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Algebraicity criteria and their applications

Abstract

We use generalizations of the Borel–Dwork criterion to prove variants of the Grothedieck–Katz

p-curvature conjecture and the conjecture of Ogus for some classes of abelian varieties over number

fields.

The Grothendieck–Katz p-curvature conjecture predicts that an arithmetic differential equation

whose reduction modulo p has vanishing p-curvatures for all but finitely many primes p, has finite

monodromy. It is known that it suffices to prove the conjecture for differential equations on P
1 −

{0, 1,∞}. We prove a variant of this conjecture for P1−{0, 1,∞}, which asserts that if the equation

satisfies a certain convergence condition for all p, then its monodromy is trivial. For those p for

which the p-curvature makes sense, its vanishing implies our condition. We deduce from this a

description of the differential Galois group of the equation in terms of p-curvatures and certain

local monodromy groups. We also prove similar variants of the p-curvature conjecture for a certain

elliptic curve with j-invariant 1728 minus its identity and for P1 − {±1,±i,∞}.

Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number

fields. This notion is a crystalline analogue of �-adic Tate cycles. In the case of abelian varieties,

this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted

that such cycles coincide with Hodge cycles for abelian varieties. We confirm Ogus’ conjecture for

some classes of abelian varieties, under the assumption that these cycles lie in the Betti cohomology

with real coefficients. These classes include abelian varieties of prime dimension that have nontrivial

endomorphism ring. The proof uses a crystalline analogue of Faltings’ isogeny theorem due to Bost

and the known cases of the Mumford–Tate conjecture. We also discuss some strengthenings of the

theorem of Bost.
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CHAPTER 1

Introduction

Many problems in arithmetic geometry concern the existence of certain algebraic cycles or

subvarieties and one strategy to prove such existence is to construct analytic objects first and then

to develop suitable criteria which use arithmetic properties to show the algebraicity. These criteria

are originated from the classical Borel–Dwork criterion, which asserts that a nice formal power series

with rational coefficients is the power series expansion of a rational function if the product of its

convergence radii at all places is larger than 1. Here by a nice power series, we mean that the set

of primes dividing some of the denominators of the coefficients is finite. Dwork used this criterion

to prove that the zeta function of a smooth projective variety over a finite field is rational, which

was part of the Weil conjectures.

Informally speaking, generalizations of the Borel–Dwork criterion concern the algebraicity of

analytic subvarieties of smooth algebraic varieties defined over number fields. There are many

instances in arithmetic geometry where the algebraicity of certain analytic subvarieties is desired,

as illustrated in the following examples.

The first example is the Grothendieck–Katz p-curvature conjecture, which concerns vector bun-

dles with flat connections. This conjecture is a local-global principle of the algebraicity of the

solutions of an arithmetic linear homogenous differential equation. The p-curvature is an invariant

of the differential equation modulo p and its vanishing is equivalent to the existence of a full set of

mod p rational solutions. Under the assumption of the vanishing of p-curvatures for all but finitely

primes, one needs to show the algebraicity of the formal solutions of the differential equation.

The second example is a conjecture of Ogus, which is a crystalline analogue of the Mumford–

Tate conjecture. Ogus defined absolute Tate cycles using the structure of de Rham and crystalline

cohomologies and conjectured that these cycles coincide with Hodge cycles. A variant of Ogus’

conjecture for abelian varieties over number fields would follow from the conjectural algebraicity of

certain formal subschemes of the moduli space of principally polarized abelian varieties.

We use generalizations of the Borel–Dwork criterion (see chapter 2) to prove:
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(1) Variants of the Grothedieck–Katz p-curvature conjecture under the assumption of vanishing

p-curvature at all primes (see chapter 3);

(2) The conjecture of Ogus for some classes of abelian varieties over number fields under the

assumption that all absolute Tate cycles lie in Betti cohomology with real coefficients (see

chapter 4).

In chapter 5, we discuss a conjecture arising naturally from our study of the conjecture of Ogus.

The Grothendieck–Katz p-curvature conjecture

Let X be a smooth variety over a number field K and (M,∇) a vector bundle with a flat

connection over X. The Grothendieck–Katz p-curvature conjecture predicts that (M,∇) has finite

monodromy if and only if, for all but finitely many primes p, (M,∇) modulo p has vanishing p-

curvature. It is known that it suffices to prove the conjecture when X = P
1
K − {0, 1,∞}. We prove

a variant of the conjecture for X = P
1
K − {0, 1,∞} where the condition for all but finitely many p

is replaced by a condition for all p. A slightly informal formulation of our result is the following:

Theorem 1 (Theorem 3.2.1). Let (M,∇) be a vector bundle with a connection over X = P
1
K −

{0, 1,∞}. If the p-curvature of (M,∇) vanishes for all p, then (M,∇) is trivial, that is, M
∇=0

generates M as an OX-module.

Let us explain the meaning of the condition of vanishing p-curvature at all primes p: at primes

where the p-curvature is either not defined or non-vanishing, we impose a condition on the p-adic

radii of convergence of the horizontal sections of (M,∇). When (M,∇) has an integral model at a

prime p so that one can make sense of its reduction mod p, this convergence condition is implied

by the vanishing of the p-curvature.

One can extend the notion of vanishing p-curvature for all p to vector bundles with connections

over smooth algebraic curves equipped with either a semistable model over OK or a flat model over

OK with a smooth OK-point. However, the property of all p-curvatures vanishing is not preserved

under push-forward along finite maps from the curve in question to P
1 − {0, 1,∞}. Therefore, one

cannot deduce from Theorem 1 that vanishing p-curvature for all p implies trivial monodromy in

the case of arbitrary algebraic curves. Nevertheless, when X is an elliptic curve with j-invariant

1728 minus its identity point, we prove:
2



Theorem 2 (Theorem 6.1.1). Let X ⊂ A
2
Z
be the affine curve defined by y

2 = x(x− 1)(x+ 1) and

let (M,∇) be a vector bundle with a connection over XK . If the p-curvature of (M,∇) vanishes for

all p, then (M,∇) has finite monodromy. That is, there exists a finite étale morphism f : Y → X

such that f
∗(M,∇) is trivial.

Unlike in Theorem 1, passing to a finite étale cover is necessary. In the setting of Theorem 2,

there is an example of an (M,∇) with monodromy group equal to Z/2Z.

The main tools used to prove Theorem 1 and Theorem 2 are the algebraicity results of André

[And04a, Thm. 5.4.3] and Bost–Chambert-Loir [BCL09, Thm. 6.1, Thm. 7.8]. André and Bost

used these techniques to prove the p-curvature conjecture when one knows a priori that the mon-

odromy group of (M,∇) is solvable. Our estimates of archimedean radii use the properties of theta

functions, the Chowla–Selberg formula, and works of Hempel [Hem79] and Eremenko [Ere11].

The conjecture of Ogus

The Mumford–Tate conjecture asserts that, via the Betti–étale comparison isomorphism, the Q�-

linear combinations of Hodge cycles coincide with the �-adic Tate cycles. As a crystalline analogue,

Ogus defined the notion of absolute Tate cycles for any smooth projective variety X over a number

field K and predicted that for any embedding σ : K → C, via the de Rham–Betti comparison

isomorphism

cBdR : H i
B(Xσ(C),Q)⊗Q C ∼= H

i
dR(X/K)⊗K,σ C,

absolute Tate cycles coincide with absolute Hodge cycles ([Ogu82, Hope 4.11.3]). For any finite

extension L of K, an element in the tensor algebra of

�2 dimX
i=0 H

i
dR(X/K)⊗ L

is called an absolute Tate cycle if it is fixed by all but finitely many crystalline Frobenii ϕv. When

v is unramified, ϕv can be viewed as acting on H
i
dR(X/K) ⊗ Kv via the canonical isomorphism

between de Rham and crystalline cohomologies.

Ogus proved that all Hodge cycles are absolute Tate for abelian varieties and verified the agree-

ment of absolute Hodge cycles and absolute Tate cycles when X is a product of abelian varieties

with complex multiplication, Fermat hypersurfaces, and projective spaces ([Ogu82, Thm. 4.16]).
3



It is natural to take the archimedean places into account: complex conjugation on the Betti

cohomology can be viewed as the analogue of the Frobenii acting on the crystalline cohomology.

We define the de Rham–Tate cycles to be those absolute Tate cycles which, for any embedding

σ : K → C, lie in the tensor algebra of

cBdR(
�2 dimX

i=0 H
i
B(Xσ(C),Q)⊗Q R).

Our first result is the following:

Theorem 3 (Theorem 8.2.4). If A is a polarized abelian variety over Q and its �-adic algebraic

monodromy group G� is connected, then the Mumford–Tate conjecture for A implies that the de

Rham–Tate cycles coincide with the Hodge cycles.

The Mumford–Tate conjecture for abelian varieties is known in many cases. When the abelian

variety A over K satisfies EndK̄(A) = Z, Pink proved that the conjecture holds when 2 dimA is not

in the set ([Pin98])

SPink = {a2b+1
,

�
4b+ 2

2b+ 1

�
|a, b ∈ N\{0}}.

To show this, he constructed a Q-model of G
◦

� which is independent of � and “looks like” the

Mumford–Tate group GMT in the following sense. The group GMT (resp. the Q-model of G◦

� )

with its tautological faithful absolutely irreducible representation H
1
B(A,Q) (resp. H1

ét(AK̄ ,Q�)) is

an (absolutely) irreducible strong Mumford–Tate pair over Q: the group is reductive and generated

over Q by the image of a cocharacter of weights (0, 1). Based on the work of Serre, Pink gave a

classification of irreducible Mumford–Tate pairs; see [Pin98, Prop. 4.4, 4.5, and Table 4.6]. This

classification unconditionally shows that G� is of a very restricted form.

In the crystalline setting, we define the de Rham–Tate group GdR of a polarized abelian variety

A over K to be the algebraic subgroup of GL(H1
dR(A/K)) stabilizing all of the de Rham–Tate

cycles. This group is reductive by our assumption that de Rham–Tate cycles are fixed by complex

conjugation. We show that Pink’s classification also applies to GdR in the following situation:

Theorem 4 (Theorem 8.2.6). Let A be a polarized abelian variety over Q and assume that its �-adic

algebraic monodromy group is connected. If End
Q̄
(A) = Z, then the neutral connected component of

GdR with its tautological representation is an irreducible strong Mumford–Tate pair over Q.

4



A key input to the proofs of both theorems is:

Proposition 5. Let M be a set of rational primes of natural density one and let A be a polarized

abelian variety over K. If s ∈ End(H1
dR(A/K) ⊗ L) satisfies that ϕv(s) = s for all v lying over

some p ∈ M , then s comes from an algebraic cycle over L.

Bost proved such algebraicity of s assuming ϕv(s) = s for all but finitely many v ([Bos06,

Thm. 6.4]). Both results may be viewed as analogues of Faltings’ isogeny theorem. Based on Bost’s

work, on [Gas10], and on [Her12], we prove a strengthening (Corollary 11.1.2, Remark 11.1.3)

only assume the density of M to be strictly larger than 1 − 1
2(dimA+1) for general A or 3/4 for A

absolutely simple.

Before we present a result valid for a general number field K, we explain the main difficulty

in going beyond the K = Q case in Theorem 3 and Theorem 4. For simplicity, we focus on

the case when EndK̄(A) = Z. Pink’s classification applies to connected reductive groups with an

absolutely irreducible representation. Though we can deduce the irreducibility of H1
dR(A/K) as

a GdR-representation from Bost’s theorem, GdR is a priori not known to be connected. In the

�-adic setting, Serre, using the Chebotarev density theorem, showed that G� will be connected after

passing to a finite extension ([Ser13]). There seems to be no easily available analogous argument

for GdR. However, when K = Q, the absolute Frobenii coincide with the relative ones. Thus the

connectedness of G� implies that GdR is almost connected: ϕp ∈ G
◦

dR(Qp) for all p in a set of natural

density 1. In other words, although one cannot prove directly that elements fixed by G
◦

dR are de

Rham–Tate cycles, such elements are fixed by ϕp for all p in a density one set.

Beyond the K = Q case, we have proved the following result.

Theorem 6. Let A be an abelian variety over some number field such that it is isogenous to

�n
i=1A

ni

i , where Ai is absolutely simple and Ai is not isogenous to Aj over any number field for

i �= j. Assume that each Ai is one of the following cases:

(1) Ai is an elliptic curve or has complex multiplication.

(2) The dimension of Ai is a prime number and EndK̄(Ai) is not Z.

(3) The polarized abelian variety Ai of dimension g with EndK̄(Ai) = Z is defined over a finite

Galois extension K over Q such that [K : Q] is prime to g! and 2g /∈ SPink.

5



and that if there is an Ai of case (2) with EndK̄(Ai)⊗Q being an imaginary quadratic field, then all

the other Aj are not of type IV. Then the de Rham–Tate cycles of A coincide with its Hodge cycles.

Case (1) was known before our work: Ogus proved the case of abelian varieties with complex

multiplication and the case of elliptic curves is a direct consequence of the Serre–Tate theory. For

the rest, the main task is to show that the centralizer of G◦

dR in End(H1
dR(A/K)) coincides with that

of GdR. In case (2), since the Mumford–Tate group is not too large, we use Bost’s theorem to show

that otherwise G
◦

dR must be a torus. Then we deduce that A must have complex multiplication

by a theorem of Noot ([Noo96, Thm. 2.8]) on formal deformation spaces at a point of ordinary

reduction and hence we reduce this case to case (1). To exploit Proposition 5 to tackle case (3), we

need to understand ϕv for all v lying over p ∈ M , where M is a set of rational primes of natural

density 1. While Serre’s theorem on the ranks of Frobenius tori only provides information about

completely split primes, we prove a refinement when G� = GSp2g that takes into account the other

primes. This refinement asserts that the Frobenius tori are of maximal rank for all v lying over

p ∈ M . The rest of the argument is similar to that of case (2). In order to prove the result for the

product of abelian varieties in these three cases, we record a proof of the Mumford–Tate conjecture

for abelian varieties studied in the theorem following the idea of [Lom15].

A relative version of Bost’s theorem

In the description of �-adic Tate cycles over some number field L, one uses relative Frobenii in-

stead of the absolute ones. It is natural to use relative Frobenii acting on the crystalline cohomology

to define an analogous notion of absolute Tate cycles (see Definition 10.1.1). In analogy with the

Mumford–Tate conjecture and the conjecture of Ogus, one may expect that such cycles are L-linear

combinations of the absolute Hodge cycles. In particular, we expect the following counterpart of

Bost’s theorem (see Proposition 5) for an abelian variety A over a number field K.

Conjecture 7. Let L be a finite extension of K and for any finite place v with residue characteristic

p, write mv = [Lv : Qp]. If s ∈ End(H1
dR(AL/L)) is fixed by all but finitely many relative Frobenii

ϕ
mv

v , then s is an L-linear combination of algebraic cycles.

6



The validity of this conjecture implies that the agreement of de Rham–Tate cycles and Hodge

cycles is a consequence of the Mumford–Tate conjecture, generalizing Theorem 3. The full validity

of this conjecture seems difficult. Nevertheless, we prove

Theorem 8 (section 10.2). Conjecture 7 is valid when A is an elliptic curve, has complex multipli-

cation, or is an abelian surface with quaternion multiplication.

Notation and convention. Let K be a number field and OK its ring of integers. For a place

v of K, either archimedean or finite, let Kv be the completion of K with respect to v. When v is

finite, we denote by p, Ov, and kv the corresponding prime ideal, the ring of integers, and residue

field of Kv. We also denote by pv the characteristic of kv and when there is no confusion, we will

also write p for pv. When we say all places or any place v of K, this v can be both archimedean

and finite. If there is no specific indication, L denotes a finite extension of K.

For any vector space or vector bundle V , let V
∨ be its dual and we denote V

⊗m ⊗ (V ∨)⊗n

by V
m,n. For a vector space V , we use GL(V ),GSp(V ), . . . to denote the algebraic groups rather

than the rational points of these algebraic groups. For any scheme X or vector bundle/space V

over Spec(R), we denote by X
�
R or V

�
R the base change to SpecR� for any R-algebra R

�. For any

archimedean place σ of K and any variety X over K, we use Xσ to denote the base change of X to

C via a corresponding embedding σ : K → C.

A reductive algebraic group here could be nonconnected.

Given an algebraic group G, we use G◦ to denote its neutral connected component and use Z(G)

to denote its center. We use Z
◦(G) to denote the connected component of Z(G).

For any field F , we use F̄ to denote a chosen algebraic closure of F . For any finite dimensional

vector space V over F and any subset S of V , we use SpanF (S) to denote the smallest sub F -vector

space of V containing S.

For an Hermitian vector bundle E over an OK-scheme X, we may use E to denote both the

vector bundle over X and that over XK . If necessary, we may use E and E to distinguish the one

over X and the one over XK .

7



CHAPTER 2

Algebraicity criteria

In section 1, we state results on formal power series by André and Bost–Chambert-Loir which

will be used in chapter 3. In section 2, we discuss results used in chapter 4 and chapter 5 on formal

subschemes in a given quasi-projective scheme over K. The key method to prove these results is

the slope method due to Bost, which will be briefly reviewed in section 2.1.

1. Formal power series

We denote by K[[x]] the ring of formal power series in variable x with coefficients in K. We say

y is algebraic (resp. rational) if y is the Taylor series of some algebraic (resp. rational) function.

1.1. The algebraicity criterion of André. For simplicity, we only discuss the formal power

series in one variable. André proved his theorem for the multi-variable situation.

1.1.1. Let y ∈ K[[x]], and let v be a place of K. Let | · |v be the v-adic norm normalized so that

|p|v = p
−

[Kv :Qp]
[K:Q] if v is finite, and |x|v = |x|

−
[Kv :R]
[K:Q]

∞ for x ∈ K, if v is archimedean, where |x|∞ denotes

the Euclidean norm on Kv. When there is no confusion, we will also write | · | for | · |∞. For a positive

real number R, we denote by Dv(0, R) the rigid analytic z-disc of v-adic radius R. That is Dv(0, R)

is defined by the inequality |z|v < R.

We first state the definition of v-adic uniformization and the associated radius Rv defined in

André’s paper ([And04a, Def. 5.4.1]).

Definition 1.1.2.

(1) For R ∈ R
+
, a v-adic uniformization of y by Dv(0, R) is a pair of meromorphic v-adic

functions g(z), h(z) on Dv(0, R) such that h(0) = 0, h�(0) = 1 and y(h(z)) is the germ at

0 of the meromorphic function g(z).

(2) Let Rv be the supremum of the set of positive real R for which a v-adic uniformization of

y by Dv(0, R) exists. We call Rv the v-adic radius (of uniformizability).

8



1.1.3. In order to state the algebraicity criterion, we need to introduce two constants τ(y), ρ(y),

which play similar roles as the condition in the Borel–Dwork criterion that all of the coefficients of

y are in OK [ 1N ] for some N ∈ Z. Let y =
�

∞

n=0 anx
n. We define

τ(y) = inf
l
lim sup

n

�

v, p≥l

1

n
sup
j≤n

log+ |aj |v, ρ(y) =
�

v

lim sup
n

1

n
sup
j≤n

log+ |aj |v,

where log+ is the positive part of log, that is log+(a) = log(a) if a > 1 and is zero otherwise. The

following is a slight reformulation of André’s criterion.

Theorem 1.1.4. ([And04a, Thm. 5.4.3]) Let y ∈ K[[x]] such that τ(y) = 0 and ρ(y) < ∞. Let

Rv be the v-adic radius of y. If
�

v Rv > 1, then y is algebraic over K(x).

In general the v-adic radius Rv may be infinity or zero. We refer the reader to [And04a] for a

precise definition of the infinite product in such situations. In our applications of this theorem, Rv

will always be non-zero.

Remark 1.1.5. Suppose that y is a (component of a) formal solution of a vector bundle with an

integrable connection (M,∇). By [And04a, Cor. 5.4.5], if the p-curvatures of (M,∇) vanish for all

but finitely many places, then τ(y) = 0 and ρ(y) < ∞.

1.2. The rationality criterion of Bost and Chambert-Loir. We now review the definition

of adélic tube adapted to a given point, the definition of capacity norms for the special case we need,

and the rationality criterion in [BCL09].

Definition 1.2.1. ([BCL09, Def. 5.16]) Let Y be a smooth projective curve over K, and let (x0) be

the divisor corresponding to a given point x0 ∈ Y (L) for some number field L ⊃ K. For each finite

place w of L, let Ωw be a rigid analytic open subset of YLw
containing x0. For each archimedean

place w, we choose one embedding σ : L → C corresponding to w and we let Ωw be an analytic open

set of Yσ(C) containing x0. The collection (Ωw) is an adélic tube adapted to (x0) if the following

conditions are satisfied:

(1) for an archimedean place, the complement of Ωw is non-polar (e.g. a finite collection of

closed domains and line segments); if w is real, we further assume that Ωw is stable under

complex conjugation.
9



(2) for a finite place, the complement of Ωw is a nonempty affinoid subset;

(3) for almost all finite places, Ωw is the tube of the specialization of x0 in the special fiber of

Y. That is, Ωw, is the open unit disc with center at x0.

We call (Ωw) a weak adélic tube if we drop the condition that Ωw is stable under complex conjugation

when w is real.

1.2.2. Now let Y be P
1
OK

and X be P
1
OK

− {0, 1,∞}. The weak adélic tube that we will use in

chapter 3 can be described as follows:

(1) For an archimedean place, Ωw will be an open simply connected domain inside Xw(C).

(2) For a finite place, Ωw will be chosen to be an open disc of form D(x0, ρw).

(3) For almost all finite places, ρw = 1.

1.2.3. For Ωw as above, Bost and Chambert-Loir have defined the local capacity norms || · ||capw (see

[BCL09, Chp. 5]). These are norms on the tangent bundle Tx0X over Spec(OL). The Arakelov

degree of the line bundle Tx0X (with respect to these norms)

�deg(Tx0X, || · ||cap) =
�

w

− log(||s||capw ), where t is a section of Tx0X

plays the same role as log(
�

Rw) in Theorem 1.1.4. Note that this degree is independent of the

choice of t by the product formula. We will use the section d
dx , in which case one has the following

simple description of local capacity norms:

(1) For an archimedean place, let φ : D(0, R) → Ωw be a holomorphic isomorphism that maps

0 to x0, then || d
dx ||

cap
w = |Rφ

�(0)|−1
w (see [Bos99, Example 3.4]).

(2) For a finite place, || d
dx ||

cap
w = ρ

−1
w (see [BCL09, Example 5.12]).

Theorem 1.2.4. ([BCL09, Theorem 7.8]) Let (Ωw)be an adélic tube adapted to (x0). A formal

power series y over X centered at x0 is rational if y satisfies the following conditions:

(1) For all w, y extends to an analytic meromorphic function on Ωw;

(2) The formal power series y is algebraic over the function field K(X).

(3) The Arakelov degree �deg(Tx0X, || · ||cap) is positive.
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Remark 1.2.5. Bost and Chambert-Loir ([BCL09, Thm. 7.9]) showed that the condition (2) can

be deduced from (1) and (3) under certain assumption on y similar to the assumption that both

τ(y) = 0 and ρ(y) < ∞ in Theorem 1.1.4 by using the slope method.

Corollary 1.2.6. The theorem still holds if we only assume that (Ωw) is a weak adélic tube.

Proof. The idea is implicitly contained in the discussion in [Bos99, section 4.4]. We only need

to prove that y is rational over XL� , where L
�
/L is a finite extension which we may assume does

not have any real places. Let w be a place of L and w
� a place of L� over w.

For w is archimedean, choose the embedding σ
� : L� → C corresponding to w

� which extends the

chosen embedding σ : L → C corresponding to w. We have a natural identification Yσ�(C) = Yσ(C),

and we take Ωw� := Ωw. If w is a finite place, we set Ωw� = Ωw ⊗Lw
Lw� .

Since L
� does not have any real places, the weak adélic tube (Ωw�) is an adélic tube. The first

two conditions in Theorem 1.2.4 still hold and the Arakelov degree of Tx0X with respect to (Ω�
w)

is the same as that of Tx0X with respect to (Ωw). We can apply Theorem 1.2.4 to y over XL� and

conclude that y is rational. �

2. Formal subschemes

In this section, we prove a strengthening (Corollary 2.2.8) of the following theorem due to Bost

following closely the arguments in [Bos01,Gas10,Her12].

Theorem 2.0.1 ([Bos01, Thm. 2.3]). Let G be a commutative algebraic group over a number field

K and let W be a K-sub vector space of LieG. If for all but finitely many finite places v of K, the

kv-Lie algebra W ⊗ kv
1
is closed under the p-th power map of derivatives, then W is the Lie algebra

of some algebraic subgroup of G.

Although the proof of Corollary 2.2.8 only involves the study of formal subschemes of commu-

tative algebraic groups, we start from the general setting of algebraicity criteria.

2.0.2. Let X be a geometrically irreducible quasi-projective variety of dimension N over some

number field K and let P be a K-point of X. We denote by �X/P the formal completion of X at

P . Let �V be a smooth formal subvariety of �X/P of dimension d. Throughout this section, we will

1This makes sense after choosing a spread out of W and G over OK [ 1
N
] and that this assumption holds for all but

finitely many v is independent of the choice of the spread out.
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assume that for any place v, the base change to Kv: �VKv
⊂ XKv

is analytic. That is, the power

series defining �VKv
have positive radii of convergence. We say �V is algebraic if the smallest Zariski

closed subset Y of X containing P such that �V ⊂ �Y/P has the same dimension as �V . Without loss

of generality, we assume in this subsection that �V is Zariski dense in X.

2.1. The slope method of Bost. In this section, we briefly recall the slope method by Bost

([Bos01, Sec. 4]). See also [Gas10, Sec. 2].

2.1.1. We fix a choice of X flat projective scheme over Spec(OK) such that X := XK is some

compactification of X. We also fix a choice of a relatively ample Hermitian line bundle (L, {|| · ||σ}σ)

on X . We denote by L the restriction of (L, {|| · ||σ}σ) on X to X.

For D ∈ N, let ED be the finitely generated projective OK-module Γ(X ,LD). For n ∈ N, let Vn

be the n-th infinitesimal neighborhood of P in �V and let V−1 be ∅. We define a decreasing filtration

on ED as follows: for i ∈ N, let Ei
D be the sub OK-module of ED consisting of elements vanishing

on Vi−1. We consider

φ
i
D : Ei

D → ker(L⊗D|Vi
→ L⊗D|Vi−1)

∼= S
i(TP

�V )∨ ⊗ (LP )
⊗D

,

where the first map is evaluation on Vi and S
i denotes the i-th symmetric power. We will also use

φ
i
D to denote its linear extension E

i
D ⊗K → S

i(TP
�V )∨ ⊗ (LP )⊗D.

2.1.2. To define the height h(φi
D), we need to specify the structure of the source and the target of

φ
i
D as Hermitian vector bundles (over OK) . Notice that the choice of X gives rise to a projective

OK-module T ∨ in (TP
�V )∨. More precisely, since X is projective, there is a unique extension P of

P over OK , we take T ∨ to be the image of P∗ΩX/OK
in (TP

�V )∨. Moreover, P∗L is a projective

OK-module in LP . Then for any finite place v, we have a unique norm || · ||v on E
i
D ⊗ K (resp.

S
i(TP

�V )∨⊗ (LP )⊗D) such that for any element s, ||pms||v ≤ p
−m[Kv :Qp] if and only if s ∈ E

i
D (resp.

s ∈ S
iT ∨ ⊗ (P∗L)⊗D). For an archimedean place σ, given the Hermitian norm on L, we equip

E
i
D ⊗K and LP with the supremum norm and the restriction norm. We fix a choice of Hermitian

norm on TP
�V and then obtain the induced norm on S

iT ∨ ⊗ (P∗L)⊗D.2 We define

h(φi
D) =

1

[K : Q]

�

all places v

hv(φ
i
D), where hv(φ

i
D) = sup

s∈Ei

D
,||s||v≤1

log ||φi
D(s)||v.

2To obtain the norm on S
i
T

∨, we view it as a quotient of (T ∨)⊗i.
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2.1.3. Let E be an Hermitian vector bundle over Spec(OK). The Arakelov degree �deg(E) is defined

to be the Arakelov degree3 of the determinant line bundle det(E). The slope µ(E) is defined to

be �deg(E) · (rk(E))−1 and the maximal slope µmax(E) is defined to be maxF µ(F ) where F runs

through all sub bundles of E.

We recall some basic properties of the Arakelov degree and the maximal slope.

Proposition 2.1.4 (Slope inequality [Bos01, Prop. 4.6, Eqn. (4.18)]). Since �V is Zariski dense in

X, we have

�deg(ED) ≤
∞�

i=0

rk(Ei
D/E

i+1
D )(µmax(S

iT ∨ ⊗ (P∗L)⊗D) + h(φi
D)).

Here as E
i
D = 0 for i large enough, the right hand side is a finite sum.

Proposition 2.1.5. There exists a positive constant C such that

(1) (Arithmetic Hilbert–Samuel formula [Bos01, Prop. 4.4, Lem. 4.7]) �deg(ED) ≥ −CD
N+1

,

(2) ([Bos01, Lem. 4.8]) µmax(SiT ∨ ⊗ (P∗L)⊗D) ≤ C(i+D).

2.1.6. Bost reduced the proof of Theorem 2.0.1 to the algebraicity of a certain formal subscheme �V

of G (see the proof of Corollary 2.2.8 for details) and used the tools in Arakelov geometry to show

the algebraicity. We now sketch his proof of the algebraicity result. A modification of this idea will

be used in the proof of Theorem 2.2.5. See also [Gas10, Thm. 2.2] and its proof.

By Proposition 2.1.5, we have a good control of every term in the slope inequality except h(φi
D).

In order to understand h(φi
D), one expresses it as a sum of local terms hv(φi

D) and uses the arithmetic

property of �V at each place to obtain an upper bound for hv(φi
D). For every finite place v, Bost

defined a notion of size Rv of �VKv
. This notion plays a similar role to the convergence radius of

formal power series. Bost proved that

hv(φ
i
D) ≤ −i logRv.

For every archimedean place σ, the analytic submanifold V
an
σ of �V admits a uniformization by C

d.

Bost used Schwarz’s lemma to show that

lim sup
i/D→∞

1

i
hσ(φ

i
D) = −∞.

3We use the normalized one independent of the choice of number field K. See section 5.1.
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Under the assumption of Theorem 2.0.1,
�

v logRv is finite, and hence we have

lim sup
i/D→∞

1

i
h(φi

D) = −∞.

Then, under the assumption that N > d, one deduces a contradiction to the slope inequality (see

[Bos01, pp. 204] for details). In the proof of Theorem 2.2.5,
�

v logRv may be infinite and one

instead studies the asymptotic behavior of
�

v hv(φ
i
D)

i log i
and

hσ(φi
D)

i log i
. This is done in a general

setting by Gasbarri using higher dimensional Nevanlinna theory.

2.2. A refinement of a theorem of Gasbarri in a special case. For simplicity, we only

work with the classical higher dimensional Nevanlinna theory developed by Griffiths and King

[GK73]. See also [Bos01, Sec. 4.3] and [Gas10, Sec. 5.24]. We refer the reader to [Gas10, Sec. 5]

for the more general setting. The important common features of the formal subschemes �V studied

in the proofs of Bost’s theorem and its strengthening are:

(1) For every complex place, the analytic sub manifold defined by �V admits a uniformization

map from C
dim �V ;

(2) �V is a formal leaf of some involutive subbundle of the tangent bundle of the commutative

group G.

We will only focus on such particular type of formal subschemes.

2.2.1. To bound hσ(φi
D), we fix a complex embedding σ : K → C for each archimedean place. We

assume that there exists an analytic map γσ : Cd → Xσ(C) which sends 0 to Pσ and maps the germ

of Cd at 0 biholomorphically onto the germ V
an
σ of �V .

Let z = (z1, · · · , zd) be the coordinate of Cd and the Hermitian norm ||z|| on C
d is given by

(|z1|2 + · · · + |zd|2)1/2. Let ω be the Kahler form on C
d − {0} defined by dd

c log ||z||2. Then ω is

the pull-back of the Fubini–Study metric on P
d−1(C) via π : Cd − {0} → P

d−1(C).

Let η is the first Chern form of the fixed Hermitian ample line bundle L|Xσ
. More precisely, η

can be defined locally as follows: choose a generator s of L|Xσ
on a small enough open set U ⊂ Xσ,

η|U is defined to be −dd
c log ||s||2σ. Notice that this (1,1)-form is independent of the choice of a local

generator as dd
c log |f |2 = 0 for a nowhere vanishing holomorphic function f . We always assume

that η is positive, which is possible by a suitable choice of the Hermitian metric.
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Definition 2.2.2. We define the characteristic function Tγσ(r) as follows:

Tγσ(r) =

� r

0

dt

t

�

B(t)
γ
∗
ση ∧ ω

d−1
,

where B(t) is the ball around 0 of radius t in C
d.

Definition 2.2.3. We define the order ρσ of γσ to be

lim sup
r→∞

log Tγσ(r)

log r
.

It is a standard fact that ρσ is independent of the choice of an Hermitian ample line bundle on Xσ
4.

When ρσ is finite, that γσ is of order ρσ implies that for any � > 0, we have Tγσ(r) < r
ρσ+� for r

large enough. We denote by ρ the maximum of ρσ over all archimedean places σ.

2.2.4. Let F be an involutive subbundle of the tangent bundle TX of X. From now on, we assume

that �V is the formal leaf of F passing through P . We may spread out F and X and assume that

they are defined over OK [1/n] for some integer n. Let Mgood be the set of finite places v of K

such that char(kv) � n and that F ⊗ kv is stable under p-th power map of derivatives. Let α be the

A-density
5 of bad places defined by (see [Her12, Def. 3.5]):

lim sup
x→∞




�

v|pv≤x,v /∈Mgood

[Lv : Qpv ] log pv
pv − 1







[L : Q]
�

p≤x

log p

p− 1




−1

.

Theorem 2.2.5. Assume that �V is a formal leaf and is Zariski dense in X, then

1 ≤ N

N − d
ρα.

This is a refinement of a special case of [Gas10, Thm. 5.21]. To get the better bound here using

some ideas from [Her12], we need the following auxiliary lemmas.

4See [Gas10, Thm. 4.13(c) and Prop. 5.9]. Roughly speaking, one first shows that ρσ is independent of the choice of
an Hermitian metric on a fixed ample line bundle and then shows that ρσ is independent of the choice of an ample
line bundle. The first part follows from the fact that the difference between two different metrics is bounded. For
the second part, let Ti be the characteristic function of Li, (i = 1, 2) with a suitable choice of metrics that will be
specified later. There exists a positive integer D such that L

D
1 ⊗ L

−1
2 is ample on Xσ. We choose the metric on Li

such that the first Chern form of the induced metric on L
D
1 ⊗L

−1
2 is positive. Then Tγσ with respect to L

D
1 ⊗L

−1
2 is

non-negative. Hence DT1 ≥ T2 and ρσ defined by L1 is no less than that defined by L2. The same argument shows
the converse is also true and hence ρσ is independent of the choice of ample Hermitian line bundles.
5Here A stands for arithmetic and this notion is related to the natural density by [Her12, Lem. 3.7].
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Lemma 2.2.6. For any � > 0 and any complex embedding σ, there exists a constant C1 independent

of i,D such that

hσ(φ
i
D) ≤ C1(i+D)− i

ρσ + �
log

i

D
.

In particular,

1

[K : Q]

�

σ

hσ(φ
i
D) ≤ C1(i+D)− i

ρ+ �
log

i

D
.

Proof. This is [Gas10, Thm. 5.19 and Prop. 5.26]. We sketch a more direct6 proof for the

special case here using the same idea originally due to Bost. See also [Her12, Lem. 6.8].

By [Bos01, Cor. 4. 16], there exists a constant B1 only depend on d such that

hσ(φ
i
D) ≤ −i log r +DTγσ(r) +B1i.

By the definition of ρσ, there exists a constant M > 0 such that for all r > M , we have Tγσ(r) <

r
ρσ+�. On the other hand, as in the proof of [Gas10, Thm. 4.15], −i log r +Dr

ρσ+�, as a function

of r, reaches its minimum in r0 = ( i
(ρσ+�)D )1/(ρσ+�). Therefore, once i/D is large enough so that

r0 > M , we have

hσ(φ
i
D) ≤ −i log r0 +Dr

ρσ+�
0 +B1i ≤ − i

ρσ + �
log

i

D
+B2i,

for some constant B2. In the case when i/D is not large enough, we notice that there exists a

constant B3 such that (see for example [Bos01, Prop. 4.12])

hσ(φ
i
D) ≤ B3(i+D).

Since i
ρσ+� log

i
D ≤ B4i, we have

hσ(φ
i
D) ≤ (B3 +B4)(i+D)− i

ρσ + �
log

i

D
.

We can take C1 to be max{B2, B3 +B4}. �

Lemma 2.2.7. For any � > 0, there exists a constant C2 such that

1

[K : Q]

�

all places

hv(φ
i
D) ≤ (α+ �)i log i+ C2(i+D).

6We use the definition of the order as in [Bos01] rather than as in [Gas10]. Gasbarri gave a proof showing that two
definitions are the same, but in this paper, we only need to work with the definition in [Bos01].
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Proof. This is [Her12, Prop. 3.6]. �

Proof of Theorem 2.2.5. We follow [Her12, Sec. 6.6]. By Proposition 2.1.4 and Proposi-

tion 2.1.5, we have

−C3D
N+1 ≤

∞�

i=0

rk(Ei
D/E

i+1
D )(C4(i+D) + h(φi

D)).

By Lemma 2.2.6 and Lemma 2.2.7, we have

−C3D
N+1 ≤

∞�

i=0

rk(Ei
D/E

i+1
D )(C5(i+D) + (α+ �− 1

ρ+ �
)i log i+

i

ρ+ �
logD).

Let SD(δ) be

�

i≤Dδ

rk(Ei
D/E

i+1
D )(−C5(i+D) + (−α− �+

1

ρ+ �
)i log i− i

ρ+ �
logD)

and S
�
D(δ) be

�

i>Dδ

rk(Ei
D/E

i+1
D )(−C5(i+D) + (−α− �+

1

ρ+ �
)i log i− i

ρ+ �
logD).

By [Bos01, Lem. 4.7 (1)], rk(E0
D/E

i+1
D ) < (i+ 1)d. Hence (see [Her12, Lem. 6.14]) if δ ≥ 1, then

|SD(δ)| ≤ C6D
δ logD

�

i≤Dδ

rk(Ei
D/E

i+1
D ) ≤ C7D

(d+1)δ logD.

On the other hand, if 1
1−(ρ+�)(α+�) < δ < N , [Her12, Lem. 6.15] shows that for D large enough,

S
�
D(δ) ≥ C8D

N+δ logD.

If there exists a δ such that 1 ≤ 1
1−(ρ+�)(α+�) < δ < N/d, then

S
�
D(δ) + SD(δ) ≥ C9D

N+δ logD

for D large enough, which contradicts the fact that

S
�
D(δ) + SD(δ) ≤ C3D

N+1
.

In other words,

N/d ≤ 1

1− (ρ+ �)(α+ �)
.
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As � is arbitrary, we obtain the desired result by rearranging the inequality. �

Corollary 2.2.8. Given a commutative algebraic group G over K and an K-sub vector space W of

LieG. Assume that there exists a set M of finite places of L such that:

(1) for any v ∈ M over rational prime p, W modulo v is closed under p-th power map,

(2) lim inf
x→∞




�

v,pv≤x,v∈M

[Lv : Qpv ] log pv
pv − 1







[L : Q]
�

p≤x

log p

p− 1




−1

= 1.

Then W is the Lie algebra of some algebraic subgroup of G.

Proof. The idea is due to Bost. We apply Theorem 2.2.5 to the formal leaf �V passing through

identity of the involutive subbundle of the tangent bundle of G generated by W via translation.

Since the Zariski closure of �V is an algebraic subgroup of G, we may replace G by this subgroup

and assume that �V is Zariski dense in G. We take the uniformization map to be the exponential

map W (C) → LieG(C) → G(C). It is a standard fact that the order ρ of this uniformization map

is finite.7 On the other hand, the assumptions on W are equivalent to that the A-density of bad

primes α is 0. There would be a contradiction with Theorem 2.2.5 if �V is not algebraic. �

7In [BW07, p. 112], they summarized some results of Faltings and Wütholz that may enable us to show ρ is finite
by standard complex analytic arguments.
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CHAPTER 3

Grothendieck–Katz p-curvature conjecture

In this chapter, we discuss our variant of the p-curvature conjecture (Theorem 1) for a vector

bundle with connection (M,∇) on P
1
K − {0, 1,∞}, where K is a number field: if the p-curvature

vanishes for all finite places, then all formal horizontal sections of (M,∇) are rational. In section 3,

we formulate our main result and in particular the condition which substitutes for the vanishing of

the p-curvature when it does not make sense to reduce (M,∇) mod p.

The proof is given in section 4: we first apply Theorem 1.1.4 to the formal horizontal sections of

(M,∇) centered at a specific point x0 to show its algebraicity. Then we are allowed to apply Corol-

lary 1.2.6 and deduce that these formal sections are rational. For the first step, the interpretation

of P1
C
− {0, 1,∞} as the moduli space of elliptic curves with level 2 structure enables us to define

a uniformization of P1
C
− {0, 1,∞} by the unit disc and this uniformization gives a lower bound

for the v-adic radii of uniformizability at archimedean places. The chosen point x0 corresponds to

the elliptic curve with smallest stable Faltings’ height and we use the Chowla-Selberg formula to

deduce the lower bound. The link between our lower bound of archimedean radii and the stable

Faltings’ height is given in section 5. For the second step, we choose the archimedean component of

the adelic tube to be the image in P
1
C
− {0, 1,∞} of a standard fundamental domain for Γ(2) under

the uniformization mentioned above and give a lower bound for its local capacity.

Katz has shown in [Kat82, Thm. 10.2] that if the p-curvature conjecture holds, then for any

vector bundle with a flat connection (M,∇) on a smooth variety X over K, the Lie algebra ggal of

the differential Galois group Ggal of (M,∇) is in some sense generated by the p-curvatures. Namely,

the p-curvature conjecture implies that ggal is the smallest algebraic Lie subalgebra of gln(K(X))

such that for all but finitely many p the reduction of ggal mod p contains the p-curvature, where

K(X) is the function field of X.

We use Theorem 1 to prove a result (Theorem 3.2.5) analogous to Katz’s theorem when

X = P
1
K − {0, 1,∞} in section 3. Of course, this result involves a condition at every p, but as
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a compensation we describe Ggal and not only ggal. When (M,∇) is the relative de Rham cohomol-

ogy with the Gauss–Manin connection, this extra local condition is often vacuous. In section 4, we

discuss the example of the Legendre family (Remark 4.2.2) and show that a variant of our result

implies that ggal is generated by the p-curvatures, which recovers a result of Katz.

In section 6, we discuss some variants on the p-curvature conjecture of vector bundles with

connection over X when X is certain affine elliptic curve with j-invariant 1728 (Theorem 2) or

A
1 − {±1,±i}. As in section 3, we define the notion of p-curvature vanishing at bad primes using

local convergence condition. Using the property of theta functions and Weierstrass-℘ functions, we

deduce from a result of Eremenko [Ere11] a lower bound of the archimedean radii, which enables us

to prove our results by Theorem 1.1.4. We give an example of an (M,∇) over the affine elliptic curve

such that its p-curvatures vanish for all p but its Ggal is Z/2Z. We also give an example to show

that even when (M,∇) has good reduction everywhere over A1 − {±1,±i} and all its p-curvatures

vanish, it can still have local monodromies of order two around the singularities ±1,±i,∞.

3. Statement of the main results

Let X be P
1
OK

− {0, 1,∞} and M a vector bundle with a connection ∇ : M → Ω1
XK

⊗M over

XK . For Σ a finite set of finite rational primes, we set OK,Σ = OK [1/p]p∈Σ ⊂ K.

3.1. The p-curvature and p-adic differential Galois groups.

3.1.1. For Σ, as above, sufficiently large, (M,∇) extends to a vector bundle with connection (again

denoted (M,∇)) over XOK,Σ . In particular, if p /∈ Σ we can consider the pull back of (M,∇) to

X ⊗ Z/pZ. If D is a derivation on X ⊗ Z/pZ, so is Dp. Let ∇(D) be the map (D ⊗ id) ◦ ∇. Then

on X ⊗ Z/pZ, the p-curvature is given by (see [Kat82, Sec. VII] for details) 1

ψp(D) := ∇(Dp)−∇(D)p ∈ EndOX⊗Z/pZ(M ⊗ Z/pZ).

In particular, ψp
�

d
dx

�
= −

�
∇
�

d
dx

��p. Since ψp(D) is p-linear in D, for X = P
1
OK

− {0, 1,∞}, the

equation ψp ≡ 0 is equivalent to −
�
∇
�

d
dx

��p ≡ 0.

In general, the ψp depends on the choice of extension of (M,∇) over XOK,Σ . However, any two

such extensions are isomorphic over XO
K,Σ�

for some sufficiently large Σ�
.

1We could have defined the p-curvatures by considering derivations on Xkv for v a place of K. For primes which are
unramified in K, the two definitions are essentially equivalent, and the present definition will allow us to formulate
the inequalities which arise below in a more uniform manner.
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3.1.2. Let L be a finite extension of K and w a place of L over v. We view L as a subfield of Cp

via w. Fix an x0 ∈ X(Lw). Given a positive real number r, we denote by D(x0, r) the open rigid

analytic disc of radius r, with center x0. Thus

D(x0, r) = {x ∈ X(Cp) such that |x− x0|p < r},

where | · |p is normalized so that |p|p = p
−1.

It is naturally endowed with the connection such that for any local sections m, l of M and M
∨

respectively,

d�l,m� = �∇M∨(l),m�+ �l,∇M (m)�.

Definition 3.1.3. If (V,∇) is a vector bundle with connection over some scheme or rigid space, we

denote by �V,∇�⊗, or simply �V �⊗, if there is no risk of confusion regarding the connection ∇, the

category of ∇-stable sub quotients of all the tensor products V
m,n for m,n ≥ 0. If the scheme or

rigid space over which V is a vector bundle is connected, then this is a Tannakian category.

Definition 3.1.4. Let Fw be the field of fractions of the ring of all rigid analytic functions on

D(x0, r) and ηw : Spec(Fw) → X the natural map. Consider the fiber functor

ηw : �M |D(x0,r)�⊗ → VecFw
; V �→ Vηw .

The p-adic differential Galois group Gw(x0, r) is defined to be the automorphism group Aut⊗ηw of

ηw.

For v|p a finite place of K, we will say that (M,∇) has good reduction at v if (M,∇) extends

to a vector bundle with connection on XOv
. The following lemma gives the basic relation between

the p-curvature and the p-adic differential Galois group.

Lemma 3.1.5. Let x0 ∈ X(OLw
) and suppose that (M,∇) has good reduction at v. If the p-curvature

vanishes, then the local differential Galois group Gw(x0, p
−

1
p(p−1) ) is trivial.

Proof. To show that Gw(x0, p
−

1
p(p−1) ) is trivial, we have to show that the restriction of M to

D(x0, p
−

1
p(p−1) ) admits a full set of solutions. It is well known that this is the case when ψp ≡ 0,

but for the convenience of the reader we sketch the argument. See [Bos01, section 3.4.2, prop. 3.9]

for related arguments.
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Assume there is an extension of (M,∇) to a vector bundle with connection (M,∇) over XOv
.

If m0 is any section of M, then a formal section in the kernel of ∇ is given by

m =
∞�

i=0

∇
�

d

dx

�i

(m0)
(x− x0)i

i!
(−1)i.

Since ψp ≡ 0 (recall that this means the p-curvature vanishes onXOv
⊗Z/pZ), we have∇( d

dx)
p(M) ⊂

pM. Hence ∇( d
dx)

i(m0) ⊂ p

�
i

p

�

M, and one sees easily that the series defining m converges on

D(x0, p
−

1
p(p−1) ). �

Remark 3.1.6.

(1) Unlike the notion of p-curvature, the definition of Gw(x0, r) does not require (M,∇) to

have good reduction. It depends only on the Ov-model of X (which we of course always

take to be P
1
Ov

− {0, 1,∞}), which is used to define D(x0, r), but not on how (M,∇) is

extended.

(2) If (M,∇) has good reduction with respect to XOv
and it admits a Frobenius structure with

respect to some Frobenius lifting on XOv
, then Gw(x0, 1) is trivial whenever x0 ∈ X(Ov).

See for example [Ked10, 17.2.2, 17.2.3].

From now on we set x0 = 1+
√
3i

2 , which corresponds to the elliptic curve with smallest stable

Faltings height. In section 5, we will give a theoretical explanation of why this choice gives the

best possible estimates. We set Gw = Gw
�
1+

√
3i

2 , p
−

1
p(p−1)

�
, and we take L to be a number field

containing K(
√
3i).

By Lemma 3.1.5, the local differential Galois group Gw is trivial when the vector bundle with

connection (M,∇) has good reduction over v, and ψp ≡ 0. This motivates the following definition:

Definition 3.1.7. We say that the p-curvatures of (M,∇) vanish for all p if

(1) ψp ≡ 0 for all but finitely many p,

(2) Gw = {1} for all primes w of L.

By what we have just seen, for all but finitely many p, the condition (1) makes sense, and implies

(2). Thus (2) is only an extra condition at finitely many primes. As above, the definition does not

depend on the extension of (M,∇) to XOK,Σ or the choice of primes Σ.
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3.2. The main theorem and a Tannakian consequence.

Theorem 3.2.1. Let (M,∇) be a vector bundle with a connection over XK = P
1
K − {0, 1, ∞}, and

suppose that the p-curvatures of (M,∇) vanish for all p. Then (M,∇) admits a full set of rational

solutions.

The proof of this theorem is the subject of section 4.

Remark 3.2.2. By varying the conditions on the radii of convergence in (2), one can prove variants

of Theorem 3.2.1, whose conclusion is that (M,∇) has finite monodromy. See Remark 4.2.2 for

details.

André has pointed out that, if one replaces (2) in Definition 3.1.7 by the condition that the

so called generic radii of all formal horizontal sections of (M,∇) are at least p
−

1
p(p−1) , then the

analogue of Theorem 3.2.1 admits an easier proof. Indeed if w|p, and the w-adic generic radius is

at least p
−

1
p(p−1) , then by [BS82, Sec. IV], p cannot divide the (finite by (1) and Katz’s theorem

[Kat70, Thm. 13.0]) order of the local monodromies. If this condition holds for all w, then the

local monodromies around 0, 1,∞ are all trivial and hence the global monodromy is trivial.

Once one uses (1) to show that the local monodromies are finite, this argument is ‘prime by

prime’. We do not know if Theorem 3.2.1 admits a similar proof, which avoids global arguments,

although this seems to us unlikely. In any case, our method allows us to deal with some cases when

X is an affine elliptic curve or the projective line minus more than three points. See Theorem 6.1.1

and Proposition 6.4.1. The conclusion of both results is that (M,∇) has finite monodromy and we

will give examples with nontrivial monodromy. It seems unlikely that these results can be proved

with a ‘prime by prime’ argument.

Applying Lemma 3.1.5, we have the following corollary:

Corollary 3.2.3. If (M,∇) is defined over XZ and the p-curvature vanishes for all primes, then

(M,∇) admits a full set of rational solutions.

3.2.4. As in [Kat82], we can use our main theorem to give a description of the differential Galois

group of any vector bundle with a connection (M,∇) over XK .
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Let K(X) be the function field of XK . Let ω be the fibre functor on �M�⊗ given by restriction

to the generic point of XK . Write Ggal = Aut⊗ ω ⊂ GL(MK(X)) for the corresponding differential

Galois group (see [Kat82, Ch. IV] and [And04a, 1.3, 1.4]).

Let G be the smallest closed subgroup of GL(MK(X)) such that:

(1) For almost all p, the reduction of LieG mod p contains ψp.

(2) G ⊗ Fw contains Gw for all w, where, as above, Fw is the field of fractions of the ring of

rigid analytic functions on D
�
x0, p

−
1

p(p−1)
�
.

Let g be the smallest Lie subalgebra of GL(MK(X)) such that for almost all p, the reduction of

g mod p contains ψp. As proved in [Kat82, Prop. 9.3], g is contained in Lie Ggal. Moreover, Gw is

contained in Ggal ⊗ Fw by definition. Hence G is a subgroup of Ggal. We will see from the proof

of the following theorem that (in the presence of the condition (1)), to define G we only need to

impose the condition (2) at finitely many primes.

Theorem 3.2.5. Let (M,∇) be a vector bundle with a connection defined over XK = P
1
K −

{0, 1, ∞}. Then G = Ggal.

Proof. We follow the idea of the proof of Theorem 10.2 in [Kat82]. See also [And04a,

Prop. 3.2.2].

By a theorem of Chevalley, there exists W in �M�⊗ and a line L
� ⊂ WK(X) such that G is the

intersection of Ggal with the stabilizer of L�
. Let W � be the smallest ∇-stable submodule of WK(X)

containing L
�
. Then W

� has a K(X)-basis of the form {l, ∇l, · · · , ∇r−1
l} where l ∈ L

�
, r = rkW �

,

and we have written ∇i
l for ∇( d

dx)
i(l). Replacing W by W

�∩W, we may assume that WK(X) = W
�
.

Then L = L
� ∩W is a line bundle in W.

As above, let g be the smallest algebraic Lie subalgebra of GL(MK(X)) such that for almost

all p the reduction of g mod p contains ψp. Let Σ be a finite set of primes of Q such that (M,∇)

extends to a vector bundle M with connection ∇ : M → M ⊗ ΩXOK,Σ
over XOK,Σ , and g mod p

contains ψp for p /∈ Σ. We also assume that Σ contains all primes p ≤ r.

Let U ⊂ XOK,Σ be a non-empty open subset such that l ∈ L|U , L and W extend to vector

bundles with connection L and W respectively, in �M|U �⊗, and {l, ∇l, · · · , ∇r−1
l} forms a basis of

W. Let N := Symr W ⊗ (detW∨) with the induced connection. The argument in [Kat82] implies

that for p /∈ Σ, the p-curvature of (N ,∇) vanishes. Let N := NXK∩U . We will use the condition
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(2) in the definition of G to show that Gw acts trivially on Nηw . We already know this for p /∈ Σ,

by Lemma 3.1.5. Thus we will only need to use (2) for p ∈ Σ. Assuming this for a moment, we can

apply Theorem 3.2.1 to (N,∇) and conclude that it has trivial global monodromy. Hence Ggal acts

as a scalar on W . In particular, Ggal stabilizes L so, by the definition of L, Ggal = G,

Use D to denote D(x0, p
−

1
p(p−1) ). Recall that the category �M |D(x0,r)�⊗ ⊗ Fw is obtained from

�M |D(x0,r)�⊗ by taking the same collection of objects and tensoring the morphisms by Fw. By the

definition of L, the group Gw acts as a character χ on Lηw . The morphism Lηw → Wηw is a map

between Gw-representations. By the equivalence of categories between �M |D(x0,r)�⊗ ⊗ Fw and the

category of linear representations of Gw over Fw, this morphism is a finite Fw-linear combination of

maps L|D → WD in �M |D(x0,r)�⊗. In other words, there are a finite number of ∇-stable line bundles

Wi ⊂ WD, with Gw acting on Wi,ηw as χ such that L|D ⊂
�

Wi. In particular, l|D =
�

ai · wi,

where ai ∈ Fw and wi ∈ Wi. Since
�

Wi is ∇-stable, ∇n
l ∈

�
Wi and Gw acts as χ on ∇n

l|D. As

Wηw is generated by {l, ∇l, · · · , ∇r−1
l}|D, the group Gw acts as χ on Wηw . Hence Gw acts trivially

on Nηw . �

Using the same idea as in the last paragraph of the proof above, we have the following lemma

which is of independent interest.

Lemma 3.2.6. Let Hw ⊂ Ggal be the smallest closed subgroup such that Gw ⊂ Hw ⊗K(X) Fw. Then

Hw is normal in Ggal.

Proof. We need the following fact (see [And92, Lem. 1]): Assume that G is a algebraic

group over some field E. Let H ⊂ G be a closed subgroup and V an E-linear faithful algebraic

representation of G. Then H is a normal subgroup of G if for every tensor space V
m,n, and for

every character χ of H over E, G stabilizes (V m,n)χ, the subspace of V m,n where H acts as χ. If

G is connected, then these two conditions are equivalent.

We apply this result to Hw ⊂ Ggal and V = MK(X). Let L ⊂ V
m,n be a line, and W ⊂ V

m,n

the smallest ∇-stable subspace containing L. It suffices to show that, if Hw acts via χ on L, then

Hw acts via χ on W. This shows that (V m,n)χ is ∇-stable, and hence that Ggal stabilizes (V m,n)χ.

As in the proof of the theorem above, Gw acts on W via χ. Hence Hw is contained in the

subgroup of Ggal which acts on W via χ. �
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4. The proof: an application of theorems due to André and Bost–Chambert-Loir

As the coordinate ring of XK a principal ideal domain, M is free. Hence we may view ∇ as a

system of first-order homogeneous differential equations. Thus M ∼= Om
XK

and

∇(
d

dx
)y =

dy

dx
−A(x)y,

where y is a section of M , x is the coordinate of X, and A(x) is an m ×m matrix with entries in

OXK
= K[x±, (x− 1)±].

As above, we set x0 = 1
2(1+

√
3i). If y0 ∈ L

m
, there exists y ∈ L[[x−x0]]m such that y(x0) = y0

and ∇(y) = 0. Our goal is to show that if the p-curvatures of (M,∇) vanishes for all p, then y is

rational.

We will first apply Theorem 1.1.4 to show that y is algebraic and then apply Corollary 1.2.6 to

conclude.

4.1. Estimate of the radii at archimedean places.

Lemma 4.1.1. Suppose that φ : D(0, 1) → P
1
C
− {0, 1,∞} is a holomorphic map such that φ(0) =

x0. Then for any archimedean place w of the number field L where the connection and the initial

conditions x0, y0 are defined, Rw ≥ |φ�(0)|w.

Proof. Let z be the complex coordinate on D(0, 1). Consider the formal power series φ
∗y.

The vector valued power series g = φ
∗y is a formal solution of the differential equations dg

dz =

(φ�(z))−1
A(φ(z))g which is associated to the vector bundle with connection (φ∗

M,φ
∗∇). Since

D(0, 1) is simply connected, g arises from a vector valued holomorphic function on D(0, 1) which

we again denote by g.

Let t = φ
�(0)z, and set R = |φ�(0)|∞. Then we may identify D(0, 1) with the t-disc D(0, R) =

Dw(0, |φ�(0)|w) and the map φ with a map

φ̃ : D(0, R) → P
1
C − {0, 1,∞}

which satisfies φ̃�(0) = 1. By the definition of Rw, we have Rw ≥ |φ�(0)|w. �

4.1.2. Given x0, the upper bound (in terms of x0) of |φ�(0)| for all such φ in the above lemma has

been studied by Landau and other people. Based on the work of Landau and Schottky, Hempel
26



gave an explicit upper bound (see [Hem79, Thm. 4]) that can be reached when x0 =
−1+

√
3i

2 . For

the completeness of our paper, we give some details on the computation of |φ�(0)|.

4.1.3. We recall the definition of θ-functions and their classical relation with the uniformization of

P
1
C
− {0, 1,∞}. Following the notation of [Igu62] and [Igu64], let

θ00(t) =
�

n∈Z

exp(πin2
t), θ01(t) =

�

n∈Z

exp(πi(n2
t+ n)), θ10(t) =

�

n∈Z

exp(πi(n+
1

2
)2t)

These series converge pointwise to holomorphic functions on H, which we denote by the same

symbols.

Lemma 4.1.4. ([Igu64, p. 243]) These holomorphic functions θ
4
00, θ

4
01, θ

4
10 are modular forms of

weight 2 and level Γ(2). Moreover, there is an isomorphism from the ring of modular forms of level

Γ(2) to C[X,Y, Z]/(X − Y − Z) given by sending θ
4
00, θ

4
01 and θ10 to X,Y and Z respectively.

4.1.5. Let λ =
θ400(t)
θ401(t)

: H → P
1(C) and t0 = 1

2(−1 +
√
3i). Then λ : H → P

1(C) − {0, 1,∞} is a

covering map with Γ(2) as the deck transformation group ([Cha85], VII, §7). In particular, the

projective curve defined by v
2 = u(u− 1)(u− λ(t)) is an elliptic curve. Moreover, it is isomorphic

to the elliptic curve C/(Z+ tZ) (see loc. cit.).

We need the following basic facts mentioned in [Igu62, p. 180] and [Igu64, p. 244] in this

section and section 5:

Lemma 4.1.6.

(1) Let η be the Dedekind eta function defined by η = q
1/24�(1−q

n), where q = e
2πit

. We have

28η24 = (θ00θ01θ10)8. In particular, the holomorphic functions θ00, θ01, θ10 are everywhere

nonzero on the upper half plane.

(2) The derivative λ
�(t0) = πi( θ00(t0)θ10(t0)θ01(t0)

)4.

(3) The holomorphic function
1
2(θ

8
00+θ

8
01+θ

8
10) is the weight 4 Eisenstein form of level SL2(Z)

with constant term 1 in its Fourier expansion; the holomorphic function
1
2(θ

4
00+ θ

4
01)(θ

4
00+

θ
4
10)(θ

4
01 − θ

4
10) is the weight 6 Eisenstein form of level SL2(Z) with constant term 1 in its

Fourier expansion.

Lemma 4.1.7. The map λ sends t0 to x0.
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Proof. Since the automorphism group of the lattice Z + t0Z, hence that of the elliptic curve

C/(Z + t0Z) is of order 6, the automorphism group of the elliptic curve v
2 = u(u − 1)(u − λ(t0))

must also be of order 6. In particular, λ must send t0 to either 1
2(1+

√
3i) or 1

2(1−
√
3i) (the roots

of 0 = j(t0) = 28 (λ(t0)
2−λ(t0)+1)3

λ(t0)2(λ(t0)−1)2 ). Moreover, from the definition of θ, we can easily see that λ(t0)

has positive imaginary part. �

Proposition 4.1.8. Let y be a component of the formal solution of the differential equations. Then

R

[L:Q]
[Lw :R]
w ≥ 3Γ(1/3)6

28/3π3 = 5.632 · · · .

Proof. Consider the map λ ◦ α : D(0, 1) → XC, where α : D(0, 1) → H is a holomorphic

isomorphism such that α(0) = t0, that is, α : z �→ −1
2 +

√
3i
2

z+1
1−z . We would like to apply Lemma

4.1.1 to the map λ ◦α, which maps 0 ∈ D(0, 1) to x0 since λ(t0) = λ(12(−1+
√
3i)) = x0 by Lemma

4.1.7.

Note that |x0| = |1 − x0| = 1, so we have |θ00(t0)| = |θ01(t0)| = |θ10(t0)|. By Lemma 4.1.6, we

have

|λ�(t0)| = |πi(θ00(t0)θ10(t0)
θ01(t0)

)4| = π|θ00(t0)|4 = π|28η24(t0)|1/6.

We now apply the Chowla–Selberg formula (see [SC67]) to Q(
√
3i):

|η(t0)|4�(t0) =
1

4π
√
3

�
Γ(1/3)

Γ(2/3)

�3

.

Then we have

|λ�(t0)| = π|28η24(t0)|1/6 =
π24/3

4π
√
3�(t0)

�
Γ(1/3)

Γ(2/3)

�3

.

We get

|(λ ◦ α)�(0)| = |λ�(t0)| · |α�(0)| = π24/3

4π
√
3�(t0)

�
Γ(1/3)

Γ(2/3)

�3

· 2�(t0) =
3Γ(1/3)6

28/3π3

by the fact Γ(1/3)Γ(2/3) = 2π
√
3
. �

4.2. Algebraicity of the formal solutions.

Proposition 4.2.1. Let (M,∇) be a vector bundle with a connection over P
1
K − {0, 1,∞}, and

assume that the p-curvatures of (M,∇) vanish for all p. Then (M,∇) is locally trivial with respect

to the étale topology of P
1
K − {0, 1,∞}.
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Proof. Consider y ∈ L[[(x− x0)]]. By Proposition 4.1.8, we have

�

w|∞

Rw ≥ 5.632 · · · .

If w|p is a finite place of L, then since Gw is trivial, (M,∇) has a full set of solutions over

D(x0, |p|
1

p(p−1) ). In particular, y is analytic on D(x0, |p|
1

p(p−1) ). Hence

�

w|p

Rw ≥
�

w|p

|p|
−

1
p(p−1)

w = p
−

1
p(p−1) .

and

log(
�

w

Rw) ≥ log 5.6325 · · ·−
�

p

log p

p(p− 1)
> 0.967 · · · .

Applying Theorem 1.1.4, we have that y is algebraic. Hence (M,∇) is étale locally trivial. �

Remark 4.2.2. It is possible to define Gw using different radii such that the proof of the above

proposition continues to hold. Here are two examples:

(1) Set G
�
w := Gw(x0,

1
4) for all primes w|2 and G

�
w = Gw(x0, 1) for other w. We can define

G
� in the same way as G in section 3.2.4 but replacing Gw by G

�
w. In this situation, we have

log(
�

w Rw) ≥ log 5.6325 · · ·− log 4 > 0.342 · · · . Applying the same argument as in Theorem 3.2.5,

we have LieG� = LieGgal.

In particular, if (M,∇) is a vector bundle with connection on XK such that ψp ≡ 0 for almost

all p, and G
�
w = {1} for all w, then (M,∇) has finite monodromy. This result cannot be proved

‘prime by prime’ because the condition at w|2 is too weak to imply that 2 does not divide the order

of the local monodromies.

The equality LieG� = LieGgal fails in general, if one drops condition (1) in section 3.2.4, and

defines G� using just the analogue of condition (2) (that is with Gw replaced by G
�
w). (The condition

(1) is used to guarantee the assumption that τ(y) = 0, ρ(y) < ∞ in Theorem 1.1.4.)

To see this, we consider the Gauss–Manin connection on H
1
dR of the Legendre family of elliptic

curves. Since the Legendre family has good reduction at primes w � 2, H1
dR admits a Frobenius

structure at such primes, so that Gw = {1} (see Remark 3.1.6). For w|2 we have Gw
�
x0,

1
4

�
= {1}

by a direct computation: as in section 5.2 below, we see that the matrix giving the connection lies

in 1
2 End(MOK

) ⊗ Ω1
XOK

and a formal horizontal section of a general differential equation of this
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form will have convergence radius 1
4 . Hence, the smallest group containing all p-adic differential

Galois groups is trivial while LieGgal = sl2. In particular, G� (defined with the condition (1)) is the

smallest group containing almost all ψp and we recover a special case of [Kat82, thm. 11.2].

(2) We now consider a variant of our result when X equals to P
1 minus more than three points.

Let D be the union of {0} and all 8-th roots of unity and let X = A
1 − D. Let u0 be one of the

preimages of x0 of the covering map f : X → P
1 − {0, 1,∞}, u �→ x = −1

4(u
4 + u

−4 − 2). We may

assume that the number field L contains u0.

We consider the following weaker version of p-curvature conjecture:

Proposition 4.2.3. Let (N,∇) be a vector bundle with connection over X. Assume that the p-

curvatures vanish for almost all p and that for any finite place v, all the formal horizontal sections of

(N,∇) converges over the largest disc around u0 in XLw
. Then (N,∇) must be étale locally trivial.

By direct calculation, the w-adic distance from u0 to D is |2|
1
4
w when w is finite. Then our

assumption means that all the formal horizontal sections of (N,∇) centered at u0 converge over

D(u0, |2|
1
4
w).

Proof of the proposition. By applying Theorem 1.1.4 to the formal horizontal sections

around u0, one only need to show that
�

w|∞
Rw ≥ 21/4. Since the uniformization λ ◦α : D(0, 1) →

P
1(C)−{0, 1,∞} factors through f : A1(C)−D → P

1(C)−{0, 1,∞}, then for the formal horizontal

sections of (N,∇), we have Rw ≥ |5.632 · · · |w/|f �(u0)|w by the chain rule and Lemma 4.1.1. A

direct computation shows that
�

w|∞
|f �(u0)|w = 4 and then

�
w|∞

Rw ≥ 5.6325.../4 > 21/4. �

If one replaces the assumption in Proposition 4.2.3 by that the generic radii of all formal hor-

izontal sections of (N,∇) are at least |2|1/4w for all w finite, the results in [BS82] does not apply

directly due to the fact that the points in D are too close to each other in Lw when w|2. However,

one may modify the argument there, especially a modified version of eqn. (3) in loc. cit., to see that

the condition on generic radii would imply trivial monodromy of (N,∇).

4.3. Proof of Theorem 3.2.1. Let y be the algebraic formal function which is one component

of the formal horizontal section y of (M,∇) over XK .

Lemma 4.3.1. The formal power series of y centered at x0 has convergence radius equal to 1 for

almost all finite places.
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Proof. Since the covering induced by y is finite étale over XL, by Proposition 4.2.1, it is étale

over XOw
at x0 for almost all places. For such places, we have ρw = 1 by lifting criterion for étale

maps. �

4.3.2. We now define an adélic tube (Ωw) adapted to x0. For an archimedean place w, we choose

the embedding σ : L → C corresponding to w such that σ(x0) = (1 +
√
3i)/2. Let �Ω be the open

region in the upper half plane cut out by the following six edges (see the attached figure): �t = −3
2 ,

|t + 2| = 1, |t + 2
3 | =

1
3 , |t +

1
3 | =

1
3 , |t − 1| = 1, and �t = 1

2 . This is a fundamental domain of

the arithmetic group Γ(2) ⊂ SL2(Z). We define Ωw to be λ(�Ω). For w finite, we choose Ωw to be

D(x0, 1) if y is étale over XOw
at x0; otherwise, we choose Ωw to be D(x0, p

−
1

p(p−1) ).

The collection (Ωw) is a weak adélic tube and y extends to an analytic (in particular meromor-

phic) function on each Ωw by Lemma 4.3.1, Lemma 4.1.1, and Lemma 3.1.5.

Lemma 4.3.3. The Arakelov degree of Tx0X with respect to the adélic tube (Ωw) in 4.3.2 is positive.

Proof. We want to give a lower bound of (|| d
dx ||

cap
w )−1, the capacity of Ωw. Let a = −3

2 +
√
7
2 i.

On the line �(t) = −3
2 , the point a is the point closest to t0 = 1

2(−1 +
√
3i) with respect to the

Poincaré metric. The stabilizer of t0 in SL2(Z) has order 3, and permutes the geodesics �t = −3
2 ,

|t + 2
3 | =

1
3 , |t − 1| = 1, and this action preserves the Poincaré metric. Using this, together with
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the fact that the distance to t0 is invariant under z �→ −1− z̄, one sees that the distance from any

point on the boundary of �Ω to t0 is at least that from a to t0. Since α : D(0, 1) → H (defined in

the proof of Prop. 4.1.8) preserves the Poincaré metrics, α−1(�Ω) contains a disc with respect to the

Poincaré radius equal to the distance from t0 to a.

In D(0, 1), a disc with respect to Poincaré metric is also a disc in the Euclidean sense. Hence

α
−1(�Ω) contains a disc of Euclidean radius

|α−1(a)| = |(a− t0)/(a− t̄0)| = 0.45685 · · · .

Since λ maps the fundamental domain �Ω isomorphically onto Ωw, by 1.2.3, the local capacity

(|| d
dx ||

cap
w )−1 is at least |(a− t0)/(a− t̄0)| · |λ�(12(−1 +

√
3i))|.

By 1.2.3, we have − log(|| d
dx ||

cap
w ) ≥ − log p

p(p−1) when w|p. By Proposition 4.1.8, we have |λ�(12(−1+
√
3i))| = 5.632 · · · . Since

�

w

− log(|| d
dx

||capw ) > log(5.6325 · · ·× 0.45685 · · · )−
�

p

log p

p(p− 1)
> 0.184 · · · ,

we have that �deg(Tx0X, || · ||cap) is postive. �

Proof of Theorem 3.2.1. Applying Proposition 4.2.1, we have a full set of algebraic solu-

tions y. Choosing the weak adélic tube as in 4.3.2 and applying Corollary 1.2.6 (the assumptions

are verified by 4.3.2 and Lemma 4.3.3), we have that these algebraic solutions are actually rational.

This shows that (M,∇) has a full set of rational solutions over XL. Since formation of ker(∇)

commutes with the finite extension of scalars ⊗KL, this implies that (M,∇) has a full set of rational

solutions over XK . �

5. Interpretation using the Faltings height

In this section, we view X
Z[ 12 ]

as the moduli space of elliptic curves with level 2 structure. Let

λ0 ∈ X(Q̄) and E the corresponding elliptic curve. Using the Kodaira–Spencer map, we will relate

the Faltings height of E with our lower bound for the product of radii of uniformizability (see section

4) at archimedean places of the formal solutions in �OXK ,λ0 . We will focus mainly on the case when

λ0 ∈ X(Z̄) and sketch how to generalize to λ0 ∈ X(Q̄) at the end of this section. In this section,

unlike the previous sections, we will use λ as the coordinate of X.
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5.1. Hermitian line bundles and their Arakelov degrees.

5.1.1. Recall that an Hermitian line bundle (L, || · ||σ) over Spec(OK) is a line bundle L over

Spec(OK), together with an Hermitian metric ||·||σ on L⊗σC for each archimedean place σ : K → C.

Given an Hermitian line bundle (L, || · ||σ), its (normalized) Arakelov degree is defined as:

�deg(L) := 1

[K : Q]

�
log(#(L/sOK))−

�

σ:K→C

log ||s||σ

�
,

where s is any section.

For a finite place v over p, the integral structure of L defines a norm || · ||v on LKv
. More

precisely, if sv is a generator of LOKv
and n is an integer, we define ||pnsv||v = p

−n[Kv :Qp]. We

obtain a norm on Ov by viewing it as the trivial line bundle. We will use || · ||v for the norms on

different line bundle as no confusion would arise. We may rewrite the Arakelov degree using the

p-adic norms:

�deg(L) = 1

[K : Q]

�
−
�

v

log ||s||v

�
,

where v runs over all places of K. It is an immediate corollary of the product formula that the right

hand side does not depend on the choice of s.

5.1.2. Let E be an elliptic curve over K, and denote by e : SpecK → E and f : E → SpecK the

identity and structure map respectively. For each σ : K → C, we endow e
∗Ω1

E/K = f∗ΩE/K with

the Hermitian norm given by

||α||σ = (
1

2π

�

Eσ(C)
|α ∧ ᾱ|)

�σ

2 ,

where �σ is 1 for real embeddings and 2 otherwise.

This can be used to define the Faltings height of E, which we only recall the precise defini-

tion when E has good reduction over OK . Denote by f : E → SpecOK the elliptic curve over

OK with generic fibre E, and again write e for the identity section of E . The norms ||α||σ make

e
∗Ω1

E/ Spec(OK) = f∗Ω1
E/ Spec(OK) into a Hermitian line bundle, and we define the (stable) Faltings

height by

hF (Eλ) = �deg(f∗Ω1
E/ Spec(OK)).
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Notice that hF (Eλ) does not depend on the choice of K. Here we use Deligne’s definition for

convenience [Del85, 1.2]. This differs from the original definition of Faltings (see [Fal86]) by a

constant log(π).

In general, the elliptic curve E will have semi-stable reduction everywhere after some field

extension. We assume this is the case and E has a Neron model f : E → SpecOK which endows

f∗Ω1
E/ Spec(OK) a canonical integral structure. With the same Hermitian norm defined as above, we

have a similar definition of Faltings height in the general case. See [Fal86] for details. As in the

good reduction case, this definition does not depend on the choice of K.

5.1.3. We will assume that both λ0 and λ0 − 1 are units at each finite place. Given such a λ0,

consider the elliptic curve Eλ0 over Q(λ0) defined by the equation y
2 = x(x− 1)(x−λ0). Then Eλ0

has good reduction at primes not dividing 2, and potentially good reduction everywhere, since its

j-invariant is an algebraic integer. Let K be a number field such that (Eλ0)K has good reduction

everywhere. We denote by Eλ0 the elliptic curve over OK with generic fiber Eλ0 .

5.1.4. To express our computation of radii in terms of Arakelov degrees, we endow the OK-line

bundle Tλ0(XOK
), the tangent bundle of XOK

at λ0, with the structure of an Hermitian line bundle

as follows. For each archimedean place σ : K → C, we have the universal covering λ : H → σX,

introduced in 4.1.5. The SL2(R)-invariant metric dt
2�(t) on the tangent bundle of H induces the

desired metric on the tangent bundle via push-forward. As in the proof of Proposition 4.1.8, our

lower bound on the radius of the formal solution is |2�(t0)λ�(t0)|�σ = || d
dλ ||−1

σ , where t0 is a point on

H mapping to λ0. It is easy to see the left hand side does not depend on the choice of t0. Under the

assumptions in 5.1.3, the tangent vector d
dλ is an OK-basis vector for the tangent bundle Tλ0(XOK

),

and we have
�deg(Tλ0X) =

1

[K : Q]
(−

�

σ:K→C

log || d
dλ

||σ) ≤
1

[K : Q]
log(

�

σ

Rσ),

where the Rσ are the radius of uniformization discussed in section 4.1.

5.2. The Kodaira–Spencer map. Consider the Legendre family of elliptic curves E ⊂ P
2
Z[ 12 ]

×

X
Z[ 12 ]

over X
Z[ 12 ]

given by y
2 = x(x − 1)(x − λ). We have the Kodaira–Spencer map ([FC90,

Ch. III,9],[Kat72, 1.1]):
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KS : (f∗Ω
1
E/XZ[ 12 ]

)⊗2 → Ω1
XZ[ 12 ]

, α⊗ β �→ �α,∇β�,(5.2.1)

where ∇ is the Gauss–Manin connection and �·, ·� is the pairing induced by the natural polarization.

5.2.1. Following Kedlaya’s notes ([Ked, Sec. 1,3]), we choose {dx
2y ,

xdx
2y } to be an integral basis of

H
1
dR(E/X)|λ0 and compute the Gauss–Manin connection:

∇dx

2y
=

1

2(1− λ)

dx

2y
⊗ dλ+

1

2λ(λ− 1)

xdx

2y
⊗ dλ.

The Kodaira–Spencer map then sends (dx2y )
⊗2 to 1

2λ(λ−1)dλ.

This computation shows:

Lemma 5.2.2. Given v a finite place not lying over 2, the Kodaira–Spencer map (5.2.1) preserves

the Ov-generators of (f∗Ω1
E/XZ[ 12 ]

)⊗2|λ0 and Ω1
XZ[ 12 ]

|λ0 when λ0 and λ0 − 1 are both v-units.

5.2.3. For the archimedean places σ, we consider f∗Ω1
σE/SpecC with the metrics ||α||σ defined in

section 5.1, and we endow Ω1
XZ |λ0 the Hermitian line bundle structure as the dual of the tangent

bundle.

To see that the Kodaira–Spencer map preserves the Hermitian norms on both sides, one may

argue as follows. Notice that the metrics on (f∗Ω1
σE/SpecC)

⊗2 and Ω1
XZ are SL2(R)-invariant (see

for example [ZP09, Remark 3 in Sec. 2.3]). Hence they are the same up to a constant and we only

need to compare them at the cusps. To do this, one studies both sides for the Tate curve. See for

example [MB90, 2.2] for a related argument and Lemma 4.1.6 (2) for relation between θ-functions

and Ω1
X .

Here we give another argument:

Lemma 5.2.4. The Kodaira–Spencer map preserves the Hermitian metrics:

||(dx
2y

)⊗2||σ = || dλ

2λ0(λ0 − 1)
||σ.
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Proof. Let dz be an invariant holomorphic differential of C/(Z⊕ t0Z), where λ(t0) = λ0. By

the theory of the Weierstrass-℘ function, we have a map from the complex torus to the elliptic curve

u
2 = 4v3 − g2(t0)v − g3(t0)

such that dz maps to dv
u . Here g2 is the weight 4 modular form of level SL2(Z) with 4π4

3 as

the constant term in its Fourier series and g3 is the weight 6 modular form with 8π6

27 as the con-

stant term. Using Lemma 4.1.6 (3), we see that the right hand side has three roots: π2

3 (θ400(t0) +

θ
4
01(t0)),−π2

3 (θ400(t0) + θ
4
10(t0)),

π2

3 (θ410(t0)− θ
4
01(t0)). Hence this curve is isomorphic to y

2 = x(x−

1)(x− λ0) via the map

(5.2.2) x =
v − 1

3π
2(θ400(t0) + θ

4
01(t0))

−π2θ401(t0)
, y =

u

2(−π2θ401(t0))
3/2

,

and we have
dx

2y
= πiθ

2
01(t0)

dv

u
= πiθ

2
01(t0)dz.

Hence

||(dx
2y

)⊗2||σ = |π2
θ
4
01(t0) · (

1

2π

�

E(C)
|dz ∧ dz̄|)|�σ = |πθ401(t0)�(t0)|�v .

On the other hand, using Lemma 4.1.6 (2), we have

|| dλ

2λ0(λ0 − 1)
||1/�σσ =

����
2�(t0)|λ�(t0)|
2λ0(λ0 − 1)

���� =
����
�(t0)πθ400(t0)θ410(t0)
θ
4
01(t0)λ0(λ0 − 1)

���� = |πθ401(t0)�(t0)|.

�

Proposition 5.2.5. If λ0 and λ0 − 1 are both units at every finite places, we have �deg(Tλ0X) =

−2hF (Eλ0) +
log 2
3 .

Proof. By lemma 5.2.2 and lemma 5.2.4, we have
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−�deg(Tλ0X) =�deg(Ω1
XOK

|λ0)

=
1

[K : Q]

�
−
�

v

log || dλ

2λ(λ− 1)
||v

�

=
1

[K : Q]



−
�

v|∞

log || dλ

2λ(λ− 1)
||v −

�

v�∞

log || dλ

2λ(λ− 1)
||v





=
1

[K : Q]



−
�

v|∞

log ||(dx
2y

)⊗2||v −
�

v�2∞

log ||(dx
2y

)⊗2||v −
�

v|2

log ||1/2||v





=2hF (Eλ0) +
1

[K : Q]

�

v|2

log ||(dx
2y

)⊗2||v − log 2.

(5.2.3)

Now we study ||(dx2y )⊗2||v given v|2. The sum 1
[K:Q]

�
v|2 log ||(dx2y )⊗2||v does not change after

extendingK, hence we may assume that Eλ0 over Ov has the Deuring normal form u
2+auw+u = w

3

(see [Sil09] Appendix A Prop. 1.3 and the proof of Prop. 1.4 shows in the good reduction case, a

is a v-integer). An invariant differential generating f∗Ω1
Eλ0

/ SpecOK [ 13 ]
is dw

2u+aw+1 .

Because both dw
2u+aw+1 and dx

2y are invariant differentials, we have

||dx
2y

||v = ||∆1/∆2||
1
12
v || dw

2u+ aw + 1
||,

where ∆1 and ∆2 are the discriminant of the Deuring normal form and that of the Legendre

form respectively. Since E has good reduction, ||∆1||v = 1 (see the proof of loc. cit.). Hence

||dx2y ||v = || dw
2u+aw+b ||v · ||1/16||

1/12
v = ||2||−1/3

v .

Hence �deg(Tλ0X) = −2hF (Eλ0)− 2
3 log 2 + log 2 = −2hF (Eλ0) +

log 2
3 . �

5.2.6. [Del85, 1.5] mentioned that the point 1+
√
3i

2 corresponds to the elliptic curve with smallest

height. Hence, our choice 1+
√
3i

2 gives the largest �deg(Tλ0X) among those λ0 such that λ0 and λ0−1

are units at every prime.

5.3. The general case. When λ0 ∈ X(Q̄), a similar argument as in section 5.2 shows that

1

[K : Q]

�
−

�

σ:K→C

log || d
dλ

||σ

�
≤ −2hF (Eλ0) +

log 2

3

+
1

[K : Q]

�
�

v finite

log+ ||λ0||v + log(|Nmλ0(λ0 − 1)|)
�(5.3.1)
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and equality holds if and only if λ0 ∈ X(Z̄2). As discussed in 5.1.4, the left hand side is the sum of

the logarithms of our estimates of the radii of uniformizability at archimedean places.

We also need to modify the estimate of the radii at finite places in Lemma 3.1.5. A possible

estimate for Rv is p
−

1
p(p−1) ·min{||λ0||v, ||λ0−1||v, 1}. One explanation of the factormin{||λ0||v, ||λ0−

1||v, 1} is that we cannot rule out the possibility that one has local monodromy at 0, 1,∞ merely

from the information of p-curvature at v.

Compared to the case when λ0 ∈ X(Z̄), our estimate for the sum of the logarithms of the

archimedean radii increases by at most

1

[K : Q]
(
�

v finite

log+ ||λ0||v + log(|Nmλ0(λ0 − 1)|)),

while the estimate for the sum of logarithms of the radii at finite places becomes smaller by

�

v

max{log+ ||λ−1
0 ||v, log+ ||(λ0 − 1)−1||v}.

An explicit computation shows that the later is larger than the former. Hence the estimate for the

product of the radii does not become larger than the case when λ0 ∈ X(Z̄).

6. The affine elliptic curve case and examples

6.1. Statement of the main result of the affine elliptic curve case. Let X ⊂ A
2
Z
be the

affine curve over Z defined by the equation y
2 = x(x− 1)(x+1). The generic fiber XQ is an elliptic

curve (with j-invariant 1728) minus its identity point. Given a vector bundle with connection over

XK , we will define the notion of vanishing p-curvature for all finite places along the same lines as

in section 3.1. The main result of this section is:

Theorem 6.1.1. Let (M,∇) be a vector bundle with connection over XK . Suppose that the p-

curvatures of (M,∇) vanish for all p. Then (M,∇) is étale locally trivial.

Remark 6.1.2. This theorem cannot be deduced from applying Theorem 3.2.1 to the push-forward

of (M,∇) via some finite étale map from an open subvariety of the affine elliptic curve to P
1
K −

{0, 1,∞}. Unlike the P
1
K − {0, 1,∞} case, the conclusion here allows the existence of (M,∇) with

finite nontrivial monodromy. See section 6.3.

Now we explain the meaning of vanishing p-curvature for all p.
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6.1.3. We fix x0 = (0, 0) ∈ X(Z) and denote by (x0)K and (x0)kv the images of x0 in X(K) and

X(kv). Let y : X → A
1
Z
be the projection to the y-coordinate. It is easy to check that this map

is étale along x0 and hence induces isomorphisms between the tangent spaces Tx0X
∼= T0A

1
Z
and

between the formal schemes �XK/(x0)K
∼= �

A
1
K/0. In particular, we have an analytic section sv of the

projection y from D(0, 1) ⊂ A
1(Kv) to X(Kv) such that sv(0) = x0 for any finite place v by the

lifting criterion for étale maps. By definition, the image sv(D(0, 1)) is the open rigid analytic disc

in X(Kv) which is the preimage of (x0)kv under the reduction map X(Kv) → X(kv).

By choosing a trivialization ofM in some neighborhood of (x0)K , we can view a formal horizontal

section m of (M,∇) around (x0)K as a formal function in �Or
XK ,(x0)K

∼= �Or
A
1
K
,0
, where r is the rank

of M . We denote f ∈ �Or
A
1
K
,0

to be the image and the goal of the next subsection is to prove that

the formal power series f is algebraic.

Let U be X − {(0, 1), (0,−1)}. It is a smooth scheme over Z. Our chosen point x0 is a Z-point

of U and sv(D(0, 1)) ⊂ U(Kv). For v a finite place of K with residue characteristic p, we say

that (M,∇) has good reduction at v if (M,∇) extends to a vector bundle with connection on UOv
.

Similar to Lemma 3.1.5, we have:

Lemma 6.1.4. Suppose that (M,∇) has good reduction at v. If the p-curvature ψp vanishes
2
, then

the formal power series f is the germ of some meromorphic function on the disc D(0, p−
1

p(p−1) ) ⊂ A
1
.

Proof. Let (M,∇) be an extension of (M,∇) over XOv
. Since y is étale, the derivation ∂

∂y is

regular over some Zariski open neighborhood V̄ of x0 ∈ X⊗Z/pZ. Let V ⊂ X(Kv) be the preimage

of V̄ under reduction map. Since the p-curvature vanishes, we have ∇( ∂
∂y )

p(M|V ) ⊂ pM|V . Notice

that sv(D(0, 1)) ⊂ V . Then the proof of Lemma 3.1.5 shows the existence of horizontal sections ofM

on sv(D(0, p−
1

p(p−1) )). Via a local trivialization of M and the isomorphism of formal neighborhoods

of x0 and 0, we see that f is meromorphic over D(0, p−
1

p(p−1) ). �

This lemma motivates the following definition:

Definition 6.1.5. We say that the p-curvatures of (M,∇) vanish for all p if

(1) the p-curvature ψp vanishes for all but finitely many p,

2This means ψp ≡ 0 on XOv ⊗ Z/pZ as in section 3.1.1.
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(2) all formal horizontal sections around x0, when viewed as formal functions in �Or
A
1
K
,0
, are

the germs of some meromorphic functions on D(0, p−
1

p(p−1) ) for all finite places v.

Remark 6.1.6. The second condition does not depend on the choice of local trivialization of M .

Moreover, for each v, this condition remains the same if we replace the projection y by any map

g : WOv
→ A

1
Ov

such that WOv
is a Zariski open neighborhood of (x0)Ov

in XOv
and that g is étale.

6.2. Estimate at archimedean places and algebraicity. Let σ : K → C be an archimedean

place. Let φ : D(0, 1) → X(C) be a uniformization map such that φ(0) = x0. We have the following

lemma whose proof is the same as that of Lemma 4.1.1:

Lemma 6.2.1. The σ-adic radius Rσ (see Definition 1.1.2) of the formal functions f in 6.1.3 is at

least |(y ◦ φ)�(0)|σ.

Let t0 = 1+i
2 . A direct manipulation of the definition shows λ(t0) = −1, where λ is defined in

4.1.5. Let F : D(0, 1) → C− (Z+ t0Z) be a uniformization map such that F (0) = 1
2 .

Lemma 6.2.2 (Eremenko). The derivative |F �(0)| = 2−3/2
π
−3/2Γ(1/4)2 = 0.8346...

Proof. From [Ere11, Sec. 2], we have F
�(0) = 25/2

B(1/4,1/4) |(λ−1)�(i)|3, where B is the Beta

function. By Lemma 4.1.6, the Chowla-Selberg formula ([SC67])

(6.2.1) |η(i)| = 2−1
π
−3/4Γ(1/4),

and the fact that θ400(i) = 2θ401(i) = 2θ410(i), we have

|(λ−1)�(i)| = |πi(θ01(i)θ10(i)
θ00(i)

)4| = π|η(i)|4 = Γ(1/4)4

24π2
.

We obtain the desired formula by noticing that B(1/4, 1/4) = π
−1/2Γ(1/4)2. �

Lemma 6.2.3. Let α be the constant 2(−π
2
θ
4
01(t0))

3/2
and ℘ be the Weierstrass-℘ function. We

have y ◦ φ = α
−1

℘
� ◦ F , up to some rotation on D(0, 1).

Proof. The map g := (℘,℘�) maps C−(Z+ t0Z) to the affine curve u2 = 4v3−g2(t0)v−g3(t0).

Let s be the isomorphism from this affine curve to X(C) given by (5.2.2). Since both s ◦ g(1/2) and
3The choice of λ there is different. We have λ(i) = 2 here.
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x0 are the unique point fixed by the four automorphisms of X(C), we have s ◦ g(1/2) = x0. Hence

s ◦ g ◦ F (0) = x0 = φ(0) and then the uniformizations s ◦ g ◦ F and φ are the same up to some

rotation. Then we have y ◦ φ = y ◦ s ◦ g ◦ F = α
−1

℘
� ◦ F by (5.2.2). �

Proposition 6.2.4. The σ-adic radius R

[K:Q]
[Kσ :R]
σ ≥ 2−5/2

π
−2Γ(1/4)4 = 3.0949 · · · .

Proof. Differentiate both sides of (℘�(z))2 = 4(℘(z))3 − g2(t0)℘(z)− g3(t0), we have

℘
��(1/2) = 6℘(1/2)2 − g2(t0)/2 = −g2(t0)/2,

where the second equality follows from that

℘(1/2) = π
2(θ400(t0) + θ

4
01(t0))/3 = π

2
θ
4
01(t0)(λ(t0) + 1)/3 = 0.

By Lemma 4.1.6 and the fact that θ400(t0) = −θ
4
01(t0) = θ

4
10(t0)/2, we have

|g2(t0)| =
4π4

3
· 1
2
|θ800(t0) + θ

8
01(t0) + θ

8
10(t0)| = 4π4|θ801(t0)|.

Then by Lemma 6.2.3, the absolute value of the derivative of y ◦ φ at 0 is

|α−1
℘
��(1/2) · F �(0)| = 2−1

π
−3|θ01(t0)|−6 · 2π4|θ01(t0)|8 · |F �(0)|

= π|θ01(t0)|2 · 2−3/2
π
−3/2Γ(1/4)2 (by Lemma 6.2.2)

= 2π · 2−2
π
−3/2Γ(1/4)2 · 2−3/2

π
−3/2Γ(1/4)2

= 2−5/2
π
−2Γ(1/4)4 = 3.0949 · · · ,

(6.2.2)

where the third equality follows from

|θ01(t0)| = 2−1/12|θ00(t0)θ01(t0)θ10(t0)|1/24 = 21/4|η(t0)| = 21/2|η(i)|,

and (6.2.1). �

Proof of Theorem 6.1.1. By Proposition 6.2.4, we have
�

v|∞Rv ≥ 3.0949 · · · . By Defini-

tion 6.1.5, we have log(
�

v�∞Rv) ≥ −
�

p
log p

p(p−1) = −0.761196 · · · . Hence

log(
�

v

Rv) ≥ log 3.0949 · · ·− 0.761196 · · · = 0.3685 · · · > 0.

We conclude by applying Theorem 1.1.4. �
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6.3. An example with vanishing p-curvature for all p and nontrivial Ggal. Let K be

Q(
√
−1), X ⊂ A

2
Z
be the affine curve defined by y

2 = x(x−1)(x+1), E be the elliptic curve defined

as the compactification of XK , and f : E → E be a degree two self isogeny of E. We will also use

f to denote the restriction of f to XK\{P}, where P is the non-identity element in the kernel of f .

Let (M,∇) be f∗(OXK\{P}, d). By definition, Ggal is Z/2Z.

Proposition 6.3.1. The p-curvature of (M,∇) vanishes for all finite places.

Proof. Notice that f extends to a degree two étale cover from E to E over Z[ i2 ]. Then for

finite v � 2, the p-curvature of (M,∇) coincides with that of f∗(M,∇) by the fact that p-curvatures

remain the same under étale pull back4. Hence the p-curvature of (M,∇) vanishes as f∗(M,∇) is

trivial.

For v|2, we write (M,∇) out explicitly. Without loss of generality, we may assume that the

isogeny f from the curve y
2 = x(x− 1)(x+ 1) to the curve s

2 = t(t− 1)(t+ 1) is given by

t = − i

2
(x− 1

x
), s =

(1 + i)y

4x
(x+

1

x
).

Locally around (t, s) = (0, 0), the sections 1, x is an OXK
basis of f∗OXK

and this basis gives rise

to a natural Zariski local extension of (M,∇) over XOp . Direct calculation shows that

∇(1) = 0,∇(x) =
2s

(t2 − 1)(3t2 − 1)
ds+

2st(1 + 2i)

(t2 − 1)(3t2 − 1)
xds.

Therefore, ∇(f1 + f2x) ≡ df1 + xdf2 (mod 2) and the p-curvature of (M,∇) vanishes. �

Remark 6.3.2. In the above proof, we show that (M,∇) has all p-curvatures vanishing in the

strict sense: there is an extension of (M,∇) over XOK
such that its p-curvatures are all vanishing.

However, given the argument for v � 2, in order to to apply Theorem 6.1.1, we do not need to

construct an extension of (M,∇) but only need to check that x, locally as a formal power series of

s, converges on D(0, 2−1/2) for v|2. This is not hard to see from the facts: x, as a power series of t,

converges when |t|v < |2|v; and t, as a power series of s, converges when |s|v < |2|1/2v and the image

of |s|v < |2|1/2v is contained in |t|v < |2|v.

4Because p �= 2 is unramified in K and (M,∇) has good reduction at p, the notion of p-curvature here is classical.
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6.4. A variant of the main theorems. We now prove a variant of the main theorems when

X = A
1
Q
− {±1,±i}. Similar to Theorem 6.1.1, the conclusion is that (M,∇) has finite monodromy

and we give an example with nontrivial finite monodromy.

In order to define the local convergence conditions for bad primes, we take x0 = 0.

Proposition 6.4.1. Let (M,∇) be a vector bundle with connection over X with p-curvature vanishes

for all finite places. We further assume that the formal horizontal sections around x0 converge over

D(x0, 1) for all finite places v|15. Then (M,∇) is étale locally trivial.

Proof. By Lemma 6.2.2, we have R∞ ≥ 2 · 0.8346 · · · . By the assumptions on finite places, we

have log(
�

v�∞Rv) ≥ −
�

p �=3,5
log p

p(p−1) = −0.4976 · · · . We conclude by applying Theorem 1.1.4. �

Example 6.4.2. Let s be the algebraic function (1 − x
4)1/2. It is the solution of the differential

equation ds
dx = −2x3

1−x4 . Consider the connection on OX given by ∇(f) = df + 2x3

1−x4dx. It has p-

curvature vanishing for all p: ∇(f) ≡ df (mod 2) and ∇(f) ≡ df + (p + 1) 2x3

1−x4dx (mod p) with

solution s ≡ (1− x
4)(p+1)/2 (mod p) when p �= 2. In conclusion, (OX ,∇) satisfies the assumptions

in the above proposition while it has nontrivial monodromy of order two.

Remark 6.4.3. If we replace our assumption by similar conditions on generic radii, the above

example shows that one could have order two local monodromy around ±1,±i. The reason is

[BS82, III eqn. (3)] does not hold in this situation and a modification of their argument would

show that an order two local monodromy is possible.
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CHAPTER 4

The conjecture of Ogus

Let A be a polarized abelian variety of dimension g defined over a number field K. Let L

be a finite extension of K. For any field F containing K, we denote by H
i
dR(A,F ) the de Rham

cohomology group

H
i
dR(AF /F ) = H

i(AF ,Ω
•

AF /F ) = H
i
dR(A/K)⊗K F.

We consider the filtered vector space H
1
dR(A,L)

m,n and the following semi-linear actions.

Let v be a finite place of L and kv be the residue field. If AL has good reduction at v and

v is unramified in L/Q, we use ϕv to denote the crystalline Frobenius acting on H
1
dR(A,Lv)m,n

via the canonical isomorphism to the crystalline cohomology (H1
cris(Akv/W (kv))⊗Lv)m,n. For any

archimedean place σ corresponding to an embedding σ : L → C, let ϕσ be the map on H
1
dR(A,C)

m,n

induced by the complex conjugation on (H1
B(Aσ(C),Q) ⊗ C)m,n via cBdR. As mentioned in the

introduction, these semi-linear actions define special elements, namely de Rham–Tate cycles (Defi-

nition 7.1.1), in H
1
dR(A,L)

m,n.1

Theorem 3 and Theorem 4 are proved in section 8 and Theorem 6 is proved in section 9. For

Theorem 3 and Theorem 6, the goal is to prove that GdR and GMT are the same. As a first step,

we prove in section 7 that GdR is reductive and reformulate Bost’s theorem (see Proposition 5) as

that the centralizer of GdR in End(H1
dR(A/K)) coincides with that of GMT. To do this, we follow

the construction of motives of absolute Hodge cycles due to Deligne and construct the category

of motives generated by A with morphisms being the de Rham–Tate cycles. We prove that this

category is a semisimple Tannakian category whose fundamental group is GdR ⊂ GSp(H1
dR(A/K)).

Then we use the techniques mentioned in the introduction to further show that the centralizer of

G
◦

dR in End(H1
dR(A/K)) coincides with that of GMT. The Mumford–Tate conjecture (recalled in

section 8) is an input: we show that this conjecture implies that the rank of G◦

dR equals to that of

GMT. This allows us to conclude by a lemma of Zarhin. The extra inputs of the proof of Theorem 4

1Here we implicitly take into account the Tate twist as L⊗Q(1) is a direct summand of some H
1
dR(A,L)m,n
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are the weakly admissibility of certain filtered ϕ-modules of geometric origin and the Riemann

hypothesis part of the Weil conjectures.

We also discuss a natural variant of de Rham–Tate cycles, the relative de Rham–Tate cycles

(Definition 7.4.1). Here the word ‘relative’ means that to define these cycles, we use relative Frobenii

ϕ
[Lv :Qp]
v instead of ϕv. In next chapter, we will discuss some results on the conjectural analogue

(Conjecture 7) of Theorem 7.3.7 for relative de Rham–Tate cycles.

Throughout this chapter, we will use End◦?(A) to denote End?(A)⊗Q, where ? can be K,L or

K̄. The subscription is omitted if EndK(A) = EndK̄(A).

7. De Rham–Tate cycles and a result of Bost

In this section, we define de Rham–Tate cycles (section 7.1), de Rham–Tate groups (section 7.2)

and their relative version (section 7.4) and discuss their basic properties. We recall previous results

on absolute Tate cycles in section 7.1 and discuss Proposition 5 in section 7.3.

7.1. De Rham–Tate cycles.

Definition 7.1.1. An element s ∈ (H1
dR(A,L))

m,n is called a de Rham–Tate cycle of the abelian

variety A (over L) if there exists a finite set Σ of finite places of L such that for all places v /∈ Σ,

ϕv(s) = s.

Remark 7.1.2.

(1) Similar arguments as in [Ogu82, Cor. 4.8.1, 4.8.3] show that s ∈ (H1
dR(A,K))m,n is de

Rham–Tate if and only if its base change in (H1
dR(A,L))

m,n is de Rham–Tate and that the

set of de Rham–Tate cycles over L is stable under the natural action of Gal(L/K) (on the

coefficient of de Rham cohomology groups).

(2) Due to [Ogu82, Cor. 4.8.2], although one could define de Rham–Tate cycles over arbitrary

field L containingK, we only need to consider cycles over number fields since any de Rham–

Tate cycle must be defined over Q̄ and hence over some number field.

We have the following important fact, whose proof we sketch for completeness.

Lemma 7.1.3 ([Ogu82, Prop. 4.15]). If s ∈ H
1
dR(A,L)

m,n
is fixed by infinitely many ϕv (for

example, when s is de Rham–Tate), then s lies in Fil0H1
dR(A,L)

m,n
. Moreover, if such s lies in

Fil1H1
dR(A,L)

m,n
, then s = 0.
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Proof. By [Maz73, Thm. 7.6] and the extension of the result to H
1
dR(A,L)

m,n in the proof by

Ogus2 , we have that for all but finitely many v, the mod p filtration Filj(H1
cris(Akv/W (kv)⊗kv)m,n)

is the set {ξ mod p | ξ ∈ (H1
cris(Akv/W (kv)))

m,n with ϕv(ξ) ∈ p
j(H1

cris(Akv/W (kv)))
m,n}. Then for

the infinitely many v such that ϕv(s) = s, we have that the reduction

s mod p ∈ Fil0((H1
cris(Akv/W (kv))⊗ kv)

m,n)

and if s ∈ Fil1H1
dR(A,L)

m,n, then s is 0 modulo p. Since the Hodge filtration over L is compatible

with the Hodge filtration over kv, we obtain the desired assertions. �

The main conjecture that we study in this chapter is the following:

Conjecture 7.1.4. The set of de Rham–Tate cycles of an abelian variety A defined over K coincides

with the set of Hodge cycles via the isomorphism between Betti and de Rham cohomologies.

Remark 7.1.5.

(1) Our conjecture is weaker than the conjectures of Ogus [Ogu82, Problem 2.4, Hope 4.11.3].

Therefore, Conjecture 7.1.4 was known when A has complex multiplication ([Ogu82, Thm.

4.16]). It was also known when A is an elliptic curve. See [And04b, 7.4.3.1] for an

explanation using Serre–Tate theory.

(2) This conjecture reduces to the case when A is principally polarizable. To see this, note

that after passing to some finite extension of K, the abelian variety A is isogenous to a

principally polarizable one. Moreover this conjecture is insensitive to base change and the

conjectures for two isogenous abelian varieties are equivalent.

Theorem 7.1.6 ([Del82a, Thm. 2.11], [Ogu82, Thm. 4.14], [Bla94]). For any abelian variety,

every Hodge cycle is de Rham–Tate.

Therefore, to prove Conjecture 7.1.4, one only need to show that all of the de Rham–Tate cycles

are Hodge cycles.

2The dual of H1
cris(Akv/W (kv)) has a natural W (kv)-structure, although ϕv on the dual does not preserve this integral

structure. In order to apply Mazur’s argument to the dual, Ogus passes to a suitable Tate twist of the dual such that
the new ϕv acts integrally.
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7.2. The de Rham–Tate group. We fix an isomorphism of K-vector spaces H1
dR(A,K) and

K
2g. Then the algebraic group GL2g,K acts on H

1
dR(A,K) and hence on H

1
dR(A,L)

m,n.

Definition 7.2.1. We define GdR to be the algebraic subgroup of GL2g,K̄ such that for any K̄-

algebra R, the set of R-valued points GdR(R) is the subgroup of GL2g(R) which fixes all de Rham–

Tate cycles. We call GdR the de Rham–Tate group of the abelian variety A.

Remark 7.2.2. The de Rham–Tate group GdR is naturally defined over K by Remark 7.1.2 (1).

From now on, we use GdR to denote the K-algebraic group.

Lemma 7.2.3. There exists a smallest number field K
dR

containing K such that all of the de

Rham–Tate cycles are defined over K
dR

. Let {sα} be a finite set of de Rham–Tate cycles such that

the algebraic group GdR is the stabilizer of all these sα. Then K
dR

is the smallest number field such

that all these sα are defined. Furthermore, K
dR

is Galois over K.

Proof. Let K
dR be the smallest number field over which all sα in the finite set are defined.

We need to show that if t ∈ (H1
dR(A, K̄))m,n is de Rham–Tate, then t is defined over KdR. Let L

be a number field such that t is defined and we may assume L is Galois over KdR. Let W be the

smallest sub vector space of (H1
dR(A,K

dR))m,n such that t ∈ W ⊗ L. Let Γ be the Galois group

Gal(L/KdR). Then W ⊗ L is spanned by γt for γ ∈ Γ. By Remark 7.1.2 (1), these γt are de

Rham–Tate, and hence W ⊗ L is spanned by de Rham–Tate cycles. Then by definition, GdR(L)

acts on W ⊗ L trivially and hence so does GdR(KdR) on W . On the other hand, since {sα} ∪ {t}

is a finite set, for all but finitely many finite places v of L, we have ϕv(sα) = sα and ϕv(t) = t.

Let p be the residue characteristic of v and let mv be [KdR
v : Qp]. The K

dR
v -linear action ϕ

mv

v lies

in GdR(KdR
v ) since it fixes all sα and hence acts on W ⊗ K

dR
v trivially. By definition, ϕv(t) = t

and hence t is stable by ϕ
mv

v . Therefore, t is defined over KdR by the Chebotarev density theorem

(applying to the coefficients of t expressed in terms of a K
dR-base of W ). The last assertion of the

lemma comes from Remark 7.1.2. �

7.2.4. Before we reformulate Conjecture 7.1.4 in terms of algebraic groups following Deligne, we

recall the definition and basic properties of the Mumford–Tate group GMT. See [Del82a, Sec. 3]

for details. When we discuss GMT and Hodge cycles, we always fix an embedding σ : K → C. We

denote H
1
B(Aσ(C),Q) by VB, which has a natural polarized Hodge structure of type ((1, 0), (0, 1)).
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Let µ : Gm,C → GL(VB,C) be the Hodge cocharacter, through which z ∈ C
× acts by multiplication

with z on V
1,0
B,C and trivially on V

0,1
B,C. The Mumford–Tate group GMT of the abelian variety A is the

smallest algebraic subgroup defined over Q of GL(VB) such that its base change to C containing the

image of µ. The Mumford–Tate group is the algebraic subgroup of GL(VB) which fixes all Hodge

cycles.3 Since all Hodge cycles are absolute Hodge cycles in the abelian variety case ([Del82a, Thm.

2.11]), the algebraic group GMT is independent of the choice of σ.

Corollary 7.2.5. Via the de Rham–Betti comparison, we have GdR,C ⊂ GMT,C and the Hodge

cocharacter µ factors through GdR,C.

Proof. It follows from Theorem 7.1.6 and Lemma 7.1.3. �

7.2.6. The Mumford–Tate group GMT is reductive ([Del82a, Prop. 3.6]) and the fixed part of GMT

in V
m,n
B is the set of Hodge cycles. Conjecture 7.1.4 is equivalent to the following conjecture, which

we will mainly focus on from now on.

Conjecture 7.2.7. Via the de Rham–Betti comparison, we have GdR,C = GMT,C.

Proof of equivalence. Conjecture 7.1.4 implies this conjecture. Conversely, by the discus-

sion in 7.2.6, the isomorphism of these two groups implies that every C-linear combination of de

Rham–Tate cycles maps to a C-linear combination of Hodge cycles via the de Rham–Hodge com-

parison. Then we conclude by Theorem 7.1.6 and Prop. 4.9 in [Ogu82], which shows that all de

Rham–Tate cycles are C-linearly independent. �

Remark 7.2.8. This conjecture implies that GdR is connected and reductive. We will show that

GdR is reductive using the same idea of the proof of [Del82a, Prop. 3.6]. However, there seems no

direct way to show that GdR is connected without proving the above conjecture first.

Lemma 7.2.9. The de Rham–Tate group GdR is reductive.

Proof. Fix an embedding σ : K → C. By Corollary 7.2.5, we view GdR,C as a subgroup of

GMT,C ⊂ GL(VB,C). Since all de Rham–Tate cycles are fixed by ϕσ, the subgroup GdR,C is stable

under the action of ϕσ. Therefore, both µ and its complex conjugate µ̄(= ϕσ ◦ µ) factor through

3Here we consider Hodge cycles as elements in V
m,m−2i
B

(i) ⊂ V
m

�
,n

�

B
for some choice of m�

, n
� as Tate twists is a

direct summand of the tensor algebra of VB .
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GdR,C by Corollary 7.2.5 and so does h = µ · µ̄. Let ψ be the polarization on VB and G
1
dR,C be the

subgroup of GdR,C acting trivially on the Tate twist. Then ψ is invariant under G
1
dR,C. Let C be

h(i) ∈ G
1
dR,C and let φ(x, y) be ψ(x,Cy). Then the positive definite form φ on VB,R is invariant

under adC(G1
dR,C)(R)

4. Therefore, G1
dR,C has a compact real form adC(G1

dR,C)(R) and is reductive.

Then GdR = G
1
dR · Z(GdR) is reductive. �

7.3. The centralizer of the de Rham–Tate group. The following proposition, whose proof

uses the construction of a Tannakian category of de Rham–Tate cycles, provides a description of

the centralizer of GdR in End(H1
dR(A,K)). We will use this proposition to reformulate a result of

Bost. Moreover, at the end of this subsection, we use Corollary 2.2.8 to prove a strengthening of

the result of Bost that will be used to describe the centralizer of G◦

dR.

Proposition 7.3.1. Let s be an element in (H1
dR(A,L))

m,n
for some number field L containing

K
dR

. The de Rham–Tate group GdR fixes s if and only if s is a L-linear combination of de Rham–

Tate cycles.

7.3.2. We now construct the category MdRT,L of motives of de Rham–Tate cycles of the abelian

variety A, where L is a field algebraic over K. We follow the idea of the construction of the motive

of absolute Hodge cycles in [Del82b, Sec. 6]. Let �A�⊗ be the set of varieties generated by A under

finite product and disjoint union, and let HdR(X) be the direct sum of H i
dR(X,L) for all i.

The objects in the category MdRT,L are of the form

M = (X,n, pr), where X ∈ �A�⊗, n ∈ Z, pr ∈ End(HdR(X,L)) idempotent de Rham–Tate.

Let Mi = (Xi, ni, pri), i = 1, 2. The set of morphisms Hom(M1,M2) is defined to be

{f : HdR(X1)(n1) → HdR(X2)(n2) de Rham–Tate such that f ◦ pr1 = pr2 ◦ f}/ ∼,

where ∼ is defined by modulo {f : f ◦ pr1 = 0 = pr2 ◦ f}.

[Ogu82, Prop. 4.9] shows that that MdRT,L is Q-linear with End(I) = Q, where I = (pt, 0, id)

and that Hom(M1,M2) is a finite dimensional Q-vector space. Moreover, by the above construction,

the category MdRT,L is a pseudo-abelian rigid tensor category (see also [And04b, 4.1.3, 4.1.4]).

Since the de Rham–Tate cycles lie in the image of the Betti cohomology with real coefficients
4One can check by definition that the C-sub group adC(G1

dR,C) is an R-subgroup of GMT,C.
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under the Betti–de Rham comparison, pr(HdR(X,C)) has a real Hodge structure. By [Del82b,

Prop. 6.2] and the fact that absolute Hodge cycles are de Rham–Tate cycles, pr(HdR(X,C)) is

polarized. Hence End(M) is semi-simple by [Del82b, Prop. 4.5, Prop. 6.3]. Therefore, we use

[Jan92, Lem. 2] to conclude that MdRT,L is a rigid abelian tensor category. By [Del90, Thm. 1.12],

this is a Tannakian category with a fiber functor ωL : M �→ pr(HdR(X,L)) over L. Let GL
dR be the

Tannakian fundamental group Aut⊗(ωL). Since MdRT,L is semi-simple, GL
dR is a reductive algebraic

group over L.

7.3.3. We now describe the relation between de Rham–Tate groups of cycles over different fields.

One can define de Rham–Tate cycles on zero dimensional varieties as in Definition 7.1.1 and define

the motive M0
dRT,L as above. This category is the category of Artin motives and we denote by Γ(L)

its Tannakian fundamental group, which is an L-form of the Galois group Gal(L̄/L). A modification

of the proof of [Del82b, Prop. 6.23] shows that the following sequence is exact:

1 → G
L̄
dR → G

L
dR → Γ(L) → 1,

where Γ(L) is a quotient of Γ(L). More precisely, Γ(L) is the Tannakian fundamental group of

MdRT,L ∩M0
dRT,L, the full subcategory of MdRT,L whose objects are Artin motives.

The category that we will mainly focus on is MdRT,K̄ , which is equivalent to MdRT,KdR by

Lemma 7.2.3, and we will denote them by MdRT.

Proof of Proposition 7.3.1. Let {sα} be the set of de Rham–Tate cycles. We view G
KdR

dR

as a subgroup of GL(H1
dR(A,K)) (a priori, GKdR

dR is only defined over K
dR, but it descends to K

by Remark 7.1.2(1)). Since MdRT is Tannakian, we have an equivalence of categories

MdRT ⊗ L ∼= RepL(G
KdR

dR ).

Hence that s is an L-linear combination of sα is equivalent to that s is fixed by G
KdR

dR and it remains

to prove that GKdR

dR = GdR. Since GdR is defined to be the stabilizer of all sα, the above equivalence

of categories shows that G
KdR

dR ⊂ GdR. Since G
KdR

dR is reductive, then by [Del82a, Prop. 3.1 (b)],

G
KdR

dR is the stabilizer of a line in some direct sum of (H1
dR(A,L))

m,n. By the definition of GKdR

dR ,

this line must be an L-linear combination of some sα and hence GKdR

dR = GdR because GdR stabilizes

all linear combinations of sα. �
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Remark 7.3.4.

(1) It follows from the proof that GdR is reductive. This argument is essentially the same as

the one we gave before since the key input for both arguments is that de Rham–Tate cycles

are fixed by ϕσ.

(2) There is a variant of Proposition 7.3.1 when L is not assumed to contain K
dR. More

precisely, GL
dR is the largest subgroup of GL(H1

dR(A,L)) that stabilizes every de Rham–

Tate cycle over L and s ∈ (H1
dR(A,L))

m,n is an L-linear combination of de Rham–Tate

cycles over L if and only if s is fixed by the action of GL
dR.

The following definition is motivated by [Her12, Def. 3.5].

Definition 7.3.5. An element s of (H1
dR(A,L))

m,n is called a β-de Rham–Tate cycle if the A-density

of the set of primes such that φv(s) �= s is at most 1− β. More explicitly, it means

β ≤ lim inf
x→∞




�

v,pv≤x,ϕv(s)=s

[Lv : Qpv ] log pv
pv − 1







[L : Q]
�

p≤x

log p

p− 1




−1

,

where v (resp. p) runs over finite places of L (resp. Q) and pv is the residue characteristic of v.

Remark 7.3.6.

(1) Absolute Tate cycles and de Rham–Tate cycles are 1-de Rham–Tate cycles by definition.

(2) Let M be a set of rational primes with natural density β and assume that ∀p ∈ M, ∀v|p,

one has ϕv(s) = s. Then s is a β-de Rham–Tate cycle by [Her12, Lem. 3.7].

Theorem 7.3.7. The set of 1-de Rham–Tate cycles in End(H1
dR(A,L)) is the image of EndL(A)⊗Q.

In particular, the centralizer of GdR in End(H1
dR(A,L)) is EndL(A)⊗ L.

Proof. The second assertion follows from the first one by Proposition 7.3.1 and the above re-

mark. The first statement restricted to absolute Tate cycles is a direct consequence of Theorem 2.0.1

and we refer the reader to [And04b, 7.4.3] for a proof. See also [Bos06, Thm. 6.4]. Notice that

their argument is valid for 1-de Rham–Tate cycles if one uses Corollary 2.2.8 instead. �

7.4. Relative de Rham–Tate cycles. Let L be a finite extension over K. Let v be a fi-

nite place of L with residue characteristic p and define mv = [Lv : Qp]. We have an Lv-linear

endomorphism, the relative Frobenius ϕmv

v , of H1
dR(A,Lv) and hence of (H1

dR(A,Lv))m,n.
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Definition 7.4.1. An element t ∈ (H1
dR(A,L))

m,n is called a relative de Rham–Tate cycle (over L)

of A if there exists a finite set Σ of finite places of L such that for every finite place v /∈ Σ and every

archimedean place σ, one has ϕmv

v (t) = t and ϕ
mv

v (ϕσ(t)) = ϕσt.

Remark 7.4.2. By definition, any L-linear combination of de Rham–Tate cycles over L is relatively

de Rham–Tate. Moreover, for any γ ∈ Gal(L/K), the cycle γ(t) is relatively de Rham–Tate if (and

only if) t is so.

In analogy with the definition of de Rham–Tate groups, we have:

Definition 7.4.3. We define G
L to be the algebraic subgroup of GL2g,L such that any L-algebra

R, its R-points GL(R) is the subgroup of GL2g(R) which fixes all relative de Rham–Tate cycles tα

over L. We call GL the relative de Rham–Tate group of the abelian variety A over L.

Lemma 7.4.4. Similar to the corresponding statements for the de Rham–Tate group, we have:

(1) The relative de Rham–Tate group G
L
is contained in G

L
dR.

(2) Every relative de Rham–Tate cycle lies in Fil0((H1
dR(A,L))

m,n) and hence the Hodge cochar-

acter factors through G
L
.

(3) The group G
L
is the smallest reductive algebraic subgroup of GL2g,L such that

• the set of its Lv-points contains ϕ
mv

v for all but finitely many finite places v, and

• it is stable under ϕσ for all archimedean places σ.

(4) Any element in (H1
dR(A,L))

m,n
is relatively de Rham–Tate if and only if it is fixed by the

action of G
L
.

Proof. Part (1) follows from Remark 7.4.2. Lemma 7.1.3 implies part (2). To show that GL is

reductive, we notice that ϕσ fixes the set of relative de Rham–Tate cycles and hence the embedding

G
L
C
⊂ GMT,C is induced from an embedding of R-groups. Then, combined with part (2), we see that

µ(i) · µ̄(i) ∈ G
L(C). Now as in the proof of Lemma 7.2.9, the adjoint action of µ(i) · µ̄(i) defines a

real form of GL which is compact moduo center and hence GL is reductive. The rest of (3) is direct

and it implies (4). �

Unlike the de Rham–Tate groups, one can show directly that when L is large enough, the relative

de Rham–Tate group G
L is connected. See Corollary 8.1.7.
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8. Frobenius Tori and the Mumford–Tate conjecture

In this section, we recall the theory of Frobenius tori initiated by Serre (see section 8.1). The

fact that the Frobenius actions on the crystalline and étale cohomology groups have the same

characteristic polynomial ([KM74]) enables us to view the Frobenius tori as subgroups of both

GdR and the �-adic monodromy group G�. Hence the Frobenius tori serve as bridges between

results for G� and those for GdR. We prove a refinement (Proposition 8.1.11) of results of Serre and

Chi on the rank of Frobenius tori. In section 8.2, we recall the Mumford–Tate conjecture and prove

Theorem 3 and Theorem 4. In section 8.3, we recall a result of Noot and use it to show that if G◦

dR

of A is a torus, then A has complex multiplication.

From now on, we use Σ to denote a finite set of finite places of KdR containing all ramified places

such that for v /∈ Σ, the abelian variety AKdR has good reduction at v and the Frobenius ϕv stabilizes

all of the de Rham–Tate cycles. For any finite extension L of K in question, we still use Σ to denote

the finite set of finite places f
−1

g(Σ), where f : SpecL → SpecK and g : SpecKdR → SpecK.

When we discuss the relative de Rham–Tate cycles, we also enlarge Σ so that the relative Frobenius

ϕ
mv

v stabilizes all relative de Rham–Tate cycles over L.

8.1. Frobenius Tori. The following definition is due to Serre. See also [Chi92, Sec. 3] and

[Pin98, Sec. 3] for details.

Definition 8.1.1. Let Tv be the Zariski closure of the subgroup of GL
Lv

(hence also of GL
dR,Lv

)

generated by the Lv-linear map ϕ
mv

v ∈ G
L(Lv). Since ϕ

mv

v is semisimple, the group T
◦
v is a torus

and is called the Frobenius torus associated to v.

Remark 8.1.2. The torus T ◦
v and its rank are independent of the choice of L.

8.1.3. For every prime �, we have the �-adic Galois representation

ρ� : Gal(K̄/K) → GL(H1
ét(AK̄ ,Q�))(Q�),

and we denote by G�(A) the algebraic group over Q� which is the Zariski closure of the image

of Gal(K̄/K) and call G�(A) the �-adic monodromy group of A. If it is clear which variety is

concerned, we may just use G� to denote this group. Serre proved that there exists a smallest finite
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Galois extension K
ét of K such that for any �, the Zariski closure of the image of Gal(Két/Két) is

connected ([Ser13, Sec. 5, p. 15]).

Remark 8.1.4. For v � l, we also view Tv as an algebraic subgroup (only well-defined up to

conjugation) of G� in the following sense. Since A has good reduction at v, the action of the

decomposition group at v is unramified onH
1
ét(AK̄ ,Q�). Since v is unramified, we have an embedding

Gal(k̄v/kv) ∼= Gal(Lur
v /Lv) → ρ�(Gal(K̄/K)) after choosing an embedding K̄ → L̄v. Hence we view

the Frobenius Frobv as an element of G�. Due to Katz and Messing [KM74], the characteristic

polynomial of ϕmv

v acting on H
1
cris(Akv/W (kv)) is the same5 as the characteristic polynomial of

Frobv acting on H
1
ét(AK̄ ,Q�). Hence Tv is isomorphic to the algebraic group generated by semi-

simple element Frobv in G�. From now on, when we view Tv as a subgroup of G�, we identify Tv

with the group generated by Frobv.

Here are some important properties of Frobenius tori.

Theorem 8.1.5 (Serre, see also [Chi92, Cor. 3.8]). There is a set Mmax of finite places of K
ét

of natural density one and disjoint from Σ such that for any v ∈ Mmax, the algebraic group Tv is

connected and it is a maximal torus of G�.

Proposition 8.1.6 ([Chi92, Prop. 3.6 (b)]). For L large enough (for instance, containing all the

n-torsion points for some n ≥ 3), all but finitely many Tv are connected.

Corollary 8.1.7. For L large enough, the relative de Rham–Tate group G
L
is connected and G

L =

G
L�

for L ⊂ L
�
.

Proof. Let (GL)◦ be the connected component of GL. It is reductive and ϕσ-stable for all

archimedean places σ. By Proposition 8.1.6, for all but finitely many v, the group Tv is connected

and hence is contained in (GL)◦Lv
. Therefore, ϕmv

v ∈ Tv(Lv) ⊂ (GL)◦(Lv) and (GL)◦ = G
L by

Lemma 7.4.4(3)(4). Let v� be a place of L� over v. By definition, Tv� is a subgroup of Tv of finite index.

Since Tv is connected, we have φ
mv

v ∈ Tv = Tv� ⊂ G
L� . We conclude by Lemma 7.4.4(3)(4). �

Remark 8.1.8. One reason to introduce relative de Rham–Tate cycles is that GL behaves like G�

in the sense that both of them become connected if one replace the base field K by a large enough

L.
5To compare the two polynomials, we notice that both of them have Z-coefficients.
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The following lemma is of its own interest.

Lemma 8.1.9. The number field K
dR

is contained in K
ét
.

Proof. For the simplicity of notation, we enlarge K
dR to contain K

ét and prove that they

are equal. Let v be a finite place of Két above p such that p splits completely in K
ét
/Q and we

identify K
ét
v with Qp via v. Let w be a place of KdR above v. Denote by σ the Frobenius in

Gal(KdR
w /Qp) = Gal(KdR

w /K
ét
v ). We consider the algebraic group Tv generated by ϕv ∈ G

Két

dR (Két
v ).

If v ∈ Mmax as in Theorem 8.1.5, then Tv is connected and hence Tv ⊂ GdR,Két
v
. This implies

that ϕv ∈ GdR(Két
v ). For any m,n, let W

� ⊂ (H1
dR(A,K

dR))m,n be the K
dR-linear span of all de

Rham–Tate cycles in (H1
dR(A,K

dR))m,n. By Remark 7.1.2, there exists a K-linear subspace W of

(H1
dR(A,K))m,n such that W � = W⊗K

dR. Since GdR acts trivially on W
� and W , the Frobenius ϕv

acts on W ⊗K K
ét
v trivially and φw acts on W

� ⊗KdR K
dR
w as the σ-linearly extension of ϕv. Hence

the elements in W
� that are stabilized by ϕw are contained in W ⊗K K

ét
v . That is to say that all de

Rham–Tate cycles are defined over Két
v . As m,n are arbitrary, we have K

dR
w = K

ét
v . This implies

that p splits completely in K
dR

/Q and hence K
dR = K

ét by the Chebotarev density theorem. �

Remark 8.1.10. From Theorem 7.3.7, we see the definition field of a de Rham–Tate cycle induced

from an endomorphism of AK̄ is the same as the definition field of this endomorphism. Hence K
dR

contains the definition field of all endomorphisms. Then K
dR and K

ét are the same if the definition

field of all endomorphisms is Két. This is the case when one can choose a set of �-adic Tate cycles

all induced from endomorphisms of A to cut out G�.

Now we discuss some refinements of Theorem 8.1.5 and Proposition 8.1.6. In the rest of this

subsection, the definition field K of the polarized abelian variety A is always assumed to be Galois

over Q. The main result is:

Proposition 8.1.11. Assume that G
◦

� (A) is GSp2g,Q�
. Then there exists a set M of rational primes

with natural density one such that for any p ∈ M and any finite place v of K lying over p, the

algebraic group Tv generated by ϕ
mv

v (where mv = [Kv : Qp]) is of maximal rank. In particular, Tv

is connected for such v.
6

6Our proof is a direct generalization of the proof of Theorem 8.1.5 by Serre. Will Sawin pointed out to me that it is
possible to prove this proposition by applying Chavdarov’s method ([Cha97]) to ResKQ A.
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The idea of the proof is to apply the Chebotarev density theorem to a suitably chosen Zariski

closed subset of the �-adic monodromy group of B, the Weil restriction ResK
Q
A of A. As we are

in characteristic zero, the scheme B is an abelian variety over Q. We have BK =
�

σ∈Gal(K/Q)A
σ
,

where A
σ = A⊗K,σ K. It is a standard fact that B∨ = ResK

Q
A

∨ and hence the polarization on A

induces a polarization on B over Q. Moreover, the polarization on A induces a polarization on A
σ.

Extend σ to a map σ : K̄ → K̄. The map σ : A(K̄) → A
σ(K̄), P �→ σ(P ) induces a map on Tate

modules σ : T�(A) → T�(Aσ). This map is an isomorphism between Z�-modules.

Lemma 8.1.12. The map σ : T�(A) → T�(Aσ) induces an isomorphism between the �-adic mon-

odromy groups G�(A) and G�(Aσ).

Proof. Via σ, the image of Gal(K̄/K) in End(T�(Aσ)) is identified as that of Gal(K̄/K) in

End(T�(A)). Hence G�(A) � G�(Aσ) as T�(−)∨ = H
1
ét((−)K̄ ,Q�). �

We start with the following special case to illustrate the idea of the proof of Proposition 8.1.11.

Proposition 8.1.13. Assume that G�(A) = GSp2g,Q�
and that A

σ
is not geometrically isogenous

to A
τ
for any distinct σ, τ ∈ Gal(K/Q). Then there exists a set M of rational primes with natural

density 1 such that for any p ∈ M and any v above p, the group Tv is of maximal rank. That is, the

rank of Tv equals to the rank of G�(A). In particular, Tv is connected for such v.

Proof. We use the same idea as in the proof of Theorem 8.1.5 by Serre. His idea is to first

construct a proper Zariski closed subvariety Z ⊂ G�(A) as follows (see also [Chi92, Thm. 3.7]) and

then to apply the Chebotarev density theorem:

(1) Z is invariant under conjugation by G�(A), and

(2) if u ∈ G�(A)(Q�) \ Z(Q�) semisimple, then the algebraic subgroup of G� generated by u is

of maximal rank.

Since G�(A) is connected, Z(Q�) is of measure zero in G�(A)(Q�) with respect to the usual Haar

measure. We will define a Zariski closed subset W ⊂ G�(B) which has similar properties as Z.

Let G
K
� (B) be the Zariski closure of Gal(K̄/K) in GL(H1

ét(BQ̄
,Q�)). Via the isomorphism

H
1
ét(BQ̄

,Q�) ∼= ⊕H
1
ét(A

σ
K̄
,Q�) of Gal(K̄/K)-modules, we view G

K
� (B) as a subgroup of

�
G�(Aσ).

By the assumption that Aσ’s are not geometrically isogenous to each other and [Lom15, Thm. 4.1,

Rem. 4.3], we have G
K
� (B) ∼= Gm ·

�
SG�(Aσ), where SG� ⊂ G� is the subgroup of elements with
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determinant 1. Indeed, LieSG�(Aσ) = sp2g,Q�
of type C and the representations are all standard

representations and then Rem. 4.3 in loc. cit. verified that Lombardo’s theorem is applicable in

our situation. Then By Lemma 8.1.12, we have G
K
� (B) � Gm · SG�(A)[K:Q]. This is the neutral

connected component of G�(B).

The map Gal(Q̄/Q) → G�(B)(Q�) → G�(B)(Q�)/GK
� (B)(Q�) induces a surjection Gal(K/Q) �

G�(B)(Q�)/GK
� (B)(Q�). Given σ ∈ Gal(K/Q), we denote by σG

K
� (B) the subvariety of G�(B)

corresponding to the image of σ in the above map. Let m be the order of σ ∈ Gal(K/Q). We

consider those p unramified in K/Q whose corresponding Frobenii in Gal(K/Q) fall into cσ, the

conjugacy class of σ. We have mv = m for all v above p.

Consider the composite map mτ : σGK
� (B) → G

K
� (B) → G�(Aτ ) � G�(A), where the first map

is defined by g �→ g
m and the second map is the natural projection. Let Wσ,τ be the preimage of Z

and Wσ be ∪τ∈Gal(K/Q)Wσ,τ . Since by definition Wσ is a proper Zariski subvariety of the connected

variety σG
K
� (B), the measure of Wσ(Q�) is zero.

Claim. If the Frobenius Frobp (well-defined up to conjugacy) is not contained in the conjugacy

invariant set ∪γ∈cσWγ(Q�), then for any v|p, the algebraic subgroup Tv ⊂ G�(A) is of maximal rank.

Proof. The subvariety ∪γ∈cσWγ is invariant under the conjugation of GK
� (B) because Z is

invariant under the conjugation of G�(A). This subvariety is moreover conjugation invariant under

the action G�(B) since τWστ
−1 = Wτστ−1 by definition. By second property of Z and the definition

of the map mτ , we see that the image of Frob
m
p generates a maximal torus in G�(Aτ ). For each

v|p, the Frobenius Frobv is the image of Frob
m
p in G�(Aτ ) for some τ and hence Tv is of maximal

rank. �

Let W be ∪σWσ. It is invariant under the conjugation of G�(B). As each Wσ,τ (Q�) is of measure

zero in G�(B)(Q�), so is W (Q�). By the Chebotarev density theorem (see for example [Ser12, Sec.

6.2.1]), we conclude that there exists a set M of rational primes with natural density 1 such that

Frobp /∈ W (Q�). Then the proposition follows from the above claim. �

Remark 8.1.14. The assumption that G�(A) = GSp2g,Q�
can be weakened. The proof still works

if one has GK
� (B) = Gm ·

�
SG�(Aσ). In other words, the proposition holds true whenever [Lom15,

Thm. 4.1, Rem. 4.3] is applicable. For example, when A has odd dimension and is not of type IV

in Albert’s classification.
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The following property of GSp2g is used in an essential way of our proof of Proposition 8.1.11.

It is well-known, but we give a proof for the sake of completeness.

Lemma 8.1.15. If G is an algebraic subgroup of GL(H1
ét(AK̄ ,Q�)) containing GSp2g,Q�

as a normal

subgroup, then G = GSp2g,Q�
. In particular, G

◦

� (A) = GSp2g,Q�
implies that G�(A) is connected.

Proof. Let g be a Q�-point of G. Then ad(g) induces an automorphism of GSp2g,Q�
by the

assumption that GSp2g,Q�
is a normal subgroup. As ad(g) preserves determinant, we view ad(g) as

an automorphism of Sp2g,Q�
. Since Sp2g,Q�

is a connected, simply connected linear algebra group

whose Dynkin diagram does not have any nontrivial automorphism, any automorphism of Sp2g,Q�

is inner. Hence ad(g) = ad(h) for some Q�-point h of Sp2g,Q�
. Then g and h differ by an element

in the centralizer of Sp2g,Q�
in GL2g,Q�

. Since the centralizer is Gm, we conclude that g is in

GSp2g,Q�
(Q�). �

Proof of Proposition 8.1.11. Let B be ResK
Q
A. As in the proof of Proposition 8.1.13, it

suffices to construct a Zariski closed set W ⊂ G�(B) such that

(1) W (Q�) is of measure zero with respect to the Haar measure on G�(B)(Q�),

(2) W is invariant under conjugation by G�(B), and

(3) if u ∈ G�(B)(Q�) \W (Q�) is semisimple, then the algebraic subgroup of G�(B) generated

by u is of maximal rank.

We first show that, to construct such W , it suffices to construct Wσ ⊂ σG
K
� (B) for each

σ ∈ Gal(K/Q) such that

(1) Wσ(Q�) is of measure zero with respect to the Haar measure on G�(B)(Q�),

(2) Wσ is invariant under conjugation by G
K
� (B), and

(3) if u ∈ σG
K
� (B)(Q�)\W (Q�) is semisimple, then the algebraic subgroup of G�(B) generated

by u is of maximal rank.

Indeed, given suchWσ, we defineW � to be ∪σWσ. This set satisfies (1) and (3) and is invariant under

conjugation by G
K
� (B). We then define W to be the G�(B)-conjugation invariant set generated by

W
�. Since [G�(B) : GK

� (B)] is finite, W as a set is a union of finite copies of W � and hence satisfies

(1) and (3).

To construct Wσ, let C ⊂ Gal(K/Q) be the subgroup generated by σ. Consider {Aτ}τ∈C . We

have a partition C = �1≤i≤rCi with respect to the K̄-isogeny classes of Aτ . These Ci have the
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same cardinality m/r. For any α ∈ Gal(K/Q), the partition of αC = �αCi gives the partition of

{Aτ}τ∈αC with respect to the K̄-isogeny classes.

Consider the map mα : σGK
� (B) → G

K
� (B) → G�(Aα) � G�(A) and define Wσ,α to be the

preimage of Z and Wσ to be ∪α∈Gal(K/Q)Wσ,α as in the proof of Proposition 8.1.13. The proof of

the claim there shows that Wσ satisfies (2) and (3).

Now we focus on (1). By the assumption and Lemma 8.1.15, the group G�(A) is connected and

hence Z(Q�) is of measure zero. Let γ be σ
r. Consider r : σGK

� (B) → γG
K
� (B) defined by g �→ g

r

and the composite map (m/r)α : γGK
� (B) → G

K
� (B) → G�(Aα) � G�(A), where the first map is

defined by g �→ g
m/r and the second map natural projection. Then mα = (m/r)α ◦ r. Let Wr be

(m/r)−1
α (Z). Then Wσ,α = r

−1(Wr). Since any two of {Aτ}τ=α,ασ,··· ,ασr−1 are not geometrically

isogenous, the same argument as in the proof of Proposition 8.1.13 shows that if Wr(Q�) is of

measure zero, so is Wσ,α(Q�). The rest of the proof is to show that Wr(Q�) is of measure zero.

Notice that G◦

� (BK) = Gm ·
�

σ∈I SG�(Aσ) = Gm ·Sp|I|2g, where I is a set of representatives of all

isogeny classes in {Aσ}σ∈Gal(K/Q).

Since the centralizer of GSp2g in GL2g is Gm and G
◦

� (B) is a normal subgroup of G�(B), the

map (m/r)α is up to a constant the same as the following map:

γG
K
� (B) → IsomQ�

(H1
ét(A

αγ
K̄
,Q�), H

1
ét(A

α
K̄ ,Q�)) ∼= GL(H1

ét(A
α
K̄ ,Q�)) → GL(H1

ét(A
α
K̄ ,Q�)),

where the first map is the natural projection, the middle isomorphism is given by a chosen isogeny

between A
α and A

αγ , and the last map is g �→ g
m/r.

The fact that γGK
� (B) normalizes G◦

� (BK) allows us to apply Lemma 8.1.15 to the image of the

above map and see that the above map factors through

GSp(H1
ét(A

α
K̄ ,Q�)) → GSp(H1

ét(A
α
K̄ ,Q�)), g �→ g

m/r

and hence Wr(Q�), being the preimage of a measure zero set under the above map, is of measure

zero. �

8.2. The Mumford–Tate conjecture and the proofs of Theorem 3 and Theorem 4.

Conjecture 8.2.1 (Mumford–Tate). For any rational prime �, we have G
◦

� (A) = GMT(A)⊗Q� via

the comparison isomorphism between the étale and the Betti cohomologies.
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Lemma 8.2.2. If Conjecture 8.2.1 holds for the abelian variety A, then the reductive groups G�(A),

G
L(A), GdR(A), and GMT(A) have the same rank.

Proof. Conjecture 8.2.1 implies that G� and GMT have the same rank. Then by Theorem 8.1.5,

there are infinitely many finite places v such that the Frobenius torus Tv is a maximal torus of GMT.

Since Tv is a subtorus of GL except for finitely many v, we have that GL and hence GdR have the

same rank as GMT by Corollary 7.2.5. �

The assertion of the above lemma is equivalent to the Mumford–Tate conjecture by the following

lemma due to Zarhin and the Faltings isogeny theorem (see for example [Vas08, Sec. 1.1]).

Lemma 8.2.3 ([Zar92, Sec. 5, key lemma]). Let V be a vector space over a field of characteristic

zero and H ⊂ G ⊂ GL(V ) be connected reductive groups. Assume that H and G have the same

rank and the same centralizer in End(V ). Then H = G.

Using this lemma, we prove a special case of Conjecture 7.1.4.

Theorem 8.2.4. Assume that the polarized abelian variety A is defined over Q and that G�(A)

is connected. Then the centralizer of G
◦

dR in End(H1
dR(A,Q)) is End◦(A) and moreover, Conjec-

ture 8.2.1 implies Conjecture 7.1.4.

Proof. The assumption is equivalent to that K
ét = Q. Then by Theorem 8.1.5, we see that

Tp is connected for a density one set of rational primes p. Therefore, for such p, the Frobenius

ϕp ∈ Tp(Qp) ⊂ G
◦

dR(Qp) and any s lying in the centralizer of G◦

dR is fixed by ϕp. In other words,

s is a 1-de Rham–Tate cycle and by Theorem 7.3.7, s ∈ End◦(A). The second assertion follows

directly from Lemma 8.2.2 and Lemma 8.2.3. �

As in [Pin98], we show that if the conjecture does not hold, then GdR is of a very restricted

form when we assume that A is defined over Q and that Két = Q. We need the following definition

to state our result.

Definition 8.2.5 ([Pin98, Def. 4.1]). A strong Mumford–Tate pair (of weight {0, 1}) over K

is a pair (G, ρ) of a reductive algebraic group over K and a finite dimensional faithful algebraic

representation of G over K such that there exists a cocharacter µ : Gm,K̄ → GK̄ satisfying:

(1) the weights of ρ ◦ µ are in {0, 1}, and
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(2) GK̄ is generated by G(K̄)�Gal(K̄/K)-conjugates of µ.

We refer the reader to [Pin98, Sec. 4, especially Table 4.6, Prop. 4.7] for the list of strong

Mumford–Tate pairs.

Theorem 8.2.6. If the polarized abelian variety A is defined over Q and G�(A) is connected, then

there exists a normal subgroup G of G
◦

dR defined over Q such that

(1) (G, ρ) is a strong Mumford–Tate pair over Q, where ρ is the tautological representation

ρ : G ⊂ GdR → GL(H1
dR(A,Q)), and

(2) The centralizer of G in End(H1
dR(A,Q)) is End◦(A).

If we further assume that End(A) is commutative, then we can take G to be G
◦

dR.

The following lemma constructs the cocharacter µ.

Lemma 8.2.7. There exists a cocharacter µ : Gm,K̄ → G
L
K̄

such that its induced filtration on

H
1
dR(A, K̄) is the Hodge filtration. Moreover, different choices of such cocharacters are conjugate

by an element of G
L
K̄
(K̄) and for any embedding σ : K̄ → C, we have that µ, as a cocharacter of

G
L
K̄
⊗σ C, is conjugate to the Hodge cocharacter µσ.

Proof. By lemma 7.4.4 (2) and [Kis10, Lem. 1.1.1], the subgroup P of GL
K̄

preserving the

Hodge filtration is parabolic and the subgroup U of GL
K̄

acting trivially on the graded pieces of

H
1
dR(A, K̄) is the unipotent radical of P . Moreover, the action of P on the graded pieces is induced

by a cocharacter of P/U . Then given a Levi subgroup of P , one can construct a cocharacter of GL
K̄

inducing the desired filtration and vice virsa. Therefore, the assertions follow from the existence of

a Levi subgroup over K̄ and the fact that two Levi subgroups are conjugate. �

Proof of Theorem 8.2.6. Let µ be some cocharacter constructed in Lemma 8.2.7 and G

be the smallest normal Q-subgroup of G◦

dR such that G(Q̄) contains the image of µ. Notice that

different choices of µ are conjugate to each other over Q̄ and hence the definition of G is independent

of the choice of µ.

The weights of ρ ◦ µ are 0 or 1 since the non-zero graded pieces of the Hodge filtration on

H
1
dR(A, K̄) are at 0 and 1. Since the subgroup of G generated by G

◦

dR(Q̄) �Gal(Q̄/Q)-conjugates

of µ must be defined over Q and normal in G
◦

dR, this subgroup coincides with G. Since G
◦

dR
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is connected and reductive and the image of µ is contained in G, the set of G◦

dR(Q̄)-conjugates of

µ is the same as the set of G(Q̄)-conjugates of µ. Hence (G, ρ) is a strong Mumford–Tate pair over Q.

To show (2), by Theorem 7.3.7, it suffices to show that ϕp ∈ G(Qp) for p in a set of natural

density 1. By Theorem 8.1.5, it suffices to show that for any p ∈ Mmax, there exists an integer np
7

such that ϕ
np

p ∈ G(Qp). Let W ⊂ (H1
dR(A,Q))m,n be the largest Q-sub vector space with trivial

G-action. Since G is normal in G
◦

dR, the group G
◦

dR acts on W . Then for all p ∈ Mmax, we have

ϕp ∈ G
◦

dR(Qp) acts on W ⊗ Qp. Since G is reductive, it can be defined to be the subgroup of

GL(H1
dR(A,Q)) acting trivially on finitely many such W . Since ϕv ∈ G

◦

dR(Qp) is semi-simple, in

order to show that ϕnp

p ∈ G(Qp), it suffices to prove that the eigenvalues of ϕp acting on W ⊗ Qp

are all roots of unity.

Since W ⊂ (H1
dR(A,Q))m,n, the eigenvalues of ϕp are all algebraic numbers. Since Frobp acts

on (H1
ét(AQ̄

,Q�))m,n with all eigenvalues being �-adic units for � �= p, the eigenvalues of ϕp are

also �-adic units. Now we show that these eigenvalues are p-adic units. Let Hp be the Tannakian

fundamental group of the abelian tensor category generated by sub weakly admissible filtered ϕ-

modules of (H1
cris(A/W (Fp)) ⊗ Qp)m,n. For p ∈ Mmax, by [Pin98, Prop. 3.13], Hp is connected.

By Lemma 7.1.3, every de Rham–Tate cycle generates a trivial filtered ϕ-module. Then by the

definition of Hp, Hp(Qp) ⊂ GdR(Qp) and thus Hp(Qp) ⊂ G
◦

dR(Qp). Hence W ⊗ Qp is an Hp-

representation and then by the Tannakian equivalence, the filtered ϕ-module W ⊗ Qp is weakly

admissible. By defintion, µ acts on W ⊗ Qp trivially and hence by Lemma 8.2.7, the filtration on

W ⊗ Qp is trivial. Then the Newton cocharacter is also trivial. In other words, the eigenvalues of

ϕp are p-adic units. By the Weil conjecture, the archimedean norms of the eigenvalues are p(m−n)/2.

Then by the product formula, the weight m−n
2 must be zero and all the eigenvalues are roots of unity.

We now prove the last assertion. If G �= G
◦

dR, then we have G
◦

dR = GH where H is some

nontrivial normal connected subgroup of G◦

dR commuting with G and H ∩ G is finite.8 Then H

is contained in the centralizer of G and by (2), we have H ⊂ End◦(A). By the assumption on

End◦(A), we see that H is commutative and hence H ⊂ Z
◦(G◦

dR). We draw a contradiction by

7By standard arguments, one can choose an n independent of p.
8To see this, notice that as a connected reductive group, G◦

dR is the product of central torus and its derived subgroup
and the intersection of these two subgroups is finite. Then one uses the decomposition results for tori and semi-simple
groups.
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showing that Z◦(G◦

dR) ⊂ G. By Theorem 8.2.4, we have

Z(G◦

dR) = G
◦

dR ∩ End◦(A) ⊂ GMT ∩ End◦(A) = Z(GMT), and hence Z
◦(G◦

dR) ⊂ Z
◦(GMT).

On the other hand, for all p ∈ Mmax, the torus Tp ⊂ G. Hence we only need to show that

Z
◦(GMT) ⊂ Tp. Since this statement is equivalent up to conjugation, we only need to show that

Z
◦(GMT ⊗ Q�) ⊂ Tp ⊂ GL(H1

ét(AQ̄
,Q�)). Since Tp is a maximal torus, we have Tp ⊃ Z

◦(G�). We

then conclude by [Vas08, Thm. 1.2.1] asserting that Z◦(GMT ⊗Q�) = Z
◦(G�). �

8.3. A result of Noot and its consequence. It is well-known that the Mumford–Tate group

is a torus if and only if A has complex multiplication. In particular, G◦

dR is a torus when A has

complex multiplication. In this subsection, we will show that the converse is also true.

Lemma 8.3.1. If G
L
commutes with µσ for some σ, then A has ordinary reduction at a positive

density of primes of degree one (that is, splitting completely over Q).

Proof. After replacing K by a finite extension, we may assume that µ in lemma 8.2.7 is defined

over K. Let v be a finite place of K with residue characteristic p and assume that p splits completely

inK/Q. ThenKv
∼= Qp. Let νv be the Newton (quasi-)cocharacter and fix a maximal torus T ⊂ G

L.

By Lemma 7.4.4 (3), we have that νv factors through G
L. As in [Pin98, Sec. 1], we define Sµ (resp.

Sνv) to be the set of GL(Kv) � Gal(Kv/Kv)-conjugates of µ (resp. νv) factoring through T (Kv)

in Hom((Gm)Kv
, TKv

) ⊗Z R. Since all the G
L(Kv)-conjugacy of µ coincide with itself and that µ

is defined over Kv, we have Sµ = {µ}. By the weak admissibility, we have that Sνv is contained in

the convex polygon generated by Sµ (see [Pin98, Thm. 1.3, Thm. 2.3]). Hence Sνv = Sµ. Then we

conclude that A has ordinary reduction at v by [Pin98, Thm. 1.5] if v /∈ Σ. �

Proposition 8.3.2. If G
L
commutes with µσ or µv for some σ or v, then A has complex multipli-

cation and hence Conjecture 7.1.4 holds for A.

Corollary 8.3.3. The assumption of Proposition 8.3.2 is satisfied when (GdR)◦ commutes with

either µσ or µv. In particular, A has complex multiplication if and only if (GdR)◦ is a torus.

8.3.4. To prove Proposition 8.3.2, we need following theorem of Noot. Let {tα} be a finite set of

relative de Rham–Tate cycles over L such that GL is the stabilizer of {tα}. Let v be a finite place of

L with residue characteristic p such that Lv
∼= Qp. We assume that v /∈ Σ and that AL has ordinary
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good reduction at v. The later assumption holds for infinitely many v under the assumption of

Proposition 8.3.2 by Lemma 8.3.1. Since mv = 1 in our situation, we have ϕv(tα) = tα. Moreover,

tα ∈ Fil0(H1
dR(A,L))

m,n by Lemma 7.4.4 (2). Hence tα is a ‘Tate cycle’ in the sense of [Noo96].

In the formal deformation space of Akv , Noot defined the formal locus N where the horizontal

extensions of all tα are still in Fil0(H1
dR(A,L))

m,n (see [Noo96, Sec. 2] for details).

On the other hand, for any embedding σ : L → C, the relative de Rham–Tate group G
L, viewed

as a subgroup of GMT, is defined over R. Hence G
L defines a sub Hermitian symmetric domain

of the one defined by GMT. Let S be the moduli space of polarized abelian varieties of dimension

dimA and let [A] ∈ S be the point corresponding to A. Then the formal scheme associated to the

germ of the image of this sub Hermitian symmetric domain in SC at [A]σ is the formal subscheme

of (S/[A])C defined as the formal locus where all the formal horizontal extensions of tα remain

in Fil0(H1
dR(A,L))

m,n. Under the assumption of Proposition 8.3.2, the sub Hermitian symmetric

domain defined by G
L is zero dimensional.

Theorem 8.3.5 ([Noo96, Thm. 2.8]). 9
The formal locus N is a translate of a formal torus by a

torsion point. Moreover, the dimension of N equals to the dimension of the Hermitian symmetric

space defined by G
L
.

Proof of Proposition 8.3.2. By Theorem 8.3.5 and the discussion in 8.3.4, ALv
is a torsion

point in the formal deformation space. By the Serre–Tate theory, a torsion point corresponds to

an abelian variety with complex multiplication. Hence A has complex multiplication and the last

assertion comes from Remark 7.1.5. �

9. Proof of the main theorem

In this section, we prove Theorem 6. In section 9.1, we study the irreducible sub representations

of G
◦

dR in H
1
dR(A/K) ⊗ K̄. This part is valid for most abelian varieties without assuming the

Mumford–Tate conjecture. To do this, we focus on the crystalline Frobenii action. The result of

Pink that G� with its tautological representation is a weak Mumford–Tate pair over Q� provides

information on étale Frobenii and hence information on crystalline Frobenii by a result of Noot

(see9.1.3) relating these two. In section 9.2, we use the results in section 9.1, Theorem 7.3.7 and

9Ananth Shankar pointed out to me that one may use Kisin’s results in [Kis10, Sec. 1.5] and the property of canonical
lifting to prove this result.
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Proposition 8.1.11 to show that under the assumptions of Theorem 6, the centralizer of G◦

dR in

End(H1
dR(A, K̄)) coincides with that of GdR and then complete the proof of Theorem 6.

9.1. Group theoretical discussions.

9.1.1. Throughout this section, we assume that (GMT(A)
Q̄
)der does not have any simple factor

of type SO2k for k ≥ 4. This holds under the assumptions of Theorem 6. The reason for this

assumption is that we will use a result of Noot on the conjugacy class of Frobenius to avoid the

usage of the Mumford–Tate conjecture. It is likely that one can remove this assumption for all the

results in this subsection with some extra work.

Let ρdR : GdR → GL(H1
dR(A,K)) be the tautological algebraic representation given in Defini-

tion 7.2.1. We denote by ρK̄ : GdR,K̄ → GL(H1
dR(A, K̄)) the representation on K̄-points. Assume

that the GdR(K̄)-representation ρK̄ decomposes as ρK̄ =
�n

i=1 ρK̄,i and that each component de-

composes as ρK̄,i|G◦

dR,K̄

=
�ni

j=1 ρK̄,i,j , where ρK̄,i’s (resp. ρK̄,i,j ’s ) are irreducible representations

of GdR(K̄) (resp. G◦

dR(K̄)). We denote the vector space of ρK̄,i (resp. ρK̄,i,j) by Vi (resp. Vi,j).

The following lemma reduces comparing the centralizers of GdR and G
◦

dR to studying the irre-

ducibility of Vi as representations of G◦

dR,K̄
.

Lemma 9.1.2. If Vi and Vj are not isomorphic as GdR,K̄-representations, then they are not iso-

morphic as G
◦

dR,K̄
-representations. In particular, if all Vi are irreducible representations of G

◦

dR,K̄
,

then G
◦

dR and GdR have the same centralizer in End(H1
dR(A, K̄)).

9.1.3. Before proving the above lemma, we explain how to use a result of Noot to translate problems

on representations of G◦

dR into problems on representations of G�. We fix an embedding K̄ → Q̄�.

Since the de Rham and étale cohomologies can be viewed as fiber functors of the category of motives

with absolute Hodge cycles, we have an isomorphism of representations of (GMT)Q̄�
:

H
1
dR(A, K̄)⊗ Q̄� � H

1
ét(AK̄ ,Q�)⊗ Q̄�.

By Theorem 7.3.7, the left hand side, as a representation of (GMT)Q̄�
, decomposes into irreducible

ones ⊕Vi ⊗ Q̄� and Vi ⊗ Q̄�
∼= Vj ⊗ Q̄� if and only if they are isomorphic as representations of GdR.

Via the above isomorphism, we denote by V
ét
i the image of Vi ⊗ Q̄�. Then by Faltings isogeny
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theorem, V ét
i are irreducible representations of (G�)Q̄�

and any two of them are isomorphic if and

only if they are isomorphic as representations of (GMT)Q̄�
.

Now we study the action of the Frobenius torus T ◦
v on both sides. More precisely, we use (T ◦

v )K̄v

to denote the base change of the crystalline one acting on the left hand side and use (T ◦
v )Q̄�

to denote

the base change of the étale one acting on the right hand side. By [Noo09, Thm. 4.2], after raising

both Frobenius actions to high enough power, ϕmv

v is conjugate to Frobv by an element of GMT
10.

Then the weights of the action of T ◦
v on Vi and V

ét
i coincide and that Vi is isomorphic to Vj as

representations of (T ◦
v )K̄v

is equivalent to that V ét
i is isomorphic to V

ét
j as representations of (T ◦

v )Q̄�
.

Proof of Lemma 9.1.2. Let v ∈ Mmax as in Theorem 8.1.5. Then Tv is connected and as

a subgroup of G�, it is a maximal torus. Since Vi and Vj are not isomorphic as representations

of GdR,K̄ , then by 9.1.3, their counterparts V
ét
i and V

ét
j are not isomorphic as representations of

(G�)Q�
. Since Tv is a maximal torus, then V

ét
i and V

ét
j are not isomorphic as representations of

(Tv)Q̄�
. Then by the theorem of Noot (see 9.1.3), Vi and Vj are not isomorphic as representations

of (Tv)K̄v
. In particular, they are not isomorphic as representations of G◦

dR. �

9.1.4. By construction, we have a fiber functor ω : MdRT → V ecKdR . In other words, ω is a

fiber functor over SpecKdR, viewed as a Q-scheme. The functor Aut⊗(ω) is representable by a

SpecKdR
/ SpecQ-groupoid G and G is faithfully flat over SpecKdR ×SpecQ SpecKdR (see [Mil92,

Thm. A.8] or [Del90, Thm. 1.12])11. Let v /∈ Σ (defined in section 8) be a finite place of KdR giving

rise to an embedding K
dR → K

dR
v . Let Gv be the SpecKdR

v / SpecQp-groupoid obtained by base

changing G to SpecKdR
v ×SpecQp

SpecKdR
v . Since ϕv(sα) = sα for all de Rham–Tate cycles {sα},

the Frobenius semi-linear morphism ϕv lies in Gv(KdR
v ). Since G acts on GdR by conjugation, the

action ad(ϕv), the conjugation by ϕv, is an isomorphism between the neutral connected components

10Recall that we use Frobv to denote the relative Frobenius action on the étale cohomology. Noot shows that after
raising to a high enough power, there exists an element g ∈ GMT(K̄) such that g is conjugate to ϕ

mv
v by some element

in GMT(K̄v) and that g is conjugate to Frobv by some element in GMT(Q̄�).
11Here we use the language of groupoids. One may also view G as a Galois gerb in the sense of Langlands–Rapoport
for the following reason. Since G is a torsor of a smooth algebraic group, it is trivial étale locally and hence
G(Q̄) → (Spec Q̄×SpecQ Spec Q̄)(Q̄) is surjective. We then have the exact sequence (see for example [Mil92, pp. 67])

1 → GdR(Q̄) → G(Q̄) → Gal(Q̄/Q) → 1.

Moreover, GdR, as a group scheme over SpecKdR, is the kernel of G. Let L be the finite extension of KdR such that
all the fiber functors over K

dR are isomorphic over L. Then the extension of Gal(L̄/L) by GdR(L̄) induced by the
above sequence splits. Hence G is a Galois gerb in the sense of Langlands–Rapoport.
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σ
∗
GdR,KdR

v
and GdR,KdR

v
, where σ : KdR

v → K
dR
v is the Frobenius. In terms of KdR

v -points, ad(ϕv)

is a σ-linear automorphism of both GdR(KdR
v ) and G

◦

dR(K
dR
v )12.

Proposition 9.1.5. Assume that AK̄ is simple. Then all ρK̄,i,j are of the same dimension. More-

over, if we further assume the assumption in 9.1.1 and that a maximal subfield of End◦K̄(A) is

Galois over Q or that End◦K̄(A) is a field, then there exists a choice of decomposition
�

Vi such that

ϕv(Vi,j) = Vσ(i),τv,i(j), where σ is a permutation of {1, · · · , n} and for each i, τv,i is a permutation

of {1, · · · , ni}.

Proof. We fix a finite extension L of K such that all the Vi,j are defined over L. Let v /∈ Σ be

a place of L. As discussed in 9.1.4, ad(ϕv) preserves the set G◦

dR(Lv). Therefore, for any nonzero

vector vi,j ∈ Vi,j , as Qp-linear spaces,

ϕv(Vi,j) = ϕv(SpanLv
(G◦

dR(Lv)(vi,j))) = SpanLv
(ϕv(G

◦

dR(Lv)(vi,j)))

= SpanLv
(ad(ϕv)(G

◦

dR(Lv)(ϕv(vi,j)))) = SpanLv
(G◦

dR(Lv)(ϕv(vi,j))).

In other words, as an Lv-vector space, ϕv(Vi,j) is the same as the space of the irreducible

G
◦

dR(Lv)-sub representation generated by ϕv(vi,j). Similarly for Vi, we have that the vector space

ϕv(Vi) is the same as the vector space of an irreducible GdR(Lv)-sub representation. In partic-

ular, ϕv(Vi,j) is contained in
�

dimVk,l=dimVi,j
Vk,l. Let V

� be
�

dimVk,l=dimVi,j
Vk,l and V

�� be
�

dimVk,l �=dimVi,j
Vk,l. Then ϕv(V �) = V

� and ϕv(V ��) = V
��. Let pr

� be the projection to V
�.

Then ϕv(pr�) = pr
� for all v /∈ Σ. By Theorem 7.3.7, pr� is an algebraic endomorphism of A. Since

A is simple, pr� cannot be a nontrivial idempotent and then V
�� = 0, which is the first assertion.

The second assertion is an immediate consequence of the following two lemmas. Indeed, by

Lemma 9.1.7, we see that the only sub representations in Vs of G◦

dR are Vs,j ’s. Since ϕv(Vi,j) is a

sub representation of ϕv(Vi) = Vs for some s by Lemma 9.1.6, then ϕv(Vi,j) is Vs,t for some t. �

Lemma 9.1.6. Under the assumptions in Proposition 9.1.5, there exists a decomposition H
1
dR(A,L) =

�
Vi where Vi are irreducible representations of GdR such that for any i, as vector spaces, ϕv(Vi) =

Vj for some j.

12Although ad(ϕv) defines a σ-linear automorphism of GdR(K
dR
v ), this fact itself does not imply that GdR,KdR

v
has

a Qp-structure since a priori we do not have the cocycle condition. However, G
dR,KdR

v
has a Qp-structure because

MdRT ⊗K
dR
v has a fiber functor over Qp. The Qp-fiber functor can be chosen to be the étale realization because all

the de Rham–Tate cycles lie in (H1
ét(AK̄v

,Qp))
m,n via the p-adic de Rham-étale comparison.
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Proof. When End◦(A) is a field, the decomposition is unique and any two different Vj ’s are

not isomorphic. In other words, Vj ’s are the only irreducible sub representations of GdR. Since the

vector space ϕv(Vi) is the vector space of an irreducible sub representation, it must be Vj for some

j.

Now we assume that the maximal subfield of End◦K̄(A) is Galois over Q. Let {sα} be a Q-basis

of de Rham–Tate cycles in End(H1
dR(A,K

dR)). By Theorem 7.3.7, these sα are algebraic cycles

and we use sBα to denote their images in End(H1
B(AC,Q)). Since A is simple, End◦K̄(A) is a division

algebra D of index d over some field F and {sBα } is a basis of D as a Q-vector space. Let E ⊂ D be

a field of degree d over F . Then E is a maximal subfield of D and D ⊗F E ∼= Md(E). Therefore,

D ⊗Q E ∼= D ⊗Q F ⊗F E ∼= D ⊗F E ⊗Q F ∼= Md(E)[F :Q]
.

Let ei ∈ Md(E) be the projection to the i-th coordinate. Let e
j
i ∈ D ⊗Q E be the element whose

image in Md(E)[F :Q] is (0, .., 0, ei, 0, ..., 0), where ei is on the j-th component. Since
�

e
j
i is the

identity element in D, there must exist at least one e
j
i such that

�
τ∈Gal(E/Q) σ(e

j
i ) is nonzero,

where the Galois group acts on the coordinates when the basis of the E-vector space D ⊗Q E is

chosen to be a basis of D as a Q-vector space.

We write e
j
i =

�
kαs

B
α , where kα ∈ E, and let prτ =

�
τ(kα)sα ∈ End(H1

dR(A, K̄)), for all

τ ∈ Gal(E/Q). Since e
j
i is an idempotent, so is prτ . Let Vτ be the image of prτ . We may assume

that L contains E and still use σ to denote the image of the Frobenius via the map Gal(Lv/Qp) ⊂

Gal(L/Q) → Gal(E/Q). Then by definition, as vector spaces, ϕv(Vτ ) = Vστ .

Now it remains to prove that
�

Vτ is a direct sum and
�

Vτ = H
1
dR(A, K̄) as representations

of GdR. First, since prτ lies in the centralizer of GdR, every Vτ is a subrepresentation. Second, since

the number of irreducible representations in a decomposition of H1
dR(A, K̄) equals [E : Q], it suffices

to prove that
�

Vτ = H
1
dR(A, K̄). Since the image of

�
prτ is contained in

�
Vτ , it suffices to

prove that
�

prτ is invertible. By construction,
�

prτ lies in D (via comparison) and it is nonzero

by the choice of eji . Therefore,
�

prτ is invertible since D is a division algebra. �

Lemma 9.1.7. Under the assumption in 9.1.1, the G
◦

dR-representations Vi,j and Vi,j� are not iso-

morphic if j �= j
�
.
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Proof. Let Tw be a Frobenius torus of maximal rank for some finite place w /∈ Σ. We only

need to show that the weights of Tw acting on Vi are all different. By 9.1.3, we may consider Tw

as a maximal torus of G�(A) acting on irreducible sub representations of (G�)Q̄�
in H

1
ét(AK̄ ,Q�) ⊗

Q̄�. [Pin98, Thm. 5.10] shows that (G�(A), ρ�) is a weak Mumford–Tate pair over Q�. To show

the weights on Vi are different, it suffices to show that the weights of the maximal torus of each

geometrical irreducible component of (G�(A), ρ�) are different. Furthermore, it reduces to the case

of an almost simple component of each irreducible component. They are still weak Mumford–Tate

pairs by [Pin98, 4.1]. One checks the list of simple weak Mumford–Tate pairs in [Pin98, Table 4.2]

to see that all the weights are different. �

9.2. Proof of Theorem 6.

9.2.1. Since the Mumford–Tate conjecture holds for all the abelian varieties considered in Theo-

rem 613, we focus on comparing the centralizers of GdR and G
◦

dR in End(H1
dR(A, K̄)). Once we

prove that the centralizers of both groups are the same, we conclude the proof of Theorem 6 by

Theorem 7.3.7, Lemma 8.2.2, and Lemma 8.2.3 as in the proof of Theorem 8.2.4. We separate the

cases using Albert’s classification.

Type I. Let F be the totally real field End◦K̄(A) of degree e over Q. [BGK06] shows that

Conjecture 8.2.1 holds when g/e is odd.

Proposition 9.2.2. If e = g, then Conjecture 7.1.4 holds for A.

Proof. The Q-vector space H
1
B(A,Q) has the structure of a two-dimensional F -vector space.

Therefore, as a (GMT)Q̄-representation, H1
B(A,Q) decomposes into g non-isomorphic irreducible sub

representations of dimension two. By 9.1.3, the GdR,K̄-representation H
1
dR(A, K̄) decomposes into

g non-isomorphic irreducible sub representations V1, . . . , Vg. By Lemma 9.1.2 and 9.2.1, we only

need to show that all Vi are irreducible G
◦

dR-representations. By Proposition 9.1.5, if any G
◦

dR-

representation Vi is reducible, then all V1, . . . , Vg are reducible. In such situation, all Vi decompose

into one-dimensional representations and hence G
◦

dR is a torus. Then by Corollary 8.3.3, A has

complex multiplication, which contradicts our assumption. �
13The Mumford–Tate conjecture for Ai is well-studied and we will cite the results we need for each case later in
this subsection. See for example [CF16] for a survey of type I and II cases. The reduction of the conjecture for the
product of Ai to the simple case is essentially contained in [Lom15, Sec. 4] and we record a proof at the end of this
subsection.
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Remark 9.2.3. The above proof is still valid if all (equivalently, any) Vi are of prime dimension.

Now we focus on the case when EndK̄(A) = Z. We refer the reader to [Pin98] for the study of

Conjecture 8.2.1 in this case. In particular, Conjecture 8.2.1 holds when 2g is not of the form a
2b+1

or
�4b+2
2b+1

�
, where a, b ∈ N\{0} and in this situation, G�(A) = GSp2g,Q�

.

Proposition 9.2.4. Assume that G�(A) = GSp2g,Q�
. If A is defined over a number field K which

is Galois over Q of degree d prime to g!, then Conjecture 7.1.4 holds for A.

Proof. Conjecture 8.2.1 holds when G�(A) = GSp2g. It suffices to show that H1
dR(A, K̄) is an

irreducible G
◦

dR,K̄
-representation. If not, then by Proposition 9.1.5, H1

dR(A, K̄) would decompose

into r sub representations of dimension 2g/r. By Corollary 8.3.3, r cannot be 2g and hence r ≤ g.

Let prj be the projection to the jth irreducible component. By Proposition 9.1.5, we have ϕv(prj) =

pr
k for some k and the action of ϕv on all prj gives rise to an element sv in Sr, the permutation

group on r elements. On the other hand, by Proposition 8.1.11, there exists a set M of rational

primes of natural density 1 such that for any p ∈ M and any v|p, we have that ϕmv

v ∈ G
◦

dR. Hence

s
mv

v is the identity in Sr for such v. By the assumption, mv is prime to r! and hence sv is trivial in

Sr. In other words, prj is a 1-de Rham–Tate cycle. Then by Theorem 7.3.7, prj is algebraic, which

contradicts with that A is simple. �

Type II and III. In this case, End◦K̄(A) is a quaternion algebra D over a totally real field F of

degree e over Q. [BGK06] and [BGK10] show that if g/(2e) is odd, then Conjecture 8.2.1 holds.

Proposition 9.2.5. If g = 2e, then Conjecture 7.1.4 holds for A.

Proof. The GdR,K̄-representation H
1
dR(A, K̄) decomposes into V1 ⊕ · · · ⊕ Vg where Vi is two

dimensional and Vi is not isomorphic to Vj unless {i, j} = {2k − 1, 2k}. Then we conclude by

Remark 9.2.3. �

Type IV. In this case, End◦K̄(A) is a division algebra D over a CM field F . Let [D : F ] = d
2

and [F : Q] = e. Then ed
2|2g.

Proposition 9.2.6. If 2g
ed is a prime, then the centralizer of G

◦

dR in EndK̄(H1
dR(A, K̄)) is the same

as that of GdR.
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Proof. We view H
1
B(A,Q) as an F -vector space and hence view GMT as a subgroup of GL2g/e.

Since the centralizer of GMT is D, then H
1
B(A,Q)⊗F F̄ decomposes into d representations of dimen-

sion 2g/(ed). Hence H
1
B(A, Q̄) as a GMT-representation would decompose into de representations

of dimension 2g/(de). Then we conclude by Remark 9.2.3. �

Corollary 9.2.7. If g is a prime, Conjecture 7.1.4 holds for A of type IV.

Proof. Notice that when g is a prime, then d must be 1 and e must be 2 or 2g. The second

case is when A has complex multiplication and Conjecture 7.1.4 is known. In the first case, 2g
ed (= g)

is a prime. Then Conjecture 7.1.4 is a consequence of Proposition 9.2.6 and the Mumford–Tate

conjecture ([Chi91, Thm. 3.1]) by Lemma 8.2.3. �

Corollary 9.2.8. If the dimension of A is a prime and EndK̄(A) is not Z, then Conjecture 7.1.4

holds.

Proof. If g = 2, then A has CM or is of type I with e = g or is type II with g = 2e. If g

is an odd prime, then A is of type I with e = g or of type IV. We conclude by Proposition 9.2.2,

Proposition 9.2.5, and Corollary 9.2.7. �

Proof of Theorem 6. Conjecture 7.1.4 is equivalent for isogenous abelian varieties and then

we may assume that A =
�

A
ni

i . By 9.2.1 and the following lemma, it suffices to show that

G
◦

dR(A) and GdR(A) have the same centralizer. By Lemma 9.1.2, the agreement of the centralizers

of G◦

dR(A) and GdR(A) is equivalent to that all irreducible sub representations in H
1
dR(A, K̄) of

GdR(A)K̄ are irreducible representations of G◦

dR(A)K̄ . Let V be an irreducible representation of

GdR(A)K̄ . Since the projection A → Ai is a de Rham–Tate cycle, then there exists Ai such that

V ⊂ H
1
dR(Ai, K̄) and V is an irreducible representation of GdR(Ai)K̄ . Then by Remark 7.1.5 (1),

Corollary 9.2.8, and Proposition 9.2.4, the de Rham–Tate group GdR(Ai) is connected. Then the

surjective map GdR(A) → GdR(Ai) remains surjective when restricted to G
◦

dR(A). This implies that

V is an irreducible representation of G◦

dR(A)K̄ . �

Lemma 9.2.9. Let A be as in Theorem 6. Then the Mumford–Tate conjecture holds for A.

Proof. The idea of the proof is the same as that of [Lom15, Thm. 4.7]. For the simplicity

of statements, we assume that each simple factor of all abelian varieties mentioned in the proof
71



falls into one of the three cases in the assumption of the theorem. Notice that an absolutely simple

abelian variety Ai of type IV either have complex multiplication or is of case (2) with End◦K̄(Ai)

being an imaginary quadratic field. Therefore, by assumption, A is either B×C1 or B×C
k
2 where B

has no simple factor of type IV, C1 has complex multiplication, and C2 is absolutely simple of case

(2) type IV. By [Lom15, Prop. 2.8] and corresponding statement for the Mumford–Tate group, it

suffices to show that the Mumford–Tate conjecture holds for B × Ci.

We first prove that the Mumford–Tate conjecture holds for B. Let H�(B) be the neutral

connected component of the subgroup of G�(B) with determinant 1. Since B does not have simple

factor of type IV, the group H�(B) is semisimple. By assumption, the Lie algebra of each simple

component of H�(B)
Q̄�

is of type C and then by [Lom15, Thm. 4.1, Rem. 4.3], the group H�(B) =
�

H�(Bi), where {Bi} is a set of all non-isogeny simple factors of B. Since the Mumford–Tate

conjecture holds for Bi, then the conjecture holds for B by [Lom15, Lem. 3.6].

On the other hand, H�(C1) is a torus and the Lie algebras of simple factors H�(C2)Q̄�
are of

type Ap−1 for p ≥ 3 prime14. Since Lie algebra of type Ap−1 is not isomorphic to that of type C,

we apply [Lom15, Prop. 3.9, Lem. 3.6] to conclude that the Mumford–Tate conjecture holds for

B × Ci. �

14Notice that there does not exist a non-CM abelian surface of type IV.
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CHAPTER 5

A relative version of Bost’s theorem

In section 10, we prove Theorem 8. Roughly speaking, the main idea is to prove that the relative

de Rham–Tate group G
L (see section 7.4) coincides with the de Rham–Tate group GdR when L is

large enough. In section 11, we prove a result (Corollary 11.1.2) towards Conjecture 7. Given a

relative de Rham–Tate cycle s in End(H1
dR(A,L)), Conjecture 7 predicts that if s is a β-de Rham–

Tate cycles (Definition 7.3.5) in End(H1
dR(A,L)) with β >

1
2 , then s is algebraic. We prove that

even without the assumption of being a relative de Rham–Tate cycle, as long as β >
3
4 , a β-de

Rham–Tate cycle in End(H1
dR(A,L)) is algebraic.

10. The known cases

We observe that for L
�
/L finite extension, if L ⊃ K

dR, then Conjecture 7 for L
� implies the

conjecture for L. Hence throughout this section, we may assume that L is large enough so that all

but finitely many Tv are connected. Proposition 8.1.6 shows that such L exists and Corollary 8.1.7

shows that GL is connected. For any finite place v of L, we write mv = [Lv : Qp].

10.1. Relative de Rham–Tate cycles revisited. The cycles considered in Conjecture 7

motivate the following definition. It is weaker than the notion of relative de Rham–Tate cycles as

we put no restrictions on archimedean places.

Definition 10.1.1. An element t ∈ (H1
dR(A,L))

m,n is called a weakly relative de Rham–Tate cycle

(over L) of A if there exists a finite set Σ of finite places of L such that for every finite place v /∈ Σ,

one has ϕmv

v (t) = t. When there is no risk of confusion, we simply call t a weakly relative cycle.

Conjecture 7 asserts that any weakly relative cycles in End(H1
dR(A,L)) is an L-linear com-

bination of algebraic cycles. This conjecture can be verified when K
ét = Q as in the proof of

Theorem 8.2.4.

Theorem 10.1.2. If the polarized abelian variety A is defined over Q and G�(A) is connected, then

Conjecture 7 holds.
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Proof. We may assume that L/Q is Galois. Let t ∈ End(H1
dR(A,L)) be a weakly relative

cycle. By definition, for any γ ∈ Gal(L/Q), the cycle γ(t) is also weakly relative. Consider the

vector space VL = SpanL({γ(t)}γ∈Gal(L/Q)). There is a vector space V ⊂ End(H1
dR(A,Q)) such

that VL = V ⊗ L. Let {sα} be a Q-basis of V . By definition, for v /∈ Σ, the relative Frobenius

ϕ
mv

v fixes VL and hence sα. In other words, for all but finitely primes p, the Frobenius torus T
◦
p

fixes sα. By Theorem 8.1.5, for p ∈ Mmax of natural density one, ϕp ∈ Tp = T
◦
p fixes sα. Then by

Theorem 7.3.7, sα is algebraic and hence t is a linear combination of algebraic cycles. �

Remark 10.1.3. If one replaces Theorem 8.1.5 by our refinements of Serre’s theorem in section 8.1,

the proof of the above theorem shows that, under the assumption of Proposition 8.1.11 or Propo-

sition 8.1.13, one can reduce the verification of Conjecture 7 for any L to the following statement:

if t ∈ End(H1
dR(A,K)) is fixed by ϕ

mv

v for all v with residue characteristic in a subset of rational

primes of natural density one, then t is a linear combination of algebraic cycles. Here we assume

that K/Q is Galois and that G�(A) is connected.

For relative de Rham–Tate cycles, we have:

Proposition 10.1.4. If the polarized abelian variety A is defined over Q and G�(A) ∼= GMT(A)⊗Q�,

then all relative de Rham–Tate cycles are linear combinations of Hodge cycles.

Proof. As in the proof of Theorem 8.2.4, one can show that ϕp ∈ G
L(Qp) for a density one

set of rational primes and hence GL has the same centralizer as GMT and then the rest of the proof

is the same. �

Proposition 10.1.5. If the polarized abelian variety A is defined over Q and G�(A) is connected,

then Theorem 8.2.6 still holds with G
◦

dR replaced by G
L
.

Proof. The key steps of the proof of Theorem 8.2.6 are as follows. By Lemma 8.2.7, we

construct the smallest normal Q-subgroup G of G◦

dR containing µ. Then one uses weak admissibility

and the Riemann Hypothesis part of the Weil conjecture to show that some power of ϕp lies in G

for all p. Finally by Theorem 8.1.5 and Theorem 7.3.7, G has the same centralizer as GMT and

one uses a result of Vasiu to see that G is G◦

dR when the endomorphism ring of A is commutative.

Every step is still valid with G
◦

dR replaced by G
L. �
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10.2. Special cases of Conjecture 7. In this subsection, we prove that for A as in Theorem 8,

all the weakly relative cycles are linear combinations of Hodge cycles. This assertion implies the

theorem.

Theorem 10.2.1. Let A be an abelian variety and L ⊃ K
dR = K

ét
. All weakly relative cycles over

L of A are L-linear combinations of Hodge cycles if one of the following holds

(1) A has complex multiplication;

(2) A is either an elliptic curve or abelian surface with quaternion multiplication.

Proof. For (1), we fix a finite set Σ of finite places of L such that for all v /∈ Σ, the Frobenius

ϕ
mv

v fixes all weakly relative cycles over L. By Theorem 8.1.5 and the fact that G◦

� = GMT is a torus,

there exists a finite place v /∈ Σ with mv = 1 such that Tv = GMT ⊗ Lv. By definition, a weakly

relative cycle is fixed by ϕv and hence GMT. In other words, this cycle is a linear combination of

Hodge cycles.

For (2), we may assume that A does not have complex multiplication. Let G be the subgroup

of GL(H1
dR(A,L)) that fixes all weakly relative cycles and we shall prove that G = GMT ⊗ L.

Since G
◦

� = GMT ⊗ Q�, then by Theorem 8.1.5, G contains a maximal torus of GMT ⊗ L. Since

GMT ⊗ Q̄ = GL2, if G �= GMT ⊗ L, then G is either a maximal torus or contains a Borel subgroup.

If G contains a Borel subgroup, then the set of cycles fixed by G coincides the set of cycles fixed by

GMT⊗L. In other words, the set of weakly relative cycles agrees with the set of L-linear combination

of Hodge cycles and G = GMT⊗L. If G is a torus, then G
L ⊂ G is a torus. We draw a contradiction

by Corollary 8.3.3. �

11. A strengthening of Theorem 7.3.7 and its application

We use A∨
, E(A) to denote the dual abelian variety and the universal vector extension of A. For

simplicity, when there is no risk of confusion, we use β-cycles to indicate β-de Rham–Tate cycles.

The main result of this section is Corollary 11.1.2 and the idea is to apply Theorem 2.2.5. At the

end of this section, we use Corollary 11.1.2 to study cycles of abelian surfaces.

11.1. A strengthening of Theorem 7.3.7. If s ∈ End(H1
dR(A, K̄)) is a β-cycles for some

positive β, then ϕv(s) = s for infinitely many v and thus s ∈ Fil0(End(H1
dR(A, K̄))) by Lemma 7.1.3.
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In other words, s(Fil1(H1
dR(A, K̄))) is contained in Fil1(H1

dR(A, K̄)). Since

H
1
dR(A, K̄)/Fil1(H1

dR(A, K̄)) ∼= LieA∨

K̄ ,

the cycle s then induces an endomorphism s̄ of LieA∨

K̄
.

Theorem 11.1.1. Assume that AK̄ is simple. If s ∈ End(H1
dR(A, K̄)) is a β-de Rham–Tate cycle

for some β >
3
4 , then s̄ is the image of some element in End◦K̄(A∨).

Before proving the theorem, we use it to prove a strengthening of Theorem 7.3.7.

Corollary 11.1.2. Assume that AK̄ is simple. If s ∈ End(H1
dR(A, K̄)) is a β-de Rham–Tate cycle

for some β >
3
4 , then s is algebraic.

Proof. By Theorem 11.1.1, it suffices to show that if s is fixed by infinitely many ϕv and s̄ is

algebraic, then s is algebraic. Since the restriction to End◦L(A) of the map

Fil0 End(H1
dR(A,L)) → End(LieA∨

L), s → s̄

is the natural identification End◦L(A) ∼= End◦L(A
∨), we obtain an algebraic cycle t ∈ End◦K̄(A) such

that t̄ = s̄. Then for infinitely many v, we have ϕv(s− t) = s− t and s− t ∈ Fil1(End(H1
dR(A, K̄)).

By Lemma 7.1.3, s− t = 0 and hence s is algebraic. �

Remark 11.1.3. The only place where we use the assumption of AK̄ being simple is to obtain the

first assertion of Lemma 11.1.5. This assertion shows that if s is not algebraic, then the Zariski

closure of the g-dimensional formal subvariety that we will construct using s is of dimension 2g. In

general, the Zariski closure of a non-algebraic g-dimensional formal subvariety is of dimension at

least g + 1 and then the same argument as below shows that any β-cycle with β > 1 − 1
2(g+1) is

algebraic.

11.1.4. The proof of this theorem will occupy the rest of this subsection. Since the definition of

β-cycle is independent of the choice of a definition field and the property of being a β-cycle is

preserved under isogeny, we may assume that A is principally polarized and that s is defined over

K. Let X be A
∨ × A

∨ and e be its identity. The main idea is to apply Theorem 2.2.5 to the
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following formal subvariety �V ⊂ �X/e. Consider the sub Lie algebra

H = {(a, s̄(a)) | a ∈ Lie(A∨)} ⊂ Lie(X).

This sub Lie algebra induces an involutive subbundle H of the tangent bundle of X via translation.

The formal subvariety �V is defined to be the formal leaf passing through e. Recall that in 2.2.4 a

finite place v of K is called bad if H⊗ kv is not stable under p-th power map of derivatives.

Lemma 11.1.5. If s̄ is not algebraic, then the formal subvariety �V is Zariski dense in X. The

A-density of bad primes is at most 1− β.

Proof. The Zariski closure G of �V must be an algebraic subgroup of X. The simplicity of A

implies that the only algebraic subgroup of X with dimension larger than g must be X. Hence if s̄

is not algebraic, we have dimG > g and hence G = X.

By [Mum08, p. 138], given v /∈ Σ, the p-th power map on LieE(A∨) ⊗ kv = H
1
dR(A, kv) is

the same as ϕv ⊗ kv. Therefore, for those v such that ϕv(s) = s, we have that the Lie subalgebra

{(a, s(a)) | a ∈ (LieE(A∨))}⊗ kv of Lie(E(A∨)×E(A∨))⊗ kv is closed under the p-th power map.

Then H = {(a, s̄(a)) | a ∈ Lie(A∨)}⊗kv and H⊗kv are closed under the p-th power map. Therefore,

the density of bad primes is at most one minus the density of primes satisfying ϕv(s) = s. �

11.1.6. Let σ : K → C be an archimedean place of K. We define γσ to be the composition

γσ : Cg (id,s̄)−−−→ C
g × C

g (exp,exp)−−−−−−→ Xσ,

where exp the uniformization of Cg = LieA∨
σ → A

∨
σ . We choose an ample Hermitian line bundle L

on A
∨ such that the pull back of its first Chern form via exp is iC0

�g
k=1 dzk ∧ dz̄k where C0 > 0

is some constant. More explicitly, we may choose L to be the theta line bundle with a translate-

invariant metric. See for example [dJ08, Sec. 2].

To compute the order of γσ (Definition 2.2.3), we fix the ample Hermitian line bundle on X to

be pr
∗
1L⊗ pr

∗
2L. Then

γσ
∗
η = C0(i

g�

k=1

dzk ∧ dz̄k + s
∗(i

g�

k=1

dzk ∧ dz̄k)).

Thus γσ∗η has all coefficients of dzi ∧ dz̄j being constant functions on C
g.
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Lemma 11.1.7. The order ρσ of γσ is at most 2. In other words, ρ ≤ 2.

Proof. Up to a positive constant,

ω = i

||z||2
�g

k=1 dzk ∧ dz̄k −
�g

k,l=1 z̄kzl dzk ∧ dz̄l

||z||4 .

Since all the absolute values of the coefficients of dzk∧dz̄l in ω are bounded by 2||z||−2 and those in

γσ
∗
η are constant functions, the volume form γσ

∗
η ∧ ω

g−1 has the absolute value of the coefficient

of ∧g
k=1(dzk ∧ dz̄k) to be bounded by C1||z||−2(g−1) for some constant C1. Hence

Tγσ(r) =

� r

0

dt

t

�

B(t)
γσ

∗
η ∧ ω

g−1

≤
� r

0

dt

t

�

B(t)
C1||z||−2(g−1)(ig) ∧g

k=1 (dzk ∧ dz̄k)

=

� r

0

dt

t

� t

0
C2R

−2(g−1)
vol(S(R)) dR

=

� r

0

dt

t

� t

0
C3RdR = C4r

2
,

where S(R) is the sphere of radius R in C
g. We conclude by the definition of orders. �

Remark 11.1.8. By a more careful argument, one can see that ρσ is 2.

Proof of Theorem 11.1.1. If s̄ is not algebraic, then we apply Theorem 2.2.5 with N = 2g

and d = g. We have

1 ≤ 2ρα ≤ 2 · 2 · (1− β),

which contradicts with β >
3
4 . �

11.2. Abelian surfaces. We see from the discussion in section 9 that the only case left for

Conjecture 7.1.4 for abelian surfaces is when EndK̄(A) = Z and K is of even degree over Q. We

discuss in this section the case when K is a quadratic extension of Q and remark that one can

deduce similar results when [K : Q] is 2n for some odd integer n by incorporating arguments as in

the proof of Proposition 9.2.4.

Assume thatA does not satisfy Conjecture 7.1.4. Then by Proposition 9.1.5, we haveH1
dR(A, K̄) =

V1 ⊕ V2 as a representation of G◦

dR, where V1 and V2 are irreducible representations of dimension 2.

We have the following description of the decomposition of the filtration.
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Lemma 11.2.1. Let F
1
i = Fil1(H1

dR(A, K̄)) ∩ Vi. Then both F
1
i are 1-dimensional and F

1
1 ⊕ F

1
2 =

Fil1(H1
dR(A, K̄)).

Proof. The second assertion follows from the fact that the Hodge cocharacter µ factors through

G
◦

dR. To show the first assertion, it suffices to show that neither F 1
1 nor F 1

2 is zero. If not, we may

assume that F
1
2 = 0. Then F

1
1 = V1 and µ|V1 has all weights being 1. Then µ|V2 has all weights

being 0. Then G
◦

dR commutes with µ and then by Proposition 8.3.2, A has complex multiplication,

which contradicts our assumption. �

Let β be the inferior density of good primes of pr1

lim inf
x→∞




�

v|pv≤x,ϕv(pr1)=pr1

[Lv : Qpv ] log pv
pv − 1







[L : Q]
�

p≤x

log p

p− 1




−1

and β be the supreme density

lim sup
x→∞




�

v|pv≤x,ϕv(pr1)=pr1

[Lv : Qpv ] log pv
pv − 1







[L : Q]
�

p≤x

log p

p− 1




−1

.

By Theorem 8.1.5, for a density one set of split primes v of K, we have ϕv ∈ G
◦

dR(Kv) and then

ϕv(pri) = pri for i = 1, 2. In other words, we have 1
2 ≤ β ≤ β.

Theorem 11.2.2. If A does not satisfy Conjecture 7.1.4, then β ≤ 3
4 ≤ β. In particular, if the

natural density of good primes of pr1 exists, then the density must be
3
4 .

Proof. By definition, pr1 is a β-de Rham–Tate cycle. If β >
3
4 , then by Corollary 11.1.2, we

have pr1 is algebraic. As EndK̄(A) = Z, this is a contradiction. Therefore, β ≤ 3
4 .

Let θ ∈ K be an element such that σ(θ) = −θ, where σ is the nontrivial element in Gal(K/Q).

We consider θpr1−θpr2 ∈ End(H1
dR(A, K̄)). By Proposition 9.1.5, if ϕv(pr1) �= pr1, then ϕv(pr1) =

pr2 and ϕv(pr2) = pr1. By the σ-linearity of ϕv, when v is inert, we have that if ϕv(pr1) �= pr1, and

then ϕv(θpr1−θpr2) = θpr1−θpr2. For v split, we have ϕv(pri) = pri and hence ϕv(θpr1−θpr2) =

θpr1 − θpr2. Then by definition, θpr1 − θpr2 is a (32 − β)-de Rham–Tate cycle. By Corollary 11.1.2,

if β <
3
4 , then θpr1 − θpr2 is algebraic, which contradicts EndK̄(A) = Z. �
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