, even if the entrepreneur proposes all the future cash flow to the

investor, the security would induce the investor to acquire information and accept it with a

positive (but less than one) probability. The only optimal security for this case is convertible

preferred stock. This concludes the proof.

Proof of Lemma 19. The “if” part is straightforward, following the definition of efficiency.

The “only if” part is ensured by the fact that the optimal screening rule is always unique

given an arbitrary security, established in Proposition 21.
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Proof of Proposition 26. We state a useful lemma to begin. It allow us to focus on the

first two types of equilibria for welfare analysis.

Lemma 28. A project is initiated with a positive probability in the decentralized economy if and only

if it is initiated with a positive probability in the corresponding centralized economy.

Proof of Lemma 28. With the objective function (3.4.10) in the centralized economy, the

entrepreneur’s optimal screening rule m⇤
c (q) is characterized by Proposition 21. Specifically,

the investor will initiate the project without information acquisition, i.e., Prob[m⇤
c (q) = 1] = 1

if and only if

E[exp(�µ

�1 · (q � k))] 6 1 ,

will skip the project without information acquisition, i.e., Prob[m⇤
c (q) = 0] = 1 if and only if

E[exp(µ�1 · (q � k))] 6 1 ,

and will initiate the project with probability 0 < p̄

⇤
c < 1, p̄

⇤
c = E[m⇤

c (q)], if and only if

E[exp(�µ

�1 · (q � k))] > 1 and E[exp(µ�1 · (q � k))] > 1 ,

in which m⇤
c (q) is determined by

q � k = µ · (g0(m⇤
c (q))� g0(p̄⇤

c )) .

It is straightforward to observe that, the project is initiated with a positive probability in

the frictionless centralized economy if and only if

E[exp(µ�1 · (q � k))] > 1 . (C.1.25)

Note that, condition (C.1.25) is the same as condition (3.3.1) in Lemma 18 that gives

the investment criterion in the corresponding decentralized economy. This concludes the

proof.

We continue the proof of Proposition 26. By Lemma 28, once we prove the “only if”

parts of both cases of debt and convertible preferred stock, the “if” parts will get proved
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simultaneously.

First, consider the case when s⇤(q) is debt. In this case, we have Prob[m⇤
s (q) = 1] = 1 ,

and

E[exp
⇣
�µ

�1 · (s⇤(q)� k)
⌘
] 6 1 ,

both from Proposition 21. Since s⇤(q) < q when q > D⇤, it follows that

E[exp
⇣
�µ

�1 · (q � k)
⌘
] 6 1 ,

which implies that Prob[m⇤
c (q) = 1] = 1 , also by Proposition 21. Hence, we know that

Prob[m⇤
s (q) = m⇤

c (q)] = 1 ,

which suggests that s⇤(q), as debt, achieves efficiency, according to Lemma 19.

Second, consider the case when s⇤(q) is convertible preferred stock that induces infor-

mation acquisition. In this case, we have Prob[0 < m⇤
s (q) < 1] = 1 , and

E[exp
⇣
�µ

�1 · (s⇤(q)� k)
⌘
] > 1 ,

again both from Proposition 21. Since s⇤(q) < q when q > b
q, the relationship between

E[exp
�
�µ

�1 · (q � k)
�
] and 1 is ambiguous. If

E[exp
⇣
�µ

�1 · (q � k)
⌘
] 6 1 ,

we have Prob[m⇤
c (q) = 1] = 1, and information acquisition is not induced in the centralized

economy. It follows that

Prob[m⇤
s (q) = m⇤

c (q)] 6= 1 .

Otherwise, if

E[exp
⇣
�µ

�1 · (q � k)
⌘
] > 1 ,

suppose we also have Prob[m⇤
s (q) = m⇤

c (q)] = 1 , then according to condition (C.1.20), we

have

Prob[s⇤(q) = q] = 1 ,
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which violates Corollary 4. A contradiction. As a result, from Lemma 19, we know that

s⇤(q), as convertible preferred stock, cannot achieve efficiency. This concludes the proof.

250


