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Bistable dynamics in microbial ecology and systems biology 

Abstract 

 Bistability, in which a system has two stable states, is a common property of many 

dynamic systems. This thesis explores the properties of such systems across a range of length 

scales, from gene circuits to ecosystems. Cells often store memories of environmental stimuli 

using bistable gene circuits. High fidelity memory storage requires that a state has a long 

lifetime. However, an underappreciated aspect of stable memory is that the distance from a 

bifurcation could determine how sensitive a state is to perturbations in the extracellular 

environment. We predict that cell memory should become increasingly sensitive to perturbations 

near a bifurcation and test this idea in three different gene circuits: a toggle switch, the yeast 

galactose utilization network, and the E. coli lactose utilization network. 

 In a second study, we explore how the environmental context in which two species 

interact can influence their mode of interaction. Two species in nature often form reciprocally 

beneficial partnerships termed mutualisms, but in certain environmental regimes the species 

might shift to competing with one another for resources. This mutualism-competition transition 

has been understudied in experimental ecosystems. Using a synthetic yeast cross-feeding 

mutualism, we modulate the degree to which two partners rely on each other by supplementing 

the cells with variable amounts of nutrients. Surprisingly, we find that as the amount of 

supplemented nutrients is increased, the system passes through eight qualitatively distinct 

dynamic regimes: extinction, obligatory mutualism, obligatory/facultative mutualism, facultative 

mutualism, parasitism, amensalism, competition, and competitive exclusion. 
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 In a third study, we probe how population growth dynamics can influence the probability 

of evolutionary rescue. Natural populations frequently face harsh environments in which their 

death rate exceeds their birth rate and population size tends toward zero. In such scenarios, 

populations can either go extinct, migrate to a better habitat, or adapt to the harsh environment. 

Natural populations often exhibit an “Allee effect,” in which populations grow slowly at low 

density due to struggles with such behaviors as finding a mate or collective hunting. We 

hypothesize that the presence of an Allee effect could impede evolutionary rescue and confirm 

this hypothesis in a model laboratory yeast ecosystem. 
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Introduction 

 This is a thesis which uses laboratory yeast to probe questions drawn from the fields of 

systems biology and theoretical ecology. A unifying feature of these studies is a focus on bistable 

dynamic systems across a range of length scales, from gene circuits to ecosystems. Many 

dynamic systems researchers have sought “generic” early warning indicators of an impending 

bifurcation. Such indicators would be useful because bifurcations in complex systems (such as 

collapse of ecosystems or financial markets) can occur suddenly and can be very hard to reverse 

once they occur. Whether or not such metrics will be useful tools in predicting bifurcations in 

real-world systems remains an open question. 

In the first chapter, we use a toggle switch as a model for cell memory.  We find that 

when cells are prepared in either a high Lac state or high Tet state and then transferred to an 

intermediate concentration of small molecule inducer, the system displays remarkably stable 

memory. However, we show that near a bifurcation, temporary perturbations in the environment 

(such as a heat or salt shock) can cause many cells to switch from the memory state into an 

alternative phenotypic state. We use the perturbation experiments to locate the unstable fixed 

points and construct a bifurcation diagram of the system. We observe qualitatively similar results 

in both the yeast galactose and E. coli lactose utilization networks. Intriguingly, we find that 

early warning indicators based on critical slowing down fail to predict the approaching 

bifurcation in the toggle switch. 

 In chapters two and three, we move from systems biology to ecological dynamics, where 

our key questions revolve around how population sizes evolve in time. In chapter two, we probe 

the mutualism-competition transition in a synthetic microbial cross-feeding mutualism. 

Adjusting the amount of supplemented amino acids in the growth media provides a remarkably 
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simple knob for tuning the degree to which the two partners in a mutualism require each other 

for growth. By characterizing the strains in monoculture and co-culture, we show that the system 

passes through eight qualitatively distinct regimes: extinction, obligatory mutualism, 

obligatory/facultative mutualism, facultative mutualism, parasitism, amensalism, competition, 

and competitive exclusion. 

 We close with some preliminary results on a study of how yeast populations alter their 

genetic structure to avert extinction in harsh environments. Evolutionary rescue will be 

increasingly important in ecology due to anthropogenic climate change, which is forcing species 

to go extinct at alarming rates. However, as a population declines in size in a harsh environment, 

it may fall into a regime of low growth rate caused by cooperative growth dynamics. The 

presence of a strong Allee effect in a population could dramatically hinder evolutionary rescue, 

yet this fact has been underappreciated in ecology. We use glucose and sucrose metabolism to 

tune the degree of cooperativity in a population and show that populations in sucrose are less 

likely to undergo evolutionary rescue. 

 The work described in this thesis can be found in the following publications: 

 Axelrod, Sanchez, and Gore, eLife 2015 

 Hoek, Axelrod, Biancalani, Yurtsev, Liu, and Gore, under review at PLOS Biology 

 Healey, Axelrod, and Gore in revision at Molecular Systems Biology 

 Axelrod, Shi, and Gore, in progress 
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Chapter 1 

Critical Transitions in Gene Circuits 

Microorganisms often exhibit a history-dependent phenotypic response after exposure to 

a stimulus which can be imperative for proper function.  However, cells frequently experience 

unexpected environmental perturbations that might induce phenotypic switching.  How cells 

maintain phenotypic states in the face of environmental fluctuations remains an open question. 

Here, we use environmental perturbations to characterize the resilience of phenotypic states in a 

synthetic gene network near a critical transition. We find that far from the critical transition an 

environmental perturbation may induce little to no phenotypic switching, whereas close to the 

critical transition the same perturbation can cause many cells to switch phenotypic states. This 

loss of resilience was observed for perturbations that interact directly with the gene circuit as 

well as for a variety of generic perturbations—such as salt, ethanol, or temperature shocks—that 

alter the state of the cell more broadly.  We obtain qualitatively similar findings in natural gene 

circuits, such as the yeast GAL network.  Our findings illustrate how phenotypic memory can 

become destabilized by environmental variability near a critical transition. 

1.1 Background and motivation 

Microbes such as yeast and bacteria often adopt a specific phenotype in response to an 

environmental stimulus, and in many cases this phenotype can be retained even after the stimulus 

has been removed1–4. Stably storing such a phenotype can be critical for survival during adverse 

environmental changes5–8.  Several well-studied natural gene networks can be found in multiple 

phenotypic states depending on the history that the cells have experienced, notably including the 

yeast galactose utilization network and sporulation commitment in B. Subtilis4,9.  Additionally, 
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synthetic biology aims to create de novo phenotypic memory storage devices, which could be 

used in applications such tracking dynamics of the gut microbiome10,11.  In spite of the 

importance of phenotypic memory in natural and synthetic gene circuits, little is known about 

how environmental perturbations might disrupt a cell’s ability to stably adopt a phenotype.  

Given that phenotypic memory often results from feedback loops within the cell3,12–15, it 

is possible that this phenotypic memory will display characteristics of other complex systems 

that exhibit bistability, memory, and associated critical transitions or “tipping points” that lead to 

sudden changes in the state of the system in response to small changes in the environment. A 

phenomenon that may be especially relevant to cellular memory is that complex systems near a 

critical transition experience a loss of resilience of their stable states to external perturbations16. 

In particular, a system far from a critical transition may return to its original state following a 

perturbation, whereas closer to the critical transition the same environmental perturbation may 

cause the system to switch to an alternative stable state (e.g. collapse of a population16). The 

dynamics in the vicinity of the critical point are very slow on both sides of the critical point. 

Therefore, it is worth noting that a short lived perturbation that pushes the system past the critical 

point may also not cause switching if the perturbation is short enough, if it pushes it to a position 

that is close to the critical point, or both.  This aforementioned loss of resilience near a critical 

transition results from a shrinking basin of attraction in the stability landscape17. In the context of 

a gene network, this loss of resilience would manifest as a loss of phenotypic memory against 

environmental perturbations approaching the environmental condition in which cells would 

(deterministically) switch to a different phenotype.  Our initial goal was to observe memory in a 

model gene circuit and then characterize the resilience of the phenotypic state against 

perturbations in the extracellular environment. 



5 
 

1.2 Cell Memory in the Toggle Switch 

To study this predicted loss of resilience, we first employed a synthetic genetic switch in 

budding yeast that has previously been shown to exhibit hysteresis and bistability18–21. This 

toggle switch is composed of two mutually inhibitory transcription factors, LacI and TetR 

(Figure 1.1A). To enable tracking of the state of the cell, different color fluorescent proteins are 

expressed depending upon which of these transcriptional factors is highly expressed (mCherry 

and eGFP, hereafter referred to as “RFP” and “GFP”). As external knobs to control the state of 

the cell, the inducer IPTG modulates the strength of repression of LacI, whereas ATc modulates 

the strength of repression of TetR. 

As a demonstration of how cellular memory operates in this gene network, one 

population of cells was pre-grown in IPTG to initialize the cells in a high GFP state (Figure 

1.1B). A separate population of cells was pre-grown in ATc to initialize the cells in a high RFP 

state. We then transferred the populations to a range of ATc concentrations and monitored the 

dynamics over several days using flow cytometry. All cultures were grown with a fixed 

concentration of IPTG (40 μM), which served as an orthogonal control variable for later 

experiments. For high and low concentrations of ATc, cells converged to a state that was 

independent of the history they were pre-grown in (Figure 1.1, B and C). However, for 

intermediate concentrations of ATc there was little to no switching of the phenotypic state of the 

cells even after 260 hours of growth and over 80 cell divisions. The mutual repression in this 

toggle switch therefore indeed allows for remarkably stable cellular memory for intermediate 

ATc concentrations. As expected4, the lifetime of the state decreases approaching the critical 

transition at which switching is deterministic (hereafter, we refer to this point as the “critical 

transition” or “phenotypic switch”), although interestingly we observe non-exponential switching  
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Figure 1.1: A toggle switch in yeast exhibits hysteresis and bistability. 

(A) A toggle switch consists of two mutually inhibitory transcription factors, two fluorescent 

readouts of the system state, and two small molecule inhibitors of the transcription factors. (B) 

Following growth in one of two histories, cells are then diluted into a range of ATc 

concentrations and propagated in culture for several days. Histogram counts are binned 

logarithmically. (C) The intensity of GFP fluorescence is plotted as a function of [ATc] for 11 

different conditions for the high GFP history (green triangles) and high RFP history (red circles) 

after 92 hr of growth. The distributions are offset for ease of viewing. 20,000 events are 

collected, and then a narrow gate is drawn to select several hundred cells of roughly equal size. 

From this narrow gate, 50 cells at random are plotted. The region of memory is shaded in yellow. 
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kinetics, potentially indicating the presence of metastable states in the gene network (Figure 1.2 

and Figure 1.3). This decrease in lifetime is one manifestation of deteriorating cellular memory 

approaching the critical transition, but it is not obvious whether in ATc concentrations with long 

lifetimes (i.e. strong memory) the cells are also able to retain their memory in the face of 

environmental perturbations. 

 

Figure 1.2: Fraction switched after 92 hr of growth, a proxy for the instability of the state, 

increases approaching a phenotypic switch. 

Yeast cells were pre-grown in the GFP state (green triangles) or RFP state (red circles) and then 

transferred to a range of ATc concentrations. After 92 hr of growth, the fraction of cells that have 

switched from their history state to the alternative state is plotted vs ATc. Error bars represent 

the standard error from three different samples of Forward Scatter Area vs Side Scatter Area 

(FSC-A vs SSC-A). See Figure 1.4 for details of how a gate is drawn. 

http://lens.elifesciences.org/07935/index.html
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Figure 1.3: The switching kinetics are non-exponential. 

Cells were pre-grown in the high RFP state and then transferred to 40 μM IPTG and 2 ng/ml 

ATc. The fraction of cells remaining in a high RFP state is plotted as a function of time. The 

switching kinetics are more complicated than what one would expect from first-order kinetics. 

Error bars represent the standard error from three different samples of FSC-A vs SSC-A. 

 

 

Figure 1.4: To control for cell size, tight gates on FSC-A vs SSC-A are selected for analysis. 

10,000 events are collected on the flow cytometer, and the forward scatter area and side scatter 

area are plotted for each event. A narrow gate (shown in black dashed lines) is drawn to select a 

subset of cells (approximately 200) for analysis. This effectively decouples fluorescence from 

cell size, so that differences in fluorescence are due to differences in expression of fluorescent 

proteins. Error bars in most plots are determined by analyzing three randomly chosen gates and 

calculating the standard error. 
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1.2 Resilience to directional perturbations 

In analogy to other complex systems, we hypothesized that phenotypic states in this gene 

network might become increasingly sensitive to perturbations near a critical transition22. This 

expectation arises because the state’s basin of attraction shrinks as the stable and unstable fixed 

points approach one another (Figure 1.5A). Brief environmental perturbations will push the 

system out of equilibrium. If the system is far from the critical transition it will return to its 

original state after the perturbation is removed (Figure 1.5B). However, close to the critical 

transition, the same perturbation might cause the system to cross the basin boundary, thus 

causing the cell to switch phenotypic states. Therefore, phenotypic states are expected to lose 

resilience to environmental perturbations near a critical transition. 

 

 

Figure 1.5: resilience of GFP state to directional perturbations 
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Figure 1.5 (continued): Cellular memory of the high GFP history in the toggle switch loses 

resilience to directional. 

(A) A schematic of how the effective potential changes and the basin of attraction shrinks 

approaching the critical transition. The size of the basin of attraction is determined by the 

distance between the stable and unstable fixed points. (B) Far from the critical transition, a 

perturbation temporarily depresses the value of GFP; the system recovers to its initial state after 

the perturbation is removed. Close to the critical transition, the same perturbation causes the 

system to cross the basin boundary into the alternative state. (C) 92 hr after history washout, 

cells at different distances from the phenotypic switch were exposed to a reduction in (IPTG) 

from 40 μM to 0.1 μM. Cells grew for 24 hr in this new condition. IPTG was then restored to 40 

μM and cells were allowed to recover for 24 hr. Control cells were propagated with (IPTG) held 

fixed at 40 μM. (D) The fraction of cells that switched into a high RFP state in response to the 

perturbation is plotted as a function of distance from the tipping point. Two different strength 

perturbations, a weak (10 μM) and a strong (0.1 μM) are plotted. Error bars in D represent the 

standard error of three different samplings from forward scatter area (FSC-A) vs side scatter area 

(SSC-A) (see Figure 1.4). 

 

To test this theoretically proposed loss of resilience we perturbed cells at different 

distances from the critical transition (i.e. different ATc concentrations) and measured how likely 

the cells were to switch into the alternative phenotypic state as a result of environmental 

perturbations. We examined two classes of perturbations, “directional” (in which the 

perturbation increased the probability of switching into the alternative state by inhibiting one or 

another of the two transcription factors that form the toggle switch) and “generic” (in which the 

interaction between the toggle switch and the perturbation was not immediately obvious). 

To explore the directional perturbation we prepared cells in the GFP state by pre-growing 

them in IPTG.  We then transferred the populations to multiple ATc concentrations for four days, 

leaving the cells in the high GFP state but at varying distances from the critical transition. At the 

end of the fourth day, the cells were then perturbed by decreasing the concentration of IPTG for 

one day before returning the IPTG concentration to its original value. Far from the critical 

http://lens.elifesciences.org/07935/index.html
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transition (2 ng/mL ATc), the IPTG perturbation caused almost no cells to switch their 

phenotypic state (Figure 1.5C). However, close to the critical transition (8 ng/mL ATc), the 

perturbation caused a great majority of the cells to switch into a high RFP state.  Even after the 

perturbation was removed and the initial conditions were restored, many cells remained in a high 

RFP state. As expected, the severity of the environmental perturbation (i.e. the magnitude of 

reduction in IPTG) correlated with the fraction of cells that switched states in response to the 

perturbation (Figure 1.5D). Importantly, there was negligible switching (~ 0.5%) into the high 

RFP state for control cells grown in constant IPTG concentrations, demonstrating that the 

phenotypic switching was indeed caused by the perturbation. Moreover, the lack of phenotypic 

switching in the absence of the perturbation also indicates that in all of these conditions the 

traditional measure of cellular memory—the lifetime of the state—would classify all of these 

conditions as being stable with a high degree of cellular memory. Similar results were observed 

in the other direction, as cells pre-grown in the RFP state approach the critical transition 

associated with sudden switching to the GFP state (Figure 1.6). Thus, phenotypic states in the 

toggle switch lose resilience to directional perturbations near a critical transition.  

 

 
Figure 1.6: resilience of RFP state to directional perturbations 
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Figure 1.6 (continued): Cellular memory of the high RFP phenotypic state of the toggle 

switch loses resilience to directional perturbations. 

Cells were pre-grown in the RFP state. 92 hr after history washout, cells at different distances 

from the phenotypic switch were exposed to an increase in (IPTG) from 40 μM to 360 μM. Cells 

grew for 24 hr in this new condition. IPTG was then restored to 40 μM and cells were allowed to 

recover for 24 hr. The fraction of cells that switched into a high GFP state in response to the 

perturbation is plotted as a function of (ATc). Control cells were propagated with (IPTG) held 

fixed at 40 μM. Error bars represent the standard error of three different samplings from forward 

scatter area (FSC-A) vs side scatter area (SSC-A). 

 

1.4 Resilience to generic perturbations 

Cellular memory in development and cell cycle progression must be resilient against a 

wide range of different environmental perturbations. Given this, we wanted to explore whether 

memory in the toggle switch would lose resilience against generic perturbations approaching a 

critical transition. Cells from a high GFP history at different distances from the phenotypic 

switch (2, 4, and 8 ng/mL ATc) were perturbed in several different ways for 24 hours: heat 

stress, osmotic stress with sodium chloride, ethanol stress, and a glucose pulse. Remarkably, we 

observed a loss of resilience against all four of these generic perturbations (Figure 1.7A, B). Far 

from the critical transition (2 ng/mL ATc), there was little to no phenotypic switching in 

response to any of these “generic” perturbations. However, close to the critical transition (8 

ng/mL ATc) we observed nearly complete switching in all perturbations, despite the fact that 

there was essentially no switching (~ 0.5%) in the absence of the perturbations. At a given 

distance from the phenotypic switch, increasing the strength of a generic perturbation increased 

the probability that cells would switch into the alternative state (Figure 1.8). The switching 

induced by the glucose perturbation can perhaps be understood by the fact that glucose shuts 

down expression of the entire system (LacI, TetR, GFP, and RFP) via catabolite repression of a 

GAL1 upstream activation sequence, thus pushing the cells toward a low GFP and low RFP 
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state18,20. The other three perturbations have much broader effects on the cell with no obvious 

connection to the toggle switch network being probed in our experiments. Cellular memory can 

therefore degrade near a critical transition for a wide range of different environmental 

perturbations (Figure 1.7C).  

 

Figure 1.7: Cellular memory of the high GFP history in the toggle switch loses resilience to 

generic perturbations. 
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Figure 1.7 (continued): (A) Cells were pre-grown in the high GFP state. 92 hr after history 

washout, cells at 2, 4, and 8 ng/ml ATc were exposed to an osmotic stress (600 mM NaCl). Cells 

grew for 24 hr in this new condition. The osmotic stress was then removed and cells were 

allowed to recover for 24 hr. Control cells were propagated with NaCl held constant throughout 

the whole time course. Growth media contains trace NaCl (2 mM). (B) The fraction of cells that 

switched into a high RFP state is plotted as a function of [ATc]. During the 24 hr perturbation 

period, cells were exposed to 6% ethanol (pink), 600 mM NaCl (peach), 37°C (violet), 0.2% 

glucose (blue), or no perturbation (teal). Error bars in B represent the standard error of three 

different samplings from FSC-A vs SSC-A. All results were replicated in a second independent 

experiment several weeks later (see Figure 1.9). (C) A schematic of the key findings from the 

perturbation experiments. 

 

 

Figure 1.8: Increasing the strength of a generic perturbation increases the probability that 

cells will switch into the alternative phenotypic state. 

Yeast cells expressing the toggle switch were pre-grown in a high GFP state and then transferred 

to an environmental condition that is close to the phenotypic switch ([ATc] = 8 ng/ml). Cells 

were perturbed for 24 hr with a salt (left panel) or an ethanol pulse (right panel) and then allowed 

to recover for 24 hr. The fraction of cells that switch into the high RFP state in response to the 

perturbation is plotted as a function of perturbation intensity. ATc and IPTG were held fixed 

throughout the perturbation and recovery periods. Control cells were propagated with no 

supplemental salt or ethanol for comparison. Error bars represent the standard error of 

measurements from three different gatings on FSC-A vs SSC-A. 

  

http://lens.elifesciences.org/07935/index.html
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Figure 1.9: A loss of resilience to generic perturbations was confirmed in a second 

independent experiment. 

Same experiment as Figure 1.7B. Yeast cells expressing the toggle switch were pre-grown in the 

high GFP state and then transferred to different distances from the critical transition (2, 4, or 8 

ng/ml ATc). After 92 hr of growth, the cells were perturbed for 24 hr and then allowed to recover 

for 24 hr. The fraction of cells that switched into a high RFP state is plotted as a function of 

(ATc). During the perturbation period, cells were exposed to 6% ethanol (yellow), 600 mM NaCl 

(peach), 37°C (violet), 0.2% glucose (blue), or no perturbation (teal).Error bars represent the 

standard error of three different samplings from FSC-A vs SSC-A. 

 

Complex dynamic systems near critical transitions are predicted to lose resilience to a 

specific class of perturbations: those that push the system toward the alternative stable state.  

However, the effect of a salt shock or a heat shock on the GFP output of the toggle switch is 

challenging to predict a priori.  Notably, it is possible that some generic perturbations will 

stabilize the state of the cells and reduce their probability of switching. Indeed, we found that 

none of the four generic perturbations led to a loss of resilience in the transition from the high 

RFP state (Figure 1.10, left panel). This result is unsurprising given that the perturbations did not 

strongly push the genetic network toward the high GFP state (Figure 1.10, right panel).  For the 

salt, ethanol, and heat stresses, the perturbation increased the RFP output of the cells, thereby 

http://lens.elifesciences.org/07935/index.html
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stabilizing the state.  Thus, phenotypic states in the toggle switch only loss resilience to 

perturbations that push the system toward the alternative state. 

 

Figure 1.10: Cellular memory of the RFP state of the toggle switch does not lose resilience 

to generic perturbations because salt, ethanol, and heat shocks stabilize the high RFP state. 

(Left Panel) Yeast cells were pre-grown in the high RFP state. 92 hr after history washout, cells 

at 2, 4, and 8 ng/ml ATc were exposed to 6% ethanol (pink), 600 mM NaCl (peach), 37°C 

(violet), 0.2% glucose (blue), or no perturbation (teal). Cells grew for 24 hr in this new 

condition. The perturbation was then removed and cells were allowed to recover for 24 hr. 

Control cells were propagated in 2% galactose and 30°C with no salt or ethanol. The fraction of 

cells that switched into a high GFP state is plotted as a function of (ATc). (Right Panel) The cells 

were pre-grown in a high GFP state (green) or high RFP state (red) and then transferred to an 

intermediate distance from the phenotypic switch (4 ng/ml ATc). 92 hr after history washout, the 

cells were perturbed as described above. The mean fluorescence shifts from its pre-perturbation 

location (red or green dot) to the tip of the perturbation arrow. Error bars in the left panel 

represent the Laplacian-corrected binomial counting error. 

 

1.5 Mapping the bifurcation diagram 

We reasoned that our experimentally-observed loss of resilience could be caused by a 

shrinking basin of attraction of the phenotypic state. To test this hypothesis, we used our 
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perturbation experiments to estimate the location of the basin boundary in GFP-RFP space and 

see how it shifted for different concentrations of ATc (Figure 1.11A). For a given concentration 

of ATc and a chosen perturbation, we measured the fraction of cells that switched into the 

alternative state at the end of the recovery period. Analysis of the GFP-RFP distribution at the 

end of the perturbation and before the recovery period revealed that many cells were in an 

indeterminate state between the two stable phenotypic states. We ranked the cells according to 

the ratio of GFP expression to RFP expression and assumed that a cell would switch phenotypic 

states when its ratio of GFP expression to RFP expression fell below a critical threshold.  This is 

equivalent to assuming that the basin boundary between the two phenotypic states takes the form 

of a line on a log-log plot.  To justify this assumption, we used a simple mathematical model of 

the toggle switch (see Figure 1.12).  Our modeling indicated that this assumption would hold as 

long as the promoter strengths of the two transcription factors in the toggle switch were 

approximately equal. 

Using the assumption described above, we estimated the location of the basin boundary 

consistent with our experimentally observed fractions at the end of the recovery period.  

Encouragingly, we find that for a given concentration of ATc, the switching fraction for the eight 

different perturbations (weak and strong IPTG, weak and strong ethanol, weak and strong salt, 

heat, glucose) is well fit by a single separatrix (Figure 1.11B). Moreover, as ATc increases from 

2 to 8 ng/mL, the location of the basin boundary gets closer to the location of the high GFP 

stable fixed point (Figure 1.11C). Knowing the location of the basin boundary allowed us to map 

the bifurcation (Figure 1.11D). Thus, the loss of resilience appears to be driven by a shrinking 

basin of attraction of the phenotypic state. 
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Figure 1.11: The loss of resilience is due to a shrinking basin of attraction of the phenotypic 

state. 

(A) By examining the RFP-GFP distribution at the end of the recovery period and comparing it 

to the end of the perturbation period, the basin boundary can be estimated. A cell is assumed to 

switch when its ratio of GFP to RFP expression falls below some threshold α, so the separatrix is 

a line with slope 1 and intercept α on a log–log plot. A simple model of the toggle switch 

supports this assumption (see Figure 1.12). For each [ATc], eight perturbations (10 μM IPTG, 

0.1 μM IPTG, 37°C, 200 mM NaCl, 600 mM NaCl, 2% ethanol, 6% ethanol, and 0.2% glucose) 

were used to estimate α by minimizing the mean-squared deviation between the estimated and 

measured fractions. (B) The estimated fraction is compared to the measured fraction for [ATc] = 

2 ng/ml (□), 4 ng/ml (∆), and 8 ng/ml (○). (C) The unperturbed GFP-RFP distribution for cells at 

http://lens.elifesciences.org/07935/index.html
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Figure 1.11 (continued): 0 ng/ml (green) and 128 ng/ml (red) is overlaid with the estimated 

separatrix from 2, 4, and 8 ng/ml. μ ± σ is shaded for each separatrix. (D) The location of the 

high GFP stable fixed point (green), unstable fixed point (purple), and low GFP stable fixed 

point (red) are plotted as a function of ATc. The system is bistable for intermediate ATc and 

monostable at low and high ATc. We assume that switching follows a line in log-space 

connecting the centroids of the two distributions in Figure 1.11C (see Figure 1.13). Error bars in 

all plots represent the standard error from three samplings from the FSC-A vs SSC-A 

distribution. 

 

Figure 1.12: A simple model of the toggle switch justifies the assumption that the basin 

boundary can be approximated as a line in LacI-TetR space. 

A deterministic model features cooperative binding of repressor proteins to their promoters (see 

section 1.9 for further details). The system was initialized with a wide range of initial 

concentrations of LacI and TetR. The system then evolved in time until it reached one of the two 

stable fixed points. Initial conditions leading to a high LacI state are shaded in green, and initial 

conditions leading to a high TetR state are shaded in red. The stable fixed points are represented 

by black circles. The basin boundary is the interface where the red and the green areas meet. 

Left: the promoters have equal strengths and right, the promoters have asymmetric strengths. See 

also the grey line in figure S7 of work by Wu and colleagues20. 

 

http://lens.elifesciences.org/07935/index.html
http://lens.elifesciences.org/07935/index.html
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Figure 1.13: Cell switching paths approximately follow a line on a log–log plot connecting 

the stable fixed points. 

Yeast cells in a high GFP condition (2 ng/ml ATc) are plotted in green and cells in a high RFP 

condition (128 ng/ml ATc) are plotted in red. The line connecting the centroids of the 

distribution is plotted in black. Overlaid in purple is the distribution of cells that were initially in 

a high GFP state and were then perturbed for 24 hr with a glucose pulse. The unstable fixed point 

in Figure 1.11D is estimated by finding the y-coordinate of the intersection of the basin boundary 

in Figure 1.11C with the black line above. 

 

1.6 Early Warning Indicators of Critical Transition 

Given that the phenotypic states associated with our toggle switch lose resilience to 

perturbations near the critical transition, a natural question is whether, just as in other examples 

of critical transitions in complex systems such as ecosystem collapse, it is possible to develop 

warning indicators that this loss of resilience is taking place16. For example, one might expect 

that the mean GFP of cells in the high GFP state would decrease with increasing ATc, thus 

potentially signaling that the critical transition is approaching23. However, we find that the mean 

GFP of unswitched cells is approximately constant over the range of ATc concentrations in 

which we observe a loss of resilience (Figure 1.1B and Fig. 1.14A). Researchers in a number of 

http://lens.elifesciences.org/07935/index.html
http://lens.elifesciences.org/07935/index.html
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fields have explored early warning indicators based on a loss of stability near a critical transition 

(broadening of the effective potential as illustrated in Figure 1.5A)17. This loss of stability would 

manifest in our experiments as an increase in the variation of GFP fluorescence among the 

population of (unswitched) cells. However, we find experimentally that there is no increase in 

variation within the population approaching the critical transition, even very close to the 

transition where the GFP state is metastable (Figure 1.14B and C). The theoretically proposed 

early warning indicators based on local stability therefore fail to predict the critical transition in 

this gene network24. 

 

 

Figure 1.14: early warning indicators of impending bifurcation 
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Figure 1.14 (continued): No significant change in mean fluorescence of the state and no 

significant increase in coefficient of variation approaching the critical transition. 

Yeast cells expressing the toggle switch were pre-grown in the high GFP state (green triangles) 

or the high RFP state (red circles) and then transferred to a range of ATc concentrations for 92 

hr. (A) The mean GFP fluorescence of cells that have not switched from their pre-growth state is 

plotted against [ATc]. Above 16 ng/ml (for the GFP history) and below 1 ng/ml (for the RFP 

history), all of the cells have switched into the alternative state. To quantify population 

variability, the standard deviation normalized to the mean (coefficient of variation, i.e., ‘CV’) is 

plotted for the B, log-transformed and C, linear values of fluorescence. When calculating 

variation, only cells that remain in the state they were pre-grown in are analyzed (see inset in B). 

To minimize the effect of instrument noise in B and C, variation in RFP fluorescence is 

measured for the RFP history (similarly, variation in GFP is measured for the GFP history). 

Error bars in A represent the standard error of three samplings from FSC-A vs SSC-A. Error bars 

in B and C are standard errors from 200 bootstrap resamplings of the data. 
 

1.7 Yeast GAL and E Coli Lactose Network Experiments 

To explore the generality of our results, we chose to study the yeast GAL network, which 

displays an “all-or-none” response in some sugar environments containing galactose25,26. 

However, the wild-type GAL network exhibits only weak memory26. To expand the range of 

galactose concentrations for which the system has memory4, we used a strain of yeast 

constitutively expressing the repressor GAL80 (which codes for a transcriptional repressor 

involved in one of the many feedback loops that stabilize memory in this network). To assess the 

state of the network, yellow fluorescent protein (YFP) expression was driven by a GAL1 

promoter. Cells were pre-grown in high galactose (GAL ON) and then grown for a day in a range 

of galactose concentrations (Figure 1.15A). We then examined the resilience of the GAL 

network to perturbations at different distances from its critical transition, similar to our 

experiments with the toggle switch. For the GAL network, a glucose pulse served as a directional 
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perturbation (due to catabolite repression27), and we again used heat, salt, and ethanol as generic 

perturbations.  

 

Figure 1.15: The yeast galactose network loses resilience to directional perturbations and 

the generic perturbation ethanol. 

(A) 25 hr after history washout, a gal80-inducible strain shows strong memory above 0.05% 

galactose. The two histories are offset for ease of viewing, and the region of memory is shaded in 

yellow. 50 cells at random are plotted from a tight gate on FSC-A vs SSC-A. (B) 25 hr after 

history washout, cells at 0.4%, 0.1%, and 0.08% galactose were exposed to 6% ethanol (pink), 

600 mM NaCl (peach), 37°C (violet), 0.1% glucose (blue), or no perturbation (teal). Cells grew 

for 12 hr in this new condition. The perturbation was then removed and cells were allowed to 

recover for 12 hr. Control cells were propagated with fixed glucose, galactose, and temperature. 

The fraction of cells that switched into a low YFP state after the perturbation is plotted as a 

function of [galactose]. Error bars are standard errors obtained by bootstrap with 200 

resamplings of the data. 

 

We found that the “GAL ON” phenotypic state lost resilience to glucose and ethanol 

perturbations but not salt or heat (Figure 1.15B). Similarly, we performed experiments probing 

the resilience of the ON state in the E. coli lac operon, where we again observed a loss of 

resilience to both directional perturbations and to the generic perturbation ethanol (Figure 1.16). 
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These three genetic switches have widely different architectures, and operate in two different 

species. Our results thus indicate that a loss of resilience approaching a phenotypic switch could 

be a general property of multistable gene networks and that “generic” or global perturbations, 

such as temperature or salt shocks, can cause widespread loss of cellular memory. 

 

 

Figure 1.16: The Escherichia coli lactose network loses resilience to directional 

perturbations as well as to the generic perturbation ethanol. 

(Left panel) The cells were pre-grown in either 0 or 100 μM TMG (‘LAC OFF’ and ‘LAC ON,’ 

respectively) for 20 hr and then diluted into a range of TMG concentrations. After 21 hr of 

growth, the system exhibits strong hysteresis. A constitutively expressed mCherry allows for 

discrimination between OFF cells and noise. The region of memory is shaded in gray, and the 

two histories are offset for ease of viewing. Fifty cells at random are plotted. (Lower panel) 21 hr 

after pre-growth washout, the cells from the ON history were exposed to several perturbations 

for 12 hr (blue: 0.01% glucose; pink: 6% ethanol; peach: 1 M NaCl; violet: 43°C). The 

perturbations were then removed, and the cells were allowed to recover for 12 hr. The fraction of 

cells that switched into the OFF state is plotted as a function of [TMG]. Control cells (green) 

were grown at 37°C with no added salt, glucose, or ethanol. Error bars represent the standard 

error from 200 bootstrap resamplings of the data. 
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1.8 Discussion 

Here we have shown that brief perturbations in the extracellular environment can 

dramatically increase the rate of phenotypic switching from a highly stable memory state into an 

alternative state. We argue that this loss of resilience to perturbations near the bifurcation can be 

explained by a shrinking of the basin of attraction of the phenotypic state. By observing the GFP-

RFP distribution at the end of the perturbation period and applying a simple threshold, we were 

able to accurately predict the fraction of cells that would return to the pre-perturbation memory 

state at the end of the recovery period. At a given distance from the bifurcation, the same basin 

boundary was able to accurately predict the switching fraction in response to eight different 

perturbations. The predictive success of this threshold is particularly impressive given that the 

different perturbations have dramatically different effects on the GFP-RFP distribution (see 

Figure 1.11A). 

There is an interesting question of the precise mechanism by which the perturbations act 

on the system to push the cells to a new location in GFP-RFP space. Part of the answer is 

certainly that the perturbations cause a shift in the stability landscape underlying the phenotypic 

states. It is also possible that the perturbations cause an increase in noisy gene expression. 

Understanding what is occurring during the perturbation period, both biochemically and from a 

dynamical systems perspective, will be an area of investigation for future research. 

The perturbations (salt stress, heat stress, etc.) lasted for a significant duration: 24 hr, or 

roughly 3 to 8 cell divisions. It is interesting to ask whether we would have seen similar results if 

we had perturbed the system for a shorter duration. To address this question, we performed 

Gillespie simulations using a very simple phenomenological model of the toggle switch (see 

section 1.9 for additional details)28. Similar to our test tube experiments, we initialized the 

http://lens.elifesciences.org/07935/index.html
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system in a high Lac state. The system was allowed to equilibrate for several generations, before 

we suddenly changed one of the parameters of the system (either the disassociation constant 

between the transcription factor and the DNA or the promoter strength). We performed this 

perturbation for a variable duration ranging from 0.2 generations to 20 generations. The system 

was then allowed to recover (by restoring the parameter to its initial value) for several 

generations, and we then determined what fraction of cells remained in a high Lac state. Two key 

observations emerged. (1) The degree of switching is set by both the intensity and duration of the 

perturbation. For dramatic perturbations, the minimum duration of perturbation to induce 

switching is approximately set by the cell division time (Figure 1.17). (2) Not all perturbations 

induced phenotypic switching. Of note, perturbations which stabilized the high Lac state induced 

negligible switching into the high Tet state (Figure 1.18). These observations held regardless of 

whether the perturbation was achieved by changing the disassociation constant or the promoter 

strength. 

 

Figure 1.17: Increasing the duration of the perturbation increases the fraction of cells that 

switch phenotypes in a Gillespie simulation of the toggle switch.  
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Figure 1.17 (continued): Here, p = 50, K = 15, and γ = 0.5. 100 cells are initialized in a high Lac 

state and equilibrate for ten generations. Suddenly, K is increased to 100 for a variable time 

period (ranging from 0.2 to 20 generations). K is then restored to 15, and the cells are allowed to 

equilibrate for several more generations. At the end of the recovery, we determine what fraction 

of the cells remains in a high Lac state. 

 

 

 

Figure 1.18: Not all perturbations induce switching in a Gillespie simulation of the toggle 

switch. 

Here, p = 50, K = 15, and γ = 0.5. 100 cells are initialized in a high Lac state and equilibrate for 

ten generations. Suddenly, K is decreased to 1 for a variable time period (ranging from 0.2 to 20 

generations). K is then restored to 15, and the cells equilibrate for several more generations. At 

the end of the recovery, we determine what fraction of the cells remains in a high Lac state. 

 

Understanding the stability of phenotypic states in gene networks remains an important 

challenge in biology. Here we have demonstrated that for robust cellular memory in natural 

contexts subject to environmental noise, low rates of stochastic switching from the phenotypic 

state is not sufficient. This is because the cellular memory must also be robust against 

environmental fluctuations and perturbations that are impossible to avoid. Here we found 
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experimentally that several phenotypic states lost resilience to multiple environmental 

perturbations near a critical transition. Given that over time there will often be multiple kinds of 

environmental fluctuations and perturbations, our results argue that many forms of cellular 

memory will become destabilized near a critical transition. Our results provide a roadmap for 

exploring cellular memory and phenotypic switching in other contexts, from development to 

cancer progression. 

1.9 Appendix: Experimental Methods and Computational Simulations 

Strains 

Toggle switch strains have been previously characterized18,20.  Gal80-inducible strains have been 

previously described22.  LacY-YFP fusion strains have been previously described29. 

Toggle Switch Experiments 

Cells were grown in synthetic media (YNB and CSM – Trp – Leu; Sunrise Science) containing 

2% galactose and ATc/IPTG as described in the text.  Cells were grown in 3 mL cultures in 14 

mL VWR culture tubes and diluted daily to prevent saturation.  Cells were pre-grown for 24 

hours in either 1 mM IPTG or 250 ng/mL ATc and then transferred to a range of ATc 

concentrations as described in the text.  20 μL of cells were harvested daily at OD 0.5, diluted in 

180 μL PBS, and run immediately on a Miltenyi MACSQuant VYB flow cytometer.  After 4 

days of serial transfer, cells were transferred to the perturbation environment.  Cells grew for 24 

hours in this environment before being characterized via flow cytometry and diluted into the 

original environment they were in before the perturbation (hereafter, the “recovery 

environment”).  Cells grew for 24 hours in the recovery environment and then were 

characterized with flow cytometry.  The basin boundary was estimated by assuming that cells 
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switched phenotypes when the ratio of GFP to RFP expression fell below a critical threshold.  

All results were verified in two independent experiments carried out several weeks apart. 

GAL network experiments 

Cells were pre-grown for 24 hours in either 0.5% galactose or 0.01% glucose (GAL ON and 

GAL OFF, respectively) plus 0.05 μg/mL doxycycline.  Cells were then diluted into 0.01% 

glucose, 0.05 μg/mL doxycycline, and galactose concentrations ranging from 0 to 2%.  Cells 

were diluted every 12 hours and the OD was kept below 0.01 to minimize consumption of the 

sugars.  Cells were harvested every 12 hours, concentrated via centrifugation, and characterized 

immediately via flow cytometry.  Cells were transferred to the perturbation environment 24 

hours after history removal.  They were then grown for 12 hours, characterized via flow 

cytometry and diluted into the recovery environment, grown for a further 12 hours, and 

characterized via flow cytometry. 

Lac network experiments 

Cells were grown in M9 media with .1% succinic acid as a carbon source.  Cells were first pre-

grown in either 0 or 100 µM TMG (“Lac OFF” and “Lac ON,” respectively) for 20 hours.  The 

history condition was then washed out, and the two populations were then separately transferred 

to a range of TMG concentrations.  Cells grew for 21 hours.  YFP expression was assayed using 

flow cytometry as a proxy for the state of the Lac network.  A constitutively expressed RFP 

enabled for discrimination between cells and noise.  21 hours after history washout, cells were 

diluted into the perturbation environment and grown for 12 hours.  After 12 hours of growth, 

YFP expression was again assayed using flow cytometry.  At the same time, the cells were 

diluted into the recovery environment and grown for a further 12 hours.  At the end of the 

recovery period, YFP expression was again assayed using flow cytometry.   
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Data Analysis 

Flow cytometry data was analyzed utilizing the Gore lab’s flow cytometry tool kit, which can be 

accessed at http://gorelab.bitbucket.org/flowcytometrytools/.   

Theoretical Model for the Toggle Switch 

The rate of production of the two repressors is described by the following equations: 

(1)    [𝐿𝑎𝑐𝐼]̇ =
𝑃𝑇𝑒𝑡

1 + (
[𝑇𝑒𝑡𝑅]

𝐾𝑇𝑒𝑡
)

2 −  𝛾[𝐿𝑎𝑐𝐼] 

(2)[𝑇𝑒𝑡𝑅]̇ =
𝑃𝐿𝑎𝑐

1 + (
[𝐿𝑎𝑐𝐼]
𝐾𝐿𝑎𝑐

)
2 −  𝛾[𝑇𝑒𝑡𝑅] 

 

The promoter strength is determined by the DNA sequence and has been previously 

characterized18.  As a simple approximation, we treat ATc and IPTG as modulating KTet and 

KLac.  We assume that the proteins are stable, so the rate of transcription factor degradation is set 

by dilution via cell division. 

Our primary goal for the model was to predict the shape of the basin boundary between the two 

phenotypic states, particularly in a system where the promoter strengths are asymmetric.  Figure 

1.12 was generated by picking values of KTet and KLac so that the system exhibited bistability 

over a range of [LacI] and [TetR].  We initialized the system with many different [LacI] and 

[Tet] and allowed the system to evolve according to equations 1 and 2 until the system reached a 

steady state.   

For the equal promoter strengths, the following parameters were used: 

 

PLac=PTet=50 

KLac=KTet=15 

γLac=γTet=0.5 

 

http://gorelab.bitbucket.org/flowcytometrytools/
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For the unequal promoter strengths, the following parameters were used: 

 

PLac= 30 

PTet=35 

KLac=KTet=15 

γLac=γTet=0.5 

 

For the Gillespie simulations to investigate the effect of perturbation duration on switching 

fraction, we again used: 

PLac=PTet=50 

KLac=KTet=15 

γLac=γTet=0.5 

 

Similar to our test tube experiments, we initialized the system in a high Lac state.  The system 

was allowed to equilibrate for several generations, before we suddenly changed one of the 

parameters of the system (either the disassociation constant between the transcription factor and 

the DNA or the promoter strength).  We performed this perturbation for a variable duration 

ranging from .2 generations to 20 generations.  The system was then allowed to recover (by 

restoring the parameter to its initial value) for several generations, and we then determined what 

fraction of cells remained in a high Lac state. 
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Chapter 2 

Yeast Cross-feeding Mutualism Dynamics 

Mutualisms between species play an important role in ecosystem function and stability. 

However, in some environments the competitive aspects of an interaction may dominate the 

mutualistic aspects. Although these transitions could have far-reaching implications, it has been 

difficult to study the causes and consequences of this mutualistic-competitive transition in 

experimentally tractable systems. Here we study a microbial cross-feeding mutualism in which 

each yeast strain supplies an essential amino acid for its partner strain. We find that, depending 

upon the amount of freely available amino acid in the environment, this pair of strains can 

exhibit an obligatory mutualism, facultative mutualism, competition, parasitism, competitive 

exclusion, or failed mutualism leading to extinction of the population. A simple model capturing 

the essential features of this interaction explains how resource availability modulates the 

interaction and predicts that changes in the dynamics of the mutualism in deteriorating 

environments can provide advance warning that collapse of the mutualism is imminent. We 

confirm this prediction experimentally by showing that, in the high-nutrient competitive regime, 

the strains rapidly reach a common carrying capacity before slowly reaching the equilibrium 

ratio between the strains. However, in the low-nutrient regime, before collapse of the obligate 

mutualism, we find that the ratio rapidly reaches its equilibrium and it is the total abundance that 

is slow to reach equilibrium. Our results provide a general framework for how mutualisms may 

transition between qualitatively different regimes of interaction in response to changes in nutrient 

availability in the environment. 

2.1 Background and Motivation 
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 Species in a community interact in a bewildering variety of ways, from parasitic to 

competitive to mutualistic. Mutualisms, in which two species engage in reciprocal cooperative 

behavior that benefits both partners, are thought to be particularly important for the stability of 

ecosystems30,31. Mutualisms in nature are common and diverse, including the pollination of crops 

and other plants by bees32, the cross-protection between clown fish and anemone33, and the 

symbiosis between tubeworms and bacteria34. In the case of the tubeworm the interaction is 

completely obligatory, since it has no digestive system and acquisition of energy depends 

completely on bacterial symbionts. The mutualism between most plants and their pollinators, 

however, is typically facultative as most plants have multiple pollinators and most pollinators 

feed from multiple plant species. Despite the fact that species in a mutualism are often referred to 

as being in an obligate or facultative mutualism, a major focus of recent research on mutualisms 

has attempted to elucidate the conditions in which a mutualism can break down or switch to a 

parasitism35,36. For example, the cross-protection mutualism between ants and the plants that 

house them can break down when grazing pressure on the plant is reduced37.  

In many microbial mutualisms, partners benefit from each other through cross-feeding, in 

which each species supplies their partner with nutrients. Such interactions can be present within 

a species38, between pairs of species39,40 or could represent a complicated network of 

dependencies41, and possibly play a major role in driving the diversity of microbial communities 

in environments such as the soil42. Laboratory experiments on microbial ecosystems enable fine-

grained control of microbial populations and their environment, providing the potential to 

integrate experiments and models in ways not possible in the field. Laboratory experiments have 

been used to show a stabilizing effect of mutualistic interactions on relative abundance of two 

microbial species39, which also protected populations against invasion by cheater strains43. 
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Recent work demonstrated that novel mutualisms could be established in a variety of 

circumstances44,45. However, these and other laboratory studies generally focused on a narrow 

range of conditions that result in obligate mutualisms39,43,44,46. Therefore, they did not explore 

how mutualisms are affected when the driving forces behind cooperative interactions are 

changing, and how this could result in a transition from mutualistic to competitive or other 

interactions. 

In our work, we use a synthetic cross-feeding yeast system in which we modulate the 

dependence on the mutualism by supplementing the media with the amino acids they cross-feed. 

By changing these two nutrient concentrations, we are able to switch between a surprisingly 

large number of different interaction types, including obligatory and facultative mutualism, 

competition, parasitism and competitive exclusion. Each of these regimes shows qualitatively 

different dynamics which we can understand using a simple model. Our experiments shed light 

on the previously underexplored question of how resource availability can modulate the type of 

interactions between species in a mutualism. 

2.2 Synthetic Obligatory Mutualism in Batch Culture 

As a model system for mutualistic interactions, we used two non-mating Saccharomyces 

cerevisiae strains that are each unable to produce an essential amino acid yet over-produce the 

amino acid required by its partner (Figure 2.1A)40. The RFP-tagged, leucine auxotrophic strain 

(Leu-) overproduces tryptophan, while the YFP-tagged tryptophan auxotroph (Trp-) 

overproduces leucine. These strains have previously been demonstrated to form a cross-feeding 

mutualism when grown on solid agar, with each strain leaking out the amino acid needed by its 

partner40. 
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Figure 2.1: Two auxotrophic yeast strains can form a stable cross-feeding mutualism in a 

range of nutrient concentrations. (A) The YFP-tagged strain is unable to produce the amino 

acid tryptophan but overproduces the amino acid leucine, whereas the RFP-tagged strain is 

unable to produce leucine but overproduces tryptophan. (B) The mutualism is probed by co-

culturing the two auxotrophic yeast strains in batch culture with 10x dilution daily. Flow 

cytometry and spectrophotometry report on the relative fraction and total abundance of the two 

yeast strains at the end of each day of growth. (C) Optical density after eight days of daily 

dilution and growth. The co-culture is able to survive in low amino acid concentrations where the 

monocultures cannot survive (solid lines indicate the concentrations below which each 

auxotrophic strain goes extinct). (D) Abundance of the co-culture (solid line) and monocultures 

(dashed line) for the Trp- (green) and Leu- (red) strains. In low amino acid concentrations (1 & 8 

µM) the strains form an obligate mutualism, in medium amino acid concentrations (8 & 64 µM) 

the strains form a facultative mutualism, and in high amino acid concentrations (32 & 256 µM) 

the strains form an amensalism, as the Leu- strain is relatively unaffected and the Trp- strain is 

harmed by the interaction. 

 

A B 

C 

D 
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To determine if we could establish a stable mutualism between these strains in well-

mixed liquid batch culture, we inoculated monocultures and co-cultures at a range of leucine and 

tryptophan concentrations (Fig 2.1B,C). Co-cultures were started with equal amounts of each 

strain, at the same total density as monocultures. Each day we diluted by a factor 10 into fresh 

media containing the same defined concentrations of leucine and tryptophan (Figure 2.1B); 

survival of the culture over repeated cycles of growth and dilution therefore requires that the 

population is able to divide at least log2(10) ~ 3.3 times each day. In monoculture, Trp- cells 

required at least 2 µM tryptophan to avoid going extinct due to dilution, while Leu- cells required 

a minimum of 32 µM Leucine. In contrast, co-cultures could survive on concentrations of 

leucine and tryptophan where the monocultures would each go extinct. Co-cultures survived 

eight of these growth-dilution cycles, indicating a stable mutualism. Even in concentrations 

where monocultures survived, we found that co-culture density was often much higher than the 

sum of monoculture densities (Fig 2.1C), suggesting that in this regime the strains were 

interacting in a facultative mutualism. 

Understanding the relative benefits that each partner in the mutualism does or does not 

receive requires that we also determine the population abundance of each strain at different 

amino acid concentrations. We therefore co-cultured the strains and measured the population 

composition by flow cytometry at the end of each day. We tried to make both strains receive 

equal benefits from the amino acids being supplemented by adding leucine and tryptophan in a 

ratio of 8 to 1, which is approximately the intracellular ratio of these amino acids47. We found 

that at low amino acid concentrations (1 µM tryptophan, 8 µM leucine; 1 & 8 µM) the strains 

indeed form an obligate mutualism with an apparently stable coexistence, since relative 

abundance changes little over time (Fig 2.1D). At medium amino acid concentrations (8 & 64 
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µM) the strains form a facultative mutualism, with both strains benefiting from the presence of 

the other strain, yet also surviving when grown in monoculture. At high amino acid 

concentrations (32 & 256 µM), we observed coexistence of the two strains, but with the Trp- 

strain at an equilibrium abundance below what it would have reached in a monoculture. At this 

high amino acid concentration we therefore found that the strains are forming an amensalism, in 

which the Leu- strain is relatively unaffected by the interaction but the Trp- strain performs worse 

in coculture than in monoculture. This demonstrates that a simple microbial cross-feeding 

mutualism can transition into a qualitatively different interaction by a simple change in 

environmental conditions.  

2.3 Phenomenological Model of Mutualism 

To gain insight into the transition between the different regimes of interaction in our 

cross-feeding strains, we implemented a simple phenomenological model designed to capture the 

essential elements of the interactions between the strains. We assumed that the two strains Trp- 

(X) and Leu- (Y) have a per capita growth rate that is modulated by the mutualistic partner as 

well as the supplemented amino acids:  

𝑑𝑋

𝑑𝑡
= 𝑟𝑥𝑋 (

𝑌+𝑎

𝑌+𝑎+𝜅
) ( 1 − 𝑋 − 𝑌) − 𝛿𝑋   [1] 

𝑑𝑌

𝑑𝑡
= 𝑟𝑦𝑌 (

𝛽𝑋+𝑎

𝛽𝑋+𝑎+𝜅
) ( 1 − 𝑋 − 𝑌) − 𝛿𝑌   [2] 

The growth rate of each strain increases with the abundance of the mutualist partner and the 

needed amino acid, but this benefit saturates via a Michaelis-Menten form. We assume that the 

supplemented amino acids are always added at a fixed ratio, so we use a single variable ‘a’ to 

capture the amount of supplemented amino acids (despite the fact that the two strains are actually 

consuming different amino acids). Since the 1-to-8 ratio of tryptophan to leucine should give 
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about equal ‘relative’ amounts of amino acids, we used the same scaling constant (kappa = 0.12) 

for both equations. The two strains are also assumed to use other resources in the environment 

and hence saturate at a total population size, which is normalized to 1. Additionally, we 

recapitulated our daily dilutions by introducing a fixed death rate, δ = 0.5 (although our 

experiments are done in batch culture, for simplicity we model our mutualism in continuous 

culture). We incorporated only two aspects of the asymmetry between our two strains. First, 

based on competition experiments in very high amino acid concentrations (200 & 1600 µM), we 

calculated that Leu- has a fitness disadvantage of ~7.5% in optimal conditions (Figure 2.2) so we 

set the normalized growth rates to be rx = 1 and ry = 0.925. Second, we assume that the Trp- 

strain contributes more to the mutualism than the Leu- strain (β = 2), since the Leu- strain 

dominated at intermediate amino acid concentrations (Fig 2.1D).  

 

Figure 2.2: Relative fitness of Leu-
 is lower than fitness of Trp-

. To analyze fitness difference, 

we grew the strains in co-culture at saturating amino acid concentrations (200 µM tryptophan 

and 1600 µM leucine). With such high concentrations, additional amino acids provided through 

cross-feeding will give negligible benefits, thus enabling us to compare the intrinsic growth rate 

of the two strains. Co-cultures were started at 36 different combinations of initial density and 

abundance and grown for two cycles of daily dilution to reach carrying capacity. They were then 

grown for five additional days, and relative fitness was determined each day in every condition 

(See section 2.7, appendix). Error bar indicates mean ± s.d. 
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This simple phenomenological model was able to explain the qualitative regimes of 

interactions that we observed previously (Fig 2.1D) and suggested that simply by varying the 

amino acid concentrations we may be able to observe an even larger number of qualitative 

outcomes between our two strains (Fig 2.3). Increasing amino acid concentrations from the 

region of obligatory mutualism (O, blue), the model predicts that the interaction should become a 

facultative mutualism (F, green) followed by a parasitism (P, yellow), with the Leu- benefiting 

from the interaction and the Trp- being harmed. The model then predicts that the amensalism 

previously observed in Fig 2.1D corresponds to the boundary of the parasitism region and a 

competition region (C, orange), in which the strains coexist but at an equilibrium density below 

what they would reach in monoculture. This outcome is achieved despite the fact that the force 

leading to coexistence of the strains is still the sharing of amino acids. Since these strains have 

complete niche overlap, coexistence is not possible without a stabilizing influence, which is 

provided by amino acid transfer48. At even higher amino acid concentrations the model predicts 

that the strain with a higher maximal growth rate (Trp-) should outcompete the slower dividing 

strain, since in this regime amino acids are no longer limiting (Competitive Exclusion (CE), red). 

The model also predicts that due to the asymmetry in the strains there will be a small region 

where the interaction is a facultative mutualism for one strain, yet an obligatory mutualism for 

the other strain (OF, cyan). Finally, the model predicts that in the absence of supplemented 

amino acids the mutualism will fail and both strains will go extinct (X, dark blue). This model, 

although exceedingly simple, therefore predicts the existence of a surprisingly wide range of 

different qualitative outcomes within a mutualist pair. 
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Figure 2.3: A simple phenomenological model predicts that a cross-feeding mutualism can 

shift between many qualitative outcomes. Plot shows equilibrium density of co-cultures (solid 

lines) or monocultures (dashed lines) as a function of amino acids. The colorbar above the plot 

shows the qualitative regimes of interaction. Regimes are extinction (X, dark blue), obligatory 

mutualism (O, blue), obligatory/facultative mutualism (OF, cyan), facultative mutualism (F, 

green), parasitism (P, yellow), competition (C, orange) and competitive exclusion (CE, red). 

2.4 Testing the Predictions of the Model 

To test these model predictions of many different interaction regimes, we experimentally 

measured the equilibrium abundances at a wide range of amino acid concentrations (Figure 2.4). 

As predicted by the model, we found that varying the amino acid concentration caused the 

mutualist pair to switch between seven different qualitative regimes, with the ordering of these 

regimes as predicted by the model. From low to high amino acid concentrations we observed 

collapse of the mutualism, obligatory mutualism, obligatory/facultative mutualism (different for 
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the two strains), facultative mutualism, parasitism, competition, and competitive exclusion 

(Figure 2.5). A simple model therefore provides remarkably effective guidance in the outcomes 

that we observe in our experimental microbial cross-feeding system. 

 

Figure 2.4: Abundances of co-cultures at varying amino acid concentrations. Plots show 

individuals traces of experiments used for Figure 2.5. Co-cultures were grown at 16 different 

amino acid concentrations, ranging from 0 µM tryptophan and 0 µM leucine to 200 µM 

tryptophan and 1600 µM leucine. Co-cultures were started at 6 different relative abundances, and 

grown for seven cycles of daily dilution. Density of Trp- (green lines) and Leu- (red lines) were 

measured at the end of each day by spectrophotometry and flow cytometry.  
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Figure 2.5: Our experimental cross-feeding mutualism shifts between the predicted eight 

different qualitative outcomes. Co-cultures were grown at amino acid concentrations ranging 

from 0 to 200 µM Tryptophan and 0 to 1600 µM Leucine. Cultures were started at 6 different 

fractions and run for 7 days with a 10x dilution each day. In cultures that reached equilibrium (up 

until 16 & 128 µM), data shows mean density (+- s.e.m), while at higher concentrations mean 

equilibrium density is estimated by calculating the relative fitness of the two strains as a function 

of initial fraction (see Figure 2.6). Color bar above the plot shows the qualitative regimes of 

interaction as in Figure 2.3. 

 

Figure 2.6: estimating equilibrium fractions 
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Figure 2.6 (continued): Relative fitness as a function of relative abundance. To determine 

equilibria in co-cultures that had not yet reached saturation, we determined relative fitness as a 

function of the fraction of Leu- cells. Co-cultures were grown for two days to reach carrying 

capacity, after which relative fitness was determined as described earlier. Relative fitness was 

then log transformed and plotted against the fraction of Leu- cells at the start of that day. 

Bootstrapping was used to determine the equilibrium fraction, at which both strains have the 

same fitness. 

2.5 Characteristic Behavior Before Population Collapse 

In both the model (Figure 2.3) and in the experimental system (Figure 2.5), the two 

strains coexist for intermediate values of supplemented amino acids, but one or both strains go 

extinct if the amount of supplemented amino acids is either too small or too large. This means, 

for example, that if the environment were to deteriorate (for example, by decreasing nutrient 

availability) the system would go through a series of changes in the type of interaction (e.g. 

parasitism, facultative mutualism) before becoming an obligatory mutualism, and finally going 

extinct due to the environmental deterioration. Similarly, a rich environment would render the 

mutualism ineffective, so that the strain with lower fitness would eventually be outcompeted by 

the other. In principle, knowing the interaction type would indicate whether the system is 

approaching extinction, although this information requires knowledge of the equilibrium 

densities for both monocultures and co-cultures, which may not be easily available for many 

natural systems. However, it is known that a population system close to collapse exhibits a 

general property referred to as critical-slowing down17, a fact that we can exploit to characterize 

the dynamics of the system near two transition points: between the regimes of extinction and 

obligatory mutualism, and between the regimes of competition and competitive exclusion.   

Our model predicts that the approach to equilibrium is very different when the cross-

feeding strains interact in an obligatory mutualism as compared to when they interact 
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competitively (Figure 2.7). Competitively interacting strains rapidly reach carrying capacity, and 

only later does the ratio of the strains reach equilibrium (Figure 2.7, inset V). In contrast, in the 

obligatory mutualism regime close to collapse it is the ratio that first reaches equilibrium, and the 

total population size is the variable that is slow to reach equilibrium (Figure 2.7, inset I). In 

between these two interaction regimes there is no separation of timescales, and the approach to 

equilibrium is predicted to be approximately uniform from all directions (Figure 2.7, insets II and 

III). These changes in dynamics are expected very generally due to critical slowing down, in 

which the slow relaxation mode is associated with the direction of the eigenvector as the 

eigenvalue goes to zero (Figure 2.7). The model therefore predicts that just measuring the 

dynamics of the partner strains allows for an estimate of the kind of interaction, and hence how 

close the population is to collapse.  

 

Figure 2.7: eigenvectors and eigenvalues 
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Figure 2.7 (continued): Eigenvector orientation predicts characteristic behaviors prior to 

population collapse. Main plot shows eigenvalues as a function of supplemented amino acids. 

Population collapse occurs when the slower eigenvalue (magenta solid line) reaches zero. Insets 

I-V show simulated population trajectories (arrowed lines) for different amino acid 

concentrations, and starting from different population densities (small black dots). The 

eigenvector (magenta arrow) of the stable equilibrium point (blue dot) corresponds to the slower 

eigenvalue. Insets show that trajectories align to the eigenvector when the system is close to 

collapse. This indicates that the ratio of the densities of each strain within the population (i.e. 

𝑓 = 𝑋/𝑌) relaxes faster than the total population size (i.e. 𝑁 = 𝑋 + 𝑌) when the system is close 

to extinction (inset I), whereas the opposite scenario occurs before the competitive exclusion 

regime (inset V).  

In order to test these model predictions, we measured the dynamics of co-cultures 

initialized at a wide range of population sizes 𝑁 and starting fractions 𝑓, spanning four and eight 

orders of magnitude respectively (Figure 2.8). In accordance with the predictions of the model, 

in high amino acid concentrations (32 µM Trp & 256 µM Leu), the interaction is competitive 

(Figure 2.8C) and we observed rapid convergence of 𝑁, whereas 𝑓 did not equilibrate even after 

five days. In contrast, in low amino acid conditions (1 µM Trp & 8 µM Leu, Fig. 2.8A), the 

interaction is an obligatory mutualism and the cross-feeding interaction resulted in a strong 

stabilizing effect on the relative abundances39, with the populations rapidly reaching a 1-to-1 

ratio (i.e. 𝑓 = 1). As 𝑓 equilibrated, the fate of the populations depended on the population size 

𝑁: those that started at sufficiently high abundance slowly increase their total population size to 

the equilibrium point value, whereas populations that started too small or imbalanced were fated 

to extinction (𝑁 = 0). We were therefore able to experimentally observe the two different 

separations of timescale predicted by the model in the two different extreme regimes of 

interaction. Finally, we found that at intermediate amino acid concentrations (8 µM Trp & 64 

µM Leu) there was a balance between the two relaxation timescales, thus causing the trajectories 

to converge to equilibrium from all directions (Fig 2.8B) as predicted by the model (Figs. 2.7-II 

and 2.7-III). Therefore, the relaxation dynamics of the cross-feeding partners is an early-warning 

indicator of population collapse.  
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Figure 2.8: Relaxation dynamics is observed before population collapse. In each figure, we 

started co-cultures at 48 different population sizes (𝑁 = 𝑋 + 𝑌) and relative abundances ( 𝑓 =
𝑋/𝑌). Six co-cultures per figure are highlighted (colored arrows), with day 0 density represented 

by a colored dot, and each arrow signifying the change over a single day. Black dots on the axes 

indicate monoculture equilibria, whereas the blue dot is the co-culture equilibrium. (A): In 

obligatory mutualistic conditions, close to extinction, populations approach equilibrium from the 

direction corresponding to constant ratio, 𝑓. (B): In medium amino acid concentrations, there is 

no privileged direction for approaching equilibrium. (C): At high concentrations, when the two 

strains compete against each other, the population approaches equilibrium from the constant 𝑁 

manifold. 

2.6 Discussion 

We have established an experimental system that captures a multitude of interactions by 

simply varying the amount of nutrients available to two partners in a cross-feeding mutualism. 

Although it is tempting to conclude that this cross-feeding interaction should be an obligatory 

mutualism, we demonstrate experimentally that the interaction varies greatly with the 

environment. Depending upon the environment we found that our cross-feeding strains could 

interact as an obligatory or facultative mutualism, parasitism, amensalism, or competition. A 

simple phenomenological model explained this range of outcomes, which we view as a 

significant success given that many models of mutualisms have difficulty shifting between such 

qualitatively different outcomes; indeed, the Lotka-Volterra model of interspecies interactions 

fails to even describe an obligatory mutualism without leading to ever-expanding populations49. 

A B C 
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Moreover, the model predicts different relaxation time scales on the brink of collapse that have 

been confirmed in our experimental system. 

Our experiments and modeling suggest that the interaction becomes increasingly 

cooperative as the environmental quality deteriorates via decreasing nutrient availability. This 

result is consistent with work done on a range of other mutualisms and interspecies interactions. 

For example, a global analysis of plant interactions concluded that interactions were typically 

competitive in benign environments at low elevation, whereas the interactions become increasing 

facilitative in the more challenging environments present at high elevation50. Similarly, the 

mycorrhizal mutualism has been demonstrated to become parasitic in the absence of abiotic 

stresses51. More generally, the mutualism–parasitism continuum hypothesis52 posits that a 

number of environments may cause a mutualism to degrade into a parasitic interaction. Our work 

in some way echoes these previous findings, but our results also indicate that mutualisms can in 

some cases shift between an even wider range of possible outcomes.  

Our experiments show an interesting asymmetry between the strains, where Leu- cells 

dominate at low amino acid concentrations but are competitively excluded at higher amino acid 

concentrations. Our modeling suggests that this difference is because the Trp- cells are more 

“cooperative” (giving the Leu- cells an advantage when amino acids are scarce) but also have an 

inherent growth advantage when amino acids are not limiting. These differences could be partly 

due to a difference in adaptation. Adaptation to low amino acid concentrations resulted in better 

growth at low density but lower maximal growth (Figure 2.9)43. It is possible that Leu-  cells 

were more adequately adapted than Trp- cells, resulting in better growth in harsh environments 

but reduced fitness in optimal conditions.  
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Figure 2.9: Growth curves of S. cerevisiae strains before and after adaptation to low amino 

acids. Trp- (A) and Leu- (B) cells in exponential phase were seeded in 96-well flat bottom plates 

and incubated at 30°C for 32h. Density was measured automatically every 10 minutes through 

spectrophotometry. Cells were either adapted (dashed lines)  or not adapted (solid lines) to low 

amino acid concentrations by 7 days of growth-dilutions cycles with low amino acid 

supplementation. At the lowest amino acid concentrations (red lines), adapted strains grew much 

better than unadapted strains. At medium amino acid concentrations (blue lines), adapted strains 

still grow better than unadapted strains, although the unadapted Trp- strain might still reach the 

same carrying capacity. Interestingly, at high amino acid concentrations (green lines), unadapted 

strains grow better than adapted strain, suggesting a fitness trade-off between growth in low and 

high amino acid concentrations. 

In this paper we have focused on the interactions between two auxotrophic strains, each 

of which produces the amino acid needed by its partner. However, in principle this cross-feeding 

mutualism can be invaded by other strains, the most relevant of which would be the double-

producer (producing both tryptophan and leucine) and the non-producer (auxotroph for leucine 

and tryptophan). At least within the realm of our model, we predict that at intermediate amino 
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acid concentrations the mutualism is non-invadeable by either of these alternative strains (Figure 

2.10 and Appendix 2.6). However, at higher amino acid concentrations the non-producer is 

predicted to invade and coexist with the single producers (and similarly at lower amino acid 

concentrations the double producer is predicted to invade). It would be interesting to explore 

further the degree to which cross-feeding can stabilize the coexistence of multiple strains, 

particularly given the wide range of nutrients that can be shared in a microbial community. 

 

Figure 2.10: A cross-feeding mutualism can protect against invasion by other strains. Plot 

shows equilibrium density of simulations with four strains as a function of supplemented amino 

acids. Double producers (yellow line) are modelled to have a lower growth rate than single 

producers (red and green lines, equivalent to strain X and Y in eq. 1 and 2), while non-producers 

(black line) have a higher growth rate than single producers (Appendix 2.6). However, double 

producers produce both amino acids and thus do not benefit from extra amino acids. Non-

producers produce no amino acids, and are therefore completely dependent on amino acids 

provided in the medium or by other strains.  

One important feature of our mutualism is that the two strains are almost genetically 

identical. This means they have near perfect niche overlap, which results in very strong 
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competition between the two strains. In many other mutualisms the partners will have less niche 

overlap and will therefore experience less competition. Incorporating this in our model predicts 

that the degree of niche overlap will have a strong influence on the outcome of the interaction 

and the degree to which different environmental conditions will switch the nature of the 

interaction (Figure 2.11). As perhaps expected, less niche overlap results in a larger range of 

parameters in which the species are mutualistic. Future studies in the field and in the laboratory 

will be needed to elucidate whether the wide range of interactions observed here are relevant for 

other mutualisms. 

 

Figure 2.11: Smaller niche overlap results in larger regions of mutualistic interaction. 

Simulations were run to determine qualitative interaction as a function of supplemented amino 

acids (a) and niche overlap (c). Niche overlap was modelled as the degree to which each strain 

affects the carrying capacity of the other strain (S1 information), with c=1 being complete 

overlap and c=0 being no niche overlap. Although the order of qualitative regimes remains 

unchanged, not all regimes are present with lower niche overlap, and smaller niche overlap 

generally results in a larger region of mutualistic interactions 
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2.6 Appendix: Strains and Methods 

Strains and growth media 

Both S. cerevisiae strains are from a W303 background and are genetically modified to cross-

feed as previously described40. The strains were adapted to growing with low amino acid 

supplementation through seven cycles of daily dilution and growth in 2 µM tryptophan and 32 

µM leucine. Monoclonal lines derived through plating on 1.5% agarose plates were used for all 

experiments except for comparison with unadapted strains. Strains were grown in batch culture 

in synthetic medium, consisting of Yeast Nitrogen Base (YNB, Sunrise Sciences), Complete 

Supplement Mixture lacking leucine and tryptophan (CSM-leu-trp, Sunrise Sciences) and 2% 

glucose. Synthetic medium was supplemented with varying amounts of amino acids as indicated 

in experiments. All daily dilution experiments were performed in BD Falcon 96-well flat bottom 

plates. Cells were grown in 200 µl batch culture at 30°C, and mixed by a shaker rotating at 900 

r.p.m.. Plates were sealed with Bemis Laboratory Parafilm to prevent evaporation. 

Co-culture experiments 

At the start of each co-culture experiments, single colonies were grown for 24h until saturation in 

3 ml synthetic medium containing 100 µM tryptophan and 1000 µM Leucine. They were then 

diluted by a factor 10 and grown for 4h to prevent cells from being in stationary phase at the start 

of the experiment. Cells were spun down and washed three times to remove any excess amino 

acids. Leu- and Trp- cells were then mixed in appropriate ratio’s and seeded in BD Falcon 96-

well flat bottom plates in 200 µl medium. A daily dilution cycle consisted of 23.5h of growth, 

after which density was measured by spectrophotometry (Thermo Scientific VarioSkan Flash 

Multimode Reader) and relative abundance was measured by flow cytometry (Miltenyi 
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MACSQuant VYB, minimum of 10,000 cells analyzed). Cultures were then diluted by a factor 

10 into new 96-wells plates containing fresh medium. 

Model analysis 

Figures 2.3 and 2.7 have been obtained by computing analytical formulae for the equilibrium 

point, eigenvalues and eigenvectors of Equations [1] and [2]. Simulated trajectories in insets in 

Figure 2.7 have been obtained by Gillespie simulations28 of the corresponding stochastic model 

of Equations [1] and [2]. 

Calculating relative fitness 

Relative fitness is calculated by comparing growth rates of both strains, and is given by the 

equation: 

W = r1 / r2,   [3] 

where r1 is the growth rate of the less fit strain (Leu-) and r2 is the growth rate of the fittest strain 

(Trp-). The relative fitness of the fittest strain equals 1, the fitness of less fit strains is smaller 

than 1. Growth rate was determined by comparing densities at the start and end of each dilution 

cycle. Starting densities were calculated by dividing final density of the previous day by 10, 

since we diluted by a factor 10. Since yeast growth exponential, growth over the entire 24 hours 

can be modelled by: 

𝑁1(𝑡) = 𝑁1(0) 𝑒𝑟1𝑡  [4] 

In this model, N1(t) and N1(0) represent the densities at timepoint t or timepoint 0, t represents 

the full 24 hours of growth and r1 represents the average growth rate over the course of the day. 

The cultures might be saturating, so the average growth rate will decrease if we let all the 
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cultures grow for a longer period of time. However, the strains are grown in co-culture so 

saturation should be equal between strain, and therefore not affect fitness of either strain. r1 can 

be isolated from equation 4 and is given by equation 5: 

𝑟1 =  ln(
𝑁1(𝑡)

𝑁1(0)
)  [5] 

Since N1(0) and N1(t) are the initial and final density of each day, which we acquire from our 

data, we can now calculate the average growth rate. Note that the absolute values of r1 and r2 are 

not important, because we only wish to compute the relative fitness, and that the values should 

therefore not be compared to the growth rates in equation 1 and 2. The relative fitness W is then 

calculated by dividing r1 by r2 (equation 3). 

Estimating equilibrium densities when cultures have not reached saturation.  

Since co-cultures did not reach equilibrium density within 7 days at high amino acid 

concentrations (above 32 µM tryptophan & 256 µM leucine, Figure 2.4), we estimated 

equilibrium densities by determining relative fitness as a function of relative abundances. We 

determined fitness of Leu- as described above in equation 3, and plotted the log(2) transformed 

fitness against the fraction of Leu- cells. At a low fraction of Leu- cells, Leu- cells will have a 

fitness advantage over Trp- cells because of the nutrients provide by Trp-, and vice versa. 

However, when the strains are at equilibrium fraction they will have equal fitness (since 

abundance does not change anymore). We used bootstrapping to calculate at which fraction the 

cells had equal fitness. We ran a simulation in which we randomly resampled our data (with 

replacement) 100,000 times. In each resampling, we fitted a first degree polynomial and 

calculated the Leu- fraction at which fitness was equal. Equilibrium fractions below zero were 
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rounded up to zero, and fractions above one were rounded down to one. We then calculated the 

mean equilibrium fraction (+- s.e.m.) of these simulations. 

To estimate the equilibrium density of both strains, we combined data of equilibrium fraction 

and equilibrium total density. We assumed that at these high amino acid concentrations, co-

cultures will reach equilibrium total density within a few days, and therefore calculated the 

variation in total density similar to saturated co-cultures (mean +- s.e.m. of the means of six 

conditions over the last three days). Equilibrium density of individual strains was calculated by 

multiplying equilibrium density with equilibrium fraction. Standard error of the mean of 

densities of individual strains was calculated by the formula: 

𝑆𝐸𝑓 ≈ √𝐵2𝑆𝐸𝑎
2 + 𝐴2𝑆𝐸𝑏

2  [6] 

In which SEf is the standard error of the mean of the density of one strain, A is the total density, 

B is the equilibrium fraction of that strain, and SEa and SEb are the s.e.m. of total density and 

equilibrium fraction. The standard deviations calculated with equations 6 are depicted in Figure 

2.5. 

Modeling of interactions between four species.  

To analyze the behavior of our system in the presence of other species, we extended our model to 

a four-species system. This system includes the two initial cross-feeding strains, which are given 

in this model by X01 and X10. The strain X01 (which is Trp- or strain X) does not produce the first 

nutrient (tryptophan), but does produce the second nutrient (leucine), while strain X10 (Leu- or Y) 

produces the first but not the second nutrient. The two new strains are X11, which produces both 
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nutrients, and X00, which produces no nutrients. Equilbrium densities are calculated with the 

following equations: 

𝑑𝑋00

𝑑𝑡
= 𝑋00 (

𝑋10+ 𝑋11 + 𝑎

𝑋10+ 𝑋11 + 𝑎 + 𝜅
)

𝛽𝑋01+𝑋11+𝑎

𝛽𝑋01+𝑋11+𝑎+𝜅
( 1 − 𝑋00 − 𝑋01 − 𝑋10 − 𝑋11) − 𝛿𝑋00   [7] 

𝑑𝑋01

𝑑𝑡
= (1 − 𝑐1)𝑋01 (

𝑋10+ 𝑋11 + 𝑎

𝑋10+ 𝑋11 + 𝑎 + 𝜅
) ( 1 − 𝑋00 − 𝑋01 − 𝑋10 − 𝑋11) − 𝛿𝑋01   [8] 

𝑑𝑋10

𝑑𝑡
= (1 − 𝑐2)𝑋10 (

𝛽𝑋01+𝑋11+𝑎

𝛽𝑋01+𝑋11+𝑎+𝜅
) ( 1 − 𝑋00 − 𝑋01 − 𝑋10 − 𝑋11) − 𝛿𝑋10   [9] 

𝑑𝑋00

𝑑𝑡
= (1 − 𝑐1 − 𝑐2)𝑋00( 1 − 𝑋00 − 𝑋01 − 𝑋10 − 𝑋11) − 𝛿𝑋11     [10] 

The growth rate of each strain increases with the abundance of the amino acids they cannot 

produce. Amino acids can be acquired from supplementation (a) or from mutualist partners (X11, 

X10 or X01), and again saturate via a Michaelis-Menten form with the same scaling constant 

(kappa = 0.12). We also maintained the unequal contribution to the mutualism (β = 2). Since all 

species have the same nutrient requirements apart from leucine and tryptophan, they saturate at a 

carrying capacity that is normalized to 1. The cost of producing nutrients is modelled by a cost 

that reduces the growth rate. The growth rate of the non-producer, which does not produce amino 

acids and thus has no costs, is normalized to 1. We modelled a different cost of producing each 

nutrient (c1 = 0.10 and c2 = 0.1675), so that the growth rate of strain X10 remains 0.925 times that 

of strain X01 (0.8325 / 0.90 = 0.925). Since the double-producer makes both nutrients, its growth 

rate is reduced by c1 and c2 (1 – 0.10 – 0.1675 = 0.7325). To compensate for the reduced growth 

rates compared to our original model, we normalized the death rate by a factor ( 1 – c1 = 0.9 ), 

resulting in a death rate of δ = 0.45. 

Modelling niche overlap 
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In our standard model (eq. 1 and 2), we assumed complete niche overlap, since both yeast strains 

are identical except for a few genetic modifications. This means they require the exact same 

nutrients (apart from leucine and tryptophan), and their growth is thus limited equally by 

saturation of either strain, which we modelled as (1 – X – C). However, if the two strains do not 

require the exact same nutrients, e.g. when one strain grows on glucose and the other strain 

grows on sucrose, there will not be complete niche overlap. In this case, one strain could still 

grow even when the other strain has reached carrying capacity. We modelled this by introducing 

niche overlap ‘c’ into the saturation term. This way, strain X saturates by (1 – X – cY), and strain 

Y saturates through (1 – cX – Y): 

𝑑𝑋

𝑑𝑡
= 𝑟𝑥𝑋 (

𝑌+𝑎

𝑌+𝑎+𝜅
) ( 1 − 𝑋 − 𝑐𝑌) − 𝛿𝑋 [11] 

𝑑𝑋

𝑑𝑡
= 𝑟𝑥𝑋 (

𝑌+𝑎

𝑌+𝑎+𝜅
) ( 1 − 𝑋 − 𝑐𝑌) − 𝛿𝑋 [12] 

 

Qualitative interactions were determined by running simulations with different values of a and c. 

Simulations were started with abundances of both strains above carrying capacity. 

  



57 
 

Chapter 3 

The Allee Effect and Evolutionary Rescue 

Natural populations frequently face harsh environments in which their death rate exceeds their 

birth rate and population size tends toward zero. In such scenarios, populations can either go 

extinct, migrate to a region of better habitat, or undergo evolutionary rescue, in which 

evolutionary adaptation allows the population to survive. Natural populations often exhibit an 

“Allee effect,” in which populations grow slowly at low density due to struggles with such 

behaviors as finding a mate or collective hunting. We hypothesized that the presence of an Allee 

effect could impede evolutionary rescue and confirmed this hypothesis in a model laboratory 

yeast population. We compared extinction rates in glucose (no Allee effect) and sucrose (strong 

Allee effect) in a high salt environment and found that populations in glucose underwent 

evolutionary rescue in an environment where sucrose populations went extinct, in spite of 

sucrose populations starting from a larger population size and having a larger carrying capacity.  

We show that after several days of growth in a harsh environment, cells in sucrose which will 

eventually go extinct can be reinoculated at a high density and survive ecologically in an 

environment which their unevolved ancestors could not.  Our results represent a striking example 

of eco-evolutionary feedback and highlight how the Allee effect can influence conservation 

efforts.  

3.1 Motivation and background 

Species in nature are currently going extinct at an alarming rate due to global climate change53,54. 

When a population encounters an environment to which it is poorly adapted and death rate 

exceeds birth rate, three things can happen: extinction, migration to a region of better habitat, or 
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adaption (either phenotypic adaptation through changing behavior or genotypic adaptation 

through changing genetic structure). The process by which a population alters its genetic 

structure to avert extinction is termed “evolutionary rescue.” Evolutionary rescue events are 

characterized by a U-shaped trajectory on a plot of population versus time: the population first 

declines, then stabilizes, and finally increases. 

 Much theoretical work has focused on different factors influencing if and how 

populations undergo evolutionary rescue55–58, but experimental work has only recently begun to 

test these ideas. Bell and Gonzalez have pioneered the use of laboratory yeast populations to 

study evolutionary rescue in high salt environments: they first investigated how initial population 

size influences the probability of evolutionary rescue59, and they later extended this work to 

spatially connected metapopulations60 and multispecies soil communities61. Kerr and colleagues 

have studied evolutionary rescue under different rates of environmental deterioration62, while 

Zhang et al have investigated evolutionary rescue under temporally fluctuating selection 

pressures63. Together, these studies using viruses, bacteria, and yeast have shed much light on 

evolutionary rescue. However, an underappreciated factor which could affect the probability of 

evolutionary rescue is the presence of an Allee effect. 

 The Allee effect refers to a positive correlation between population size and per-capita 

population growth rate64. Allee effects can arise in small populations due to the need for 

collective defense, group hunting, or finding a reproductive partner65. Allee effects are believed 

to be common in natural populations ranging from plants66 to mongooses67 to zooplankton68. We 

hypothesized that the presence of an Allee effect in a population could hinder evolutionary 

rescue. This is because, during population decline in a harsh environment, the population size 

could fall below the “Allee threshold” into a regime of particularly slow population growth. We 
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sought to compare two populations with different strength Allee effects each undergoing decline 

in a harsh environment. With laboratory yeast as our experimental organism, we used salt to 

modulate the quality of the environment and used sugar metabolism (glucose or sucrose) to tune 

the strength of cooperative interactions in the population69. We found that the populations 

growing on sucrose that experienced the Allee effect were much less able to survive the harsh 

environment via evolutionary rescue. 

3.2 Computational Simulations 

To assess the plausibility of our hypothesis, we first conducted stochastic tau-leaping 

computational simulations of yeast populations in glucose and sucrose in a harsh environment. 

Populations were initially growing in a benign environment before suddenly switching to a harsh 

environment. In our simulations, populations were initially composed of cells that are poorly 

adapted to the high salt environment, and beneficial mutants with a higher growth rate arose 

stochastically during the simulation (see Section 3.6 for details of the simulations). We modeled 

the growth in glucose as logistic, and growth in sucrose as biphasic.  Mathematically in sucrose, 

the growth can be described as: 

𝑑𝑁

𝑑𝑡
= 𝛾ℎ𝑖𝑔ℎ𝑁 (1 −

𝑁

𝐾
) −  𝛿𝑁     𝑓𝑜𝑟 𝑁 > 𝑁𝑐𝑟𝑖𝑡 

𝑑𝑁

𝑑𝑡
= 𝛾𝑙𝑜𝑤𝑁 −  𝛿𝑁                       𝑓𝑜𝑟 𝑁 < 𝑁𝑐𝑟𝑖𝑡   

 Here N is the total population size, K is the carrying capacity, δ is the death rate, and we 

approximate the growth as biphasic characterized by two different γ above and below a critical 

threshold. 

 As we increased the death rate in our simulations, the populations passed through three 

distinct regimes (Figure 3.1): 

I. Ecological survival, in which the cells could outrun the death rate without any evolution 
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II. Evolutionary rescue, in which the cells would initially tend toward extinction but would 

avoid extinction due to adaptive evolution 

III. Extinction, in which adaptive evolution could not occur rapidly enough to prevent the 

population size from going to zero 

 

Figure 3.1: simulations show region of evolutionary rescue is much wider in glucose than in 

sucrose.  Populations grew for 40 hours before shifting suddenly to a harsh environment with 

death rate d (x-axis). Death rate was increased in steps of .01 and 10 replicates were done at each 

death rate. Fraction of replicates surviving is plotted on y-axis. Growth was logistic in sucrose 

and biphasic in sucrose. Each trajectory was classified as ecological survival (birth rate of 

ancestral population > death rate), evolutionary rescue (birth rate of ancestral population < death 

rate, yet mutants sweep fast enough to enable survival) or extinction. 

 

There are three key aspects of Figure 3.1 that we would like to highlight.  First, we 

observed ecological survival in sucrose at a death rate (d=1.02) where evolutionary rescue was 

needed for survival in glucose.  Second, the range of death rates where we observed evolutionary 

rescue (yellow bar, top of figure) was much wider in glucose than it was in sucrose.  Third, we 

observed evolutionary rescue in glucose at a death rate (d=1.07) where only extinction was seen 
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in sucrose. Taken together, these results indicate that evolutionary rescue is possible in a much 

wider range of harsh environments in glucose than in sucrose. This is driven by the 

fundamentally different nature of the growth dynamics at low population density, rather than the 

cells “being happier” or “growing faster” with glucose as a carbon source. 

 To highlight the difference in outcomes in the difference sugar environments, we 

compared the population trajectories when d=1.07 (Figure 3.2). In glucose, the populations 

decreased in size for several generations (Figure 3.2A). As beneficial mutants arose and began 

sweeping through the population, the rate of decline slowed before eventually ceasing. The 

population then recovered and stabilized at a lower carrying capacity. In contrast, the populations 

in sucrose declined similarly before eventually going extinct (Figure 3.2B). In both sugar 

environments, the mutant eventually reached fixation (Figure 3.2C and 3.2D). Extinction in 

sucrose occurred despite the fact that the population in sucrose started from a higher total 

population size than the population in glucose (all other things equal this larger population size 

should facilitate evolutionary rescue as it provides a larger number of cells that could possibly 

acquire the mutation will allow for survival in the harsh environment). The two sugar 

environments display qualitatively different outcomes due to the presence of an Allee effect in 

sucrose, which dramatically hinders growth in the regime of low population size. These 

simulations indicated that an Allee effect might indeed hinder evolutionary rescue, which led us 

to pursue experiments with laboratory yeast to further test our hypothesis.  
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Figure 3.2: Stochastic simulations show different trajectories in glucose and sucrose.  Cells 

grew for 40 hours in a benign environment before suddenly shifting to a harsh environment.  

Total population size is plotted as a function of time in A) glucose and B) sucrose.  There are two 

subpopulations, an ancestral population and a mutant population with a 10% fitness advantage.  

The population is initially composed at t=0 purely of ancestral cells.  Cells mutate with a rate 

µ=10-6.  Growth in glucose is logistic.  Growth in sucrose is biphasic; above the Allee threshold, 

growth is logistic, while below the threshold the growth rate grows linearly with the population 

size.  Mutant fraction as a function of time is plotted in C) glucose and D) sucrose. 

 

3.3 Experiments in Glucose and Sucrose 

 
We first sought to observe evolutionary rescue in yeast populations growing in glucose.  

We grew the cells in liquid batch culture with daily dilution of 10X into fresh media 

(corresponding to a 90% daily mortality rate). This created a scenario in which, if the cells could 

not divide faster than every 7.2 hours, they would fail to keep pace with the daily dilution rate 



63 
 

and eventually go extinct. Controlling the concentration of glucose and sodium chloride in the 

growth media enabled us to control the quality of the environment.  

 In our pilot experiments, we struggled to observe rescue events. We hypothesized that 

this was because our populations had insufficient genetic diversity. To ameliorate this issue, we 

allowed our yeast populations to accumulate mutations by growing them for 150 generations in a 

low-salt environment. Our goal was to give the population time to generate a broad distribution 

of mutations. We took 106 cells from this population and grew them up in a medium salt 

environment so that they would activate their osmotic stress response genes7. This was done to 

ensure that the cells were phenotypically adapted to a high salt environment, so that we could 

focus on genomic evolution rather than changes in gene expression. 

 We first demonstrated that these yeast populations in glucose would indeed exhibit the 

three dynamic regimes (ecological survival, evolutionary rescue, and extinction) in response to 

increased amounts of sodium chloride (Figure 3.3). In a low salt regime (1000 mM), the cells 

were initially seeded at a range of population sizes above, at, and below the carrying capacity. 

Regardless of the initial density, the populations quickly tended toward the carrying capacity 

(Figure 3.3, top left panel). In a medium salt environment (1135 mM), if the cells were seeded at 

a high density, the population fell sharply for the first three days before stabilizing and 

recovering (Figure 3.3, top right panel).  If the populations were seeded at a lower density, 

populations in this environment went extinct. We hypothesize that this dichotomy arises because 

small populations contain an insufficient number of strongly beneficial mutants, consistent with 

what other researchers have found regarding the importance of starting population size for 

evolutionary rescue59.  In a high salt environment (1165 mM), the cells went extinct regardless of 

the initial population size (Figure 3.3, bottom left panel). Thus, yeast populations in glucose can 
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alter their genetic structure sufficiently to survive a poor quality environment with a 90% daily 

mortality rate. 

 

Figure 3.3: Cells in glucose exhibit ecological survival, evolutionary rescue, and extinction.  

Cells were pre-grown in 700 mM NaCl and 2% sucrose. On day 0, cells were washed and 

inoculated at a range of densities in .03% glucose supplemented with 1000 mM NaCl (“Low 

Salt” top left panel), 1135 mM NaCl (“Medium Salt” top right panel), or 1165 mM NaCl (“High 

Salt” bottom left panel). Cells were subjected to repeated cycles of 23.5 hours of growth at 30°C 

followed by 10X dilution. Trajectories leading to survival are shaded blue, and trajectories 

leading to extinction are shaded red. For clarity, one of the “evolutionary rescue trajectories” 

from the medium salt environment has been plotted alone in the bottom right panel. 

 

 

 We next sought to compare extinction trajectories in glucose and sucrose. We 

hypothesized that even in a sugar environment where the sucrose cells have a higher carrying 

capacity and are seeded at a higher population size, we would observe extinction in sucrose in an 

environment where we had previously seen evolutionary rescue in glucose. We adjusted the 

quality of the environment by supplementing the sucrose populations with more sucrose than the 

glucose populations received of glucose (.075% w/v sucrose compared to .03% w/v glucose). We 

pre-grew the cells in sucrose and salt to activate the expression of invertase and osmotic stress 
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response genes, and then transferred the two populations to an environment containing 1135 mM 

NaCl on day 0. The trajectory in sucrose showed three clear phases: rapid decline (days 1 – 4), as 

the population was initially poorly adapted; a slow decline (days 4 – 8), as beneficial mutants 

began sweeping through the population; and a rapid decline (days 8 – 11), as the population fell 

into the low-density regime where the Allee effect predominated (Figure 3.4). 

 

Figure 3.4: in an environment where both glucose and sucrose cells initially trend toward 

extinction, glucose populations undergo rescue and sucrose cells go extinct.  Cells were pre-

grown in 700 mM NaCl and 2% sucrose. On day zero, they were washed and transferred to 

either .03% glucose (blue) or .075% sucrose (red) with 1135 mM NaCl and subjected to repeated 

23.5 hour cycles of growth at 30°C and 10X dilution. 

 

Initially, in sucrose, there is only one fixed point in the dynamics: extinction.  However, 

during the experiment, the growth curve shifts due to evolution.  If the curve were to shift so that 

it intersected the death rate curve, a new fixed point would arise, enabling survival (Figure 3.5).  

If this happened sufficiently quickly, the sucrose cells could undergo rescue and avoid 

extinction.  But if this new fixed point arises after the population has fallen below Ncrit, the 

population will go extinct.  This leads to a prediction: cells in sucrose that have fallen below the 



66 
 

Allee threshold might have evolved sufficiently so that they could survive in this high-salt 

environment, if only they could escape the Allee regime and reach a high population size. 

 

Figure 3.5: The fate of populations depends on the ability of growth curve to rapidly shift 

upwards. Left: growth and death curves initially do not intersect, so population trends toward 

extinction. Growth curve shifts upwards over time. When curves intersect (top right), there are 

two stable fixed points, extinction and survival (green dot) separated by an unstable fixed point 

(red dot). If N is below the red dot when the two curves intersect, extinction will still occur even 

though a survival fixed point now exists at a non-zero population size. If adaptation does not 

occur fast enough, failed rescue (i.e. extinction) results (bottom right plot). 
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3.4 Reinoculation experiments 

To test this prediction, we took sucrose populations from day 9 of the experiment in 

Figure 3.4 and grew them up to a high density. We then reinoculated them at a range of initial 

densities in .075% sucrose and 1135 mM NaCl. Prior to the 9 days of evolution this population 

underwent, the ancestral population could not survive in this environment. In contrast, the 

evolved cells could survive ecologically in this environment (Figure 3.6). The system is now 

bistable: populations seeded above a critical threshold will survive, while populations seeded 

below this threshold will go extinct16. Thus, we argue that the ancestral population in sucrose 

went extinct, not due to the absence of beneficial mutants in the population, but because the 

mutants failed to sweep through the population before the density fell below the Allee threshold. 

 

Figure 3.6: Evolved sucrose populations can survive ecologically in an environment where 

their ancestors went extinct.  On day 9 of the experiment in Figure 3.4, cells were transferred to 

a flask and grown to a high density.  After pre-growth in 2% sucrose and 700 mM NaCl, the cells 

were washed and transferred to media containing .075% sucrose and 1135 mM NaCl on day 0.  

The populations were then subject to repeated cycles of 23.5 hours of growth followed by a 10X 

dilution into fresh media. 
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3.5 Discussion 

Here we have used a combination of computational simulations and laboratory 

experiments to compare population dynamics of yeast growing in glucose (no Allee effect) or 

sucrose (Allee effect) in a harsh, high-salt environment. We found that populations in sucrose, in 

spite of having a larger carrying capacity and starting from a larger initial population size, went 

extinct in a high-salt environment where glucose cells could undergo evolutionary rescue. We 

further showed that the extinction observed in sucrose populations was not due to a failure of 

evolution: the populations trending towards extinction survive if inoculated at high density. 

Extinction in sucrose is therefore driven by the presence of an Allee threshold, rather than a 

failure of adaptive evolution. We emphasize that these are preliminary results which we will seek 

to further replicate in future experiments. 

 We have referred to growth in glucose as “no Allee effect,” but in reality the situation is 

slightly more nuanced than that. Although glucose can be directly imported into the cell and 

there is no collective breakdown of the sugar, there are in principle other sources of the Allee 

effect. For example, we have found that there can be an Allee effect even in glucose when the 

media starts at neutral pH, as the cells collectively acidify the environment70. In our experiments 

we use media that starts at acidic pH, thus minimizing this effect. In addition, there could be a 

modest Allee effect associated with the population response to the salt stress, as the population 

secretes and uptakes compatible solutes71. Yeast growth in glucose and salt may therefore have a 

small Allee effect, but not large enough to inhibit evolutionary rescue in the way that it does in 

the sucrose condition.  

Our comparison of rescue trajectories in glucose and sucrose also implicitly assumes that 

there are comparable numbers of beneficial mutations in glucose and sucrose that would lead to 
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evolutionary rescue. However, the fitness of a mutation is highly dependent on the 

environmental context72. To further bolster our claim that failure to observe evolutionary rescue 

in sucrose is driven by an Allee effect (and not simply an absence of beneficial mutants in the 

population) future experiments will compare the distribution of fitness effects in both glucose 

and sucrose.      

 Our results explored one mechanism of environmental deterioration (salt stress) and one 

mechanism for modulating the Allee effect (cooperative sucrose metabolism). However, we 

believe that our results should extend beyond this experimental system and be generally true for 

declining populations which exhibit an Allee effect. The logic underlying our claim is outlined in 

Figure 3.1; we note that these simulations do not include any information about the 

environmental stressor or the mechanism of the Allee effect. Future experiments will aim to 

confirm our hypothesis using other environmental stressors to which a population can be 

maladapted (e.g. temperature stress, nutrient limitation, antifungal drugs) and other Allee effect 

mechanisms (e.g. buffering the pH far away from the optimal pH for growth). 

 As many natural populations tend toward extinction due to the effects of anthropogenic 

climate change, evolutionary rescue represents a potential strategy for populations to avoid 

collapse. However, as these populations shrink in size, they could fall into a regime of slow 

growth due to difficulty with collective defense or finding a mate. Such considerations could 

force conservation ecologists to reconsider the threshold at which many populations are 

considered “threatened,” “vulnerable,” or “endangered.”73  The ubiquity of Allee effects in 

natural populations underscores the importance of our results for understanding the dynamics of 

phenomena such as biological invasion and evolutionary rescue. 

3.6 Appendix: Methods 
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Strains 

All experiments used a BY4741 strain of yeast which express a constitutive YFP.  Cells were 

pre-grown for 4 weeks in 3 mL of YNB CSM supplemented with 2% glucose and diluted daily 

by 1000X.  Glycerol stocks of this population were stored in 1 mL aliquots at – 80°C, and 100 

µL of this glycerol stock was used to start all experiments. 

Evolutionary rescue runs 

On day minus one, 100 µL of the population described above was inoculated into 3 mL of YNB 

CSM with 2% sucrose and 700 mM NaCl to induce expression of invertase and osmotic stress 

response genes.  On day zero, cells were washed to remove residual sucrose and salt and then 

transferred to a 96-well plate with glucose, sucrose, and NaCl as described in the text.  Plates 

were shaken at 30°C and 1000 rpm for 23.5 hours.  The optical density was then measured using 

a Varioskan Flash plate reader, and cells were diluted 10X by transferring 20 µL of cells into 180 

µL of fresh media.  This was repeated for several days of cycles as described in the text.  

Extinction was confirmed by letting the cells grow for 3 additional days after the end of 

experiment and observing that the optical density did not exceed the background threshold of the 

spectrophotometer. 

Reinoculation experiments 

On day 9 of the sucrose extinction trajectory in Figure 3.4, 20 µL of cells were transferred to a 

flask with 2% sucrose and 600 mM NaCl and grown up to high density.  Cells were then washed 

and inoculated at a range of densities in a range of sodium chloride concentrations, most 

importantly 1135 mM NaCl (the environment in which they evolved and their ancestors went 

extinct). 

Computational Simulations 



71 
 

Tau-leaping simulations were performed in MATLAB.  Populations initially grew in a benign 

environment before being transferred to a harsh environment at t=40 hours. Birth rate was 1, and 

death rate was .9 in the benign environment. Death rate varied from .9 to 1.19 as described in the 

text. The population consists of two species, an initially dominant wild-type strain and a mutant 

population with a 10% fitness advantage in the harsh environment.  Time steps were 6 minutes, 

and the mutation rate µ=1*10-6. 
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Chapter 4 

Conclusion 

4.1 Side Projects 

 During my PhD, I also had the opportunity to play a supporting role in a very interesting 

project exploring the following question: why do genetically identical cells adopt a range of 

phenotypes in a homogeneous environment?  The most common answer to this question is that 

the cells are hedging their bets against a sudden and unexpected fluctuation or shift in 

environmental conditions. Bet hedging has been invoked to explain phenotypic heterogeneity in 

numerous situations, ranging from persistence to sporulation74,75. 

 An alternative, underexplored explanation is that of negative frequency dependent 

interactions among strategists in a population.  To study this question, we used the well-known 

yeast galactose utilization network as described in chapter one of this thesis. In a mixed sugar 

environment, a clonal yeast population will adopt a bimodal activation pattern of the galactose 

utilization genes, i.e. some cells will consume galactose (“GAL ON”) and others will not 

consume galactose (“GAL OFF”). We hypothesized that bimodality could arise from negative 

frequency dependent interactions between GAL ON and GAL OFF cells, such that the optimal 

strategy could depend on the strategy of other players in the game. To test this hypothesis, we 

used genetic mutants in which the network had been altered so that the GAL genes were always 

on or always off. We competed the pure strategists in a mixed sugar environment (.03% glucose 

and .05% galactose) starting from a range of initial fractions and measured how the fitness of 

each strain varied with its initial frequency. The results of this competition are shown in Figure 
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4.1. We found that the GAL-ON specialist was more fit when it was initially rare in the 

population, but that this specialist was less fit when it was initially common in the population. 

 

Figure 4.1: GAL-ON and GAL-OFF specialists show negative frequency dependence.  

Fitness, in number of generations, is shown for the two phenotypes as a function of the 

population frequency of GAL-ON. The crossing point indicates an evolutionarily stable 

coexistence of around 40% GAL-ON for this mix of sugars. 

 My role in the project was two-fold.  First, some readers of this work worried that our 

results were an artifact of our experimental protocol, in which the two strains competed for 20 

hours. During this time course, the concentration of sugars in the growth media would change 

dramatically as the cells consumed them. To assuage these concerns, I conducted similar 

competition experiments between the pure strategists in a semi-continuous environment in which 

the sugars were constantly replenished every three hours for several cycles of growth.  The 

results of these experiments are shown in Figure 4.2.  We found that in a pure glucose 

environment, one specialist dominated the other at all initial frequencies.  In a mixed sugar 

environment, there is negative frequency dependence, and the plot of initial frequency versus 

relative fitness crosses unity, indicating stable coexistence at intermediate frequencies in this 

environment. 
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Figure 4.2: Pure strategists show negative frequency dependence under quasi-continuous 

culture conditions in mixed sugar environment but not pure sugar environment.  Pure 

strategists were mixed in a range of initial fractions in .01% glucose for 24 hours.  They were 

then grown to saturation for 17 hours in either pure glucose (left) or a mixed sugar environment 

(right).  At t=0, 3, 6, and 9 hours, the cells were diluted 2X to replenish with fresh sugars.  At 

t=0, 3, 6, 9, and 12 hours, the fractions of the two strains were measured using flow cytometry.  

Relative fitness of the two strains is computed using the relative fraction of the two strains at t=0 

and t=12 hours.  The relative fitness of the galactose strategist is plotted as a function of its initial 

fraction.  Error bars were determined using bootstrap. 

 Second, we performed evolution experiments in which we showed that in a mixed sugar 

environment, the pure strategists (either GAL-ON or GAL-OFF) will evolve after approximately 

100 generations to a mix of GAL-ON and GAL-OFF cells.  This could arise through two distinct 

mechanisms: 

1) The population consists of genetically identical cells, each of which stochastically adopts 

either a GAL-ON or GAL-OFF phenotype. 
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2) The population consists of two subpopulations, one of which is GAL-ON and one of 

which is GAL-OFF. 

 To distinguish between these two hypotheses, I performed a colony purification on the 

evolved cells.  I streaked cells on an agar plate to get single colonies. I then grew these colonies 

up in a mixed sugar environment and assayed the activity of their galactose genes using a 

fluorescent reporter. Interestingly, the two pure strategists took different evolutionary paths to a 

mixed strategy: the GAL-OFF specialist evolved into a mix of pure strategists, and the GAL-ON 

specialist evolved into a mixed strategist (Figure 4.3).  This is a fascinating observation which 

we are still seeking to understand mechanistically. 

 

Figure 4.3: Long term evolution of pure strategists 
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Figure 4.3 (continued): Frequency dependence from a mixed resource environment drives 

the evolution of both phenotypic and genetic heterogeneity. Eight replicates of each of the 

two specialist strains (GAL-OFF, A, and GAL-ON, B) were incubated in the presence of 

doxycycline and three separate sugar conditions: 0.1% glucose (blue), 0.1% galactose (orange), 

and a mixture of 0.03% glucose and 0.05% galactose (purple.)  Cultures were diluted 1000x 

daily into fresh media after reaching saturation. To determine the composition of the evolved 

mixed populations, cultures were plated on agar and individual colonies were assayed for GAL 

activation in mixed sugars.  A) Starting from a glucose specialist strain and in the presence of 

galactose, mutant pure strategist GAL-ON strain arose spontaneously. In pure galactose, the 

strain eventually took over the population (orange), while in the mixed resource condition, it 

evolved towards a stable equilibrium with the GAL-OFF strain (right). B) Starting from a 

galactose specialist strain in the presence of mixed sugars, the population similarly evolved to a 

stable mix of GAL-ON and GAL-OFF, but colony purification revealed that the population had 

evolved to a clonal population of mixed strategists rather than coexistence of pure strategists. 

Fraction GAL-ON is not shown for the 1% glucose condition because in that condition, the 

GAL-ON pure strategist adopts a very low-level unimodal activation state straddling the 

ON/OFF fluorescence threshold. 

4.2 Future Directions and Concluding Remarks 

 This thesis has explored a range of questions drawn from systems biology and microbial 

ecology.  We have shown some interesting results, but in many cases, we have only begun to 

scratch the ice.  Below, we discuss some caveats and briefly highlight areas for future work. 

Cell Memory 

 For many gene circuits, the threshold for the ON to OFF and OFF to ON transitions 

occurs at different concentrations of a small molecule inducer. Thus, for intermediate 

concentrations of inducer, the system can be described as showing memory. However, this is a 

far cry from showing that bistable gene networks are important memory tools for cellular 

systems in natural contexts. Even for one of the canonical examples of hysteresis in gene 

networks, the E. coli lactose network, there is some debate as to whether the network is 

hysteretic in response to changing lactose concentration (most test tube studies use a non-

hydrolyzable lactose analog such as Isopropyl β-D-1-thiogalactopyranoside)76. Additionally, 

some computational modeling has indicated that hysteretic mechanisms are neither necessary nor 
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sufficient for recapitulating observed cell cycle dynamics77. This studies cast doubt on how 

relevant the findings in chapter one will be for natural biological systems. Memory in natural 

eukaryotic systems may be accomplished through mechanisms other than bistable gene circuits, 

such as genetic alteration78. 

 Another interesting debate revolves around the prediction of impending critical 

transitions, for which many researchers have been advocating for generic early warning 

indicators such as critical slowing down16,17. However, others in the field have argued that such 

searches may be a fool’s errand24, because critical slowing down focuses only on local stability 

and ignores global stability. Some researchers have also advocated for the use of system-specific 

early warning indicators, rather than generic indicators79. Intriguingly, in our gene network, early 

warning signals based on critical slowing down failed to predict an impending tipping point. Had 

we used a single cell technique such as microscopy, we could have tested other proposed early 

warning indicators such as autocorrelation time or flickering16,80. Our system presents a unique 

opportunity to test early warning indicators of critical transitions, particularly systems in which 

noise can play a significant role in the dynamics. Another attractive feature of our system is that 

thousands of cells can be probed simultaneously using flow cytometry, which is not possible for 

tipping points in macroscale systems like lake eutrophication or financial market collapse. It 

remains to be seen how useful early warning indicators will be in predicting tipping points in real 

complex systems. 

Cross-feeding mutualisms 

 Our work with a synthetic yeast cross-feeding mutualism highlights that the mode of 

interaction between two species can be highly dependent on the environmental context. 

However, one unique aspect of our experimental system is that our two “species” have very 
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strong niche overlap. In natural mutualisms such as the clownfish and the sea anemone, we 

would be unlikely to see such a wide range of interaction regimes33. For example, it is hard to 

imagine that those species would ever display competitive exclusion, because they occupy 

different niches in the ecosystem. Our simple model system with one adjustable parameter is 

undoubtedly an oversimplification of the complex interactions seen in natural ecosystems. Yet, 

there are reasons to believe that our results could be broadly relevant, particularly in microbial 

communities such as soil or the human microbiome where nutrient interdependencies are quite 

common81,82. Microbial cross-feeding will be an exciting area of exploration in coming years. 

 Again, the topic of early warning indicators of bifurcations reared its head in this study. 

One of our goals when we set out was to measure fluctuations in N1 versus N2 space and 

determine whether the dominant fluctuations were along the axis connecting a stable fixed point 

to extinction, or whether the dominant fluctuations were perpendicular to the aforementioned 

axis. We hypothesized that the dominant axis of fluctuations might shift as we supplemented 

with different quantities of amino acids, and that the shift in the fluctuation axis could be used as 

an early warning indicator of system collapse. However, we were unable to characterize the 

fluctuations with sufficient resolution to address this question. On a related note, our lab is 

currently using these synthetic yeast cross-feeding strains to test a novel early warning indicator 

of an impending bifurcation: reactivity83. Preliminary results from these studies should be 

available later in 2016. 

 One of the most useful outcomes from this study was a simple yet successful 

mathematical model for describing the dynamics of cross-feeding mutualisms. This is sorely 

needed in the field, because the standard go-to framework, Lotka-Volterra, yields nonsensical 
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results where population sizes diverge to infinite in some regimes84. We hope that future work 

will further validate this model and prove useful for other researchers. 

The Allee effect and Evolutionary Rescue 

 One major assumption underlying our work in this area is that Allee effects are common 

in nature. There are plenty of well-grounded reasons, both theoretical and experimental, why this 

would be the case. Populations which engage in collective hunting behaviors will logically 

struggle to hunt if there are too few members of a population to track prey. Assaying for an Allee 

effect in a population involves measuring the population growth rate at different population 

sizes. Given the inherent difficulties of measuring both these quantities in field ecology studies, 

we must take any claims of Allee effects in natural populations with a grain of salt. 

 One other important consideration is the timescale of evolutionary rescue: beneficial 

mutants need time to sweep through populations. In our experiments, rescue trajectories from 

decline to recovery often took tens of generations. For natural populations which take years to 

reach sexual maturity, evolutionary rescue might require decades or centuries, which might be 

too slow in light of the current rate of climate change. We have dealt here only with well-mixed 

populations where migration to a region of better habitat was not an option; future studies should 

study how an Allee effect influences the probability of evolutionary rescue in a spatially 

extended population. In contrast to evolutionary rescue by altering genomic structure, phenotypic 

adaptation (when possible) likely represents a more expedient route to survival in harsh 

environments. An idea that has always fascinated me is the concept of phenotypic plasticity: 

might evolution select for individuals which are able to adopt a wide range of phenotypes85?  

 The Allee effect / evolutionary rescue study is one project in our lab’s larger effort to 

understand how cooperative interactions can alter microbial ecological and evolutionary 
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dynamics86–88. Ongoing work in our lab has shown that cooperative interactions in spatially 

expanding populations can result in a so-called “pushed” wave, whereas non-cooperatively 

growing expanding populations expand as a “pulled” wave. Future work will continue to 

elucidate the deep significance of cooperative interactions in microbial ecology. 
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