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Abstract 

Staphylococcus aureus is a gram positive coccoid pathogen that causes intractable 

infections in hospitals and communities around the world, and tens of thousands of people die 

of these infections every year. In order to combat these antibiotic-resistant infections, we need 

to better understand the genes involved in resistance to the cell stress caused by antibiotic 

treatment, which will enable the discovery of new antimicrobials and the development of novel 

therapeutic strategies. We chose to use an approach to this problem that utilizes a new phage-

based high frequency of transposition system. In this work, we adapted this system so that 

transposon mutant libraries can be made and sequenced using next-generation sequencing 

(NGS) in any strain of S. aureus. We validated our new platform by performing a temperature 

screen and identifying mutants that are significantly resistant or sensitive to temperature-stress. 

Next, we created transposon libraries in two MRSA strains to show that this system can be 

broadly applied to other S. aureus strains, and we used one of these libraries to identify a new 

interaction between two genes involved in the secretion of sortase-anchored surface proteins. 

To better understand antibiotic-resistance, we performed Tn-Seq on transposon libraries treated 

with a small panel of six different antibiotics to identify intrinsic resistance factors to these 

antibiotics. We identified two new intrinsic resistance factors, SAOUHSC_01025 and 

SAOUHSC_01050, that sensitize to many cell envelope targeting antibiotics and may be 

involved in hemolysin regulation. Finally, we expanded this approach to sequence transposon 

libraries treated with 25 different antibiotics. Based on these data, we were able to develop 

methods for predicting the mechanism of action of new antibiotics. These methods involve 
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identifying genes upregulated by transposon insertion and applying machine learning algorithms 

to identify similarities to a curated panel of well-studied antibiotics with known mechanisms of 

action. This work will enable many new functional genomics studies in S. aureus, and it will 

allow us to gain a better understanding of antibiotic resistance in this dangerous pathogen.  
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Chapter 1. Introduction 

1.1. Antibiotic resistant infections 

 

Antibiotics and Antibiotic-resistance 

 Antibiotics have been in the clinic so long they are often taken for granted. The first 

widely-used antimicrobials were the sulfonamides, which were introduced in the 1930’s (1), but 

it was the discovery of the first β-lactam antibiotic, penicillin, by Alexander Fleming in 1928 (2), 

and its mass production in the 1940’s that began the golden era of antibiotic discovery (3). Many 

new antibiotics were discovered by pharmaceutical companies. Most of these new antibiotics 

were natural products that were extracted from bacteria or fungi in much the same way that 

penicillin was (3). For many years after the discovery of penicillin, the vast majority of bacterial 

infections have been treatable with these antibiotics.  

More recently, the situation has changed. Resistance to antibiotics has become very 

common, and now resistance in the clinic has been observed to every class of antibiotics 

(Figure 1) (4). Antibiotic resistance can develop through the evolution of new functions or 

through the acquisition of resistance factors through horizontal gene transfer (5). There are 

three major classes of antibiotic resistance (6): 1) Resistance through the increased export of 

the antibiotic by multi-drug resistance pumps, which prevent the antibiotic from reaching its 

target (ex: NorA is a pump whose expression is upregulated with ciprofloxacin resistance (7)); 2) 

resistance through the modification of the structure of the antibiotic (by adding moieties or by 

breaking the antibiotic apart), which prevents the antibiotic from properly binding its target (ex: 

FosB can hydrolyze the epoxide ring of fosfomycin, rendering it inactive (8)); 3) Resistance 

through some structural change in the antibiotic’s target which prevents the antibiotic from 

properly binding it (ex: PBP2a is a transpeptidase with a low affinity for β-lactam antibiotics, 

which prevents it from becoming inactivated (9)).  
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Figure 1. Antibiotic-resistance has been observed to every class of antibiotic (Adapted 

from Clatworthy et al. 2007 Nature Chemical Biology – Fig1 (4)). These antibiotics belong to 

some of the major clinical antibiotic classes. These classes include the sulfonamides which 

inhibit folate synthesis by binding dihydropteroate synthase (10), the β-lactams (penicillin, 

methicillin, cephalosporins, and ampicillin) which inhibit peptidoglycan biosynthesis by binding 

the peptidoglycan biosynthetic proteins (PBPs) (11), the aminoglycosides (streptomycin) which 

perturbs the 30S unit of the ribosome resulting in inaccurate mRNA translation (12, 13), the 

macrolides (erythromycin) which also inhibit protein synthesis by binding to the 50S ribosomal 

subunit (14), the glycopeptides (vancomycin) which inhibit peptidoglycan synthesis by binding to 

and sequestering peptidoglycan precursors (15, 16), the oxazolidinones (linezolid) which binds 

to the 50S subunit of the ribosome preventing the protein translation initiation complex (17), the 

lipopeptides (daptomycin) which disrupt the membrane and delocalize peptidoglycan 

biosynthetic machinery (18, 19), and the tetracyclines bind to the 30S ribosomal subunit (20) 

while chloramphenicol binds to the 50S ribosomal subunit (21). Continued page 3.  
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Figure 1 continued. Each bar begins when an antibiotic was deployed in the clinic. The bar 

ends when clinical resistance was observed. This figure also highlights the Golden Age of 

antibiotic development in the 1940’s through the 1960’s as well as the dearth of new antibiotics 

in the 1970’s, 1980’s, and 1990’s(22).  

 

One of the reasons why antibiotic-resistance has become a major problem recently is 

that, from the 1970s through the 1990s, the antibiotic discovery pipeline almost completely dried 

up (23). This is not only because the low-hanging fruit (abundant natural products from easily 

cultured microbes) had been picked, which made the discovery of new antibiotics more 

challenging, but also because the economics and regulatory environment of antibacterial 

development made it difficult for newly-discovered antibiotics to come to market (24). The Food 

and Drug Administration in the United States had increased the requirements for bringing an 

antibiotic through the clinical trial process, which increased the cost of developing an antibiotic. 

Furthermore, antibiotics for humans do not make much money for pharmaceutical companies. 

This is because, unlike a cardiovascular drug the patient does not take antibiotics regularly for 

years of their life, and unlike cancer drugs, antibiotics are relatively inexpensively priced. Also, 

some antibiotics are narrow spectrum, and are only useful for certain classes or even species of 

bacteria. That means that a new antibiotic might not have a large number of people for whom it 

will be useful, and if it is a good antibiotic, the patient will not be taking it for a very long time 

(24). Moreover, high-quality rapid diagnostics are needed along with the antibiotic if a narrow-

spectrum antibiotic is to be very effective at treating patients (25). Having to develop a 

diagnostic to go along with an antibiotic further increases the cost of bringing a drug to market 

(25). If pharmaceutical companies increase the cost of an antibiotic in order to make up for 

these losses, patients and doctors rebel against what appears to be an unnecessarily-expensive 

drug. In order to make money on antibiotics, pharmaceutical companies may market their 
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antibiotic as a growth promoter in for livestock, which increases the likelihood that resistance to 

that antibiotic will develop (24). A vast shift in how we develop and use new antibiotics is 

needed to encourage major pharmaceutical companies to re-enter this field (26). 

Staphylococcus aureus is a dangerous pathogen 

 In 2008, the Infectious Diseases Society of America highlighted a group of pathogens 

that have the ability to “escape” normal antibiotic treatment. These bacteria, called the ESKAPE 

pathogens, are part of a new paradigm of antibiotic resistance that will require novel strategies 

to treat. The ESKAPE pathogens consist of Enterococcus faecium, Staphylococcus aureus, 

Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter 

species (27). All of these are organisms of concern, but we are particularly interested in S. 

aureus infections because these infections can be highly-resistant to antibiotics and incredibly 

deadly.  Approximately 2 million people in the United States fall ill with antibiotic-resistant 

infections every year, resulting in 23,000 deaths. Though invasive MRSA infections only 

account for 80,000 of the 2 million infections, this organism causes almost half, or 11,000, of the 

23,000 deaths (28). 

Staphylococcus aureus is a gram-positive coccoid species of bacteria. It is a common 

human commensal, colonizing the skin, especially the nose and nares (29). Approximately 20-

30% of Americans are colonized by S. aureus without any ill effects (29, 30). However, some 

strains of S. aureus are pathogenic and can cause cutaneous abscesses that, if untreated, can 

lead to pneumonia, sepsis, necrotizing fasciitis, and death (31). Some S. aureus strains can be 

very virulent without having any antibiotic-resistance factors. S. aureus Newman, a classic 

example of one of these strains, is a virulent, but antibiotic-sensitive, strain isolated from a 

human infection in 1952 (32). At least thirty genes in this strain were shown to be important for 

S. aureus pathogenesis, and these genes are shared among many different strains (33). The 

virulence of S. aureus has been shown to be due to secreted enzymes and toxins such as 
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coagulases, hemolysins, toxic shock syndrome toxin (TSST-1), and Panton-Valentine leucocidin 

(34-36). S. aureus also produces staphyloxanthin, an antioxidant that protects the bacteria from 

reactive oxygen species (37) and allows the cell to survive longer in the presence of neutrophils 

(38).  

 Both methicillin-sensitive S. aureus (MSSA), and methicillin-resistanct S. aureus (MRSA) 

strains cause dangerous infections, but MRSA strains are also resistant to β-lactam antibiotics. 

MRSA strains can survive very high concentrations of β-lactam antibiotics because they contain 

the SCCmec cassette, a mobile genetic element encoding a penicillin-binding protein (PBP2a) 

with a low affinity for β-lactam antibiotics as well as the genes that regulate its expression 

(Figure 2) (9). β-lactam antibiotics function by binding to and inactivating the transpeptidase 

domain of penicillin-binding proteins (PBPs), which crosslink peptidoglycan strands to 

synthesize the cell wall (11). The expression of PBP2a permits the cell to continue to synthesize 

peptidoglycan, allowing it to grow and divide even when the other PBPs are inactivated by a β-

lactam antibiotic (9).  

 

Figure 2. The SCCmec mobile genetic element encodes β-lactam resistance. There are 

eight classes of the SCCmec element (shown in red), but they all encode some version of these 

genes (39). The SCCmec element is surrounded by Insertion Site Sequences (ISS) depicted as 

red rectangles which control where it inserts into the genome, at the 3’ end of orfX. ccrA and 

ccrB are responsible or integration and excision of the SCCmec element. mecA encodes 

PBP2a, the β-lactam resistant PBP, while mecR1 and mecI regulate the expression of PBP2a 

(39).  
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There are many types of MRSA strains. MRSA strains are broadly categorized as 

healthcare-associated (HA-MRSA) or community-acquired (CA-MRSA). HA-MRSA infections 

are one of the most common healthcare-associated infections, but better monitoring of hospitals 

and other clinical interventions have successfully decreased the number of HA-MRSA infections 

over the last ten years (40, 41). However, the number of CA-MRSA infections has remained 

constant (42, 43). In fact, one of the most common strains of MRSA in the United States, 

USA300, is a CA-MRSA strain (44). Other worrisome strains of MRSA include vancomycin 

intermediate resistant S. aureus (VISA) and vancomycin resistant S. aureus (VRSA) (28). 

Vancomycin, which kills cells by binding to a dipeptide found  in peptidoglycan precursors, 

preventing new peptidoglycan synthesis, is considered to be an antibiotic of last resort for S. 

aureus infections (45). VRSA strains have acquired the vancomycin resistance gene vanA, 

likely via horizontal gene transfer from Enterococcus faecalis. This gene confers high level 

resistance to vancomyin by changing the terminal amino acid residues on the stem peptide of 

peptidoglycan precursors D-ala-D-ala to D-ala-D-lactate (46). VRSA infections are currently not 

very common (between 2002 and 2013, only 13 cases were conclusively identified), but VISA 

infections are much more common (28, 47). Since 1997, they have been identified in Japan, the 

United Kingdom, France, the United States, and Brazil. These strains are less resistant to 

vancomycin than VRSA, but are more resistant than S. aureus and MRSA strains (48). It is 

impossible to treat VISA infections with vancomycin because at higher concentrations, 

vancomycin toxicity to the patient becomes a problem (49). Many types of mutations can confer 

the VISA phenotype, but a large number are in cell stress sensing regulatory systems which 

cause thickening of the cell wall, preventing vancomycin from reaching lipid II at the cell septum 

where new peptidoglycan biosynthesis is occurring (50).   
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Antibiotic resistance in S. aureus  

S. aureus does not have high-level resistance to all antibiotics, but even MSSA strains 

are well known to be highly adaptable to stressful conditions like antibiotic treatment. There are 

mechanisms for up- or down-regulating the expression of genes to promote the cell’s survival. 

Different genes are required for resistance to different antibiotics. Genes that become essential 

in the presence of antibiotic but are not acquired resistance genes are termed intrinsic 

resistance factors. For example, mprF is a lysylphosphatidylglycerol synthase (51) that is 

normally non-essential, but becomes essential during treatment with daptomycin (52). 

Daptomycin acts by binding to at least one calcium ion and inserting into the membrane in a 

phosphatidyl-glycerol dependent manner, depolarizing it and delocalizing the cell division 

machinery (18, 19, 53). Upregulation or activation of mprF results in an increased resistance to 

daptomycin (54, 55). Mechanisms like this exist for many other gene and antibiotic pairs. A 

better understanding of the intrinsic resistance factors could expose some of S. aureus’s 

vulnerabilities, which could be targeted and lead to new strategies for antibiotic development.  

Another form of antibiotic resistance in MRSA is the small colony variant (SCV) 

phenotype. Infections by SCV strains are persistent and often recurrent (56, 57). SCV infections 

are difficult to treat because they are highly antibiotic-resistant and difficult to isolate from an 

infection (58). These strains come about as a result of defects in the electron transport chain, 

often due to a mutation in the menaquinone or cytochrome biosynthetic pathways that causes a 

switch from oxidative to fermentative growth (59, 60). Slow growth can cause a decrease in 

susceptibility to antibiotics because the cells are not very metabolically active. Furthermore, 

these mutations can cause a decrease in membrane potential, which is required for the uptake 

of aminoglycoside antibiotics and cationic antimicrobial peptides (59). Therefore, these 

antibiotics are ineffective against SCV infections.  
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MRSA can cause some of the most dangerous infections because it is capable of 

responding rapidly and effectively to the stress caused by antibiotic treatment. And though 

everyday more bacteria evolve resistance to antibiotics, very few new antibiotics are being 

developed for treating these infections. These new antibiotics are generally chemical 

modifications of antibiotics currently in use. Ceftaroline and ceftobiprole are fifth generation 

cephalosporins, dalbavancin is a teicoplanin derivative, and tedizolid is another oxazolidinone. 

Or, they are combinations of currently-approved drugs combined with a potentiating compound. 

Examples of these include ceftazidime-avibactam and ceftolozane-tazobactam (61). Since the 

FDA approval of daptomycin in 2003, an antibiotic with a new chemical scaffold has not been 

developed (62). If we are to effectively combat antibiotic resistant infections, we must develop 

new tools for studying S. aureus as well as creative strategies for treating these infections. The 

tool we chose to use for studying S. aureus is the transposon mutant library. A history of how 

these tools have been used to better understand bacterial physiology follows.   
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1.2. History of transposons as genetic tools 

 

What is a transposon? 

 Transposons were discovered by Barbara McClintock in 1928 (63), but it was not until 

1950 after DNA was better understood that the scientific community comprehended their 

importance (64). Before their discovery, DNA was thought to be an unchangeable and linear set 

of genes on a chromosome. However, while studying chromosome breakage and fusion in 

maize, she identified two loci that that could change position (64). These were the first 

transposons, a class of mobile genetic elements. With the help of a transposase or other cellular 

factors, they can jump to different areas of the genome (65, 66). Transposons are incredibly 

common. They have been identified in all kingdoms of life, and they make up a large fraction of 

the 66% of the human genome that is made up of repetitive sequences (67, 68). In bacteria, 

transposons and other mobile genetic elements are associated with the acquisition of genes 

that increase their fitness such as virulence factors and antibiotic-resistance cassettes (69).   

 There are many different kinds of transposons. Class I transposons, or the 

retrotransposons, use an RNA-intermediate to move to a new location in the genome. Class II 

transposons encode a transposase that recognizes the transposon’s inverted terminal repeats, 

allowing the enzyme to “cut and paste” the transposon into a new location in the genome (70). 

In addition, transposons can integrate into specific sites in the genome or they may integrate 

randomly (71). Site-specific transposons require homology between the original and new site of 

insertion. These homologous sequences can vary from the AT-rich pentanucleotide sequences 

preferred by Helicobacter pylori’s IS605 element (72) to the 17-bp identical sequences used by 

the SXT transposon of Virbrio cholera (73). Other transposons can insert randomly throughout 

the genome. This class includes the phage-derived transposons which such as the Mu 

transposon (74) and the Drosophila-derived transposon, mariner (75). The mariner transposon 
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has been widely used for many genetics and genomics studies because of the ease in adapting 

it for various organisms and platforms (76). It can insert randomly into any TA dinucleotide site 

in the genome. This type of transposon may also someday be used for gene therapy in humans 

and was awarded Molecule of the Year in 2009 by The International Society for Molecular and 

Cell Biology and Biotechnology Protocols and Researches (77).  

Transposon applications in bacteria 

 Randomly-integrated transposons have been used for a variety of traditional applications 

including genetic footprinting, creating transcriptional and translational fusions, DNA 

sequencing, scanning-linker mutagenesis, signature-tagged mutagenesis, and transposon site 

hybridization. Genetic footprinting predicts whether a gene is essential in a condition of interest 

by performing PCR using a pair of primers that anneal to the transposon and the gene of 

interest after growth in a specific condition (78). Transcriptional and translational fusion libraries 

can be created by placing promoterless reporters (ex: lacZ, luxAB, xylE) inside a transposon 

and then creating the transposon mutant library library (79). This allows one to screen for genes 

that are differentially regulated in response to an environmental stimulus (80). DNA and cDNA 

sequencing can be performed using a transposon mutant library by using transposon-specific 

primers for sequencing the genomic regions next to the transposon insertion and assembling 

those segments into the full sequence (81). Scanning linker mutagenesis is a powerful tool for 

structure-function studies. This technique involves using transposons in create in-frame 

insertion mutants in a gene. Then, site-specific recombination removes the unnecessary DNA 

segments of the transposon itself, leaving only a small insertion in the gene (76, 82). Signature-

tagged mutagenesis involves making a transposon mutant library from a transposon containing 

different random sequences used as signature tags. This was an important development 

because it allowed for the simultaneous screening for multiple genes important for growth in a 

specific condition (83). It has traditionally been used for assessment of genes required for 
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virulence during infection (84, 85). Transposon-site hybridization (TraSH) uses a custom 

microarray to identify conditionally-essential genes in a high-throughput manner (86). In short, 

fluorescently-labeled probes derived from the transposon-genome junctions are created from a 

transposon mutant library and hybridized to an array containing every gene in the genome. 

Changes in fluorescence at each spot on the array after growth in a condition of interest are 

identified, and these correspond to transposon mutants with a change in fitness in that condition 

(86-88).  

Transposon mutagenesis and next-generation sequencing (NGS) 

 As the cost of DNA sequencing has decreased, high-throughput methods similar to 

signature-tagged mutagenesis and TraSH have become more common. Numerous tools and 

techniques for next-generation sequencing (NGS) of transposon mutant libraries have been 

created and published, but each follows a similar series of steps (89). For each, a transposon 

library is created and grown in a condition of interest. Because of the danger of antibiotic-

resistant bacterial infections, these conditions are often antibiotic treatment or growth in a model 

organism (90-95), but others have investigated the impact of other kinds of stress such as 

uranium stress (96) and changes in CO2 concentration (97). After growth in the condition of 

interest, the cells are collected, genomic DNA is isolated, and transposon-genome junctions are 

purified away from the rest of the DNA. The location of the transposon insertion is sequenced 

using NGS, and genes important for fitness in that condition are found by identifying genes with 

significant changes in numbers of reads that map to them (Figure 3). 
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Figure 3. Transposon libraries can be sequenced with NGS to discover genes required 

for survival in a condition of interest. To perform these experiments, a transposon mutant 

library is grown in the condition of interest (ex: antibiotic treatment) and a control condition. Cells 

with transposon insertions into genes which are required for growth in the condition of interest 

will die and drop out of the library (ex: blue cells). Once the cells have been collected, the DNA 

extracted, and transposon insertion locations identified using NGS, we can identify genes with 

significantly fewer reads mapping to them (ex: blue gene). This allows us to identify genes 

required for growth in a given condition.  

 

Tn-Seq, TraDIS, INSeq, and HITS are four similar techniques for sequencing the 

location of transposon insertions(89). They differ only in the method used to prepare 

transposon-genome junctions for DNA sequencing. Tn-Seq and InSeq take advantage of the 

MmeI restriction enzyme which cuts 20bp down from its recognition site (98, 99). With one base 

pair change, the MmeI recognition site can be incorporated near the end of the transposon’s 

inverted terminal repeats. This allows capture of the transposon as well as ~16bp of genomic 

DNA next to it, allowing mapping of the transposon insertion site to the S. aureus reference 

genome. A major difference between the Tn-Seq and INSeq protocol is a step in the INSeq 

protocol that uses a linear PCR with a biotinylated primer and purification with streptavidin 

beads. This step decreases the amount of DNA, enzymes, and other reagents required to 
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prepare the DNA for NGS. In addition, it may increase the sensitivity of the resulting sequencing 

data (89, 99). HITS and TraDIS do not use MmeI digestion to purify the transposon-genome 

junctions, but instead use DNA shearing (100, 101). After shearing, the ends of the DNA are 

repaired and a poly(A) overhang is added. In both, PCR is used to enrich for Tn-chromosome 

junctions, but while the PCR products are directly sequenced in the TraDIS method (101), HITS 

uses a biotinylated primer for the PCR, size selection by running the PCR product on a gel, and 

affinity purification of the DNA, before sequencing with NGS (100). All of these techniques have 

been widely used and broadly-applied to many different bacterial species to study answer 

different biological questions (89), though these techniques are all now largely referred to as 

“Tn-Seq” by the field. 

As these techniques have become more popular, there has been an effort to make the 

analysis of NGS data more accessible to the average biologist who has little computational 

experience. High-quality software is important for making these techniques widely available, and 

initially, most labs wrote their own custom scripts to understand the data. The best way of 

normalizing experimental data and assessing statistical significance likely depends on the 

characteristics of the transposon library, the experiment performed, and the question the 

transposon sequencing data is hoping to answer. Some of the custom methods for analysis of 

transposon sequencing data include using a Bayesian analysis (102) or a Hidden-Markov Model 

(103, 104) for predicting gene essentiality. Our lab has previously used the Mann-Whitney 

statistical test for identifying conditionally essential genes after growth in a non-lethal compound 

(95, 105). Furthermore, the Tufts Galaxy Server has its own custom Tn-Seq analysis pipeline 

which can be used by anyone sequencing transposon libraries through their sequencing facility 

(http://galaxy.med.tufts.edu/).  

One of the first “easy-to-use” programs published was ESSENTIALS, which did not 

require any knowledge of computing languages to run. This online software identifies essential 
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and conditionally-essential genes and can be used with single or multiple transposon libraries 

(106). However, other pipelines and software packages have since been published. These 

include the ARTIST package which combines the Hidden-Markov Model for predicting essential 

genes (EL-ARTIST) with the Mann-Whitney U test to identify conditionally-essential genes 

(CON-ARTIST) (107). Recently, PIMMS (Pragmatic Insertional Mutation Mapping System) 

(108), Tn-Seq Explorer (109), and TRANSIT (110) have been published. Though they differ in 

the methods used for analysis and the format of the output, these methods now allow even 

novices to transposon sequencing to more easily analyze their data which will increase the 

popularity of these techniques.  

Transposon studies in S. aureus.  

 Transposon mutagenesis has been used for studying the physiology of S. aureus for 

many years. In 1983, one of the first studies used Tn551 translocated into the chromosome of a 

strain of MRSA to discover the first chromosomal factors essential for methicillin resistance 

(111). These transposon mutants turned out to map to the femA gene which is involved in 

synthesizing the pentaglycine bridge of the cell wall (112). A larger library made up of 1,012 

isolated colonies was created in 1994. This library was used to expand the known number of 

genes that are important for β-lactam resistance. They identified 70 new insertional mutants that 

decrease resistance to β-lactam antibiotics (113). Studying these genes has increased our 

understanding not only of cell wall biosynthesis but also the requirements for β-lactam 

resistance in MRSA.  

Over the years, transposon mutant libraries have been used study many aspects of S. 

aureus physiology. These include (but are not limited to) capsule synthesis (114), autolysis 

(115), β-lactamase expression (116), clumping factors (117), virulence (118), abscess formation 

(119), pigment production (120), and biofilm formation (121). While these studies led to a much 

greater understanding of S. aureus biology, most of these transposon libraries contained at 
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most ~1000 unique mutants, meaning that many genes in the genome were still untested in 

these experiments. Furthermore, techniques such as arbitrarily-primed PCR or inverse PCR 

were used to sequence the location of transposon insertion (122, 123). Such techniques are 

robust, but they are not high-throughput as they can be performed on only one colony at a time.  

 Even though genetics on S. aureus can be difficult, two techniques for making larger 

libraries were published in the early 2000’s. One method uses the phage Mu and pre-

assembled transposon-DNA/transposase complexes, or transpososomes. These 

transpososomes are assembled in vitro and electroporated into S. aureus cells, where in the 

presence of divalent cations, they become activated and perform the transposition reaction. This 

method was used to create a 10,000 colony library (124). The second method uses a mariner- 

based bursa aurealis, transposon on a plasmid, which is electroporated into cells expressing the 

transposase. After transposition, a high-temperature plasmid-curing step is required to cure the 

cells of the plasmids. The authors created a library with 10,325 unique insertions and used it to 

identify essential genes and new virulence factors (125).  

These methods work well, and they set off an explosion of research utilizing genetic 

screens in S. aureus. Libraries and mutants created using these systems have been used to 

study many genes including those involved in L-form formation (126), lysostaphin resistance 

(127), biofilm formation (128), and fitness in blood (129).  Our lab has used a library created 

using the plasmid-based system to identify the genes required in the absence of wall teichoic 

acids (95), and the same library has been used to identify genes required for fitness in infection-

related ecologies such as blood and ocular fluids (90). Furthermore, the plasmid method was 

used to create the Nebraska Library,  a transposon library created in the United States epidemic 

strain USA300 (130). The makers of this library have arrayed it and made it available as a 

resource. Unfortunately, both of these techniques suffer from a set of disadvantages. Neither 

protocol is simple and easy to use, mostly because of the low efficiency of electroporation into 
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S. aureus (131). Furthermore, during the high-temperature plasmid curing step of the second 

method, all temperature-sensitive mutants die off (125, 132). This makes studying cell envelope 

and stress-response genes challenging because many of them are temperature-sensitive. 

In 2011, a new method was published that solved many of the problems described 

above. This method uses a Φ11 phage to transduce the donor plasmid containing the 

transposon into the S. aureus strain of interest (133). This happens at a much higher efficiency 

than electroporation. In addition, a high-temperature plasmid-curing step becomes unnecessary 

because the RepC element required for replication of the donor plasmid is encoded in trans in 

the donor strain, preventing transposon plasmid replication in the recipient strain. When 

selecting for erythromycin resistance, which is encoded within the transposon, only those cells 

with a successful transposition event will survive. This system is so efficient that the authors 

were able to combine different transposon constructs with outward-facing promoters of different 

strengths when creating the library (133). Depending on the location and orientation of 

transposon insertion, the expression of any gene may be upregulated or downregulated (genes 

can be simply inactivated as well). This phage-based system was designed for predicting the 

target of new antibacterial compounds (133, 134). Target upregulation is a common mechanism 

of resistance, but may come at a fitness cost; for other antibiotics, downregulation may confer 

resistance (135). A major advantage of this platform is that by selecting for resistant mutants in 

a library with a range of expression options, it should be possible to learn something about the 

mechanism of action of an antibiotic and, in a best case scenario, to identify the target. The 

downside of this system was that it was not compatible with NGS. This means that once 

resistant mutants are selected on plates, the location of the transposon insertion must be 

identified one colony one at a time.  
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Looking Forward 

 These developments have shaped the study of S. aureus. Each new development builds 

on the last, increasing the ease with which we understand the different aspects of bacterial 

physiology. In the past twenty-three years, we have gone from creating small transposon 

libraries and identifying the location of one of the mutants, to being able to create libraries 

consisting of thousands of unique mutants and simultaneously identifying the location of each 

mutant in the library using NGS. The new “omics” era has allowed us to build enormous 

datasets and to begin to take a systems-level approach to understanding cellular responses to 

environmental stimuli. This has resulted in the creation of many tools and databases for better 

understanding S. aureus, but questions still remain. However, with the increasing threat of 

antibiotic resistance, these techniques will enable many functional and comparative genomics 

studies, which will increase our understanding of bacterial physiology, antibiotic-resistance, and 

host-pathogen interactions. We can use these discoveries to further our fight against these 

dangerous infections. 
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Chapter 2. Adaptation and validation of a new Tn-Seq platform in S. aureus  

 

Contents of this chapter were published in BMC Genomics in 2011. 

This work was done in collaboration with Tim Meredith, Leigh Matano, and Samir Moussa. 

 

2.1 Introduction 

 

Staphylococcus aureus is a highly adaptable pathogen that is responsible for tens of 

thousands of serious infections every year in the United States (136-138). Many cellular factors 

in S. aureus contribute to antibiotic resistance by mounting a robust cellular response to 

antibiotic-induced stress (139, 140), including the cell envelope stress response and the 

stringent response (141-144). A better understanding of how these cellular components work 

together to combat environmental stresses could lead to new strategies for more efficacious 

dosing of existing antibacterial agents as well as the development of novel therapeutics. 

Transposon mutant libraries used in conjunction with NGS are powerful tools for probing 

bacterial physiology (89, 98-101, 134, 145). Creation of high-density transposon libraries in S. 

aureus has been challenging because its thick cell wall precludes high-efficiency electroporation 

of DNA containing the transposon, and there are no systems in S. aureus for transposon 

delivery via conjugation (124, 131). Thus, most high coverage transposon libraries in S. aureus 

typically utilize a temperature sensitive plasmid containing the transposon and require high-

temperature plasmid-curing steps to remove the plasmid delivery vehicle after transposition has 

occurred (90, 95, 125, 130, 146, 147). During this curing step, temperature-sensitive transposon 

mutants may be culled, making it challenging to differentiate essential genes from those that are 

required for growth at elevated temperatures. 

Here we report the design and application of a phage-based transposition method that is 

compatible with a new NGS protocol and surmounts the many challenges associated with 
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creating high-density transposon libraries in S. aureus. In fact, this method is so efficient that we 

were able to multiplex together transposon constructs with different regulatory elements that 

have the ability to over- and under-express as well as inactivate any gene in the genome to 

create a single highly-diverse library with more than 690,000 unique transposon mutants. We 

have used this library to identify genes essential for growth at 30°C and have assessed 

transposon mutant fitness at a set of low and high temperatures to identify temperature-

sensitive and resistant mutants. Nineteen genes identified as essential in previous studies were 

found to be conditionally-essential, demonstrating growth inhibition at elevated temperatures. In 

addition, mutants in the menaquinone biosynthesis pathway were found to be significantly 

enriched at high temperature. Mutations in this pathway have previously been found in small 

colony variant (SCV) strains isolated from in vivo infections that are resistant to antibiotics, and 

our results suggest that heat stress is one condition that may select for these mutants. The 

phage-based delivery and insertion site sequencing methodology described here will facilitate 

comprehensive functional genomic studies of S. aureus physiology. 
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2.2 Adaptation of the transposon library for next-generation sequencing and creation of 

the transposon library 

 

Adaptation of phage-based transposition for compatibility with any strain of S. aureus 

A phage-based approach for creating transposon libraries in S. aureus was developed 

by Meredith and co-workers (133), but this method, as it was described, was not compatible 

with next generation sequencing. This approach uses a conditionally replicative transposon 

donor plasmid, which is moved by generalized phage transduction to a Himar1 transposase-

expressing strain that cannot support plasmid replication (Figure 4). Following transduction, the 

transposase inserts the transposon into TA dinucleotide sites randomly across the genome. 

Whereas other transposon systems generate only null genotypes due to gene disruption, the 

phage-based system was designed to allow over- and under expression of genes as well as 

inactivation (133). This was achieved by building a set of transposon donor constructs harboring 

the mariner inverted terminal repeats (ITR) flanking an erythromycin resistance gene under the 

control of its own promoter and terminator along with an outward-facing promoter. Genes 

proximal to the insertion site can be upregulated or downregulated to different extents 

depending on the orientation of insertion and the strength of the promoter (Figure 4). This 

phage-based transposition system was shown to be useful for nominating antibiotic targets 

through gene upregulation and for identifying other cellular factors involved in antibiotic 

resistance through deletion/downregulation (133, 134). However, in its original format the 

phage-based system was limited to sequencing single colonies isolated after positive selection 

on agar plates. Thus, its use as a functional genomics discovery tool was limited and we sought 

to reengineer it to take full advantage of the power of next generation sequencing (Figure 4). 
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Figure 4. Strategy for using phage-based transposition to make high quality transposon 

libraries for NGS sequencing. (A) The transposon insertion library is made by creating a high-

frequency transducing lysate of the transposon cassette that is able to replicate as a plasmid in 

the donor strain (repC+). The lysate is mixed with the recipient strain (repC−) carrying a 

temperature sensitive plasmid from which the Himar1 transposase is expressed, and 

erythromycin resistant transposon insertion mutants are selected. (B) By fitting the transposon 

cassette with an outward-facing promoter, genes can be up- or down-regulated, or inactivated if 

non-essential, in a single library pool. Continued page 22. 
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Figure 4 continued. In order to cover a wide range of gene expression levels, different 

promoter containing transposon constructs can be multiplexed and then identified using NGS 

sequencing by unique DNA barcodes (purple bar) to collect fitness-gene dose relationships by 

monitoring read counts. By mapping NGS reads to transposon insertion sites, and comparing 

the number of reads that map to each gene in the control and condition of interest, we should be 

able to distinguish between upregulation, downregulation, and inactivation of genes by 

transposon insertion.  

 

We first modified the transposase plasmid used in the recipient strain to include orf5, the 

gene encoding the Φ11 cI-like repressor. The original phage-based transposon delivery system 

was used to make mutant libraries in S. aureus strains RN4220 and COL (133), and the 

transposon donor plasmids were designed with a 1 kb Φ11 homology region to stimulate 

efficient packaging of transposon donor plasmid DNA as concatemers by the phage. It proved 

necessary to integrate the Φ11 cI-like repressor (orf5) into the genome to prevent replication 

and lysis of the recipient strain by the wt Φ11 population that did not package plasmid. Because 

we wanted to use the phage-based transposition system in other S. aureus strains without 

having to first integrate the cI-like repressor into the genome, we moved the orf5 gene into the 

transposase plasmid (pORF5) to achieve transposase expression and inhibition of Φ11 

replication in a single step. 

We selected HG003 as our strain background for library preparation because a high 

quality plasmid-delivered library has been made in the same strain and provided a reference for 

validating our method (90, 95). However, in contrast to RN4220 and COL, a high number of 

ermR colonies was observed in HG003, even in the absence of functional transposase (<1% for 

RN4220 versus >90% for HG003; Figure 5A). We initially speculated that phage-transposon 

hybrid DNA containing an attP site was being integrated within a recipient HG003 subpopulation 
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where the chromosomal attB site had become available through spontaneous excision of the 

resident prophage, thus leading to the high background of non-transposase catalyzed events 

(Figure 5B). To confirm this possibility, we introduced the pORF5 transposase plasmid into wild 

type RN4220, which also contains an available attB site. As with HG003, we now observed a 

high background of non-transposase catalyzed ermR colonies in RN4220 attB+ (Figure 5A), 

consistent with a role for phage-mediated att-site specific integration in increasing background 

(Figure 5B). To block this pathway, we constructed a strictly virulent transducing phage (Φ11-

FRT) by replacing the attP-int site with a FRT site from the yeast 2-μm plasmid site-specific 

recombination system (148, 149) (Figure 5C), thereby preventing integration. The use of Φ11-

FRT decreased the background of non-transposase-catalyzed transposon integration in 

RN4220 as fewer ermR colonies were produced by the truncated transposase expressing strain 

(Figure 5A), but the background in HG003 remained unacceptably high (Figure 5A). We 

therefore considered a second mechanism for the production non-transposase catalyzed ermR 

colonies. Homologous recombination between phage-transposon hybrids carrying the ermR 

cassette and the resident Φ11 prophage in HG003 could also yield ermR colonies (Figure 5C). 

To determine whether this was occurring, we constructed a strain of HG003 where the Φ11 

prophage was specifically removed using the same att::FRT exchange strategy employed to 

create the Φ11-FRT donor phage. The combination of this recipient strain (HG003 Φ11−) with 

Φ11-FRT packaged transposon donors reduced non-transposase catalyzed ermR background 

colonies to less than 1% (Figure 5A). With removal of the Φ11 prophage, this strategy now 

allows us to create high-density transposon mutant libraries with a very low background of non-

transposase catalyzed transposon integration using the phage-based transposition system in 

any strain of S. aureus that is transducible by Φ11. 
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Figure 5. Elimination of non-transposase catalyzed transposon integration. (A) The ratio 

of ermR colonies arising from non-transposase catalyzed (hatched) to transposase dependent 

(solid) events was determined in the RN4220 (green) or HG003 (blue) strain backgrounds by 

comparing the number of colonies resulting from transduction of the transposon into the full 

transposase or truncated transposase expressing strains. The presence of the phage 

attachment site in the bacterial chromosome (attB), the phage attachment site in the donor 

lysate (attP-int), and a Φ11 prophage in the recipient is indicated. (B) Putative mechanisms for 

integration of the ermR cassette of the transposon into the recipient chromosome include 

transposase catalyzed (top), integrase-mediated (middle), and homologous recombination 

(bottom). (C) The integrase pathway was blocked by replacing the integrase (int) gene and the 

attL sequence with a FRT element by allelic replacement. To cure the resulting prophage, the 

attR site was replaced with a second FRT site and a phage donor lacking int-attP was isolated 

by introducing the FLP recombinase. In the process, a recipient HG003 strain was generated 

from which the Φ11 prophage was specifically cured, preventing homologous recombination. 
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Adaptation of the phage-based transposition system for next-generation sequencing 

To adapt the transposon system for NGS, modifications to the donor plasmids were 

required. The initial design included the incorporation of: 1) the P7 Illumina adapter sequence 

within the transposon cassette to enable Illumina based NGS, 2) unique three base pair 

barcodes specific to each outward facing promoter element for de-multiplexing after 

sequencing, and 3) a MmeI site to capture the transposon-genome junction. The MmeI 

restriction site was embedded within one ITR of the transposon by a single base pair change, 

facilitating processing of transposon insertion sites by cutting non-specifically 20-base pairs 

downstream of its recognition site (16-base pairs downstream of the Himar1 TA dinucleotide 

insertion site) (99).  

Early efforts to prepare and sequence our transposon libraries using the reengineered 

constructs were plagued by high plasmid-transposon junction read counts, despite the fact that 

the vast majority of ermR colonies arose via bona fide transposition events. When we used PCR 

to probe the transposon junctions in isolated transposon mutant colonies, we observed a small 

population harboring both plasmid- and genomic-transposon junctions (Figure 6A), as 

previously reported (133). However, when a single base pair was changed in the canonical ITR 

DNA sequence to create the MmeI site, the population of transposon insertion mutants 

containing plasmid-transposon junctions increased to over 50%. We hypothesized that the 

MmeI modified base in the ITR was important for recognition by the Himar1 transposase in vivo, 

resulting in a transposase-DNA complex that often failed to engage the initially encountered ITR 

and instead read through to a downstream non, contiguous ITR within the concatemer (Figure 

6B) (150). The ensuing transposition event would thus capture and introduce the intervening 

plasmid region into the recipient genome. Therefore, we added two NotI sites to the plasmid, 

one immediately after the MmeI-modified ITR within the plasmid backbone and the second 
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immediately upstream of the P7 adapter sequence (Figure 5C). Following an added NotI 

digestion step, the plasmid-transposon junctions could now be selectively removed. (Figure 6D) 

 

Figure 6. Reduction of transposon-plasmid junction NGS reads with flanking NotI 

restriction sites. (A) Inverse PCR was used to amplify the ITR2 transposon junctions for twelve 

colonies as described (33). Three out of twelve of these colonies also contained transposon-

plasmid junctions (~160 bp DNA band). This ratio increased to seven out of twelve when the 

canonical ITR sequence was altered to incorporate a MmeI recognition site. Results are 

representative of multiple independent experimental replicates. (B) The putative mechanism for 

transposase catalyzed integration of transposon-plasmid junctions may involve engagement of 

non-contiguous ITR repeats (dashed lines), resulting in chromosomally integrated transposon 

multimers. In contrast, when both ITR sequences are optimal, contiguous ITRs are most 

frequently mobilized (solid lines). (C) Colors are used to identify the positions of the sequences 

in this drawing. To selectively remove transposon-plasmid junctions, we introduced two NotI 

recognition sites into the transposon construct that flanked the MmeI modified ITR2. We also 

included a P7 Illumina sequencing primer site and a unique 3-bp DNA barcode to identify the P 

out promoter that faces outward from ITR1 during NGS sequencing. (D) After first digesting 

genomic DNA with NotI, the transposon-plasmid junction content was substantially reduced. 



 

27 

 

Using these changes, we were able to create four different transposon constructs with 

outward-facing promoters of different strengths and orientations (in order of increasing strength 

Perm , Ppen, Pcap, and Ptuf,). In addition, we created a construct with the Ppen outward-facing 

promoter on one end and the erythromycin-resistance gene promoter (Perm) on the other but no 

intervening transcriptional terminator (Dual), and a transposon construct with no outward facing 

promoter elements (Blunt) (Figure 7). Each of the six constructs is identified from the NGS data 

using a unique barcode located inside the transposon. The Blunt construct is most similar to 

transposons used in traditional transposon screening experiments, and because it does not 

contain any promoter elements (besides the promoter driving ErmR expression), it can only 

inactivate genes. The rest of the construct, which contain outward-facing Perm , Ppen, Pcap, and 

Ptuf promoters, have the ability to upregulate nearby genes if these promoters are in the same 

orientation as that gene’s native promoter. The Perm construct is simply the Blunt construct 

without the transcriptional terminator at the end of the ErmR cassette, so the insertion 

orientation where it will upregulate nearby genes is opposite of the Ppen, Pcap, and Ptuf containing 

constructs. The Dual construct is unique in that, as a hybrid of the Perm and Ppen transposon 

constructs, it can upregulate both upstream and downstream genes. This is useful for genes 

such as tarGH. TarGH is the wall teichoic acid transporter and both components are required for 

its activity. Therefore, both components would have to be upregulated to increase export of wall 

teichoic acids, but though tarG is found next to tarH in the genome, they face opposite 

directions. Only the Dual transposon mutant would be able to upregulate both tarG and tarH at 

once.  
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Figure 7. Six different transposon constructs were used to create the transposon library. 

A schematic of the different transposon constructs, as well as the three base pair barcodes 

used to identify them, is shown. The Blunt construct only has the ability to inactivate genes, 

while the others (Erm, Pen, Cap, Dual, and Tuf) can upregulate nearby genes. The Dual 

transposon construct is unique in that it can upregulate genes on either side of the transposon 

insertion site.  

 

Our optimized sample preparation procedure for transposon mapping is outlined in 

Figure 8, and a detailed version can be found in Appendix C. Briefly, genomic DNA is extracted 

from a pooled transposon library and then digested with NotI followed by a size-selective poly-

ethylene glycol (PEG) precipitation to remove liberated plasmid-transposon junctions (151, 152). 

A PCR-based quality control check is performed to confirm that background due to transposon-

plasmid junctions is minimal. A biotinylated dsDNA adapter containing a NotI compatible 

overhang is then ligated and the DNA is digested with MmeI. The transposon-genome junctions 



 

29 

 

with 2-base overhangs are bound to streptavidin dynabeads and ligated to an adapter 

containing the indexing barcode and priming site for the Illumina sequencing primer. Primers 

containing the P5 and P7 sites are then used to amplify the transposon-genome junctions 

bound to the streptavidin dynabeads. The fragments are run on a 2% agarose gel to confirm 

size, extracted from the gel, and multiplexed with other samples prior to sequencing (Figure 8). 

Using this protocol, we routinely reduced the amount of contaminating plasmid-transposon 

reads to less than 1%. To confirm the quality of the DNA insert library for NGS, we developed a 

quality control procedure for determining level of background due to transposon-plasmid 

junctions (Figure 9). This strategy, which utilizes restriction enzyme digestion followed by size-

selective precipitations, can be generalized to other bacterial species and transposon library 

sequencing strategies to prepare transposon libraries for NGS. 
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Figure 8. Protocol for the preparation of a high quality transposon DNA library for NGS. 

(A) (1) Genomic DNA is isolated and digested with NotI. High molecular weight DNA is 

selectively precipitated using an 8%PEG + NaCl solution. A biotinylated dsDNA adapter with 

NotI overhang is ligated (2) before digestion with MmeI (3). Biotinylated fragments are bound to 

streptavidin beads (4), and an Illumina sequencing primer adapter containing an indexing 

barcode and MmeI compatible ends is ligated (5). Primers annealing to the P7 site and the 

Illumina sequencing primer adapter sequence (with a P5 site overhang) are used to PCR 

amplify the transposon-genome junctions (6), agarose gel purified, and submitted for Illumina 

sequencing (7).  Continued page 31. 
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Figure 8 continued. (B) Fragments arising from transposon-plasmid junctions are removed by 

size selective PEG-NaCl precipitation, while the remaining fragments lack both P7 annealing 

sites and MmeI sites for ligation of the Illumina sequencing primer adapter. These fragments are 

therefore not amplified in (6) of 4A. (C) By performing the size-selective precipitation on a 1 kb 

DNA ladder, we show that small 300 bp fragments of DNA are retained in the solution (SN), 

while larger DNA is precipitated (P). 

 

 

Figure 9. PCR and NGS library diversity analysis. (A) The amount of transposon-plasmid 

junction was quantified by removing aliquots of each PCR reaction at the indicated cycle 

number and analyzing by agarose gel electrophoresis. Continued page 32. 
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Figure 9 continued. The cycle at which a band was first observed for the transposon-plasmid 

junction had to be reduced by at least 6 cycles after NotI digestion in order for the sample to be 

further processed. Amplification of a genomic locus using control primers for tarK was used as 

control (top panel). (B) NGS library was cloned into a pUC19 vector with ends homologous to 

the P5 and P7 Illumina primers. Individual colonies were sequenced to confirm insert diversity 

before submitting for NGS. 

 

Creation and sequencing of a transposon library 

Using the strains and methods described above, we created a 2 million colony 

transposon library using the six different transposon donor constructs described above (Figure 

7). Library cultures were grown for 12-13 generations in tryptic soy broth (TSB), harvested 

between an OD of 1 and 1.5, and genomic DNA was isolated. After processing samples for 

NGS and sequencing, the Tufts Galaxy service was used to separate the data by sample index 

and donor construct barcodes (153-155). The data were filtered by Illumina quality score for 

high quality reads and mapped with Bowtie (ver1.1) to the S. aureus NCTC8325 reference 

genome (156).  

We used two biological replicates for our analyses and computationally de-multiplexed 

the data by transposon construct based on their unique barcode (Figure 7). For each of the 

donor constructs, we obtained 3 to 5 million reads that could be mapped to TA insertion sites. 

Depending on the constructs, insertions were identified in 105,000 to 130,000 of the ~270,000 

unique TA sites in the S. aureus genome (Table 1). On average, 3,897,389 ± 834,906 reads hit 

115,792 ± 9,416 TA sites for each of the six transposon constructs, with 36,794 TA sites in 

common between all six of the donor constructs, and 208,372 TA sites covered by at least one 

donor construct. 
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2.3 Validation of a new Tn-Seq platform in S. aureus by identification of essential genes 

and temperature sensitivity screening 

 

Identification of essential genes 

To validate the quality of the library and assess whether insertions due to individual 

transposon constructs could be reliably analyzed, we used the data obtained to identify 

essential genes. We first compared the number of reads per gene for each transposon donor 

construct using principal component analysis and found that the transposon constructs with 

outward-facing promoters co-clustered away from the promoterless (Blunt) and weakest 

promoter (Perm ) constructs (Figure 10). This suggests that transposon insertions in the same TA 

site by different transposon constructs are differentially tolerated due to polar effects on 

downstream genes. Therefore, different numbers of reads map to each gene depending on the 

identity of the transposon construct. However, because transposon constructs containing a 

medium to strong outward-facing promoter (Dual, Ppen , Pcap, and Ptuf) clustered together, the 

number of reads mapping to each gene for each of these constructs will be more similar to each 

other than to Blunt or Perm . Because of the similarity between the constructs with an outward-

facing promoter, the data from these constructs (Dual, Ppen , Pcap, and Ptuf) was combined for the 

gene essentiality analysis. 

We then identified essential genes using a recently published method, EL-ARTIST 

(Appendix D) (104, 107). This method uses a hidden Markov model (HMM) to categorize genes 

as essential, non-essential, or containing essential domains (domain essential). Because this 

method uses local context of the TA site as well as the number of reads in that TA site to 

determine essentiality, it lessens the impact of the intrinsic variability in the data and allows us 

to robustly ascertain the importance of every gene to cellular survival. There were 261 genes 

found to be essential in all three categories (Blunt, Perm, and other promoter constructs). The 
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Blunt construct had the greatest number of essential genes (321 genes), while the Perm 

construct had slightly fewer (295 genes), and the other promoter constructs had the least (277 

genes) (Figure 10).  

 

Figure 10. Transposon insertions by different transposon constructs are differentially 

tolerated. (A) Principal component analysis was used to compare the number of reads mapping 

to each gene for each of the six transposondonor constructs. The transposon constructs with 

outward-facing promoters clustered together, away from the Blunt and Perm constructs. Data for 

these constructs were combined and analyzed separately. (B) A Venn diagram depicting the 

number of essential genes for each category of donor construct as calculated using EL-ARTIST 

is shown (107). 

 

We were curious about the differences between the Blunt construct and constructs 

containing promoter elements. When a transposon inserts into the coding sequence of a gene, it 

not only interrupts the expression of that gene, but can also disrupt the expression of other 

genes due to polar effects. It is possible that some of these polar effects are abrogated by the 

promoters in the Perm and other promoter constructs, which allow downstream genes to be 

expressed from the promoter in the transposon instead of the native promoter. If this is true, 
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then the genes found to be essential with the Blunt construct, but non-essential with the other 

constructs, should be next to or near other essential genes. Of 20 essential genes found using 

the Blunt construct that were non-essential for the Perm construct and the other promoter 

constructs, 13 were immediately proximal to another essential gene. Another five were 

immediately proximal to a domain essential gene, and three of these were followed by another 

essential gene. Only two genes were not adjacent to an essential or domain essential gene. 

These data suggest that when a transposon containing an outward-facing promoter inserts into 

a region containing many essential and domain essential genes, the insertion may result in a 

less lethal phenotype than the standard transposon construct. Due to these differences and to 

compare our data with previous studies which did not have constructs containing promoters, we 

chose to use only the Blunt construct for subsequent analyses. 

The Blunt construct, which is not fitted with gene expression modulating elements, is 

most similar to previously used transposons (90, 125, 130, 146, 147). In two biological 

replicates, there were ~126,000 unique insertion sites due to the Blunt construct. Using the 

Circos program to display the number of reads per TA site (157), we visually confirmed 

randomly distributed insertions throughout the length of the genome (Figure 11A). Of the 2723 

coding regions of the genome that are not part of the Φ11 family lysogen, EL-ARTIST called 

2212 non-essential, 190 domain essential, and 321 essential (Appendix D). 

Essential genes are defined as those genes that are required for cellular growth. 

However, depending on the growth conditions, different sets of genes may be identified as 

essential, but there should be a subset of truly essential genes that are required for growth in all 

conditions. We expect these genes to be involved in core cellular functions such as DNA, RNA, 

and protein synthesis as well as the processes required for cell growth and division like 

peptidoglycan and membrane biosynthetic genes. A comparison with previous studies using 

transposon mutant analysis to identify essential genes in S. aureus should bring us closer to this 
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core set of essential genes because other studies were done using different growth media and 

analyzed using different methods. However, transposon mutagenesis and sequencing involves 

growing all the transposon mutants together in one culture, resulting in competition between 

mutants in the library. Therefore, non-essential genes with a fitness defect when knocked out 

may appear to be essential in these types of experiments because they are out-competed by 

other mutants in the library. We have observed this for genes such as those of the dlt operon, 

which though they can be deleted, appear essential in a Tn-Seq experiment.  

We compared these results to two previous studies that identified essential genes in S. 

aureus based on transposon mutant analysis, one in the HG003 genetic background (90) and 

the other in SH1000 (146). Both strains are derived from the NCTC 8325 parent strain. The 

transposon libraries were made, grown, and analyzed using different methods, but there were 

247 essential genes in common between this study and the previous study in HG003, and 211 

genes in common between all three studies (Figure 11, Table 2). There were 73 genes 

identified as essential in both previous studies that did not meet our cutoffs for essentiality. Of 

these, two are no longer considered to be genes, eight were in our list of non-essential genes, 

and 63 were found to be domain essential.  

Because the previous studies were done using transposon libraries made using a high-

temperature plasmid-curing step, we checked to see if any of these genes would be identified 

as essential at 43°C. Of the 63 domain essential genes, nine were identified as essential at high 

temperatures, with nine of the remainder found to be domain essential as at 30°C. One gene, 

SAOUHSC_01028, encoding the phosphor-carrier HPr was found to be non-essential at 43°C. 

Transposon insertions in domain essential genes are likely to result in cells that are weak and/or 

have growth defects, and depending on the stringency of the method of analysis, these mutants 

may be mistakenly classified as essential. In addition, at the more stressful high temperatures, 

some of these weakened mutants may no longer be able to survive. Finally, of the eight genes 
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we found to be non-essential that were previously identified as essential, four became essential 

at high temperatures, and one became domain essential. The four genes that became essential 

at 43°C include genes known to be important for high temperatures growth such as the heat 

shock genes, dnaJ (SAOUHSC_01682) and dnaK (SAOUHSC_01683), as well as sepF 

(SAOUHSC_01154). However, overall there was substantial agreement between our essential 

gene list and the lists generated in previous studies despite analytical and experimental 

differences (different growth media, growth temperature, and/or strain background) (Appendix 

E). The 212 genes essential in all studies comprise a core set of essential genes required for 

cell survival regardless of the experimental and analytical methods used to identify them (Table 

2). 

 

 

Figure 11. There are a core set of 211 essential genes in S. aureus. (A) The Circos program 

was used to map transposon insertion sites across the genome, with a histogram depicting the 

number of reads per TA site in purple. Continued page 39.  
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Figure 11 continued. The innermost blue rings depict the locations of non-essential genes for 

which a fitness cost was not observed, while the outermost red ring depicts those genes 

identified as essential. The middle green ring represents those genes that were found to be 

domain essential. (B) Venn diagram comparing our essential gene list to Chaudhuri et al. and 

Valentino et al (90, 146). There is extensive overlap between the three studies. 212 genes were 

classified as essential in all three works. These represent a core set of genes required for cell 

growth regardless of experimental and analytical variations. 
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Identification of genes important for growth at different temperatures 

 Because the phage-based method for transposon delivery does not involve a high 

temperature plasmid curing step, mutant libraries retain insertions in temperature sensitive 

genes. Hence, after validating the transposon library grown at 30°C, we identified transposon 

insertions that confer temperature-sensitive and resistant phenotypes by comparing mutant 

fitness at 16°C, 23°C, 37°C, and 43°C to that at the reference temperature 30°C. At each 

temperature the library was grown for 12-13 generations and the number of reads due to 

insertion of the Blunt transposon in each gene was compared to the number of reads obtained 

after outgrowth at 30°C. Two biological replicates were carried out for each condition and the 

data were analyzed using the Mann-Whitney U test, correcting for multiple hypothesis testing 

with the Benjamini-Hochberg procedure (95). Genes showing a greater than five-fold change 

(increase or decrease) in the number of reads at the test temperature compared to the 30°C 

control were considered significant if the corrected p-value was less than 0.05. A full list of 

affected genes can be found in Appendix F. 

At 16°C and 23°C, only one gene, SAOUHSC_01857, contained a significantly different 

number of reads due to transposon insertions compared to the 30°C control, with the number of 

reads being enriched six-fold and five-fold, respectively. At 37°C, reads due to transposon 

insertions were found to be enriched in five genes involved in branched chain amino acid 

degradation, ilvE (SAOUHSC_00536), SAOUHSC_01611, bkdA2 (SAOUHSC_01612), bkdA1 

(SAOUHSC_01613), and SAOUHSC_01614 (SAOUHSC_01611, bkdA1, bkdA2, and ilvE meet 

significance cutoffs) (Figure 12).  
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Figure 12. Enrichment of transposon insertions in the branched chain amino acid 

degradation pathway. (A) The number of reads in each gene per 5 million reads was 

normalized to the read count at 30°C and plotted for each temperature. (B) Four genes in the 

essential branched chain fatty acid pathway were found to have a statistically-significant 

increase in the number of reads and SAOUHSC_01614 was found to have a non-statistically-

significant increase in number of reads at 37°C, suggesting they have less impact on fitness at 

this temperature. 

 

Branched chain fatty acids are built from branched chain acyl-CoA primers, which in turn 

are derived from the degradation of branched chain amino acids (158). Branched chain fatty 

acids increase membrane fluidity upon incorporation into phospholipid bilayers (159). In Bacillus 

subtilis, enzymes that catalyze the degradation of branched-chain amino acids are induced 

during cold shock and are speculated to increase membrane fluidity by promoting the 

incorporation of branched chain fatty acids into membrane lipids (160). In our data there is a 
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bias against transposon insertions in the branched chain amino acid degradation pathway at 

temperatures lower than 37°C, in agreement with studies in S. aureus and Listeria 

monocytogenes implicating branched chain fatty acids in growth at low temperatures (159, 161). 

Two genes, SAOUHSC_01154, encoding SepF, and the hypothetical protein likely co-

transcribed with it, SAOUHSC_01153, proved to have significantly fewer reads at 37°C. SepF is 

a protein of unknown function thought to be involved in cell division, and was previously 

identified as essential in S. aureus (90, 125, 130, 146, 147), but these studies show it is 

essential for survival only at temperatures greater than 30°C. 

A significant number of genes were found to be affected by transposon insertion when 

grown at 43°C, with 42 being enriched and 77 being depleted. Because this method for creating 

transposon libraries does not involve a high-temperature plasmid curing step, we expected to 

retain many temperature-sensitive mutants. We used two methods for identifying temperature-

sensitive mutants represented in the library. The first was the Mann-Whitney U analysis used for 

every temperature. For the second analysis, we used the 43°C data and the essential gene 

analysis described in the previous section to identify genes essential at 43°C that were not 

identified as essential at 30°C. We confirmed that the number of reads mapping to these genes 

had decreased at 43°C from 30°C. We compared these genes to other essential genes lists (90, 

125, 130, 146, 147), and identified 19 genes that had been annotated as essential in at least 

two other transposon library analyses, but were only temperature-sensitive with our method 

(Table 3). To further analyze the temperature sensitive gene subset, we classified them 

according to cellular function (Figure 13A). 
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Because protection from temperature stress relies on the coordinated response of many 

different pathways regulated by signaling systems and alternative transcription factors, we were 

not surprised to find that 11 regulatory genes were significantly depleted at 43°C, including yycH 

(SAOUHSC_00022) and yycI (SAOUHSC_00023), which were identified as essential in another 

transposon library (90). The yycH and yycI genes negatively regulate the two component 

system, walKR, which is a major regulator of peptidoglycan metabolism that controls autolytic 

activity (162, 163). Deletions of yycH and yycI result in upregulation of walKR, which induces 
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cell wall defects (162, 164). As walKR positively regulates autolytic activity (165), increased 

autolysis of peptidoglycan could explain how derepression of walKR produces a temperature-

sensitive phenotype.  

We also found, as expected, that many genes implicated in the heat shock response 

were required for survival at 43°C. These included the chaperones dnaK (SAOUHSC_01683) 

and dnaJ (SAOUHSC_01682) (166), the transcriptional regulator hrcA (SAOUHSC_01685) 

(167), the protease clpC (SAOUHSC_00505) (168), and mcsB (SAOUHSC_00504; also known 

as yakI), an arginine phosphotransferase that negatively regulates the stress response 

repressor ctsR (169, 170). GrpE (SAOUHSC_01684), which acts in a complex with DnaK and 

DnaJ, narrowly missed our cutoffs (Figure 13B) (171). 
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Figure 13. Genes that influence fitness at high temperature. (A) Genes contributing to 

fitness at 43°C were classified by cellular function. Genes associated with the cell envelope 

constituted the largest fraction of the hits. (B) Six genes known to be associated with the heat-

shock response were found to be temperature-sensitive. The number of reads mapping to these 

genes at different temperatures normalized to 5 million reads is shown. 

 

 The largest category of genes with significant changes in number of reads when grown 

at 43°C included those involved in cell envelope related processes (44 genes) (Figure 13A). 

This category includes genes involved in peptidoglycan (PG) biosynthesis, cell shape/division, 

membrane lipid composition, transcriptional regulation of cell-envelope genes, and predicted 

membrane proteins. Transposon insertions into biosynthetic genes directly involved in PG 

biosynthesis were notably depleted, including pbp3 (SAOUHSC_01652) and pbp4 

(SAOUHSC_00646), which encode cell wall transpeptidases (172-174), one of two alleles of 
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murA (SAOUHSC_02337) involved in PG precursor biosynthesis (175), alr1 

(SAOUHSC_02305) which encodes one of two alleles of alanine racemase (176), and 

SAOUHSC_01739, which encodes an amiC-like peptidoglycan amidase (177). Insertions in 

several genes involved in cell shape/cell division were also affected at 43°C. For example, 

reads due to transposon insertion were depleted for rodA (SAOUHSC_02319), mreC 

(SAOUHSC_01759), and mreD (SAOUHSC_01758), which encode scaffolding proteins that 

coordinate PG biosynthesis and influence cell shape (178-181), and also for ezrA 

(SAOUHSC_01827), which is thought to coordinate Z-ring functions with PG synthesis (182), 

ftsH (SAOUHSC_00486) (183), sepF (SAOUHSC_01154) (184), gpsB (SAOUHSC_01462) 

(185), and SAOUHSC_01857. SAOUHSC_01857 encodes a 1200 amino acid FtsK-like protein 

suggested to be involved in chromosome localization (186). As noted above, insertions in this 

gene conferred a growth advantage at 16°C and 23°C, but are deleterious at high temperature. 

This gene was identified in other studies as essential in S. aureus (90, 125, 130, 146, 147). The 

putative cell wall teichoic acid ligases, lcpA (SAOUHSC_01361) and lcpB (SAOUHSC_00997), 

were also depleted at 43°C (25-fold and 5-fold, respectively), consistent with the vital role of wall 

teichoic acids in orchestrating PG assembly and maintaining envelope integrity (187-189). The 

integral membrane protein MprF (SAOUHSC_01359), which attaches lysine to 

phosphatidylglycerol, was also important for fitness at high temperatures (190). 

In addition to the mutants that were depleted at 43°C, we identified a number of 

processes for which disruption resulted in a significant growth advantage compared to growth at 

30°C. Pathway enrichment analysis using BioCyc (191) showed that the number of reads due to 

transposon insertion were significantly enriched in seven genes in the aromatic amino acid and 

menaquinol biosynthetic pathways (SAOUHSC_01481, aroB: SAOUHSC_01482, aroF: 

SAOUHSC_01483, menF: SAOUHSC_00982, menD: SAOUHSC_00983, aroE: 

SAOUHSC_01699, and aroA: SAOUHSC_01852) (Figure 14). In addition to producing 
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phenylalanine and tyrosine, the aromatic amino acid pathway provides precursors (chorismate) 

for menaquinone biosynthesis (192). Menaquinones are isoprenylated electron transport chain 

cofactors embedded in the membrane that are necessary for oxidative phosphorylation (193). 

Insertions in ispA (SAOUHSC_01618), which encodes a putative geranyltransferase, were also 

enriched at 43°C. Geranyltransferases initiate the condensation of isoprenoid units into longer 

chains used in the synthesis of menaquinones, and loss of ispA likely decreases the pool of 

menaquinones. We also identified insertions in hemY (SAOUHSC_01460), a gene involved in 

the production of protoheme (194). Loss of these factors is thought to shift S. aureus growth 

towards an anaerobic metabolic regime, which markedly impacts S. aureus membrane 

physiology and generates small colony variants (SCV) (195, 196). The observed growth 

advantage could also be related to more efficient anaerobic catabolism at high temperature, 

and/or decreased oxidative stress. Five subunit genes in the F-type ATPase involved in electron 

transport were found to be essential at 43°C (Figure 12B): α-subunit (SAOUHSC_02345), β-

subunit (SAOUHSC_02343), γ-subunit (SAOUHSC_02341), A subunit (SAOUHSC_02350), and 

B subunit (SAOUHSC_02347) (all were significantly depleted except the β-subunit), suggesting 

the electron transport system (ETS) mutations can have opposing effects on fitness at elevated 

temperatures depending on which step in the ETS is blocked.  
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Figure 14. The electron transport system influences sensitivity to high temperatures.  (A) 

Nine genes were identified as growth advantaged at 43°C in comparison to 30°C. The number 

of reads per gene normalized to 5 million reads is shown for each temperature. (B) Pathway 

analysis revealed that this subset of genes (highlighted in yellow) is involved in the biosynthesis 

of components within the electron transport system, including protoheme and menaquinones. 

Continued page 50.  
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Figure 14 Continued. (C) Blocking the electron transport system at the F-type ATPase level, 

however, decreased fitness at 43°C (genes highlighted in yellow). The number of reads per 

gene normalized to 5 million reads is shown for each temperature. 

 

Among cell envelope-related genes, reads due to transposon insertion were notably 

enriched in lytD (SAOUHSC_01895, also known as sagB), encoding β-N-acetylglucosaminidase 

(196, 197), and lyrA (SAOUHSC_02611), a polytopic membrane protein. Disruptions in lyrA 

were previously shown to increase lysostaphin resistance and are lethal when wall teichoic acid 

biosynthesis is blocked (95, 127), and both these phenotypes are consistent with an important 

role for lyrA in cell envelope biogenesis. 

To confirm the results of our automated transposon insertion analysis pipeline, we 

constructed and measured the growth rates of null mutants of lyrA (significantly overrepresented 

at 43°C) and mprF (significantly depleted at 43°C) (Figure 15A and B). While there were no 

differences in growth of the mutants compared to wild type at 30°C, growth related phenotypes 

became apparent at 43°C after 5 to 6 generations of outgrowth. The wild type strain grew more 

slowly at 43°C than at 30°C (doubling times were 65 min and 37 min, respectively), the ΔmprF 

strain ceased dividing altogether, and the doubling time of the ΔlyrA mutant decreased to 34 

minutes at 43°C from 41 minutes at 30°C (Figure 15C). A faster growth rate than wild type could 

signify that in the absence of lyrA, an important mechanism for regulation of growth rate during 

conditions of stress such as high heat has been disrupted. On the other hand, an increase in 

OD, does not necessarily mean that all the cells are alive and growing. There may be many 

dead cells in this condition, contributing to a higher OD, but not actually corresponding to an 

increase in fitness at 43°C. These results confirm the changes in fitness that were deduced from 

the changes in read number due to transposon insertion in lyrA and mprF at 43°C. 
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Figure 15. Confirmation that changes in read number correspond to changes in fitness. 

The number of reads in each gene normalized to 5 million sample reads is shown at the various 

temperatures tested. Loss of lyrA and mprF was found to have opposite phenotypes at 43°C, 

with an increase (A) and decrease (B), respectively, in number of reads mapping to each of 

these genes. (C) To validate these phenotypes, null mutants in S. aureus HG003 were grown to 

mid-log phase, diluted, and grown at 43°C. While ΔmprF did not grow, confirming temperature 

sensitivity, the ΔlyrA strain grew at nearly twice the rate of WT. Doubling times for WT and the 

ΔlyrA strains are shown.  
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2.4 Discussion 

 

Adaptation of the transposon library for NGS 

 We have adapted a phage-based transposition method to reliably create large and 

diverse transposon libraries that can be analyzed using high-throughput Illumina sequencing. 

The high background due to non-transposase-catalyzed recombination in the HG003 strain was 

reduced to negligible levels by removing the Φ11 family prophage and using a strictly virulent 

transposon donor phage (Φ11-FRT) for transduction. Other strains that harbor Φ11 family 

prophages, such as S. aureus Newman (198), may have a similar background problem that 

makes removing the Φ11 family prophage necessary for working in these genetic backgrounds. 

Fortunately, many commonly used S. aureus strains, including RN4220, COL, USA300, and 

MW2, do not harbor highly similar prophages and need not be reengineered. Indeed, we have 

successfully constructed ultra-high density transposon libraries in several other S. aureus 

strains, including the USA300 and MW2 backgrounds, using the same tools described here 

(See Chapter 3). 

To realize the full potential of the phage-based delivery system for transposon library 

generation, we optimized both the donor constructs and the NGS sample preparation 

procedure. Now, transposon libraries can easily and reproducibly be created in S. aureus and 

sequenced using NGS. Moreover, because transposition efficiency is high and the NGS library 

preparation protocol is robust, we are able to multiplex several different transposon constructs in 

the same library. By adding a DNA barcode that specifies the gene expression regulatory 

element in the transposon construct, the roles of over- and under- expression of genes as well 

as inactivation can be assessed under a given condition during data analysis. For functional 

genomics and systems level analyses, the ability to capture over- and under-expression 
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genotypes is particularly important. For the first time we will be able to probe the relationship of 

essential genes to a given cellular process through over/under expression of essential genes. 

Gene essentiality at a set of temperatures 

 The power of the redesigned phage-based transposition system was demonstrated 

through the preparation of a transposon mutant library containing ~694,000 independent 

insertions in the S. aureus HG003 strain background. We identified essential genes at 30°C, 

and found good agreement between our essential gene list and two other lists published 

previously, although 63 genes previously annotated as essential were classified by us as 

domain essential (90, 146). Taking advantage of the fact that the phage-based transposon 

delivery method does not involve a high temperature plasmid curing step, we also carried out a 

study of the genetic factors involved in withstanding temperature stress. Many genes responsive 

to heat- or cold-shock have been identified in S. aureus based on transcriptome data (199), but 

a systematic and comprehensive analysis of the fitness of temperature-sensitive or resistant 

mutants has not been reported. We assessed the importance of each gene at five different 

temperatures based on enrichment or depletion of corresponding NGS reads. While reads per 

gene were largely unchanged compared to the 30°C control between 16°C, 23°C, and 37°C, 

reads for 119 genes were significantly affected at 43°C. 

 In addition to genes previously linked to heat shock and stress responses, we also found 

that many genes involved in cell envelope processes contribute to fitness at elevated 

temperature. Some genes in which reads were depleted at 43°C, such as pbp3 and pbp4, 

directly participate in crosslinking PG (172, 173), but others play less well understood roles in 

PG synthesis. For example, our studies have implicated rodA, mreC, and mreD in withstanding 

temperature stress, as reads in all three genes were depleted by ~50-fold at 43°C. In rod-

shaped organisms, different biosynthetic machines are dedicated to septal and side wall PG 

synthesis. RodA, MreC, and MreD are components of the machine that makes side wall PG, 
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while FtsZ, FtsL, and Div1B interact with FtsW as part of the PG biosynthetic machinery at the 

septum (178, 200-202). S. aureus is a coccoid organism and is not known to have distinct PG 

biosynthetic machines, and yet it contains genetic elements suggestive of both a primary PG 

biosynthetic machine and a secondary machine (203-205). In contrast to RodA/MreC/MreD, 

FtsZ, FtsL, Div1B, and FtsW were deemed essential from our analysis and are likely part of the 

predominant PG biosynthetic apparatus. RodA/MreC/MreD may be part of a secondary machine 

that takes on an important cellular role under environmental stress conditions. 

 We also identified mprF as important for survival at 43°C (16.7 fold depletion). MprF 

attaches lysine to phosphatidylglycerol in the cell membrane and is involved in cationic 

antimicrobial peptide resistance (190, 206). Mutants in mprF have not previously been shown to 

be temperature sensitive. Therefore, we constructed an mprF deletion strain and confirmed that 

it exhibited a pronounced growth defect at high temperature (Figure 11) as it ceased growing 

completely by mid-log phase. When these cells were plated and grown at 30°C, colonies did not 

grow, confirming that without the mprF gene, high temperatures are lethal. 

 In contrast to mprF, loss of another cell envelope gene, lyrA, conferred a growth 

advantage. Reads due to transposon insertion in this gene were substantially enriched at 43°C 

compared to 30°C. The growth advantage of a ΔlyrA strain compared to wildtype S. aureus was 

confirmed (Figure 11). Deletion of lyrA was previously shown to impart resistance to 

lysostaphin, an oligopeptide protease that cleaves Gly-Gly bonds in crosslinked PG (127, 207, 

208). Recent work has implicated LyrA in display of cell surface proteins (209, 210), but how its 

deletion confers increased growth rates at higher temperature is not clear. As an integral 

membrane protein, LyrA may regulate multiple aspects of cell envelope structure. Perhaps 

through the loss of interactions with other protein partners, the absence of LyrA induces a 

pleiotropic cell envelope phenotype capable of withstanding a variety of cell envelope stressors. 
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Small colony variants withstand heat stress 

 Transposon insertion mutants with reads mapping to genes that are part of the aromatic 

amino acid and menaquinol biosynthetic pathways were significantly enriched at 43°C (Figure 

12). The small colony variant (SCV) phenotype of menaquinone (vitamin K2) mutants in S. 

aureus has been well studied (211-218). The loss of electron shuttling redox cofactors in the 

electron transport chain induces a characteristic colony morphology, noted for its slow growth, 

lack of pigmentation, and pinpoint colony size (216, 218-222). This reduction in flux through the 

electron transport chain decreases ATP pools by diminishing respiration, which shifts global 

metabolism towards fermentation (220, 223). Emergence of SCVs is closely associated with 

persistent infections (224, 225), and SCVs are particularly resistant to many clinically used 

antibiotics (226, 227). Interestingly, our data revealed a marked growth advantage for 

menaquinone biosynthetic mutants at 43°C, including menD, menC, and menF. Mutations in 

these same genes have been associated with SCV formation in S. aureus clinical isolates (211, 

216). Elevated temperature clearly acts as a selective pressure that favors the emergence and 

propagation of SCVs in vitro. Recently, strains with increased resistance to vancomycin were 

found to emerge in an in vivo mouse model independent of vancomycin treatment (228). 

Whether the host pyrogenic response induces SCV selection in vivo, however, remains an 

outstanding question. 

Conclusion 

 In conclusion, we have developed a phage-based method for reproducibly creating high 

quality, ultra-high density transposon libraries in any S. aureus strain transducible by Φ11. We 

have optimized this platform to selectively remove transposon-plasmid junctions, and our 

solutions for reducing background due to these junctions are likely to be useful for other S. 

aureus strains, other bacterial species, and other transposon systems. By multiplexing bar-

coded donor constructs, we showed that we can make massive transposon mutant libraries and 
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identify insertions due to each type of donor. In this study, we used the data for the Blunt 

transposon construct to identify genes important for S. aureus survival at high temperatures. 

Furthermore, we found that SCV mutants are selected for under conditions of heat stress. This 

system, including the gene expression modulating transposon cassettes, will be useful for future 

functional genomics analyses aimed at establishing novel strategies for the development of 

antibacterial agents and garnering insights into the biology of S. aureus. 
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Chapter 3. Using β-lactams to predict gene functions in MRSA  

 

This work was done in collaboration with Tim Meredith and Samir Moussa. 

 

3.1 Introduction 

  

 Both methicillin-resistance (MRSA) and methicillin-sensitive (MSSA) strains of S. aureus 

can be highly-virulent and cause life-threatening infections, but it is MRSA that causes the vast 

majority of lethal infections (136, 138). MRSA strains are defined as those that have acquired 

the SCCmec mobile genetic element encoding penicillin binding protein 2a (PBP2a), a 

transpeptidase with a low affinity for β-lactam antibiotics (except for ceftaroline and ceftobiprole) 

(229, 230). PBP2a can perform the peptidoglycan transpeptidation reaction, which crosslinks 

the glycan strands of peptidoglycan, when the other PBPs are inactivated by a β-lactam 

antibiotic (230, 231).  

 MRSA encodes four other PBPs besides PBP2a, three high molecular weight PBPs 

(PBP1, PBP2, and PBP3) and one low molecular weight PBP (PBP4) (232). However, only 

PBP1 and PBP2 are essential for cell survival (233). PBP2 is the only class A PBP, with both a 

transpeptidase and glycosyltransferase domain. In the presence of β-lactam antibiotics, it is 

thought that the glycosyltransferase domain of PBP2 cooperates with PBP2a to synthesize 

peptidoglycan (231, 234-236). PBP1 and PBP3 are class B PBPs with a transpeptidase domain 

and another domain of unknown function (232). PBP1 is thought to have roles in cell division at 

the cell septum that are independent of its transpeptidase activity, and it has been suggested 

that it may mediate important protein-protein interactions (237, 238). Its function appears to be 

especially important for survival with daptomycin treatment (239). PBP3 is non-essential and 

has homology to the PBPs in rod shaped bacteria that work in the PG synthetic complex with 

RodA, EzrA, and the MreBCD system to elongate the cell prior to cell division (173, 240-242). 
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PBP4 is the only low molecular weight PBP, and it has roles in creating highly-crosslinked 

peptidoglycan (172, 243, 244). Furthermore, this PBP is required for glycopeptide resistance 

and β-lactam resistance, especially in CA-MRSA strains (245-248). The cellular functions of 

these PBPs remain incompletely understood. 

 There are many differences between S. aureus strains. Though the acquisition of PBP2a 

distinguishes MRSA from MSSA, other factors encoded by both MRSA and MSSA strains are 

required to maintain this resistance (139). In addition, some MRSA strains are heterogeneously-

resistant to β-lactams, i.e, not all the cells in a culture express the same level of antibiotic 

resistance, while others have high and homogeneous resistance (249). To make matters more 

complex, there appear to be genetic differences between the MRSA strains that cause 

nosocomial infections and the MRSA strains most commonly acquired in the community (250). 

Furthermore, MW2 and USA300 are both community-acquired (CA) strains, but USA300 has 

become the predominant cause of MRSA infections in the United States and Canada 

suggesting that there are differences between CA-MRSA strains that impact their success as a 

pathogen (251-253).  

 We wanted to validate our claim that the transposition platform described in Chapter 2 

would function in any strain and to compare the response of MRSA strains to β-lactam 

treatment so that we could identify conserved β-lactam resistance factors. Therefore, we 

created transposon mutant libraries in the MW2 and USA300 strains.  Then, we treated the 

transposon libraries with three different β-lactams that preferentially bind different PBP proteins 

and performed Tn-Seq. Treating the library with different β-lactams allows us to learn more 

about the function of each PBP as well as factors that are required for β-lactam resistance in 

general. These experiments allowed us to discover a new interaction between two genes, lyrA, 

which is of unknown function, and lytD, which encodes a glucosaminidase.  
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3.2 Tn-Seq on MRSA strains identifies interacting proteins 

 

Creating transposon libraries in MW2 and USA300 

The platform for Tn-Seq described in Chapter 2 can in theory be used to create 

transposon libraries in any strain that can be transduced by Φ11 (132). Therefore, to better 

study MRSA strains, we decided to create transposon libraries in two community-acquired 

MRSA strains, MW2 and USA300. We chose these strains because they are two of the most 

clinically-relevant strains in the United States and because neither contains an endogenous 

Φ11 prophage, which we would need to delete before constructing a library (254, 255).  

We still had to make some modifications to these strains before attempting to create a 

library. The USA300 strain we used (USA300_TCH1516) has a plasmid encoding both 

erythromycin and kanamycin/neomycin resistance, pUSA300HOUMR (254). We use an 

erythromycin resistance marker to select for transposon integration and a kanamycin/neomycin 

resistance cassette on the transposase plasmid, so we require the parent background to be 

sensitive to these antibiotics. We removed this plasmid using homologous recombination with a 

pKFC plasmid (256) encoding an in-frame deletion of the erythromycin-resistance gene, and 

isolation of colonies that had lost the unstable co-integrated plasmid (Figure 16A). We created a 

transposon library in this resulting strain as described in Chapter 2 (132). On the other hand, 

MW2 did not have intrinsic resistance to these antibiotics, but the efficiency of transposition was 

lower than expected (Figure 16B). We hypothesized that this was due to the fact that MW2 is 

part of a different clonal complex than the other strains. MW2 is a part of CC1 while USA300 

and HG003 belong to CC8 (254, 255, 257). The methylation system (hsdMS) of S. aureus 

strains belonging to different clonal complexes recognizes and methylates different sites (258). 

Therefore, when we make the phage lysate in a RN4220 which belongs to CC8 and use it to 

transduce the transposon into MW2 which belongs to CC1, MW2 recognizes the DNA as foreign 
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and subsequently digests the majority of it with restriction enzymes before the transposon can 

insert into the genome. Knocking out the hsdR restriction system in MW2 (Figure 16C) (259-

261), restored the expected efficiency of transposition, and we were able to use this strain to 

make a transposon library. Both of these libraries contained the same six donor constructs 

described in Chapter 2 (132). In case the hsdR knockout affected growth with β-lactam 

treatment, we created a control library in the WT MW2 strain using only the Blunt transposon 

construct as efficiency of transposition was too low to use all six transposon constructs. For this 

work, we concentrated on analyzing only the data from the inactivation constructs.  

 

Figure 16. Two MRSA strains were modified for creating transposon libraries. (A) 

USA300_TCH1516 carries two additional plasmids, one of which encodes resistance to 

erythromycin and kanamycin/neomycin, pUSA300HOUMR (254). This plasmid was removed via 

homologous recombination and curing of the co-integrated plasmid. (B) The efficiency of 

transposition for MW2 was lower than expected. Bars 1-4 show transposition effieciency for 

RN4220 and HG003, while bars 5 and 6 show approximately a 10 fold decrease in transposition 

efficiency for MW2. Continued page 61. 
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Figure 16 continued. This was calculated by comparing the number of erythromycin-resistant 

colonies produced from the same amount of transposon-carrying Φ11 phage. To correct this low 

efficiency of transposition, the hsdR restriction system was removed via homologous 

recombination. Upon hsdR deletion, efficiency of transposition was within the expected range 

(bars 7 and 8). 

  

Treatment of MRSA transposon libraries with β-lactam antibiotics 

           We chose to treat the transposon library with three different β-lactams that have affinities 

for different PBPs. Mecillinam binds to PBP3, cefoxitin has highest affinity for PBP4 but can also 

bind PBP2, and oxacillin has a relatively high affinity for PBP1, PBP2, and PBP3 (Figure 17A) 

(233). We wanted to treat the library with mecillinam and cefoxitin concentrations where only 

one PBP was inhibited so that we could learn more about the cellular roles of these non-

essential PBPs. We decided to treat the library with low (0.1µg/ml), medium (1ug/ml), and high 

(10ug/ml) concentrations of oxacillin. The data from the transposon libraries sequenced with low 

concentrations is useful for identifying factors essential for β-lactam resistance because cells 

with transposon insertions in genes essential for oxacillin resistance will die and drop out of the 

library, resulting in fewer reads mapping to these genes compared to the untreated control. 

Moreover, we will likely not identify many mutations conferring high-level resistance to oxacillin 

when treating the transposon library at low concentrations of oxacillin because there is not 

enough selective pressure. However, at the higher oxacillin concentrations, there will be more 

selective pressure, and there will be few mutants that can survive the antibiotic treatment. In this 

case, these high fitness mutants will grow better the other mutants in the library, and more 

reads should map to these genes compared to the untreated control. Therefore, at the higher 

oxacillin concentrations, it will be easier to identify mutations that can increase resistance to the 

β-lactam antibiotics.  
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 Traditionally, β-lactam concentrations where only one PBP is inhibited are identified by 

performing competition experiments using bocillin, a fluorescent β-lactam. However, while these 

experiments work well using membrane preparations, we wanted to identify β-lactam 

concentrations where the PBP of interest was inhibited in living cells. We attempted to perform 

the bocillin competition experiments using cells in mid-exponential phase, but results were 

inconclusive. Therefore, we devised an alternative approach. We identified the appropriate 

concentration for mecillinam treatment using data from the temperature screen in Chapter 2 

(132). We predicted that pbp3 would be a temperature-sensitive gene, and therefore, inhibition 

of PBP3 might also confer the same temperature-sensitive phenotype. Therefore, we compared 

the growth at 43°C of a pbp3 mutant (deletion mutant in MW2 from Ambrose Cheung, and 

inactivation mutant in USA300 from the Nebraska library) (130, 247) to the growth of a WT 

strain at 43°C treated with different concentrations of mecillinam. Then, we identified the 

concentration of mecillinam that phenocopied the growth defect of the pbp3 mutant (Figure 

17B). For pbp4, it is known that inactivating this gene sensitizes cells to β-lactam treatment. 

Therefore, we grew MW2 and USA300 with sub-MIC concentrations of oxacillin and increasing 

concentrations of cefoxitin, and compared their growth to pbp4 mutants (deletion mutant in 

MW2 from Ambrose Cheung, and inactivation mutant in USA300 from the Nebraska library) 

(130, 247). We identified the concentration of cefoxitin that best phenocopied the pbp4 mutants 

(Figure 17C). The transposon libraries were treated with these concentrations of oxacillin, 

mecillinam, and oxacillin, and the sites of transposon insertion were sequenced using Tn-Seq 

as described in Chapter 2.  
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Figure 17. The transposon libraries were treated with three different β-lactams with 

affinities for different PBPs. (A) Both the MW2 and USA300 libraries were treated with three 

different β-lactam antibiotics with affinities for different PBPs (233). (B) Appropriate 

concentrations for mecillinam treatment where only PBP3 is inhibited were identified by 

ascertaining the concentration at which mecillinam treatment phenocopies a pbp3 deletion 

strain when both are grown at high temperatures. (C) The appropriate concentration of cefoxitin 

was chosen in a similar way, except that instead of looking for sensitivity to high temperatures, 

we looked for a concentration of cefoxotin that could potentiate cells to oxacillin in the same way 

that a pbp4 deletion did. We have noticed that this strain of USA300 is somewhat more 

sensitive to oxacillin that MW2. At similar oxacillin concentrations, it grows to a much lower 

OD600 than MW2. However, we can still identify an oxacillin concentration where the pbp4 

mutation is lethal, and we can identify a cefoxitin concentration that phenocopies the pbp4 

mutant.  
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Identification of patterns among resistance factors 

 We analyzed the data as described in Chapter 2 using only the Blunt transposon 

construct and identified statistically-significant differences in number of reads mapping to each 

gene using a 10-fold cutoff (ratio in reads/gene > 10 or < 0.1) as a measure of practical 

significance (Appendix G) (132). We then manually curated the list to remove genes where 

there were a low number of reads in both the control and the oxacillin-treated condition. This 

resulted in 41 hits in USA300, 2 hits in WT MW2, and 5 hits in MW2 ∆hsdR when the libraries 

were treated with 0.1µg/ml oxacillin. A greater number of hits in one strain suggests that that 

strain is more sensitive to oxacillin treatment. We have observed that though these strains have 

the same growth rate normally, when treating with the same concentration of oxacillin, USA300 

grows more slowly and to a lower OD than MW2 (Figure 17C). At 1µg/ml and 10µg/ml oxacillin, 

there were very few mutants that survived.  Because transposon insertions in so many genes 

were substantially depleted, Appendix G only lists the genes with an increase in number of 

reads/gene for these two conditions. 

Next, we compared the mutations that conferred an increase or decrease in resistance 

to oxacillin to see if we could use the ∆hsdR library, which had a higher efficiency of 

transposition, as a parent strain for creating transposon libraries. With the exception of aapA, an 

amino acid permease, all the hits in the MW2 libraries were the result in an increase in number 

of reads that mapped to the gene. To better compare the two MW2 libraries, we needed more 

genes with a decrease in number of reads after oxacillin treatment. Therefore, we removed the 

p-value cutoff for depleted genes in the MW2 libraries and gained 11 and 2 hits for the WT and 

∆hsdR libraries respectively. We compared the data from both MW2 libraries with each other to 

see if the hsdR deletion had any effect by plotting the number of reads that map to each gene in 

the MW2 WT and ∆hsdR libraries for every gene in the untreated condition and the unique set 

of hits when treated with 0.1µg/ml oxacillin (Figure 18). We observed a linear pattern with a R2 
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equal to 0.9815 with oxacillin treatment, suggesting that the hdsR deletion strain and the WT 

strain are very similar, and we can use the higher efficiency ∆hsdR strain be used to make 

transposon libraries.  

 

 

Figure 18. hsdR deletion does not have a major effect on the β-lactam resistance factors 

of MW2. The number of reads that map to each gene for the WT and ∆hsdR libraries were 

normalized to 5 million total reads per library and plotted against each other in the untreated 

condition (left graph). The same was done for the genes that were hits in either the WT or the 

∆hsdR library (right graph). In general, the pattern is linear in the untreated condition suggesting 

that there are no major differences in essential genes when hsdR is deleted, and the same 

trend was observed with the hits when treating with oxacillin (R2 = 0.9815), suggesting that 

there are no major differences β-lactam resistance factors as well.  

 

 To gain a better understanding of the differences between MW2 and USA300, we 

identified the top 20 genes that conferred an increase or decrease in fitness when inactivated in 

the MW2 libraries and compared those to the top 20 genes in the USA300 library (Table 4). 

Surprisingly, there was only one gene in common between them, yjbH. YjbH is a ClpXP adaptor 
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protein which is known to have roles in disulfide stress and β-lactam resistance (262, 263). 

However, there were two other pathways which were represented among both libraries. 

Mutations in both purine biosynthesis and menaquinone biosynthesis are known to increase 

resistance to β-lactam antibiotics, and in both libraries, we see an increase in reads mapping to 

genes in these pathways (Table 4). To identify resistance factors in common between these two 

strains, we would have to treat the MW2 library at a slightly higher oxacillin concentration, so 

that the number of hits is closer to the number of hits found when we treated with USA300. 

These experiments confirm that the genes required for MRSA survival of different stress 

responses can vary between different strains. In fact, we were surprised by the extent of the 

differences, and these experiments have formed the basis of a comparative genomics approach 

that other members of the lab are now using to better understand the differences between these 

as well as other hospital-acquired MRSA strains.  

 

 

We then we identified genes with enriched or depleted reads in common among 

antibiotic treatments from each library. Each β-lactam we treated the transposon libraries with 

has affinity for different PBPs. Mecillinam has affinity for PBP3, cefoxitin has highest affinity for 
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PBP4, and oxacillin has similar affinities for PBP1, PBP2, and PBP3. Identifying transposon 

mutants that are only sensitive or resistant to cefoxitin or mecillinam treatment allows us to 

identify factors that are important for PBP3 or PBP4 function and may help us better understand 

the cellular roles of these PBPs. Because oxacillin targets multiple PBPs, we are more likely to 

discover genes that generally sensitize to β-lactams with this treatment. Therefore, we looked 

for genes with an increase or decrease in transposon reads in any subset of these treatments. 

We observed an interesting pattern in the data from the USA300 library. Reads mapping to four 

genes, tarO, mnaA, lyrA, and lytD, were depleted with oxacillin and mecillinam treatment but 

were enriched with cefoxitin treatment (Figure 19A). We confirmed that the increase in 

transposon insertions was not due to PCR or Bowtie “jackpotting”, which results in one TA site 

with many reads mapping to it, by plotting the number of reads per TA site in the gene of 

interest (Figure 19B). While lyrA, lytD, and mnaA all had more reads mapping to the entire gene 

with cefoxitin treatment, reads in tarO only mapped to the promoter region and the end of the 

gene. Though tarO is nonessential, it has a significant growth defect where it generally grows to 

only an OD of around 0.8, and it has a plating defect where the number of cfu’s observed is 

always less than the number of cfu’s plated. Because of these defects, there are essentially no 

knockout mutants of tarO present in the library. However, transposon insertions in the promoter 

region have the ability to interfere with a gene’s native promoter such that the gene is 

downregulated, and transposon insertions near the end of a gene could decrease the activity of 

the final protein product. Therefore, it is likely that downregulating tarO or decreasing the activity 

of TarO confers the fitness advantage with cefoxitin treatment that is observed as an increase in 

number of reads in these regions. An increase in number of reads mapping to a gene compared 

to a control signifies that inactivation of the gene confers either a protective effect or less of a 

penalty compared to every other mutant in the library allowing it to grow better than the other 

mutants.  
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Figure 19. A unique sensitivity when treating with a panel of β-lactams . (A) We looked for 

genes where the number of reads mapping to the gene was increased or decreased with at 

least two of the different β-lactam treatments, and we found four genes that when inactivated, 

produce a similar pattern of resistance and sensitivity: lyrA, lytD, tarO, and mnaA. Continued 

page 69. 
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Figure 19 continued. These plots show this pattern after normalization of the data to the same 

total number of reads. Transposon insertions in these genes appear to confer sensitivity to 

mecillinam and oxacillin (fewer reads than the control), but resistance to cefoxitin (more reads 

than the control). (B) We confirmed that the increase in number of reads in these genes was not 

due to “jackpotting”, where PCR or mis-mapping results in one TA site with many reads 

mapping to it. No genes showed evidence of “jackpotting”.  

 

TarO catalyzes the first step in wall teichoic acid biosynthesis and it can be inhibited by 

tunicamycin (264, 265), and mnaA is a UDP-GlcNAc epimerase that makes UDP-ManNAc, 

which is used by another enzyme in the WTA biosynthetic pathway (266). LyrA, also known as 

spdC, was initially discovered and named for its ability to confer lysostaphin resistance when 

inactivated (127). It is a large integral membrane protein with eight transmembrane domains 

and a large intracellular region at its C-terminus. It most closely resembles CAAX proteases that 

are involved in membrane anchoring of proteins in eukaryotes (267). However, though lyrA has 

all the conserved residue thought to be the active site residue for the CAAX proteases (127, 

268), mutating this residue does not affect its lysostaphin-sensitive phenotype, and LyrA is not 

thought to have protease activity (127).  LyrA mutants are also sensitive to tunicamycin (132). 

LytD (also known as sagB) was recently shown to be a β-N-glucosaminidase (197). This class 

of enzymes digests the cell wall between the GlcNAc and MurNAc sugars.  

An increased number of reads in a condition compared to the control suggests that 

inactivation of that gene confers either an increase in fitness compared to the other mutants in 

the library, or the transposon insertion confers less of a fitness disadvantage in the treated 

condition than the control. A fitness advantage could be a result of induction of stress 

responses, removal of a compound’s target, or alteration of the flow of metabolites in a pathway. 

In this case, the concentration of cefoxitin used was non-lethal and cefoxitin’s target, PBP4 is 
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non-essential, which made it surprising that there was enough selective pressure to produce 

this increase in number of reads. We hypothesized that some or all of these genes may 

physically interact as part of a multi-component machine. In this case, when one component of 

the machine is missing or inhibited, the fitness defect would be greater than when the machine 

is completely inactivated. To determine whether any of these proteins interacted with each 

other, Samir Moussa (a former post doc in the lab) performed co-immunoprecipitation 

experiments, crosslinking c-Myc-tagged LyrA to the proteins that it interacts with using DSP 

(Figure 20). After purification of the interacting proteins and purification using SDS-Page (this 

step also cleaves the crosslink), we observed three bands in both the uncrosslinked and 

crosslinked conditions (Figure 20). These proteins were identified by LC-MS/MS, and the 

second most abundant protein in the middle band with or without DSP was LytD (Table 5). 
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Figure 20. LyrA-interacting proteins were identified using co-immunoprecipitation. A c-

Myc tagged copy of LyrA (CPH for CAAX Protease Homologue) was expressed in a ∆lyrA 

strain. A crosslinker, DSP, was added to crosslink LyrA to any other protein it interacts with. 

Cells were disrupted and membrane proteins were solubilized. These solubilized proteins were 

purified over a column containing the c-Myc receptor. Specifically-interacting proteins were 

eluted, purified using SDS-PAGE which also cleaves the crosslinker, trypsin digested, and 

identified with LC-MS/MS as previously described (269). Addition of the crosslinker did not 

result in more bands, and the proteins identified by LC-MS/MS were very similar with and 

without DSP (Table 5).   
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Characterization of lytD 

 If lyrA and lytD physically interact, their phenotypes to a variety of stressors should be 

similar. Though there are many unanswered questions about the role of lyrA, we do know some 

of the phenotypes that result from deleting this gene. We know that ΔlyrA strains are resistant to 

lysostaphin (127), sensitive to tunicamycin (95), and that when it is inactivated, sortase-

anchored proteins are not properly attached to the peptidoglycan (209). Using a lytD transposon 

mutant from the Nebraska library, we confirmed that strains without functional lytD are also 

resistant to lysostaphin and sensitive to tunicamycin (Figure 21). Furthermore, overexpression 

of LytD in the ∆lyrA background rescues the ∆lyrA strain from tunicamycin treatment, and 

overexpression of LytD in the WT background sensitizes to lysostaphin treatment. This 

suggests that LyrA may be positivity regulating the activity of LytD, and the phenotype of ΔlyrA 

could be due to misregulation of LytD.  



 

73 

 

 

Figure 21. Inactivation of lytD phenocopies lyrA deletion. Plate dilution spotting assays 

were used to test sensitivity of tn::lytD to lysostaphin and tunicamycin. Both ∆lyrA and the lytD 

mutant were sensitive to tunicamycin and resistant to lysostaphin. Overexpression of LytD in 

WT increases sensitivity to lysostaphin, and overexpression of LytD when lyrA is deleted 

rescues the sensitivity of lyrA to tunicamycin. 

 

 ΔlyrA strains are reported to have more and thicker cross walls when viewed using TEM 

(transmission electron microscopy) (209). We also see an increased number of cross walls in 

the lytD mutant as well as a WT strain treated with cefoxitin at the same concentration with 

which we treated the transposon library, though this could result from a slowing of cell division 

when PBP4 is inhibited (Figure 22). Moreover, in the tn::lytD strain, we observed many pairs of 

dividing cells that are almost entirely separated, but still slightly attached at one end (Figure 22 

red arrows). This suggests that lytD may have an important role in the final stages of cell 

separation. This same phenotype was also observed when WT cells were treated with cefoxitin, 

suggesting that inhibition of PBP4 can also produce the same phenotype.  
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Figure 22. Inactivation of lytD results in cells with an increased number of septa. WT cells 

with and without cefoxitin treatment and tn::lytD cells were examined using TEM. 

Representative photos of WT (A) and tn::lytD (B) cells at 15,000x magnification are shown. We 

noticed that many of the tn::lytD cells had cell separation defects as they were still attached to 

each other after division had concluded. (C) To quantify this difference, we counted the total 

number of cells, the number of cells with septa, and the number of cells not currently dividing 

but still attached to each other in TEM images taken at 4,000x magnification (images not 

shown). Then, we calculated the fraction of the total number of cells with each phenotype. We 

found that many more tn::lytD and cefoxitin-treated WT cells had septa or were still attached 

suggesting that cell division and separation are slowed.  
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When lyrA is inactivated, there is a significant decrease in the amount of sortase-

anchored surface proteins attached to the cell surface (209). Sortase-anchored surface proteins 

contain an LPXTG cell wall sorting signal which directs it to the cell wall where it is covalently-

attached by a sortase (270, 271). We investigated whether lytD mutants also had this defect 

using Staphylococcal surface protein A (SspA) as a marker for proper protein secretion. SspA is 

an extraordinarily-abundant sortase-anchored surface protein with a YSIRK-G/S signal (271, 

272). These signals direct proteins to the cell septum where they are secreted by the Sec 

system and attached to the cell surface by a sortase. We used antibodies for this protein 

attached to gold nanobeads purchased from AbCam to observe the localization of SspA in WT 

as well as ΔlyrA and the tn::lytD strains (Figure 23). Using TEM, we observed large amounts of 

SspA on the surface of WT cells, often limited to a few different locations across the surface of 

the cell (Figure 23, red arrows). In the ΔlyrA strain, we sometimes see SspA, but when we do, 

there is much less than in WT (Figure 23, red arrows), and in the lytD mutant, we could not find 

evidence for any secreted SspA (Figure 23). lytD apparently plays a very important role in 

sortase-anchored surface protein export and/or attachment.  
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Figure 23. Cells without LyrA or LytD have defects in surface protein export/attachment. 

Antibodies to SspA were used in combination with antibodies conjugated to gold nanoparticles 

to assess how much SspA was attached to the cell surface in WT, ∆lyrA, and tn::lytD strains 

using TEM. Representative views of these cells are shown. WT cells had large clumps of SspA, 

often at the site of cell division (1 and 2), ∆lyrA had fewer and smaller clumps of SspA (3 and 4), 

and Tn:lyrA had no detectable SspA (5 and 6). The red arrows point towards clusters of SspA 

found on the outside of WT and ∆lyrA strains.   
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 Sortase-anchored surface proteins have an LPXTG motif and are thought to be attached 

to the peptide chains of growing peptidoglycan by the sortase enzymes (273, 274). In the 

absence of lyrA, there is a slight increase in resistance to vancomycin which binds to the D-Ala-

D-Ala portion of Lipid II, the peptidoglycan precursor (209). Without sortase-mediated protein 

attachment to the cell wall, there may be more Lipid II available for vancomycin to bind, resulting 

in more vancomycin required to inhibit peptidoglycan biosynthesis. This was also true for the 

lytD mutant (Figure 24), providing evidence that lytD inactivation may be inhibiting protein export 

through the same mechanism as lyrA deletion 

 

Figure 24. tn::lytD mutants are more resistant to vancomycin than WT. lyrA mutations are 

known to confer a small increase in resistance to vancomycin possibly by increasing the amount 

of extracellular lipid II available for binding to vancomycin (209). We grew WT (TM283) and 

Tn::lytD strains in 96 well plates overnight with vancomycin. We found that Tn::lytD is more 

resistant to vancomycin than WT.  
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3.3 Discussion 

 

Tn-Seq in MRSA strains 

 It is very important to perform experiments in the appropriate strain. In our case, as β-

lactam resistance is the key characteristic of the epidemic MRSA strains, it makes sense to 

perform Tn-Seq on MRSA strains. Fortunately, the transposon sequencing platform we have 

developed allows us to do this while only making minor modifications to the WT strains (254, 

255), and these modifications do not seem to affect the resistance factors identified. Another 

advantage of performing these screens in MRSA strains is that in general, MRSA strains are 

better able to survive stress, meaning that fewer genes are essential in the control condition. A 

previous member of the Walker lab, John Santa Maria, performed a Tn-Seq experiment, where 

he identified the genes which became essential in the absence of wall teichoic acids, by treating 

a transposon library with tunicamycin and performing Tn-Seq (95). This was how we knew that 

lyrA inactivation conferred a tunicamycin-sensitive phenotype. However, in the strain that screen 

was performed in, HG003, lytD inactivation seems confer a significant fitness defect because 

few reads map to this gene. If few reads map to a gene in the control, it is very difficult to 

identify significant depletions in read number in the experimental condition. Because we 

performed these experiments in MRSA strains, which are better at surviving cell envelope 

stress, we were able to identify lytD inactivation as sensitizing to oxacillin and mecillinam.  

Interacting genes have the same resistance and sensitization pattern 

 We identified four genes, lyrA, lytD, tarO, and mnaA, that had an increase in number of 

reads with cefoxitin treatment, but a decrease in number of reads with mecillinam and oxacillin 

treatment. There are many reasons why genes could have the same resistance pattern to these 

β-lactams. They could be in the same pathway or in parallel pathways, but in this case, it 

appears that at least two of these genes have a direct physical interaction. There are many 



 

79 

 

hypothetical genes in S. aureus, and it is likely that many of them have important roles in 

virulence and antibiotic resistance. This work shows that it is possible to predict interacting 

genes based on the similarity of the resistance and sensitization pattern across a panel of 

antibiotics. It is possible that this approach could be applied more generally across any 

unstudied gene in the genome, though it is likely that we would need more antibiotics with more 

varied targets in order to identify relevant fitness patterns for other genes that do not have roles 

in PG synthesis or cell division.  

Model for LyrA and LytD relationship 

 We believe that LyrA is likely regulating the activity of lytD, though we do not know the 

mechanism by which it regulates its activity. One of the major phenotypes of both of these 

mutants is that they are defective in the export of sortase-anchored surface proteins (197, 209). 

We can hypothesize a model for this interaction and how it is involved in sortase-anchored 

surface protein export based on the data described above (Figure 25). This model will help us 

design future experiments. LyrA is known to localize to the septum (127, 209), and so LytD may 

localize there as well. TarO is required for proper localization of PBP4 to the cell septum, and 

teichoic acids control the localization of the autolysin, Atl (188, 275). It is possible that TarO or 

teichoic acids could control the localization of LyrA and LytD to the septum as well. There, LyrA 

activates LytD to cut the glycan strands. LytD is known to control the length of the glycan 

strands that are used to create peptidoglycan (197). Glycan strands of a certain maximum 

length may be necessary for secreted proteins to be exported to the surface of the cell and/or 

attached to the outside of the cell wall by the sortase enzymes. A major cell separation enzyme, 

LytN, has the YSIRK-G/S motif, meaning that it is secreted at the cross wall (276). If its export is 

inhibited when lytD or lyrA is inactivated, it may explain the defect in cell separation we 

observed via TEM.  
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Figure 25. Hypothetical model for LyrA and LytD roles in cell separation. New wall teichoic 

acids are synthesized at the septum (1). TarO and teichoic acids are required for proper 

localization of PBP4 and Atl to the cell septum, and they may recruit other PG synthesis and cell 

division factors as well, including LyrA and LytD (2). The secretory machinery exports YSIRK-

G/S proteins at the cell septum. LyrA may activate LytD to cut glycan strands. Perhaps long 

glycan strands inhibit surface protein secretion and/or attachment to the cell wall. LytN is an 

example YSIRK-G/S-containing protein, which is essential for proper cell separation (3). The 

proper secretion of LytN allows for successful cell separation (4).  

 

Another major outstanding question is how inhibition of PBP4 in combination with lyrA or 

lytD confers an increase in fitness compared to inhibition of PBP4 alone. These results suggest 

that when PBP4 is inactivated by cefoxitin, the presence of active LyrA and LytD confers a 

fitness defect. PBP4 is required for highly crosslinked peptidoglycan, and when inactivated, the 

cell wall is weakened (Figure 26A and B) (231). In the absence of LytD, the glycan strands are 

longer (Figure 26C) (197). Perhaps longer glycan strands inhibit protein export, but perhaps 

they can restore some of the cell wall’s strength when PBP4 is inactivated (Figure 26C and D). 

This could explain why inactivation of genes required for proper LytD activity can result in an 

increase in number of reads (increased fitness) in the presence of cefoxitin. This model (Figures 

25 and 26) has allowed us to develop hypotheses for further experimentation. 
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Figure 26. Cefoxitin and LytD affect the structure of the cell wall. A model of peptidoglycan 

in different strains/conditions is shown. Glycan strands are shown as black hexagons while 

crosslinking is shown as red lines between glycan strands. (A) In a WT cell, LytD controls 

glycan strand length and PBP4 creates highly-crosslinked peptidoglycan. (B) When inactivated 

by cefoxitin, PBP4 can not create highly-crosslinked peptidoglycan, weakening the cell wall 

(231). (C) LytD controls glycan strand length (197), and when inactivated by a transposon, the 

glycan strands will be longer. (D) Perhaps these longer glycan strands can make up for the 

decreased crosslinking resulting from cefoxitin treatment, restoring the strength of the cell wall.  

 



 

82 

 

Future Directions 

Currently, other members of the lab (Katie Coe and Kaitline Schaefer) are studying 

LytD’s enzymatic activity in the presence and absence of LyrA, to see whether LyrA has an 

effect on LytD activity. It is known at PBP4, TarO, and LyrA localize to the cell septum, but in 

order to confirm the model above, we need to show that LytD does as well, which can be done 

using fluorescence microscopy. We also need more evidence to prove that these proteins 

interact. Furthermore, we have done co-immunoprecipitation using LyrA, but perhaps co-

immunoprecipitations using LytD would identify more proteins that interact with this complex.  

Conclusion 

 In conclusion, we were able to show that the method described in Chapter 2 for making 

and sequencing transposon libraries (132) can be applied to other strains of S. aureus, including 

multiple MRSA strains. We showed that knocking out a restriction system from MW2 increases 

the transposition efficiency when transducing from a different clonal complex, but does not 

affect oxacillin resistance factors. Therefore, this strain is a suitable background for transposon 

library generation. Using cefoxitin, a PBP4-selective β-lactam, as a probe, we identified a 

possible interaction between LytD and LyrA, and crosslinking experiments confirmed that these 

proteins physically interact. Both proteins appear to be important for sortase-anchored surface 

protein export. More work is needed to understand this interaction, but the work so far has 

allowed us to build a model from which we can design experiments. Finally, we have outlined 

the beginning of a method for predicting the function of hypothetical genes. By sequencing 

transposon libraries treated with a wider variety of antibiotics and computationally automating 

the way similar resistance and sensitization patterns are predicted, we may be able to predict 

functions, pathways, and even physical interactions for any hypothetical gene. 
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Chapter 4. Tn-Seq as a tool for studying antibiotics and antibiotic-resistance 

 

We anticipate that contents of this chapter will be published in a journal prior to the publication 

of this dissertation. 

This work was done in collaboration with Mithila Rajagopal and Melissa Martin. 

 

4.1 Introduction 

 

Antibiotic-resistance 

Antibiotic-resistant bacterial infections have recently become a global public health 

crisis, but antibiotic resistance was observed in the clinic only a few years after the first antibiotic 

was introduced (4). This is due to the fact that in the early years of antibiotic discovery, 

pharmaceutical companies developed many new antibiotics. The golden age of antibiotic 

discovery lasted from about 1950 to 1960, and in fact, about half of the antibiotics in use today 

were discovered during this time (22). Since then, however, development of new antimicrobials 

has slowed, while bacteria have developed resistance to every clinically available antibiotic 

(277).  

Different antibiotics target different cellular processes by interfering with the function of 

an essential gene or cellular structure. Some of the cellular processes that are commonly 

inhibited by antibiotics include cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, 

and the cell membrane. Inhibition of these processes normally causes cell death, but bacteria 

have been able to evolve and/or acquire new strategies to increase their resistance to 

antibiotics. Furthermore, bacteria often have innate mechanisms for up- or down-regulating 

genes that help defend against antibiotic treatment.  
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Tn-seq for studying intrinsic resistance factors 

S. aureus is a gram-positive pathogen whose ability to evade both antibiotics and the 

human immune system contributes to the intractability of its infections. Many factors, both 

internal and acquired, contribute to its ability to survive stressful conditions. S. aureus can 

become resistant to antibiotics by acquiring resistance factors from other species via horizontal 

gene transfer. For example, VRSA strains have acquired the VanA gene cluster from 

Enterococcus faecalis, which provides vancomycin-resistance to S. aureus. In contranst, there 

can be internal factors, called intrinsic resistance factors, that play a role in the normal 

physiology of the bacterium as well as contributing to antibiotic resistance. These factors are 

usually common to both MRSA and MSSA strains. 

 Individual studies have highlighted the importance of specific intrinsic factors to certain 

antibiotics. For instance, MprF, a protein that catalyzes the synthesis and subsequent flipping of 

lysl-phosphatidylglycerol, is a well-studied intrinsic factor, that contributes to resistance to 

cationic antimicrobial peptides, daptomycin, and some aminoglycosides (206, 278, 279).  Also, 

in MRSA strains, effective pharmacological inhibition of TarO, the first step in wall teichoic acid 

biosynthesis, with tunicamycin restores full sensitivity to β-lactams even though the β-lactam 

resistance gene, pbp2a, is present (189, 265). These examples show that there are 

opportunities to mitigate antibiotic resistance by targeting intrinsic resistance factors. Therefore, 

it is important to identify the full repertoire of intrinsic factors that affect susceptibility to different 

classes of antibiotics. 

Many intrinsic resistance factors in S. aureus have been identified by screening mutant 

libraries for increased susceptibility to a specific antibiotic (51, 280), but there has yet to be a 

systematic analysis of genes that can confer resistance to multiple classes of antibiotics in S. 

aureus. A global view of all intrinsic resistance factors in S. aureus and their effects on 

antibiotics of various classes will enable further understanding of the bacterial stress response. 
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A better understanding of these factors will allow for the nomination of candidates for potentiator 

development, which is particularly important in this "post-antibiotic era".  

Recent advances in next-generation sequencing (NGS) have made possible systems-

level approaches to identify genes that confer protection to various stresses (89, 132). In this 

work, we use such an approach to identify intrinsic resistance factors that are important for 

resistance to six clinically relevant antibiotics having different modes of action. We highlight 

those that are important across multiple classes of antibiotics and also note factors that confer 

resistance to certain antibiotics but sensitivity to others. Furthermore, we have characterized 

two new intrinsic resistance factors for multiple antibiotics which may be important for the 

cellular response to envelope stress.  

Tn-Seq for predicting mechanism of action 

We expanded the panel of antibiotics tested to twenty-five antibiotics to use Tn-Seq for 

predicting mechanism of action of a new antibiotic. Antibiotics target essential cell systems, but 

not all essential genes make good targets. Even though a gene may be essential, resistance 

may evolve quickly or it may be difficult for the antibiotic to gain access to the target because of 

intrinsic efflux genes or membrane permeability issues (281-283). Furthermore, if the antibiotic 

targets a gene with homology to the human version of that gene, off-target effects in the human 

body may be a problem. Therefore, before an antibiotic can go in to the clinic, it is helpful to 

know the mechanism by which it kills the cell. To do this, researchers must figure out the target 

of the antibiotic. This process can be very lengthy and complex, adding to the cost of developing 

new antibiotics.  

 There are a variety of tools that scientists can use to predict mechanism of action. These 

include, but are not limited to, cytological profiling (284), macromolecular radiolabeling (285), 

gene expression profiling (286), and proteomics analyses (287). Furthermore, with the advent of 

next-generation sequencing and the increasing utility of applying machine learning algorithms to 
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biology, computational approaches for mechanism of action prediction are becoming more 

common. One method uses an artificial neural network and an antimicrobial peptide’s predicted 

physicochemical properties to predict that peptide’s mechanism of action (288). However, this 

prediction algorithm only works for antimicrobial peptides. Another method, the Antibioticome, 

utilizes a retrobiosynthetic algorithm along with whole genome analysis to predict a natural 

product’s mechanism of action, but this method would not work with a synthetically-derived 

antibiotic (289). Finally, another method was recently published that uses a random-forest 

classifier with a Bayesian learner to predict the mechanism of action of drugs against 

pathogenic Saccharomyces cerevisiae based on their chemical-genetic interactions (290). In 

addition, this method can predict whether combinations of drugs would synergize or antagonize. 

This method is powerful, but unless your drug is active in yeast (many antibiotics are not), you 

cannot use it to predict mechanism of action. Therefore, a computational method that can be 

used with any class of antibiotic to predict the mechanism of action in bacteria could be very 

useful for antibiotic development. 

Here, we use our high-efficiency phage-based transposon library sequencing platform 

(132) to develop a two-pronged approach for mechanism of action determination in S. aureus. 

S. aureus and its methicillin-resistant relative, MRSA, are dangerous pathogens found as both 

nosocomial and community-acquired infections (136). We have created ultra-high density 

transposon libraries in S. aureus that have the ability to upregulate as well as inactivate any 

gene in the genome (See Chapter 2) (132, 133). In order to develop a method for predicting 

antibiotic mechanism of action in this strain, we have treated a transposon library made in a 

methicillin-sensitive (MSSA) strain with twenty-five different compounds, including clinically-

used antibiotics, agricultural antibiotics, and validated chemical probes, and sequenced the 

transposon insertion sites using Tn-Seq. The phage-based transposition system utilized here is 

highly-efficient, allowing us to multiplex different transposon constructs together as described in 
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Chapter 2. These transposon constructs contain outward-facing promoters of different 

strengths, and depending on the location and orientation of transposon insertion, they have the 

ability to constitutively upregulate nearby genes. This is useful to us because target-

upregulation is a common mechanism of antibiotic resistance (135). The first method of target-

prediction relies on the outward-facing promoters present in our platform to identify upregulated 

genes. The second method utilizes a machine learning algorithm that compares the mutations 

conferring resistance and sensitivity to a new antibiotic with the mutations conferring resistance 

and sensitivity to a panel of 25 known antibiotics. Antibiotics with similar mechanisms have 

similar resistance factors, so by identifying a known antibiotic with similar resistance factors, we 

are able to predict the new antibiotic’s mechanism of action. This strategy has allowed us to 

identify and validate both known and novel antibiotic targets and other resistance mechanisms.  
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4.2 Identification and validation of intrinsic resistance factors 

 

Treatment of the transposon libraries with antibiotics 

 First, we used a small panel of antibiotics to investigate the intrinsic resistance factors of 

S. aureus. These experiments were conducted in collaboration with Michael Gilmore’s lab at 

Massachusetts General Hospital. We used both our transposon library system (132) as well as 

data obtained by their lab using a transposon library created using a plasmid-based system (90) 

and sequenced using the DNA shearing method (291). These experiments were done in 

different ways (different growth media, growth volumes, and number of generations grown). 

Therefore, any genes that are identified as hits in both of these methods are more likely to be 

important for resistance regardless of the conditions in which the cells are grown. Combining 

these two approaches allows for a more robust dataset that should identify relevant resistance 

factors to any antibiotic tested. Specific differences between these transposon libraries as well 

as differences in antibiotic treatment protocols are described in Methods (Appendix A).  

The two libraries were treated with sub-minimum inhibitory concentrations (MICs) of 

antibiotics. These antibiotics - ciprofloxacin, linezolid, gentamycin, oxacillin, vancomycin 

daptomycin - were chosen for their clinical relevance and selected as representatives of 

antibiotics that target major pathways: DNA synthesis, protein synthesis, cell wall synthesis, and 

membrane stability (Figure 27 A-B) (11, 16-19, 292, 293). After treatment, the library DNA was 

extracted, and Tn-Seq was performed in order to sequence the location of the transposon 

insertions (Figure 27C).  
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Figure 27. Intrinsic antibiotic resistance factors can be identified using Tn-Seq. The 

structures of the six different antibiotics (A) and their targets (B) used in the Tn-Seq 

experiments are shown. (C) A pooled transposon insertion library is grown with or without 

antibiotic and subjected to Tn-Seq to quantify the number of sequence reads that map to each 

insertion location (black lines). Here, the red gene has a similar number of reads in both 

conditions. The orange gene has a lower number of reads in the treated sample than in the 

untreated control due to a decreased fitness of those transposon mutants in the presence of the 

tested antibiotic. Genes of this type are known as intrinsic resistance factors. Finally, the blue 

gene has a greater number of reads in the treated sample than in the untreated control signaling 

that inactivation of this gene increases bacterial fitness in the presence of the test antibiotic. 
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Data analysis 

Data was analyzed as previously described with one additional step (132). Before 

comparing the number of reads/gene using the Mann-Whitney U test, the experimental 

condition (antibiotic treatment) was normalized to the untreated control using simulation-based 

re-sampling to minimize differences between the two conditions (104, 107). After analyzing all 

experiments for both libraries separately, the results (ratios and p-values) for all antibiotic 

treatments were combined. P-values were combined using Fisher’s method and the ratio of 

number of reads in the experiment to the control (hereafter referred to as fold change) was 

combined by calculating the geometric mean of the fold changes. 

Normally, we set one cutoff for statistical significance (p-value) and one cutoff for 

practical significance (fold change). However, we could not set a single practical significance 

cutoff for all antibiotics because it would have resulted in different numbers of hits. Different 

antibiotics seem to exert a different selective pressure on the transposon mutant libraries, even 

when used at the same fraction of MIC. This results in some datasets where there are large fold 

changes for a large fraction of the genes, while others had smaller fold changes in fewer genes. 

Therefore, setting a single cut-off based on the fold-change would result in different numbers of 

hits for the different antibiotics.  

To solve this problem, we set different practical significance cutoffs for each antibiotic, 

We first identified the subset of genes having p-values < 0.05, and then adjusted the fold 

change cutoff such that a maximum of 20 genes remained. This value was different for each 

antibiotic, and the cutoffs ranged from a ten-fold increase/decrease in number of reads (10x and 

0.1x) for ciprofloxacin to a 55-fold increase/decrease for oxacillin (55x and 0.018x). Then we 

manually filtered out those genes where all the reads map to only one transposon insertion site 

as these are likely to be artifacts. It should be noted that this list of top 20 or fewer genes for 

each antibiotic includes genes with fewer reads in the treated sample compared to the control 
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as well as genes with more reads (Table 6). The former represent intrinsic resistance factors as 

disrupting those results in decreased fitness in the presence of an antibiotic, but the latter are 

also of interest as they provide information on how antibiotic resistance can arise via gene 

inactivation. 

Intrinsic factors that decrease or increase susceptibility to antibiotics 

We compared the top hits for each condition and identified 80 unique hits as some 

genes are found to be hits for more than one antibiotic (Table 6). Twenty-one genes were hits 

with more than one antibiotic. Fourteen genes were important for resistance to at least two 

antibiotics, and no gene was a resistance factor for all six antibiotics. These 80 hits include 

genes involved in almost every major aspect of cell function including cell envelope 

homeostasis (14 genes), DNA/RNA/protein synthesis (6 genes), protein modification and 

transport (4 genes), oxidative phosphorylation (11 genes), metabolism/metabolic transporters 

(11 genes), transcriptional regulators (10 genes), and multicomponent sensory systems (11 

genes), Additionally, we have identified thirteen hypothetical genes that are important for 

resistance. 

Whereas the top twenty gene list for most of the six antibiotics included few genes with 

more reads mapping to them under the treatment condition than the control, half of the genes in 

the list for gentamycin belonged in this category (Figure 28). All these genes were in the 

oxidative phosphorylation pathway. It is known that gentamycin and other aminoglycosides rely 

on the membrane potential to gain entry into cells (294, 295). Disrupting genes in the oxidative 

phosphorylation pathway therefore limits cellular penetration.  
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Figure 28 (See page 94). Inactivation of the oxidative phosphorylation pathway confers 

resistance to gentamicin.  (A) Schematic of the oxidative phosphorylation pathway is depicted 

here. Reads were enriched in the eleven genes named in the figure when treated with 

gentamicin. A subset of genes in the oxidative phosphorylation pathway were tested to 

determine if inactivation confers resistance to gentamycin. (B) The fold change in reads/gene in 

the gentamycin-treated sample compared to the control for each of these genes is shown. (C) 

Fitness compared to WT of mutant strains in which the indicated genes were inactivated was 

assessed using spot dilutions of WT and mutant strains plated on gentamycin (photo on left). 

Fitness was calculated as the ratio of the highest dilution that allowed growth of WT relative to 

the mutant (plot on right). 

 

 

 

 

 

 

 

 



 

94 

 

Figure 28 (Continued). 
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Our fitness analysis also identified many other genes previously known to affect 

antibiotic resistance. For example, sigB was among the hits with oxacillin treatment. Reads 

mapping to this gene, and the other components involved in the alternative sigma factor 

pathway, rsbV and rsbW, were significantly depleted. It has been shown that over-expressing 

SigB results in cells with thicker cell walls, increased transcript levels of penicillin binding 

proteins, and elevated MICs to β-lactams (296). Similarly, reads in all three genes of the vraRST 

operon were substantially depleted in the presence of vancomycin. vraRST encodes a multi-

component-sensing system (MCS) that regulates the cell wall stress stimulon (50, 143, 297). 

Reads mapping to pbp4, a PBP involved in synthesis of highly-crosslinked peptidoglycan and β-

lactam resistance (174, 231, 247), were also found to be depleted under oxacillin treatment. 

Finally, norA, which encodes an efflux pump that is known to be involved in ciprofloxacin 

resistance (7, 298), was identified as an important factor under ciprofloxacin treatment in our 

analysis. In addition to these and other known intrinsic resistance factors, we have identified 13 

hypothetical genes that are important for resistance (Table 6). 

Intrinsic resistance factors to multiple classes of antibiotics 

Of the twenty-one genes that were hits with more than one antibiotic, eight of these were 

hits with more than two antibiotics (Table 6). These 8 genes include previously characterized 

genes - mprF, ndh, and components of the graRS/vraFG multi-component system, as well as 

two genes of unknown function: SAOUHSC_01025 and SAOUHSC_01050. We were 

encouraged by the fact that we found many previously-identified resistance factors considering 

the substantial differences between testing an antibiotic against a single mutant and testing it 

against a huge pooled mutant collection. To provide additional validation of our approach, we 

tested the fitness of selected mutants (ndh, fmtA, and mprF) against all six antibiotics using a 

spot dilution assay (Figure 29). Briefly, this assay works by serially diluting a strain by 10 fold 

each time, and spotting each dilution on plates containing the antibiotic of interest. A strain more 
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resistant to the antibiotic than WT will grow at higher dilutions than WT; while WT will grow at 

higher dilutions than the test strain if the test strain is sensitive to the antibiotic. These three 

genes were identified as hits with more than one antibiotic treatment. Ndh (NADH 

dehydrogenase) is involved in the electron transport chain (299), fmtA is a cell surface protein of 

uncertain function (300-302), and mprF catalyzes formation of lyslyphosphatidylglycerol, a 

membrane modification that confers protection to cationic antibiotics (51, 190). In general, the 

agreement between mutant fitness as determined on plate assays is excellent (Figure 29). 

Notably, the mutants used in the plate assays were made in a different genetic background from 

the transposon libraries used in the Tn-Seq experiments (ndh and graR mutants in 

USA300:FPR3757(130) and mprF mutants in Newman while the library was created in HG003 

(132)), making the agreement between the fitness values all the more remarkable. 
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Figure 29 (See page 98). Tn-Seq results were validated by testing mutant fitness in spot 

dilution assays. (A)Tn-Seq results and validation for selected genes are shown. ndh encodes 

an NADH dehydrogenase involved in oxidative phosphorylation (299); fmtA is a cell surface 

protein of undetermined function (300-302); graR is a member of a multicomponent sensing 

system (MCS) (303); mprF and dltA are members of this MCS's regulon (304). Top panel: Bar 

graph depicting fold change relative to the untreated control for each of the six antibiotics. 

*There are very few insertions in dltA control so changes in fitness are not detectable. Bottom 

panel: Bar graph depicting fitness compared to WT of mutant strains in which the indicated 

genes are inactivated. (B) Fitness was assessed by spotting ten-fold dilutions of WT and mutant 

strains on antibiotic plates and comparing the highest dilutions that resulted in growth. An 

example of the plate dilution spotting assays is shown. The left plate has serial dilutions of WT, 

∆dltA, ∆graR, and ∆mprF strains spotted on TSA with no antibiotic. On the right, the same 

strains are spotted on 1µg/ml vancomycin. While growth of WT is unchanged at this 

concentration of vancomycin, the ∆dltA and ∆graR strains have severe fitness defects. ∆mprF 

has a more modest fitness defect.  
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Figure 29 (Continued). 
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graRS/vraFG is a very important multi-component sensing system  

Multi-component sensory/regulatory systems (MCS) allow bacteria to sense and 

respond to their environments. These systems typically include a membrane-anchored 

extracellular sensory domain fused to an intracellular kinase domain and a separate, cytosolic 

response regulator, but they can also include additional elements, such as ABC-transporter-like 

and other membrane proteins.  A stimulus sensed by the sensory domain results in a change in 

phosphorylation of the response regulator, which then modulates the expression of downstream 

targets (305). S. aureus contains many multi-component sensing systems, and we identified 

multiple components of three of these systems, agrABCD, vraTSR, and graRS/vraFG, as top 

hits under treatment with at least one antibiotic (Table 3). 

The agr locus controls quorum sensing as well as the expression of virulence factors 

and autolysins (306-308). We found that reads mapping to agrA, agrB, and agrD were depleted 

under treatment with oxacillin and daptomycin. This suggests that this MCS could be playing a 

role in the response to these antibiotics, possibly due to its functions in regulating the autolysin 

lytM and the PBPs (144, 309, 310). While agrC was also depleted under these treatments, it did 

not meet our cut offs.  

The vraTSR system is known for its crucial role in withstanding vancomycin treatment 

(143), and all three components of vraTSR were among the top twenty genes identified as 

important under vancomycin treatment. This sensing system regulates expression of cell wall 

biosynthetic genes and has also been implicated in β-lactam resistance (50, 144, 297). Although 

reads mapping to these genes were also depleted under oxacillin treatment, they did not meet 

our cut offs for top 20 most important genes. 

The single most important MCS across all the six antibiotics tested was found to be 

graXRS/vraFG. Four components of this system made our cut offs under gentamycin, 

daptomycin and vancomycin treatment . Moreover, compared to wildtype, we found the fitness 
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of a ΔgraR mutant to be reduced by four to five orders of magnitude when plated on these 

antibiotics (Figure 29).It was also sensitive to ciprofloxacin, although less so. The graRS/vraFG 

reguon was characterized and found to have links to other global regulatory systems such as 

agr and walKR as well as many stress-response and virulence genes (304), but it is most well-

known for modulating the charge of the cell envelope through modulating the expression of 

mprF and the dlt operon. MprF attaches lysine to phosphatidylglycerol (190, 311) while the dlt 

operon attaches D-alanine to lipo- and wall-teichoic acids (312). These pathways confer 

protection to cationic antimicrobial peptides, aminoglycosides, and other positively-charged 

antibiotics (313). Whereas mprF was identified as a top hit under several treatment conditions, 

transposon insertions in the dlt genes were poorly represented in the control libraries because 

dlt mutants have substantial fitness defects and do not compete well with other strains. The fact 

that this system as well as a member of its regulon is so prevalent among the top hits was 

surprising, and it suggests that this system may be more important for antibiotic resistance than 

previously appreciated.  

We next asked whether the sensitization observed when knocking out graRS/vraFG is 

due to misregulation of the expression of mprF or dltA. We found the fitness of a dltA mutant to 

be greatly reduced compared to wildtype when plated on four of the six tested antibiotics (Figure 

29). Three of these, vancomycin, gentamicin, and ciprofloxacin, contain at least one net positive 

charge. The fitness of the graR mutant was also reduced on these antibiotics, but there was not 

a strong correlation between the number of positive charges and the fitness of the dltA mutant 

across different classes of antibiotics. For aminoglycoside antibiotics it was previously shown 

that the number of charges correlates with activity against the dltA mutant (105). D-alanylation 

serves different roles in the cell envelope (313-315), and so the fitness of the dltA mutant in the 

presence of different antibiotics may reflect these various roles. Similarly, the data suggest that 

MprF does not function simply to modulate cell membrane charge (51) as the mprF mutant is 
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most sensitive to daptomycin (Figure 21), which does not contain a net positive charge. Notably, 

the graR mutant was also sensitive to daptomycin, but the dltA mutant was not (Figure 29). It 

seems that depending on the type of stress this MCS senses, it may modulate the expression of 

many different genes including, but not limited to, dltA and mprF. 

Identification of two new resistance factors important in envelope stress 

 Of all the hits, thirteen are uncharacterized hypothetical genes. Two of these genes, 

SAOUHSC_01025 and SAOUHSC_01050, were predicted to be resistance factors for the cell-

envelope-targeting antibiotics oxacillin, vancomycin, and daptomycin. These genes are 

conserved in S. aureus and are both predicted to be conserved polytopic membrane proteins. 

According to the TMHMM Server v. 2.0 which predicts transmembrane helices in proteins, 

SAOUHSC_01025 is predicted to have six transmembrane helices, a 93 amino acid 

extracellular domain, and four more transmembrane helices. SAOUHSC_01050 is predicted to 

have three transmembrane helices and a large 191 amino acid extracellular domain. A BLAST 

search with SAOUHSC_01025 resulted in no homology to any characterized protein (all were 

annotated as hypothetical). So, a PSI-BLAST search against NCTC_8325, which is designed to 

detect distant sequence similarities was performed. This search reveals that SAOUHSC_01025 

has low (26%) identity with ComGB. In Streptococcus mutans and in B. subtilis, ComGB is a 

protein required for DNA uptake as well as biofilm formation (316), but its role in S. aureus has 

not been studied. PSI-BLAST was also used to identify S. aureus genes with homology to 

SAOUHSC_01050. We found that this protein has high homology (99% identity) with S. aureus 

proteins annotated as chitinases (Figure 30). Chitinases in bacteria are not well studied, but 

they have been shown to degrade colloidal chitin and peptidoglycan (317). Gene and protein 

annotations in S. aureus are not always accurate, but the similarity of SAOUHSC_01050 to a 

class of enzymes that has activity on peptidoglycan suggests an important role for this gene in 

cell envelope homeostasis.  
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Figure 30. SAOUHSC_01050 has high homology with S. aureus chitinases. PSI-BLAST 

was used to identify S. aureus proteins with homology to SAOUHSC-01050 (highlighted in 

yellow). Four of the top ten proteins identified were annotated as chitinases, which 

SAOUHSC_01050 has 99% homology with. We aligned three of these chitinases to 

SAOUHSC_01050 using Clustal Omega, and we confirmed that these are likely the same 

protein because there are differences in only three amino acids. These three amino acids are 

shown with colons instead of asterisks.  
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 We were able to mine the Tn-Seq data to try to better understand which pathways 

SAOUHSC_01025 and SAOUHSC_01050 are involved in. Our strategy here was based on the 

observations that we made in Chapter 3 where we identified at least two physically-interacting 

genes by identifying genes with the same resistance and sensitization patterns across a panel 

of β-lactams. In these experiments, we observed that inactivation of genes in the same pathway 

conferred a similar level of sensitization to each antibiotic. For example, every component of the 

graRS/vraFG MCS were resistance factors to the same subset of antibiotics: gentamicin, 

daptomycin, and vancomycin. Therefore, we hypothesized that we could nominate pathways for 

genes of unknown function by identifying known genes with very similar patterns of sensitization 

to these six antibiotics.  

One way to identify similar patterns in an unbiased way is to take advantage of machine 

learning algorithms (Figure 31A. We optimized a K-nearest neighbors machine learning 

algorithm using the Sci-kit learn Python library (318) to find genes that have the most similar 

resistance patterns to our gene of interest. To do this, we calculated the “fitness value” (See 

Methods) for each gene in each of the antibiotic treatments. In short, this value is based on the 

change in number of reads mapping to a gene, but it also normalizes for gene length and for 

insignificant changes when few reads map to the gene in the untreated condition.  We validated 

our algorithm by using the components of graXRS/vraFG as test cases, to see if the other 

components could be identified among the top 5 nearest neighbors (top 5 most genes with 

similar patterns) when we searched all the non-essential genes in the genome (2549 genes) 

(Figure 31A). We found that for each of these genes, at least two of the other components of the 

system were among the five closest genes in the genome, with the exception of graR (Table 7). 

GraR does not identify other components of this MCS because it often has a different fitness 

value than the other member of the MCS (Table 7, Figure 31B). With daptomycin, gentamicin, 

oxacillin, and vancomycin treatment, the fitness value for graR is approximately 10 fold higher 
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than for the other components of the system. Therefore, it makes sense that this algorithm 

would not identify other components of this MCS when searching with graR. GraR may have a 

slightly different fitness profile than the other components of this MCS because it is the 

transcriptional regulator of the system. If graS, vraF, or vraG are knocked out, the cell envelope 

stress sensing portion of the MCS, all of which resides in the membrane, may be somewhat 

defective, but graR could still retain some activity. If graR is knocked out, there is no way this 

system can modulate the expression of members of its regulon.  

 

Figure 31. The K-nearest neighbors algorithm can be used to identify genes with similar 

resistance patterns. (A) Schematic depicting the fitness of a subset of genes upon treatment 

with different antibiotics. Each column represents an antibiotic and each row represents a gene.  

Genes having related functions, such as the components of the GraRS/VraFG MCS, have 

similar fitness profiles across a panel of antibiotics. For any given test gene, we can identify 

genes with the most similar fitness profiles. These genes likely have functions that are related to 

the function of the test gene. (B) Each component of the graXRS/vraFG MCS was put through 

this analysis to identify the top five genes with the most similar pattern of resistance and 

sensitivity to these six antibiotics. With the exception of graR, every component identified at 

least two other components of the MCS. Continued page 105. 
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Figure 31 Continued. The fitness values for graXRS/vraFG were plotted. With daptomycin, 

gentamicin, oxacillin, and vancomycin, graS, vraF, vraG, and sometimes graX had very low 

fitness values. In contrast the fitness value of graR was on average 10 fold higher.  

 

 

 

Next, we applied this machine learning algorithm to our unknown genes of interest 

SAOUHSC_01025 and SAOUHSC_01050. The five genes most similar to SAOUHSC_01025 

were graR, graS, mprF, cvfC, and SAOUHSC_01050, while the five most similar to 

SAOUHSC_01050 were graS, mprF, cvfC, vraG, and SAOUHSC_01025 (Table 7). CvfC 

(conserved virulence factor C) was identified as a gene required for virulence in a silk worm 

model of S. aureus infection (319). The function of cvfC is not known, but when this non-

essential gene is deleted, it confers attenuated virulence in mice and decreased hemolysin 

production (319, 320). The presence of graS, mprF, and vraG in the results of this analysis 

suggests that they have functions related to maintaining membrane integrity and withstanding 

envelope stress. 
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Characterization of SAOUHSC_01025 and SAOUHSC-01050 

Using spot dilution testing, we tested the fitness of mutants with inactivating transposon 

insertions in SAOUHSC_01025 (tn::1025) and SAOUHSC_01050 (tn::1050) against a panel of 

twelve antibiotics with different targets (Figure 32). In addition to the six antibiotics originally 

used to probe the transposon libraries, we tested moenomycin, targocil, bacitracin, fosfomycin, 

mupirocin and rifampicin (Figure 32). Moenomycin and bacitracin inhibit peptidoglycan synthesis 

by interacting with extracellular targets (321, 322), whereas fosfomycin inhibits peptidoglycan 

synthesis by interacting with an intracellular target (323). Targocil inhibits wall-teichoic acid 

biosynthesis, resulting in depletion of peptidoglycan precursors and, therefore, inhibition of 

peptidoglycan synthesis (324). Mupirocin inhibits protein translation by targeting an acyl-tRNA 

synthetase (325), and rifampicin inhibits RNA polymerase (326). With one exception, both 

mutants showed moderate and similar reductions in fitness when plated on non-cell wall related 

antibiotics. The exception was that tn::1050 was far more sensitive to gentamycin than tn::1025, 

an unusual pattern not observed with any other antibiotic. Gentamicin enters the cell through the 

membrane. As a membrane protein, 1050 may play a role in gentamicin’s entrance to the cell, 

such that when it is inactivated, gentamicin can enter the cell more easily. Against cell wall 

active antibiotics, both tn::1025 and tn::1050 showed large reductions in fitness, with tn::1025 

often found to be more susceptible than tn::1050. Moenomycin provides a striking example of 

this as the fitness of the tn::1025 mutant decreased by four orders of magnitude while the 

fitness of the tn::1050 mutants did not change. In general, however, both mutants showed 

reduced fitness compared to the wild type strain. The decreased fitness of both mutants when 

plated on cell wall active antibiotics compared with other antibiotics is consistent with an 

important role in cell envelope integrity (Figure 32).  
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Figure 32. Two genes encoding polytopic membrane proteins are important for 

resistance to cell envelope targeting antibiotics. The K-nearest neighbors algorithm 

predicted that SAOUHSC_01025 and SAOUHSC_01050 were most similar to one another and 

also shared three of four other identified neighbors.  As these neighbors play an important role 

in protecting S. aureus from certain classes of antibiotics, we predict that SAOUHSC_01025 

and SAOUHSC_01050 are important for cell envelope integrity. Spot dilution assays showing 

fitness compared to WT of inactivation mutants in SAOUHSC_01025 and SAOUHSC_01050 

upon plating on the indicated antibiotics. Continued page 108.  
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Figure 32 continued. The first five antibiotics (moenomycin, vancomycin, targocil, bacitracin, 

and oxacillin) target the cell envelope and at least one of the two mutant strains is highly 

sensitive at an antibiotic concentration that permits growth of WT at all dilutions. With the 

exception of fosfomycin and daptomycin, the rest of the antibiotics have non-cell envelope 

targets, and we observe either little effect on these mutants (fosfomycin and daptomycin), or we 

observe an effect only at concentrations where the WT strain is also inhibited (mupirocin, 

linezolid, rifampicin, and ciprofloxacin). The last antibiotic is gentamicin, which inhibits protein 

synthesis but enters the cell using the membrane potential. Transposon insertions in 

SAOUHSC_01050 sensitize to this antibiotic.   

 

These mutants did not show a significant increase in sensitivity to lysis by triton X-100 

(Figure 33), but they showed a slight reduction in growth rate at 37°C. The doubling times for 

WT, tn::1025 and tn::1050 were 22.0, 25.4, and 26.5 minutes respectively, suggesting that 

these mutants have some fitness defects. Though a three or four minute increase in doubling 

time, may seem unsubstantial, in the context of a transposon library in liquid culture, where all 

the mutants are competing against each other for nutrients, it is easy for a small fitness defect to 

become amplified over successive generations.  
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Figure 33. Inactivation of SAOUHSC_01025 or SAOUHSC_01050 do not have an effect on 

TritonX-100 induced lysis. Lysis curves of WT, tn::1025 and tn::1050 with or without triton X-

100 show that WT and mutants lyse at similar rates. OD600 values were normalized to the initial 

starting OD of each sample. 

 

 Because the antibiotic resistance and sensitization patters of 1025 and 1050 were found 

to be similar to cvfC (319, 320), we tested whether there was any change in hemolysin 

production and activity by streaking WT, tn::1025 and tn::1050 on Columbia Blood Agar plates. 

In contrast to the cvfC mutant, which shows reduced hemolysin production, these mutants had 

greater hemolysin production than the WT strain (Figure 34). S. aureus encodes four 

hemolysins, α-, β-, γ-, and δ-hemolysin (34). Expression of the hemolysins is tightly regulated by 

the two component system SaeRS and the Agr system (327-331). In the presence of heme, α- 

and β-hemolysin expression is down-regulated to protect the cell from the toxic byproducts of 

heme degradation (327), while in blood, γ-hemolysin expression is upregulated (332). Because 

the tn::1025 and tn::1050 mutants increase hemolysin expression, it is possible that they 

function to negatively regulate their expression or activity. Though inactivating these genes 
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upregulates hemolysin production and cvfC knockouts have less hemolysin production, it still 

makes sense that we could identify cvfC as having a similar antibiotic resistance and sensitivity 

pattern. Depending on the type of cell stress, different transcriptional regulators can up- or 

down-regulate the expression of different sets of genes. Therefore, under cell envelope stress 

due to antibiotic treatment, inactivation may confer a similar phenotype, while in the presence of 

blood, the phenotype could be different. The different phenotype could also be related to which 

hemolysins are being produced by the different strains. The mechanism of heme toxicity in 

bacteria is not very well understood (333), but S. aureus is known to store exogeneously-

acquired heme in the cell membrane (334). As membrane proteins, SAOUHSC_01025 and 

SAOUHSC_01050 could play a role in the regulation of hemolysin production in response to the 

stores of heme in the membrane.  

 

Figure 34. tn::1025 and tn::1050 mutants have increased hemolysin production. WT, 

tn::1025, and tn::1050 strains were streaked onto Columbia Blood Agar plates to assess 

whether they have any kind of hemolysis phenotype. The mutants appeared to secrete more 

hemolysins than WT as can be seen by the black areas surrounding each colony.  
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4.3 Expansion of the antibiotic panel and identifying upregulated genes 

 

Advantages of Tn-Seq for predicting mechanism of action  

For these experiments, we used the same phage-based transposition system described 

in the previous chapters (132) with an expanded panel of twenty-five antibiotics in order to 

develop a method for predicting the mechanism of action of a new antibiotic using Tn-Seq. The 

phage-based transposition method was originally developed by Meredith and co-workers at 

Merck Research Labs for the purpose of predicting mechanism of action of new compounds. 

They showed that they were able to identify the target for many compounds (133, 134). 

However, this method relied on plating the transposon library on agar plates containing 

compound at two or three times the MIC and then sequencing the colonies that were able to 

survive and grow. This method works well, but suffers from two major drawbacks (Figure 35). 

First, sequencing individual colonies does not give a complete picture of which genes are 

involved in resistance across the entire genome. Without the significance gained from the 

millions of reads obtained using NGS, it may be difficult to prioritize and categorize the genes to 

follow up on. Secondly, many of the new antibiotics we study, especially natural products, are 

not available in large quantities. The amount of compound needed for use at high 

concentrations in multiple large agar plates would seriously deplete our supply for most of these 

compounds and make it impossible to perform many required follow up validation experiments 

(Figure 35).  

Adapting this transposition system for NGS has solved both of these problems. We can 

treat the transposon library with antibiotic in small (2 milliliter) cultures, which uses only a small 

amount of compound. Furthermore, because these experiments require very little compound, 

we can test a few concentrations of the compound to obtain more information about its 

mechanism of action. It is useful to test multiple concentrations because at lower 



 

112 

 

concentrations, we can identify the mutants that are more sensitive to the compound, while at 

higher concentrations, we can identify the mutants that are best able to survive the treatment. 

Tn-Seq enables the study of compound mechanism of actiomn using a more global, systems-

level approach where we can look at transposon insertions in every non-essential gene to 

determine that gene’s relevance to an antibiotic’s mechanism of action (Figure 35).  

 

Figure 35. Two approaches for mechanism of action prediction using transposon 

libraries. (A) The first method relies on selection of a transposon library on an agar plate 

containing a high concentration of antibiotic. Then, transposon insertion sites are sequenced 

one colony at a time. Potential targets can be nominated by identifying genes upregulated by 

the outward-facing promoter of the transposon. This approach has been very successful, but 

requires a lot of compound and sequencing individual colonies can be time intensive. (B) With 

NGS, the transposon library can be grown in small (2mL) culture volumes and transposon 

insertion sites can be sequenced using NGS. This allows us to simultaneously assess the 

fitness of every gene in the genome. A small culture volume allows us to do more experiments 

with different compound concentrations to identify resistance factors as well as upregulated 

genes.  
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Treatment of the transposon library with antibiotic 

We have treated the HG003 transposon library (described in Chapters 2) with at least 

two different concentrations of 25 different antibiotics in 2 milliliters of cation-adjusted TSB 

(oxacillin and bacitracin were treated in MHB). These antibiotics included many different 

functional and chemical classes, and a full list can be viewed in Table 8. Concentrations were 

chosen by identifying at least one antibiotic concentration that caused a moderate delay 

(approximately three to five hour) and at least one concentration that resulted in an extreme 

delay (approximately twenty hour) in the time it took for the transposon library to reach 

stationary phase. Then we collected the cells, extracted the DNA, and prepared the DNA for 

NGS as previously-described (132). Lower concentrations allow us to identify transposon 

mutations that sensitize the cell to the antibiotic. At high concentrations, the delay in growth is 

due to the fact that few mutants are able to grow. This allows us to identify mutants that confer 

an increase in resistance to the antibiotic.  
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Method for identifying genes upregulated by transposon insertion 

 Because the phage-based transposon method is highly-efficient, it allows for the 

multiplexing of multiple transposon donor constructs together when creating the transposon 

library (See Chapter 2) (132, 133). We have taken advantage of this by creating transposon 

constructs containing outward-facing promoters of different strengths. These regulatory 

elements allow us to upregulate as well as inactivate any gene in the genome, and this function 

is very useful for studying a new antibiotic (Figure 36). Not only will we be able to identify 

resistance mechanisms due to upregulation of genes, but because target-upregulation is a 

common mechanism of antibiotic resistance, we may also be able to determine the target of a 

new antibiotic.  

 We developed a method for identifying genes that, when upregulated, increase 

resistance to antibiotics. The transposon library was treated with antibiotics and prepared for 

sequencing as previously described. However, the procedure for data analysis of the 

sequencing data differs. The goal of this analysis is to identify not only regions of the genome 

where there is a significant increase in number of reads, but also to identify regions of the 

genome where there is a preference for orientation of the transposon insertion. Transposons 

can insert into a TA site with the outward-facing promoter facing either direction, and if 

upregulation of a gene causes an increase in fitness, there should be a preference for insertion 

in one direction over the other where the preferential direction corresponds with the same 

direction as the native promoter of that gene (Figure 36).  
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Figure 36. Different transposon constructs can confer different phenotypes. (A) This 

transposon library has six transposon constructs multiplexed together (132). These include 

(from top to bottom): Blunt construct with no outward facing promoter, Dual construct with Ppen 

promoter and no transcriptional terminator after the erythromycin resistance gene, Cap 

construct with Pcap promoter, Erm construct which is the same as the Blunt construct except 

without the transcriptional terminator after the erythromycin resistance gene, Pen construct with 

Ppen promoter, and Tuf construct with Ptuf promoter. These outward facing promoters drive the 

expression of proximal genes to different extents; in order of increasing strength, Perm, Ppen, Pcap, 

and Ptuf. (B) We can identify different kinds of phenotypes using these constructs. If a 

transposon inserts into the middle of a gene, it inactivates that gene. That may have no effect 

on the fitness of the mutant, or depending on the condition of interest, the transposon mutant 

may confer a fitness defect (fewer number of reads mapping to the gene) or a fitness advantage 

(greater number of reads mapping to the gene). Continued page 117.  
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Figure 36 continued. (C) If a transposon construct with an outward-facing promoter inserts 

ahead of a gene, depending on the orientation of insertion, it may upregulate the proximal or 

another nearby gene. If the upregulation confers an increase in fitness, more reads will map to 

that area and there will be a preference for the orientation of transposon insertion. Furthermore, 

if upregulation of a gene confers a fitness advantage, there will also be few to no reads mapping 

within that gene because inactivation of that gene usually confers a fitness defect in that 

condition. 

 

 The automated analysis we have developed performs the following operations (Figure 

37): 1. It separates the sequencing data into reads mapping to the plus and minus strands for 

both the control and the antibiotic treatment conditions; 2. it normalizes the data using the 

simulation based sampling, with the plus strand reads for the treatment condition normalized to 

the plus strand reads for the control, and the minus strand reads for the treatment normalized to 

the minus strand reads for the control; 3. because we care about insertions in non-coding 

regions as well as genes, data is classified into 270bp “windows,” with each given a unique 

numerical name (this window size was chosen because it is ~1/10000th of the length of the 

genome and should on average contain ~27 TA sites, a window large enough to identify 

changes due to mutations affecting fitness and small enough to get a fine-grained view of 

fitness across the genome); 4. it identifies the mean and standard deviation of the number of 

reads per TA site and the ratio of plus strand to minus strand reads for each TA site across the 

genome; 5. it identifies TA sites where the number of reads is X standard deviations away from 

the mean in antibiotic treatment but not the control to identify TA sites where transposon 

insertion confers a fitness advantage; 6. it identifies TA sites where the number of reads in one 

strand is X standard deviations away from the mean but not in the other, suggesting that there is 

a preference for orientation of transposon insertion. X can be increased or decreased until 100-
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200 TA-sites remain, depending on how stringent of an analysis is desired. In our experience, 

increasing the stringency to approximately 100 TA sites allows us to be much more confident in 

our results. Decreasing the stringency can make analysis difficult because distinguishing truly 

upregulated genes from the background noise becomes more challenging. Here, we have used 

relatively stringent cutoffs.  

 The rest of the analysis is best done manually in order to retain all interesting genes 

(Figure 37). We identify windows where there are three or more TA sites that meet the cutoffs 

described above. Then, we determine where in the genome that window is and which direction 

the outward-facing transposon promoter is facing. Based on this information, we can nominate 

candidate genes that could be upregulated by the transposon insertions in this window. These 

promoters have the ability to act on genes not immediately proximal to the transposon insertion 

(133), so for this work, we looked for a gene within 2kb facing the appropriate direction. Then, 

we returned to the raw reads per TA site data to confirm that the candidate gene is upregulated. 

A gene whose upregulation increases the cell’s fitness with antibiotic treatment should have few 

or no reads mapping to it because inactivating the gene is likely to cause a decrease in fitness 

in that condition. Furthermore, in non-coding regions and in non-essential genes ahead of the 

candidate gene, we should see an increase in number of reads and a strong preference for 

transposon orientation (Figure 37).  
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Figure 37. (See page 120) Automated upregulation analysis indentifies signatures of 

upregulation and nominates candidate upregulated genes. 0. The starting point for this 

analysis uses the raw reads per transposon insertion site data (red bars). 1. The analysis begins 

by separating the sequencing data into reads mapping to the plus (purple bars) and minus (blue 

bars) strands for both the control and the antibiotic treatment conditions. 2. Then, it normalizes 

the data using the simulation based sampling. 3. Each read is then mapped to unique 270bp 

“windows” (numbered boxes below chart) with a unique numerical identifier. 4. Next, the mean 

number of reads per TA site and the standard deviation of that value across the genome is 

calculated. We also calculate the mean and standard deviation of the ratio of plus strand to 

minus strand reads for each TA site. 5. We identify the TA sites with an increase in reads 

compared to the average (X standard deviations from the mean, where X is empirically-

determined). Here, TA sites with such an increase are marked with an asterisk. 6. Then, of 

those TA sites with an increase in reads, we identify those with a preference for orientation of 

transposon insertion, by identifying an increase or decrease in the ratio of plus to minus strand 

reads compared to the average (X standard deviations away from the mean, whre X is 

empirically-determined). These TA sites are shown with a large red asterisk in contrast to the 

small black ones. 7. To identify signatures of upregulation, we identify windows where there are 

three or more TA sites that meet the cutoffs described above or adjacent windows with at least 

one TA site meeting the described cutoff. 8. Finally, we map the hit window back to the genome, 

and nominate candidate genes based on the location of the signature of upregulation and the 

orientation of that signature. In this example, the green Gene 2 is immediately proximal to the 

signature of upregulation and has no reads mapping to it, suggesting that it is essential in this 

condition and making it a likely candidate for upregulation.  Continued page 120. 
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Continued. This analysis can, in an unbiased way, distinguish between an increase in fitness 

due to upregulation of a gene (Gene 2) and an increase in reads that is due to inactivation of a 

gene (Gene 2). Continued page 121.  
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Figure 37 Continued.  
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Genes upregulated by transposon insertion 

 We have validated this method by performing it with every concentration of every 

antibiotic in Table 8. This method generally works better when the antibiotic concentration is 

close to or above the MIC. At high antibiotic concentrations, more transposon mutants are 

sensitive, so the background level of reads per transposon insertion site is low and it is easy to 

identify regions where transposon insertion may be upregulating genes.  

We identified upregulated genes for 11 of the 25 antibiotics, with 18 total genes 

upregulated (Table 9), including both essential and non-essential genes (Figure 38). Of these 

18 genes, half were target upregulation or target-modifying genes, three were hypothetical 

genes, and the rest were other annotated genes that, when upregulated, confer resistance 

through both known and unknown mechanisms (Table 9). The types of known resistance 

mechanisms included upregulation of efflux pumps (ex: norA with ciprofloxacin treatment (298)), 

antibiotic modification genes (ex: fosB with fosfomycin treatment (8)), target modification genes 

(ex: uppP with bacitracin treatment (335)), other clinical resistance mechanisms (ex: mprF with 

daptomycin treatment (52, 55, 279, 336)), and target upregulation (ex: alr and ddl with 

cycloserine treatment (337)) (Table 9). Of the novel resistance mechanisms we identified, some 

were known resistance mechanisms to other antibiotics but had never been seen for this 

antibiotic (ex: uppP with moenomycin treatment), some were known genes, but they had never 

been shown to confer resistance when upregulated (ex: recO with moxifloxacin treatment 

(324)), and some were completely hypothetical genes that have never been studied before (ex: 

SAOUHSC_02149 with daptomycin treatment) (Table 9).   
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Figure 38. Both essential and non-essential genes are found to be upregulated by 

transposon insertion. We manually confirm that our method for identifying these genes is 

functioning correctly by plotting the number of reads/TA site mapping to each strand for both the 

control and antibiotic-treated data. Here, we show the results for an essential gene, murJ, and a 

non-essential hypothetical gene, SAOUHSC_02149 using the construct carrying the Ptuf 

promoter. In the untreated control datasets, reads map to both strands of the genome meaning 

that transposons insert with the outward-facing promoter facing both toward and away from the 

gene. No reads map to murJ itself because it is essential (338). However, when you treat with 

an antibiotic, not only is there a 100-1000 fold increase in number of reads that map to the 

promoter region, but there is a complete preference for the orientation of the transposon such 

that the Ptuf promoter faces toward the gene.  
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There are several possible explanations why we were not able to identify upregulated 

genes for every antibiotic.  First of all, five of the antibiotics tested (vancomycin, ramoplanin, 

bacitracin, daptomycin, and polymixin) do not bind to and inhibit enzymes (15, 18, 19, 339-341), 

making identification of target upregulation for these antibiotics impossible. Secondly, this 

method relies on growing the library in liquid culture instead of on plates. Growing in liquid 

culture results in more competition between every mutant in the library. On a plate, a mutant 

may confer an increase in resistance, but if it does not also confer a high level of fitness 

compared to every other mutant in the library, when grown in liquid culture, it may be out-

competed by another mutant with a higher fitness. Some genes (often encoding membrane 

proteins) are known to have a fitness defect when upregulated (342, 343), and occasionally, 

upregulation of a target can actually sensitize the cell to antibiotic treatment (135). Therefore, it 

may be difficult to identify upregulated genes conferring an increase in resistance to an 

antibiotic using this method unless those genes also do not confer any kind of fitness defect.  

Validation of novel mechanisms of resistance 

 We validated a selection of the known and novel mechanisms of resistance. To do this, 

we placed the candidate gene of interest on the pLOW plasmid under the control of a strong 

constitutive promoter in the HG003 strain. We compared the growth of this strain with WT as 

well as a strain that has a transposon insertion inactivating the gene of interest. This strain was 

obtained from the Nebraska transposon library (130) and transduced into the HG003 

background. We chose to validate some of the novel genes identified above: uppP for 

moenomycin and the three hypothetical genes for daptomycin: SAOUHSC_00969, 

SAOUHSC_02149, and SAOUHSC_02164. We used uppP in our validation strategy because 

its known resistance activity with bacitracin will be a control for this validation strategy, and we 

chose to validate the novel genes identified with daptomycin because daptomycin is a relatively 

new antibiotic with a significant amount of success in the clinic. SAOUHSC_00969, 
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SAOUHSC_02149, and SAOUHSC_02164 are all very small with 107, 175, and 60 amino 

acids, respectively. Only SAOUHSC_02149 has any conserved domains, with a predicted 

bacterial Pleckstrin homology (bPH) domain at its N-terminus. These domains in eukaryotes 

bind phosphatidylinositol and are involved in recruiting proteins to membrane regions. All three 

of these proteins are predicted to have membrane spanning regions. The membrane spanning 

regions for SAOUHSC_00969 and SAOUHSC_02149 are near the N-terminus, while the 

membrane spanning region for SAOUHSC_02164 is in the C-terminal half. Other small peptides 

have been shown to be upregulated during cell wall stress (344), suggesting that daptomycin 

may be inducing cell wall stress along with membrane damage. However, these genes were not 

identified as hits with any other cell envelope targeting antibiotic, and upregulation of 

SAOUHSC_02149 did not confer an increase in resistance to any other antibiotic (Figure 39), 

suggesting that this phenotype is specific to daptomycin for at least one of these genes.  
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Figure 39. Upregulation of SAOUHSC_02149 only protects from daptomycin. WT, the 

transposon inactivation mutant of SAOUHSC_02149 (tn::02149), and a constitutively-

upregulated version in the pLOW plasmid (pLOW-02149) were grown without antibiotic and with 

daptomycin, bacitracin, moenomycin, vancomycin, targocil, oxacillin, and ramoplanin in a 96 

well plate to see if upregulating this gene protected from any other type of cell wall stress. All of 

these antibiotics inhibit cell wall synthesis. There was no significant change in growth compared 

to WT for pLOW-02149 in the presence of bacitracin, moenomycin, or oxacillin. Continued 

page 128. 
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Figure 39 continued. At 0.5µg/ml vancomycin, it seemed that pLOW-02149 might have better 

growth than WT, while tn::02149 had poorer growth, but at the next higher concentration tested, 

1µg/ml vancomycin, all strains were dead suggesting that SAOUHSC_02149 does not exert 

much of a protective effect. Furthermore, pLOW-02149 does not protect from targocil and 

ramoplanin treatment, and in fact, this strain may be slightly sensitive to these antibiotics. .  

 

Growth curves were used for validation of these unknown genes. Cells were grown in 

96-well plates for 16-18 hours at 37°C with and without antibiotics. Though there was no 

difference in fitness in the absence of antibiotic treatment, in the presence of antibiotics, the 

transposon mutants grew more slowly or did not grow at all, while the upregulated genes grew 

to stationary phase before the WT cells did (Figure 40). However, some upregulation constructs 

produced a higher increase in resistance than others. Upregulation of uppP increases 

resistance to bacitracin at least 32 fold while the other genes produce at most a more modest 2-

4 fold increase in MIC. All the results tested do validate to some extent, proving that this method 

works well for identifying genes that when upregulated by transposon insertion confer a fitness 

advantage.  
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Figure 40. Genes upregulated by transposon insertion confer increased antibiotic 

resistance. A selection of the validation performed is shown. We validated some of these hits 

by placing the gene of interest onto a plasmid that constitutively upregulates the gene. Then we 

compared the growth of these strains in the presence of antibiotic with both WT and a strain 

with the same gene knocked out. Here, we show a novel mechanism of resistance to 

daptomycin (upregulation of SAOUHSC_02149) and as a control, a known mechanism of 

resistance to bacitracin (upregulation of uppP) (335). As expected, the knockout is more 

sensitive to antibiotic treatment than WT, and the upregulated strain is more resistant than WT.  
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4.4 Applying machine learning algorithms to Tn-Seq data to predict antibiotic mechanism 

 

Strategy for predicting mechanism of action  

Though the method for identifying upregulated genes works well, we did not observe 

target upregulation for every antibiotic. Therefore, if we want to use this platform to determine 

antibiotic mechanism of action, we need to use another strategy. The strategy we have chosen 

to use takes advantage of an observation we made about vancomycin and ramoplanin. 

Vancomycin and ramoplanin have the same target, the peptidoglycan precursor, lipid II, but they 

bind to different parts of the molecule (16, 339). While vancomycin binds to the D-Ala-D-Ala 

moiety, ramoplanin binds to the sugar phosphate head. Because they have the same target 

molecule, the set of transposon mutants that can confer resistance and sensitivity to these 

antibiotics are very similar. If we look at every gene in the genome for each antibiotic and 

whether transposon insertions in that gene confer resistance of sensitivity, we can obtain a 

unique “resistance factor fingerprint” for each antibiotic. We noticed that the fingerprints for 

ramoplanin and vancomycin were almost identical, and we wondered whether this was true for 

the other antibiotics in our panel that had the same target or that targeted the same pathway. A 

cursory examination of the data revealed that this fingerprint is very similar for antibiotics with 

similar mechanisms of action such as trimethoprim and sulfamethoxazole, ciprofloxacin and 

moxifloxacin, as well as DMPI and CDFI.  

For a more quantitative comparison of the data, we used hierarchical clustering (Figure 

41). We chose to compare only one concentration for each antibiotic, always using sequencing 

data from the traditional “Blunt” transposon construct. We chose these concentrations by 

identifying the concentrations that had close to or greater than 1 million reads with a significant 

change in number of TA sites with insertions compared to the control. We looked for conditions 

where the antibiotic-treated condition only had about 40 - 60% of the TA insertion sites as the 
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control. Then, to compare data from different antibiotics tested, we had to put all the data on the 

same scale. We used the same method described earlier in this chapter to calculate a “fitness 

value” for each gene with each antibiotic treatment. Once we had the data on the same scale, 

we used hierarchical clustering to assess the similarities between antibiotics. This allows us to 

visualize the fingerprints and how similar they are for different antibiotics (Figure 41). Antibiotics 

with the same target such as vancomycin and ramoplanin (16, 339) or DMPI and CDFI (345) 

cluster together. In addition, there is a dramatic difference between some of the peptidoglycan 

synthesis inhibitors and all the others, highlighting the fact that the genes required for resistance 

to this class of antibiotics are very different than non-cell envelope targeting antibiotics.  
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Figure 41.  Some antibiotics cluster by mechanism of action using hierarchical 

clustering. Hierarchical clustering is a good way to help visualize the differences between 

antibiotic datasets. Here, we compare the fitness values for a subset of genes in the genome for 

a selection of antibiotic treatments. Bright red genes correspond to genes where transposon 

insertion confers a fitness defect, while bright green genes have a fitness advantage when 

inactivated with a transposon. The most obvious cluster is that consisting of cycloserine, 

oxacillin, moenomycin, fosfomycin, and cefaclor (all peptidoglycan synthesis inhibitors), but 

other compounds with the same target also happen to cluster together including 

ramoplanin/vancomycin, ciprofloxacin/moxifloxacin, and DMPI/CDFI. Continued page 133. 
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Figure 41 Continued. Though this method for classifying antibiotics can not be used to predict 

the mechanism of action of a new antibiotic, it allows us to visualize some of the similarities and 

differences in resistance factors between different antibiotic treatments.  

 

Using the K-nearest neighbors algorithm as an antibiotic classifier 

 We can observe differences in patterns with the heatmap output by hierarchical 

clustering, but we needed a better method for predicting mechanism of action using the 

resistance factor fingerprint of a new antibiotic with an unknown mechanism of action. Earlier in 

this chapter, we took advantage of the utility of machine learning algorithms to identify genes 

that when inactivated had the same pattern of resistance and sensitivity across a small panel of 

antibiotics, which helped us predict the pathways a hypothetical gene may be a part of. We can 

use a similar approach for predicting the mechanism of an unknown antibiotic. Using machine 

learning classifier algorithms, we can take advantage of information we already know about the 

mechanisms of action of our large panel of antibiotics in order to predict the target of a new 

antibiotic. After much experimentation with different classifiers, we again chose the K-nearest 

neighbors algorithm as implemented by the sci-kit learn Python library (318), the same algorithm 

earlier used to learn more about hypothetical genes. We can use our panel of antibiotics as the 

training data for this algorithm, telling the algorithm which class of antibiotics each known 

antibiotic belongs to. Then, when testing a new antibiotic, we can determine which class of 

antibiotics, a new antibiotic is most similar to (Figure 42).  
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Figure 42. Machine learning strategy for mechanism of action prediction. (A) We observed 

that the transposon mutations conferring resistance and sensitivity to antibiotics were very 

similar for antibiotics with the same target or with a target in the same pathway. We wanted to 

use this resistance factor fingerprint to predict the mechanism for a new antibiotic with an 

unknown target by comparing the resistance factor fingerprint of the new antibiotic to a curated 

panel of antibiotics with known mechanisms of action. (B) To do this, we use the K-nearest 

neighbors classifyin algorithm. A hypothetical example of the supervised K-nearest neighbors 

classifier (318) is shown using only three genes. This algorithm works by using a training 

dataset of antibiotics with known classes. Then, it takes an unknown antibiotic and uses the 

distance of that antibiotic to its closest X-number of neighbors to predict which class that 

antibiotic belongs to. In this case, the novel antibiotic is most similar to class A antibiotics 

suggesting that it may bind to Lipid II as vancomycin and ramoplanin do.  
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Additionally, this algorithm gives us the option of performing either supervised or 

unsupervised learning, depending on the goals of the analysis. Unsupervised learning takes the 

data for each antibiotic, and tries its best to compare them without any input from the user. In 

that sense, it is similar to hierarchical clustering, and as expected, the data from performing 

unsupervised learning resembles the results from the hierarchical clustering. When we use this 

algorithm for performing supervised clustering, we can tell it which class of antibiotics each 

antibiotic dataset belongs to. Then, when we predict the mechanism of a new antibiotic, the 

algorithm outputs which class of antibiotics the new one is most similar to, in contrast with 

unsupervised learning, which returns the most similar antibiotics.  

The next question was how to classify the antibiotics used in the training set. The most 

general classifier would be one that distinguished between cell-envelope targeting and non-cell 

envelope targeting antibiotics. However, this is not very useful for predicting the target of an 

antibiotic. On the other hand, going too detailed with our classifier and classifying by target itself 

would also not work well for a dataset of our size because our training set would only consist of 

one or two antibiotics per category. With a larger training set consisting of many antibiotics for 

each target of interest, we would likely be able to more precisely classify these antibiotics, but 

as a proof of principle project, we chose somewhat broader classes which reflect our smaller 

dataset (Table 10). These classes were chosen by examining the results of the hierarchical 

clustering and unsupervised learning analyses. For some classes of antibiotics where we had 

multiple antibiotics with the same target in our panel, we were able to go down to the target level 

as a classifier (ex: vancomycin and ramoplanin can be reliably classified as lipid II binding 

antibiotics). However, for others, it was more difficult to identify a group with similarities, so other 

antibiotics are classified into broader categories (ex: rifamycin and mupirocin were classified 

together as non-cell envelope targeting antibiotics). Unfortunately, a few antibiotics were tested 
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at too low of a concentration, and so those antibiotics were not able to be accurately placed into 

a classifier (Table 10).  
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Training the classifier algorithm 

 Various parameters were modified for optimizing this algorithm including the number of 

nearest neighbors, the distance metric, and the number of S. aureus genes included in the 

analysis. To assess the progress of the optimization, we used the unsupervised learning 

algorithm and four different metrics utilizing some of our known antibiotics as “test unknowns”. 

These four metrics are described in order of increasing stringency. 1) One antibiotic at one 

concentration should be most similar to the same antibiotic at a different concentration. 

For this, we used the 0.16ug/ml Moenomycin concentration which should be most similar to the 

0.32ug/ml Moenomycin sample. We want this method to be somewhat insensitive to the 

concentration at which the library is treated. Of course, if the concentration is too low or too 

high, no amount of normalization or training will be able to classify an antibiotic correctly, but we 

would like this algorithm to be able to tolerate small changes in antibiotic concentration. 2) One 

compound of a specific chemical class should be most similar to another compound of 

the same chemical class if they have the same target. For this metric we used CDFI, 

predicting it would be most similar to DMPI. These are two antibiotics of the same compound 

class whose target is the lipid II flippase, MurJ (345). 3) Two antibiotics of different chemical 

classes, but with the same target should also be most similar to each other. Depending on 

an antibiotic’s structure, charge, and method of entering the cell, it may elicit different stress 

responses, causing different transposon mutants to be differentially sensitive between the two 

antibiotics. However, we would still like to classify antibiotics by their mechanism as opposed to 

their chemical class. For this comparison, we used targocil and WTI-11, two compounds which 

target the wall teichoic transporter, TarGH, but kill the cell by depleting the lipid tether also used 

by peptidoglycan (PG) biosynthesis (324, 346). We found in early testing that the lower 

concentration of WTI-11 has a similar set of resistance factors as targocil, but the higher 

concentration appears more similar to peptidoglycan biosynthesis inhibitors. This makes sense 
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because the highest concentration at which we treated the library with targocil did not exert 

much selective pressure, and few significant hits were obtained. Therefore, it is not surprising 

that only the lower WTI-11 concentration matches targocil. The lower concentration of WTI-11 

was used here, but the higher one was used for the final clustering. These differences highlight 

the importance of testing different antibiotic concentrations.  4) Our most stringent metric for 

training this algorithm was using two antibiotics of different chemical classes with 

different targets, but whose targets are in the same pathway. We hoped that we could 

classify inhibitors into pathways, which would drastically decrease the number of possible 

targets compared to all the genes in the genome, or even all the genes involved in the cell 

envelope. For this, we used trimethoprim and sulfamethoxazole which both target different 

enzymes in the folate pathway (10, 347). We optimized the algorithm such that all four metrics 

were satisfied. In the end, we chose to use the Minkowsky distance metric, 2 nearest neighbors, 

and we found that the best classification resulted from only using a subset of genes. For each 

antibiotic, we identified the top 25% and bottom 25% with the biggest change in fitness values, 

and we used the unique set of these genes for this analysis, a total of 1614 genes. 

Validation of the method 

 In order to validate the method, instead of only using four antibiotics as we did in the 

optimization, we used all 25 antibiotics as “test unknowns”, and classified them with our 

optimized algorithm using all the other 24 antibiotics as the training set. The categories we used 

for this analysis are shown in Table 10. Unclassifiable antibiotics do not cluster well with drugs 

that are similar to them, likely because the concentration tested was too low. 

The results of our validation are shown in Table 11. We defined success in two ways: by 

whether or not the antibiotic was classified to the correct category and by whether or not we 

were able to learn about the antibiotic’s mechanism of action based on its categorization. The 

difference between these two is whether or not it was categorized into the “Unclassified” 
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category.  Overall, this algorithm classifies the antibiotics as we expected it to 80% of the time. 

There is some debate over the mechanism of action of daptomycin, which disrupts the 

membrane but also delocalizes some of the PG synthetic enzymes (18, 19). We observe that 

the transposon mutations conferring resistance and sensitization to daptomycin more closely 

match that of peptidoglycan biosynthesis inhibitors than other membrane disruptors such as 

polymixin. This result suggests that its mechanism of killing may be due to its PG synthesis 

inhibitory activity as opposed to its membrane disrupting characteristics. If we include 

daptomycin in our results as correct, then, we predict mechanism of action accurately 72% of 

the time. This is as good or better than other published computational mechanism prediction 

methods. The method most similar to ours was published in 2015 by Wildenhain and coworkers. 

This method also takes advantage of machine learning to identify similar patterns of chemical-

genetic interactions to identify the target of a drug in yeast (290). Their algorithm, SONARG, 

correctly predicts the target or a target related gene among the top six gene hits for 16 out of 27 

of the compounds tested (290). This corresponds to a 59% success rate.  It is likely that with a 

larger training data set, our classifier would be able to more accurate identify the mechanism, 

and with more training data per antibiotic target, we would be able to more reliably predict the 

target of the antibiotic.  
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Table 11. Mechanism of action predicted by machine learning analysis. Column 1 shows 

the target pathways for the antibiotics in Column 2. Column 3 shows the predicted mechanism 

of action using our machine learning approach. Cells are colored green (correct prediction), 

yellow (correct unclassified prediction), and red (incorrect classification).  
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4.5 Application of this approach to predict the mechanism of action of a new antibiotic 

 

The WAP antibiotics 

 Next we wanted to test this algorithm using a new compound with an unknown 

mechanism of action. We have access to a series of compounds extracted from Myxococcal 

fungi that we are working on in collaboration with Rolf Muller’s lab. I chose to concentrate on 

attempting to predict the mechanism of the WAP compound series (WAP1, WAP2, and WAP3) 

because we may be able to learn more about the target from a series of related compounds 

than if we just tested one antibiotic . In essence, it gives us more chances to guess the correct 

mechanism. Furthermore, as a set of related compounds, they should have the same or similar 

targets. If we see the same mechanism of action as a hit for more than one of the WAP 

compounds, we can be more confident in the results of that prediction. The WAP compounds 

are peptide-based antibiotics whose mechanism is unknown. One related compound WAP-

8294A2 was in phase I/II clinical trials as of 2011 (348, 349). The mechanism of this related 

compound is also not known. However, it is known that cardiolipin and phosphatidylglycerol 

antagonizes its effect (350). Wonsik Lee, a post doc in our lab, has shown that our WAP 

compound series is bactericidal, causing rapid lysis of gram positive bacteria, including S. 

aureus.  

We treated the transposon library with these compounds at two different concentrations 

and performed Tn-Seq on the extracted DNA. Then we put the resulting data through both the 

data pipelines described above. The upregulation analysis did not reveal any hits for any of the 

WAP antibiotics at any combinations. This could be because the concentrations at which the 

transposon library was treated were too low, and there was not enough selective to distinguish a 

hit from the background noise. On the other hand, we may not identify upregulated genes 
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because the most robust mechanisms of resistance are due to inactivation of other genes in the 

genome.  

Next, we put the data through the mechanism prediction algorithm. Both concentrations 

of WAP1 were predicted to be a PG synthesis inhibitor. The lower concentrations of WAP2 and 

WAP3 were unable to be classified, likely because the concentration used to treat the library 

was too low. However, the higher concentrations of WAP2 and WAP3 are predicted to bind to 

Lipid II to inhibit PG synthesis (Table 12). The fact that all of the WAP compounds are predicted 

to inhibit PG synthesis in one way or another suggests that this could be the mechanism by 

which this compound series acts. We have validated this prediction using the macromolecular 

radiolabeling assay (Figure 43). The next steps will be to narrow down the target from the list of 

many that are part of peptidoglycan biosynthesis. It will also be important to remember that 

other related pathways can be inhibited, but that the cell still dies due to the inhibition of PG 

synthesis (ex: daptomycin, bacitracin, and targocil/WTI-11). In either case, these preliminary 

results suggest that our analysis is working and that we can predict the mechanism of action of 

antibiotics using Tn-Seq. More experiments are needed to validate this hypothesis.  
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Figure 43. Macromolecular labeling predicts that the WAP compounds kill the cell by 

inhibiting cell wall synthesis. Macromolecular labeling assays were performed as described 

(285). Radiolabeled cells were treated with two concentrations of one of the WAP compounds. 

Though the amount of radiolabel incorporation increased for the radiolabels reporting on DNA 

synthesis, RNA synthesis, and protein synthesis, the radiolabel reporting on cell wall synthesis 

decreased at the higher concentration, suggesting that these compounds can inhibit cell wall 

synthesis. To assist with the comparison, the yellow lines mark the starting level of the 

radiolabel.  
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4.6 Discussion 

 

Intrinsic resistance factors of S. aureus 

 In this work, we identified 80 genes that when inactivated can increase or decrease S. 

aureus sensitivity to six different antibiotics. We chose to validate a selection of the hits that 

were found in more than one antibiotic treatment: ndh, fmtA, and mprF. Though they all 

sensitize to different antibiotics, the mechanism of sensitization could be different. mprF 

modifies characteristics of the cell envelope by modifying the charge which can affect how well 

the antibiotics enter the cell (51). On the other hand, genes like ndh are part of global systems 

that regulate cellular metabolism such as oxidative phosphorylation (299). When these are 

inactivated, the cell is forced to switch to alternative modes of growth (218) which could 

sensitize the cell to some antibiotics, or simply slow down growth enough, that the mutant is out-

competed by other mutants in the library. Finally, these resistance factors may represent actual 

synthetic lethal interactions with the target of the antibiotic (189). At sub-MIC antibiotic 

concentrations, the target of the antibiotic will be partially inhibited. During this partial inhibition, 

other genes will become essential. These conditionally-essential genes could be redundant 

genes, genes in parallel pathways, or even genes that interact with the antibiotic’s target. 

Though this analysis does not identify why the resistance factors promote resistance to each 

antibiotic, we are able to reliably confirm our sequencing results with these experiments.  

Global systems as resistance factors 

This method also confirms that global systems are very common resistance factors. 

When components of these systems are inactivated, resistance to antibiotics can increase or 

decrease. We confirmed that the agr system and the sigB locus as important resistance factors 

for oxacillin (and daptomycin for agr). The agr system is S. aureus’s quorum sensing system, 

but it also regulates genes involved in virulence and antibiotic resistance (306-308). It is 
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possible that misregulation of some autolysins could lead to the sensitization affect we see with 

oxacillin and daptomycin. The sigB locus consists of sigB (the sigma factor), rsbW (the anti-

sigma factor), and rsbV (the anti-anti-sigma factor) (351, 352). All three genes are sensitive to 

oxacillin treatment. This locus is involved in regulation of growth phase, the heat shock 

response, and expression of virulence factors (353) (354). SigB has been implicated in 

resistance to cell-wall targeting antibiotics, and when over-expressed it causes a thickening of 

the cell wall (296, 355). Likely, it regulates the expression of genes that can modify the cell 

envelope to defend the cell from oxacillin-induced cell wall stress. Therefore, when sigB is 

inactivated, the cell cannot effectively respond to cell wall stress.  

 We only identified one global system that can increase resistance when inactivated. Ten 

genes in the oxidative phosphorylation pathway conferred resistance to gentamicin when 

knocked out by a transposon insertion. When these genes are interrupted, the cell switches to 

anaerobic growth, which not only slows down the growth rate of the cell, but also decreases the 

membrane potential. Without the membrane potential, gentamicin cannot enter the cell, and 

therefore cannot inhibit its target, the ribosome (294). It seemed remarkable that a set of 

mutants that slow growth had such a fitness advantage in the presence of an antibiotic that they 

outcompeted the majority of the other mutants in the library (Table 13). These mutants often 

cause highly persistent antibiotic-resistant infections with the characteristic small colony variant 

(SCV) phenotype (218). Our results agree with others that suggest that SCV strains can be 

induced by gentamicin treatment (356).  
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Role of multi-component sensory systems  

MCSs in S. aureus mediate responses to many types of conditions including quorum 

sensing, osmolarity, nutrient availability, and antibiotic treatment(305). Our data suggest that the 

graRS/vraFG MCS is very important for antibiotic resistance. This MCS is known to be 

important for a variety of cell functions (303, 304), but especially for regulating the charge of the 

cell envelope through the expression of dltA and mprF. Only three of the six antibiotics tested 

(vancomycin, gentamicin, and ciprofloxacin) contain at least one positive charge, but we did not 

observe a correlation between the number of charges on the antibiotic and the fitness of these 

strains. Furthermore, in the case of daptomycin, mprF inactivation sensitizes the cell, but 

inactivation of graR and dltA does not. If the only role of this MCS was only in modifying the 

charge of the cell envelope in response to positivitely charged antibiotics, we would not expect 

mprF inactivation to cause such a dramatic sensitization. Our results implicate graRS/vraFG in 

having important roles outside of simply modifying the charge of the cell envelope, and it seems 
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likely that the sensitization observed when this MCS is interrupted is due to a variety of factors 

including dltA and mprF.   

Machine learning can predict pathways 

We used the K-nearest neighbors machine learning algorithm to identify genes that had 

similar patterns of resistance as the two hypothetical genes we were interested in, 

SAOUHSC_01025 and SAOUHSC_01050. We hypothesized that this method could help us 

learn more about the function of hypothetical genes because we previously showed in Chapter 

3 that we were able to predict physical interactions by identifying genes with similar resistance 

and sensitivity patterns across different antibiotics. Using this algorithm, we found components 

of the graRS/vraFG MCS as well as a member of its regulon, mprF, suggesting that these 

genes are important for resistance to cell envelope stresses. There are a few ways that these 

genes could function that could produce the same resistance pattern as graRS/vraFG. If they 

physically interacted with the graRS/vraFG complex, they would have the same pattern as those 

genes. Also, if it were part of the graRS/vraFG regulon, it could have a similar pattern, as we 

see with mprF. The regulon of this system has been well-studied (304), and these genes have 

not been identified as part of it, so this explanation seems unlikely. Finally, these genes could 

be part of a parallel and complementary system which, in a semi-redundant manner, protects 

from cell envelope stress. Though this method cannot predict exactly which pathways these 

genes are part of, it does help us nominate targets and formulate hypotheses that can be tested 

with other experiments such as the ones that were done here. Furthermore, more data from 

different antibiotics with a wider variety of targets should allow us to more accurately predict the 

function of hypothetical genes.  

Tn-Seq and identification of upregulated genes 

 The analysis for identification of genes upregulated due to transposon insertion did not 

identify upregulated genes every time. This could be due to the fact that not all the antibiotics 
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were tested at a high enough concentration where there was not enough selective pressure 

which makes it difficult to pick out the signal for upregulation from the background level of 

transposon reads. However, it could also be due to the fact that there is an inactivation mutant 

that is more fit under antibiotic treatment than the upregulation mutant, so that the upregulation 

mutant gets outcompeted. It is possible that treating and sequencing the libraries at different 

antibiotic concentrations may yield better results. Moreover, the cutoffs used here were 

relatively stringent. It is possible that by decreasing the cutoffs, we may be better able to identify 

upregulated genes. However, this would also lead to more false positives as we get closer to 

the background level of transposon reads, and it will be more time intensive to identify true hits. 

Furthermore, as it stands, every gene we have tested has validated, so we can be confident in 

our other results. If we were to decrease the cutoffs, it would be vital to validate any candidate 

genes before proceeding with other experiments to predict the target. Though this method 

works, the method of plating the transposon library on agar plates does seem to more reliably 

reveal the target of the antibiotic. It should be possible to plate this transposon library on agar 

plates containing an antibiotic as was done previously (133, 134). Then the cells could be 

collected and the location of transposon insertions sequencing using NGS following the 

protocols described here. This will allow one to have access to the convenience of Tn-Seq (as 

opposed to sequencing single colonies) without the downsides apparent when growing the cells 

in liquid culture. We did not choose to perform the experiments this way because we have very 

little of our unknown compounds. Therefore, if amount of compound is not a limiting factor, this 

library can still be used in this way to identify upregulated genes and possibly predict the target. 

Upregulation of small peptides increases daptomycin resistance 

 With daptomycin treatment, we identified three small proteins (SAOUHSC_00969, 

SAOUHSC_02149, and SAOUHSC_02164) that when upregulated increase resistance to 

daptomycin. The products these genes code for are very small: 107, 175, and 60 amino acids 
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long respectively. Of these, only SAOUHSC_02149 has any predicted domains. According to 

the NCBI gene website, the N-terminal region has homology to a bacterial Pleckstrin-homology 

(bPH) domain. Little is known of the function of prokaryotic versions of this gene (357), but 

eukaryotic proteins with this domain are known for binding phosphatidylinositol and for targeting 

other proteins to membranes (358, 359). S. aureus membranes do not contain 

phosphatidylinositol, but they do contain phosphatidylglycerol (360). In fact, 

phosphatidylglycerol is required for daptomycin action (278), and depletion of 

phosphatidylglycerol results in daptomycin resistance in B. subtilis (361). Based on this, the 

simplest explanation for the reason upregulation of this gene causes resistance is that it is 

sequestering phosphatidylglycerol away from daptomycin, and without available 

phosphatidylglycerol, the antibiotic can not enter and disrupt the membrane. Without a predicted 

domain, it is difficult to hypothesize a mechanism of action for the other two genes. However, in 

previous experiments, upregulation of other small peptides such as these has been observed in 

response to cell envelope stress (344). Perhaps they function to stabilize the membrane or 

recruit other factors to specific parts of the cell to combat the stress induced by daptomycin 

treatment.   

Comparison with other computational methods 

We correctly predict the mechanism of action for known antibiotics with a success rate of 

72%. This rate is as good or better than other recently-published methods for computationally 

predicting mechanism of action that have been recently published. In 2015, Wildenhain et al. 

published research where they used a program called SONARG to predict the mechanism of 

action of 27 compounds in yeast (290). They report that their algorithm correctly predicted the 

known targets or an associated target pathway for only 16 of the 27 compounds they tested 

which translates to a success rate of 59%. Another method published by Johnston et al. in 2016 

uses a computational retrobiosynthetic analysis in combination with whole genome sequencing 
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to predict the mechanism of natural products (289). Not only is this analysis more time-intensive 

than ours, but they do not publish the rate at which they correctly predict mechanism of action. 

Predicting the mechanism for a new antibiotic 

 Here, we have described two complementary techniques for learning about the 

mechanism of action for a new antibiotic. Neither technique alone is perfect, but used in unison, 

they are able to correct for each other. In a best case scenario, these techniques will allow one 

to predict the target of an antibiotic, but even if it doesn’t, it will still lead to new information on 

potential resistance mechanisms that may occur during further testing or in the clinic which 

makes the analytical techniques described here very valuable.  

 As a proof of concept, these approaches work well, but there are many things that could 

be done to improve the results. For the antibiotics where we were unable to identify upregulated 

genes, we could try treating the transposon library at a slightly different antibiotic concentration. 

At a slightly higher concentration, there may be enough selective pressure to decrease the 

number of genes that we map reads to, which would allow us to more easily identify regions 

containing the signature of upregulation. In addition, treating at a slightly lower concentration 

could also help, as perhaps at a concentration close to that of the MIC, upregulated genes may 

have a higher fitness than some of the inactivation mutants that take over the library at higher 

concentrations. Unfortunately, as of yet, there is no way to predict what antibiotic concentration 

will result in the data that best produces upregulated genes. The machine learning approach is 

similar to other “big data” approaches in that these techniques improve quite a bit as more data 

is added to the training set. Currently, we have only sequenced one or two antibiotics per target. 

With more antibiotics per target, we could have a robust training data set that would allow us to 

more accurately predict the activity of a new antibiotic. Unfortunately, for some targets and even 

some mechanisms of action, there are not very many antibiotics available.  
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We are attempting to use this platform to identify the target of a series of related 

compounds, WAP1-3. Our approach predicts that these compounds inhibit a step in 

peptidoglycan biosynthesis, and preliminary biochemical experiments support this hypothesis. 

The next steps include testing whether these drugs bind some precursor in PG biosynthesis or 

whether they act more like daptomycin, inhibiting PG biosynthesis by binding to and disrupting 

the membrane (19). Wonsik Lee, a post doc in our lab, is currently performing these 

experiments.  

Conclusions 

 We have shown that our functional genomics approach to better understanding intrinsic 

antibiotic resistance can identify known and novel resistance factors. We have validated a 

number of both the known genes as well as the two hypothetical genes, SAOUHSC_01025 and 

SAOUHSC_01050. We also propose and utilize a method for predicting the function of 

hypothetical genes using machine learning to identify known genes with a similar resistance 

pattern. We have validated this method for these two genes and show that they are sensitive to 

cell envelope-targeting antibiotics. Any of these validated intrinsic resistance factors are 

potential targets for the development of potentiating compounds. These hypothetical drugs 

could be given in combination with currently FDA-approved antibiotics to sensitize S. aureus 

strains. Moreover, this approach can be applied to any antibiotic, and could be useful for not 

only better understanding the intrinsic resistance factors for that antibiotic, but also for predicting 

mechanisms of resistance due to gene inactivation. Applying this method to any compound is a 

robust way to predict intrinsic resistance factors for that compound as well as to learn more 

about bacterial physiology.  

 Furthermore, we have also developed two complementary approaches for learning more 

about antibiotic mechanism of action using Tn-Seq. The advantages of this approach are that 

with one simple experiment which uses very little compound, it allows anyone to develop 
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hypotheses about a comopund’s mechanism of action that can then be tested with biochemical 

experiments. This has the potential to speed up and decrease the cost of identifying the target 

of a new antibiotic. Moreover, we not only learn about the possible targets of the compound, but 

we learn about possible modes of resistance that could be observed in the clinic due to both 

inactivation and upregulation of genes. This could allow researchers to begin to address 

concerns regarding resistance mechanisms early on in the process of developing the antibiotic.  
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Chapter 5. Summary and Conclusions 

 

Development of new genomics tools for S. aureus 

 Transposon libraries are extremely useful and valuable technologies for better 

understanding bacterial physiology (89). The methods that existed for making transposon 

libraries in S. aureus were not very reliable, and included a high-temperature plasmid curing 

step which killed any temperature-sensitive mutant (125). The phage-based high-frequency of 

transposition platform described here solves these problems (133). We have adapted this 

system so that we can make a transposon library in any strain of S. aureus transducible by Φ11 

phage. Furthermore, we modified the standard DNA preparation procedure such that we can 

now analyze the results of experiments using NGS (132).  

The ability to assess and compare the fitness of mutations in every gene in the genome 

at once gives us a reliable and unbiased method for identifying the most important genes for 

survival in any condition. To do this, we figured out how to de-multiplex each transposon 

construct to analyze each one separately. Our analyses allow us to not only identify genes with 

a statistically-significant change in number of reads which map to them, but we can also identify 

genes that when upregulated by transposon insertion, confer an increase in fitness. This is 

especially-interesting because upregulation of genes is a common mechanism of antibiotic 

resistance. We have validated this platform by identifying the essential genes and comparing 

them to two other published lists of essential genes (90, 146). Furthermore, we identify 

temperature-sensitive genes that had previously been annotated as essential (132). Finally, we 

have also created transposon libraries in other S. aureus strains, such as the two community-

acquired MRSA strains, MW2 and USA300. This platform has the potential to be very useful for 

many experiments in the future including but not limited to identification of virulence factors, 
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factors essential for co-infection with another bacterium, and for comparative genomics studies 

between different strains of S. aureus.  

Discovery of new biology 

 Though the focus of this work was not to answer any particular biological question, in the 

process of validating the platform and optimizing the analyses, we identified many interesting 

genes that could begin to explain S. aureus’s success as a pathogen. During our temperature 

experiments, we identified transposon insertions into the menaquinone biosynthetic pathway 

that were better able to survive high-temperature stress than other mutants in the library. 

Furthermore, while studying the profiles of genes involved in β-lactam resistance in MRSA 

strains, we identified a set of genes that appear to be involved in sortase-anchored surface 

protein secretion. This allowed us to predict a function for a lytD that at that point had been 

completely unstudied (now, its enzymatic activity has been confirmed (197)). We treated 

transposon libraries with 25 different antibiotics, and for six of them, we have identified the most 

important intrinsic resistant factors. We were able to identify resistance factors across different 

classes of antibiotics which could potentially be targets for the development of potentiators to 

currently-used antibiotics, allowing them to be used even if the bacterium is resistant to the 

antibiotic alone. Moreover, some of these resistance factors were unstudied genes. We are 

beginning to characterize some of these genes, SAOUHSC_01025 and SAOUHSC_01050, and 

a better understanding of their function will lead to a deeper understanding of the actual 

processes and genes involved in the stress responses to treatment with different antibiotics. 

Now that this platform for treating and sequencing transposon libraries is up and running in our 

lab, and we show that it can uncover new biology, we hope that many questions about antibiotic 

resistance and S. aureus physiology will be answered. This could lead to novel strategies and 

methods for treating antibiotic-resistant infections caused by this dangerous pathogen.  

 



 

155 

 

New prediction methods 

 The success of this system thus far has allowed us to obtain an incredibly large and rich 

dataset full of potential projects. One major advantage of “big data” is the ability to make 

predictions based on patterns in a dataset. We devised an approach based on observations we 

made in Chapter 3, where two genes, lyrA and lytD, which had very similar resistance and 

sensitization patterns to three β-lactams, were found to physically interact. In Chapter 4, we 

have expanded and automated this approach by utilizing machine learning to make predictions. 

The first method we describe uses six different antibiotics to predict the function of hypothetical 

genes. With this smaller dataset, we are not able to accurately predict the function of a new 

gene or its interacting partners, but we can broadly identify which pathways it may be involved 

in. With a larger dataset, we may be able to more precisely identify a new gene’s function. We 

use a similar approach for predicting antibiotic mechanism of action. We use the resistance and 

sensitivity fingerprints of the 25 different antibiotics to train the machine learning dataset. This 

allows us to take a new antibiotic of unknown mechanism and predict which class of antibiotics 

it is most similar to. Currently, this method classifies antibiotics accurately with an 80% success 

rate. We expect that with a larger training set consisting of more antibiotics per target, this rate 

will only improve. Mechanism of action prediction is known to be difficult, and this tool will allow 

us to begin to nominate targets for an antibiotic that can be validated with follow-up biochemical 

experiments. Furthermore, antibiotics with novel mechanisms and targets are in high demand. It 

is possible that this method could identify these novel mechanisms if a new antibiotic is not 

similar to any antibiotic in our reference dataset.  

The future 

 These approaches are useful for answering not only specific biological questions, but 

also taking a more systems-level approach to understand bacterial physiology and antibiotic 

resistance. If we are going to be able to combat dangerous infections, we will need to make use 
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of novel strategies and new approaches. . Big datasets such as the ones obtained here are 

incredibly rich, and it would be difficult for one lab can fully make use of them. If this data could 

be shared with other researchers and other institutions, others viewing it with different eyes may 

be able to make connections that we never will. I have designed a website where this data can 

be easily accessed and viewed, and a software developer has assisted me with putting it online. 

Currently, this is only available for members of the Walker lab, but I have high hopes for a more 

open-access day in the future when we can make these data public, because only by sharing 

data and working together will we be able to solve the problem of antibiotic resistance.  
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Appendices  

A. Methods 

 

Strains and plasmids (Chapter 2-5) 

Table of strains and plasmids used can be found in Appendix B. Original strains and 

plasmids for the phage-based transposition system were obtained from Merck Research 

Laboratories. Plasmids were first introduced into the restriction negative S. aureus strain 

RN4220 and then moved into restriction competent HG003 strains by electroporation. Gene 

deletion strains were made using the E. coli-S. aureus shuttle vector pKFC. Stellar competent 

cells, pUC19, and the In-Fusion cloning kit were purchased from Clontech. Cultures of S. 

aureus were routinely grown in tryptic soy broth (TSB) at the indicated temperature, with 

erythromycin (5 or 10 μg/mL), chloramphenicol (10 μg/mL), or kanamycin/neomycin (25 μg/mL 

each) when required. Phage lysates were prepared in TSB top agar and titered as has been 

previously described. Overexpression strains were made by cloning the gene of interest into the 

pLOW plasmid. Mutants from the Nebraska transposon library were validated using PCR of the 

gene of interest and were transduced into the parent strain before experimentation.   

 

Creation of the transposon library (Chapter 2 and 3) 

To create the transposon library, phage lysates were made using the six donor strains 

harboring plasmids encoding transposon cassettes (pTM239-pTM244), where one in three 

progeny phage carries the transposon plasmid. Recipient strains (TM231 and the negative 

control TM232) were grown to late exponential phase, and resuspended in supplemented 

glucose minimal media (SGMM) (10 mM glucose, 2 mM MgCl2, 3.5 mM CaCl2, 0.1% CAS 

amino acids, 0.5% NaCl, 10 mM MES, pH 6.8). For each transposon construct, phage lysate 

was mixed with 25 ml recipient strain in SGMM (multiplicity of infection = 5). Solutions were 
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incubated at room temperature overnight. The next day, cells were pelleted and washed three 

times with an equal volume of TSB before being allowed to recover with shaking for two hours 

at 30°C. Approximately 108-109 cfu were spread per 150 × 15 mm petri dish containing TSB 

agar with 5 μg/ml erythromycin to select for transposon insertion mutants. The number of 

spontaneously ermR colonies was less than 1% in the control strain TM232 that does not 

express functional transposase. Plates were incubated at 30°C for two days, before being 

scraped (1-2 million total colonies) and pooled into a single 100 mL suspension. Cells were 

pelleted and washed three times with an equal volume of TSB, before being resuspended in 

TSB-glycerol (12.5% v/v), aliquoted, and stored at 80°C. Additional details for the preparation 

and sequencing of the transposon library can be found in Appendix C. 

 

Assessment of next-generation sequencing library composition (Chapter 2) 

A linearized pUC19 vector was made by inverse PCR using primers (Tm179-Tm180) 

containing 5’-overhangs homologous to the termini of the P5 and P7 Illumina sequences. The 

2.6 kb PCR product was agarose gel purified, ligated to an aliquot of the NGS insert library 

using the Clontech In-Fusion system as directed by the manufacturer, transformed into 

chemically competent E. coli cells, and selected on LB carbenicillin (100 μg/mL) plates. 

Plasmids were isolated from 2 mL cultures of separate colonies and the DNA inserts 

sequenced. At least 10 colonies were sequenced to confirm insert sequence diversity and lack 

of plasmid-transposon junction DNA. 

 

Next-generation sequencing Galaxy analysis (Chapter 2-5) 

The DNA concentration was determined using the Quant-IT™ PicoGreen kit from 

Invitrogen, and the sample was diluted to 10 nM in Buffer EB. Six samples with different 
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indexing barcodes were multiplexed together, and samples were sequenced on a Hi-Seq2000 

or Hi-Seq2500 for 100 cycles with 40% ΦX174 spiked in to the sequencing reaction. 

Sequencing data were uploaded to the Tufts Galaxy Service hosted by TUCF Genomics 

(http://tucf-genomics.tufts.edu/). The first four base pairs of the 8 bp indexing barcode were 

deleted since these data were occasionally of low quality. Multiplexed sample data was 

separated by the remaining 4 bp of the indexing barcode, and then again by the 3 bp 

transposon cassette barcode. Read ends were trimmed to leave the 16 bp of genomic 

sequence immediately flanking the TA dinucleotide insertion site and filtered to keep high-

quality reads (>90% of bases with quality score >20). Remaining reads were mapped to the S. 

aureus NCTC8325 genome using Bowtie. Hopcounts (the number of reads that map to a given 

site in the genome) were determined and these files were downloaded for subsequent statistical 

analysis. For details on custom analyses, see Appendix H 

 

Growth curves (Chapter 2 - 4) 

Growth curves were performed by diluting overnight cultures to an OD600 of 0.01 in 25 

mL Tryptic Soy Broth. Strains were grown with shaking in a 43°C or 30°C water bath. The OD of 

the cultures was measured every 10 (43°C) or every 20 (30°C) minutes in an Ultrospec 10 cell 

density meter until stationary phase.  

 

96-well growth curves (Chapter 3 and 5) 

Overnight cultures, were diluted to an OD600 = 0.001. 150µl of diluted culture was mixed 

with 1.5µl of antibiotic at 100X final concentration and mixed in a well of the 96 well plate. 

Growth curves were performed in 96 well plates at 37°C with shaking, measuring the OD600 

every 15 or 20min.. A Molecular devices plate reader was used for these experiments. 
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Treatment of MRSA transposon libraries with β-lactams and sequencing (Chapter 3) 

 Transposon libraries were treated in 50mL cultures of TSB at 37°C. We inoculated with 

1,000,000 cfus of the transposon library and added the appropriate antibiotic. Then cultures 

were grown, shaking, until the cultures grew to OD between 1 and 2. Cells were spun down, 

and the DNA was isolated and prepared for Tn-Seq as described in Appendix C.  

 

Library 1 antibiotic treatment (Chapter 4) 

Library 1 was constructed by transformation of a temperature sensitive plasmid. A 100 μl 

aliquot of this initial S. aureus HG003 transposon library freezer stock, containing 108cfu, was 

used to inoculate 100 ml of MH cation adjusted broth and incubated for 15 h at 37°C with 

shaking at 200 rpm. A 10 μl aliquot (106cfu) of this input culture was then inoculated into a final 

volume of 200 μl in a 96-well plate broth microdilution format and incubated at 37°C for 8 h 

[approximately 5.5 generations (5 x 107cfu/200 μl)]. The 1/2x, 1/4x and 1/8x MIC wells for the 

library pool were determined based on the MIC of a small mutant pool (consisting of ten 

innocuous transposon mutants). This small pool was used to determine MICs in order to 

compensate for potential resistant mutants in the library pool. The chosen wells (1/2x, 1/4x and 

1/8x) were then subcultured (3 x 105cfu) into a second iteration of serial dilutions of antibiotics 

as described above and incubated for 15 h at 37°C [approximately 9 generations (2 x 

108cfu/200 μl)]. The 1/2x, 1/4x and 1/8x MIC wells were determined based on the small pool 

and these wells were transferred to 10 ml of BHI broth, incubated for 4 h at 37°C with shaking at 

200 rpm. Biological replicates were conducted for each growth condition. Genomic DNA was 

harvested using DNeasy Blood and Tissue kit (Qiagen, Valencia, CA) following the 

manufacturer’s instructions. Library1 was prepared using the shearing method. Illumina 

sequencing was completed by Harvard Biopolymers Facility or Tufts Genomic DNA sequencing 

core facility. 
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Library 2 antibiotic treatment (Chapter 4 and 5) 

Library 2 was constructed using phage-based transposition and six different transposon 

constructs as previously described. TSB supplemented with 25mg/L Ca2+ and 12.5mg/L Mg2+ 

was used for all antibiotics except for oxacillin, which was tested using cation-adjusted Mueller-

Hinton Broth. For all antibiotics, an untreated control was prepared in the same media as was 

used for the tested antibiotic. A stock of the complete library was thawed and diluted to 0.2 

OD600 and grown to an OD 600 of ~0.4 to allow for a minimal stimulation of growth prior to 

treatment. The culture was then diluted to 4 x 105cfu/mL and added to 1mL of media with 2x the 

desired concentration of the antibiotic, to give a final starting inoculum of 2x105cfu/mL in 2mL 

culture volumes. Samples were grown at 37°C and harvested when they reached stationary 

phase. The concentrations of antibiotic tested were 2x, 1x, 0.5x and 0.25 x the MIC of the 

antibiotic. Samples were prepared for NGS as described in Appendix C.  

 

Plate dilution spotting (Chapter 3) 

Agar plates were prepared with TSB and the desired concentration of the 

compound/antibiotic of interest. Overnight cultures of mutants as well as WT strains were 

diluted 1:100 in fresh TSB and grown to an OD of 0.5. They were then diluted serially by 10-fold, 

spotted on to agar plate and incubated at 37°C overnight. Photos of plates were taken 18-36 

hours after plating.  

 

Plate dilution spotting (Chapter 4) 

Identified hits ndh, fmtA, SAOUHSC_01025 and SAOUHSC_01050 were validated using 

transposon mutants from the Nebraska library in background USA300_FPR3757.Deletion 

mutants in dltA,graR, and mprF were tested in MSSA strain Newman. Agar plates were 

prepared with TSB supplemented with Ca2+ (25mg/L) and Mg2+ (12.5mg/L) and a sub-MIC 
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concentration of the 6 antibiotics. Overnight cultures of mutants were diluted 1:100 in fresh TSB 

and grown to an OD of 1. They were then diluted serially by 10fold, spotted on to agar plate and 

incubated at 37°C overnight. The concentration of the antibiotic at which WT was severely 

inhibited showing growth in only the highest 1 or 2 dilutions on agar plates under these 

conditions was determined. This was considered to be the MIC under this condition. The spot 

dilution assays were then set up using three different antibiotic concentrations. The 

concentration closest to the MIC at which WT was at most 3 logs more depleted than non-

antibiotic control was used to calculate fitness. This concentration was used so that reduced 

fitness of any mutants could be observed. The exception to this was when the MIC 

concentration for gentamicin was used to evaluate the resistance of inactivation mutants in the 

oxidative phosphorylation pathway. Controls plates with no antibiotic were set up for all strains 

assayed and under these conditions, mutants and WT showed equal levels of growth (not 

shown). Fitness was assessed by determining the highest dilution for which growth was 

observed for a mutant and the WT strain. The highest dilution showing full growth for the mutant 

was then divided by the highest dilution showing full growth for the WT to calculate its fitness 

compared to WT.  These were plotted on a log scale. Those spots that showed hazy growth 

indicative of cell lysis, those that showed mixed populations of colonies of different sizes 

suggesting the possibility of suppressors and reduced fitness relative to spots with homogenous 

colonies, and those that had fewer than 10 individual colonies were not regarded as full growth.  

 

Co-immunoprecipitation  experiments using LyrA (Chapter 3) 

 Pull downs were performed by expressing LyrA linked to c-myc in a ΔlyrA. Cells were 

grown and then DSP crosslinking reagent was added. Cells were disrupted and membrane 

proteins solubilized. Then, the solubilized membrane proteins were run over a column with the 

tag receptor. Tagged LyrA as well as anything it is interacting with binds to the column. All other 
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proteins are washed away, and then LyrA and anything it is interaction with is eluted. These 

proteins are boiled, run on SDS-PAGE gels. Bands are cut out and digested with Trypsin. The 

identity of these peptides is determined using LC-MS.  

 

Transmission electron microscopy (Chapter 3) 

 Overnight cultures of the strains of interest were diluted to an OD=0.05 in 2mL TSB and 

grown to early exponential phase (OD~0.3). Cells were spun down 8000g 5min and 

resuspended in 100µl water and 100µl glutaraldehyde-formaledyle in sodium cacodylate buffer 

pH7.4 fixative provided by the Harvard Electron Microscopy core facility who also embedded the 

samples in resins. Samples were viewed using the JEOL 1200EX – 80kV electron microscope.  

 

Transmission electron microscopy with gold nanoparticles(Chapter 3) 

 Overnight cultures of cells were dilution to an OD=0.5 in 4mL of TSB, and grown to early 

exponential phase (OD~0.3). Cells were aliquoted into 2 x 2mL and  spun down 8000g 5min 

and washed twice with 1mL PBS pH 7.4. Cells were resuspended in 1mL PBS + 0.2mg/ml 

trypsin and incubated at 37C for 1 hour to remove proteins attached to the cell surface. Cells 

were spun down again and washed twice with 1mL PBS pH 7.4. One set of tubes was kept 

aside as a control, while the other was resuspended in 2mL TSB + 1mM PMSF (a protease 

inhibitor), transferred to a 15mL culture tube, and grown at 37°C, shaking for 10min to allow 

surface protein synthesis and export again. After this, the cells are spun down and washed 

twice with PBS pH 7.4 again. Then, they were resuspended in 1mL PBS + 1:2000 goat anti-

protein A and incubated at 37°C for 20 minutes. After another cycle of spinning down and 

washing with PBS pH 7.4, cells were resuspend in 50µl + 1:20 rabbit anti-goat antibody 

conjugated to 10nm gold nanobeads, incubated at room temperature for 20 minutes, and spun 

down. After washing twice with PBS pH 7.4, they were resuspended in 50µl PBS. 50µl of the 
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same fixative described above was added, the Harvard Electron Microscopy Core embedded 

the samples in resins, and the samples were viewed using the JEOL 1200EX – 80kV electron 

microscope. Antibodies were purchased from Abcam, product numbers ab181627 (Anti-protein 

A) and ab27245 (Rabbit anti-goat Gold).  

 

Identification of antibiotic resistance factors (Chapter 4) 

We identified datasets from Library 2 where reads mapped to 25-40%of the TA sites hit in the 

untreated control (with the exception of vancomycin treatment which hit 67% of the TA sites hit 

in the untreated control). These were processed for further analysis. This percent decrease was 

chosen such that we could identify genes with an increase and decrease in number of reads 

mapping to them. Library 2 contains transposon constructs with outward-facing promoters that 

can upregulate proximal genes in addition to the traditional construct which can only insert into 

and inactivate genes. For these experiments, we only considered data from the inactivation 

constructs. Data from biological replicates was combined, and before comparing the number of 

reads/gene using the Mann-Whitney U test, the experimental data was normalized to the control 

using simulation-based resampling. Then, data for each antibiotic treatment from each of the 

Library 1 experiments was combined with the data from the Library 2 experiments using the 

geometric mean of the ratios and Fisher’s method for combining corrected p-values. Top hits 

were identified by first filtering for genes with a p-value less than 0.05, then by increasing the 

ratio cut-off by integers until less than or equal to 20 genes were left.  See Appendix H for 

scripts.  

 

Triton X-100 induced lysis assay (Chapter 4) 

 Overnight cultures of WT and mutants were diluted 1:100 in fresh TSB and grown to an 

OD of 0.6. The cultures were harvested, washed with cold, sterile water and re-suspended in 
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0.05M Tris-HCl, pH 7.2, with or without 0.05% Triton X-100. Samples were incubated at 37°C 

and OD600 was measured every 20min for 3 hours. OD was normalized to the initial 

measurement for each sample. Error bars were obtained from two separate biological 

replicates.  

 

Machine learning algorithm optimization for predicting gene function (Chapter 4) 

We used the machine learning algorithm, k-nearest nearest neighbors to, in an 

unsupervised manner, identify other genes with similar resistance and sensitization patterns 

using the scikit-learn Python library (318). However, because of the different selective pressures 

exerted by each antibiotic, we cannot use the ratio of reads in the experiment versus the control 

that map to each gene as the metric for classification. In addition, we wanted to distinguish 

between the two following conditions: 1) A ratio change of 0.1 due to 100 reads in the control 

and 10 reads in the experiment and 2) A ratio change of 0.1 due to 1000 reads in the control 

and 100 reads in the experiment. If both genes are the same length, option 1 will be much less 

relevant than option 2 because 100 reads/gene and 10 reads/gene both correspond to a gene 

with a significant fitness defect while a change from 1000 reads/gene to 100 reads/gene is more 

likely to be a significant change. Therefore, we converted the ratios into a more appropriate 

value. This value, representing fitness under the antibiotic treatment is calculated by multiplying 

the converted ratio above by the number of reads mapping to that gene in the treatment 

condition, and normalizing to the length of the gene. Then, genes were ordered from smallest to 

largest “fitness”. To place all the samples on the same scale, the gene with the smallest “fitness” 

was given a value of 0, and the gene with the highest “fitness” was given a value of 1. All other 

genes were placed in order between these values, in increments that increase by 1/(total 

number of genes). This final value, which we call the “normalized fitness value”, is the value we 

use for the machine learning analysis. Finally, essential genes were removed from the dataset, 
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and the K-nearest neighbors algorithm was further optimized by adjusting the Minkowski 

distance metric to output the genes with the most similar resistance/sensitization pattern to the 

test gene. We identified the five genes (the five nearest neighbors) having the most similar 

pattern of “normalized fitness values”.  

 

Identification of upregulated genes (Chapter 5) 

 To identify genes upregulated by transposon insertion, the untreated and antibiotic-

treated data is separated by type of transposon construct. Then, we separate the data by reads 

mapping to the plus strand and the minus strand of the genome. This lets us distinguish 

between the two different directions the outward-facing promoter may be facing. We then map 

this data to 270bp sections of the genome or windows. Each treated dataset from each strand is 

normalized to the control using simulation based resampling. Then, we identify the mean and 

standard deviation of reads that map to each TA site for each strand in the control. Then we 

look for TA sites in the experiment that are 4-6 standard deviations from the mean of the control. 

These are potential hits. If there are at least two potential hits in a window or a few windows in a 

row with hits, we investigate whether there are any genes nearby (within a few kb) that could be 

upregulated by these transposon insertions. Potential upregulated genes are then investigated 

to make sure that no reads map to them (if upregulation increases fitness, we would expect that 

inactivation would decrease the fitness) by mapping the reads/TA site as bar charts in Excel. 

This chart also allows us to check whether the majority of TA sites in the promoter region of the 

gene of interest contain transposons with promoters facing the same direction as the gene of 

interest. For scripts, see Appendix H.  
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Hierarchical Clustering (Chapter 5) 

 Hierarchical clustering was performed using the statistical programming language, R, 

and visualized using the gplots library. The spearman method was used to measure correlation 

and complete-linkage clustering to measure distance. We used the unique set of genes which 

had the largest 99th percentile of the data and smallest changes 1st percentile compared to the 

control to decrease the amount of noise in the data, and we used the “fitness value” described 

above for each gene to perform the comparison.  

 

K-Nearest Neighbors Algorithm for predicting mechanism of action (Chapter 5) 

 The sci-kit learn Python library was used for this analysis which came along with the 

anaconda distribution of the Python language. I wrote Python scripts that convert the raw read 

count data into fitness values for each antibiotic. This data is then fed into the K-nearest 

neighbors algorithm in an unsupervised way (where I identify each antibiotic as a unique class) 

or in a supervised way (where I classify the antibiotics by their mechanism of action) as a 

training set. We use the minkowski distance metric, a step size = 0.2, and each antibiotic was 

weighted uniformly. Two neighbors were used to predict the mechanism of an unknown 

antibiotic. With a larger training data set, this value could be increased which could result in 

more accurate predictions. 
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B. Strains and Plasmids 

 

Strain Genotype/Phenotype Source (if other than here) 

RN4220 
S. aureus subsp. aureus NCTC8325 MSSA; 
r− m+; partial agr defect 

Kreiswirth et al. Nature. 1983 

HG003 
S. aureus subsp. aureus NCTC8325 MSSA ; 
Φ11 Φ12 Φ113, r+ m+; agr+ 

Herbert et al. Infect Immun. 
2010 

TM51 RN4220 attB::Orf5 (pTM378) 
Wang et al. Nat Chem Biol. 
2011 

TM53 RN4220 attB::Orf5 (pTM381) 
Wang et al. Nat Chem Biol. 
2011 

TM174 RN4220 (pOrf5 Tnp+) KmR 
 

TM175 RN4220 (pOrf5 Tnp-) KmR 
 

TM176 HG003 (pOrf5 Tnp+) KmR 
 

TM177 HG003 (pOrf5 Tnp-) KmR 
 

TM222 HG003 attLint::FRT attR::FRT 
 

TM226 HG003 Φ11::FRT 
 

TM231 TM226 (pOrf5 Tnp+) 
 

TM232 TM226 (pOrf5 Tnp-) 
 

∆lyrA HG003 lyrA::KmR 
 

∆mprF HG003 mprF::KmR 
 

MW2 
S. aureus subsp. aureus Community acquired 
MRSA: ATCC BAA-1707 ermS, kanS 

Baba et al. Lancet. 2002 

USA300 
S. aureus subsp. aureus Community acquired 
MRSA strain USA300_TCH1516: ATCC BAA-
1717 ermR, kanR, catS 

Highlander et al. BMC 
Microbiol. 2007 

TM258 
MW2 ∆hsdR - restriction system knocked out, 
parent strain for making transposon libraries  

TM262 TM258 with pWV01-Tnpase+-ORF5 
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TM263 TM258 with pWV01-Tnpase damaged-ORF5 
 

TM283 
USA300 ∆pUSA300HOUMR ermS, kanS, 
catS, parent strain for making transposon 
libraries 

 

TM284 TM283 with pWV01-Tnpase+-ORF5 
 

TM285 TM283 with pWV01-Tnpase damaged-ORF5 
 

MW2 ∆pbp3 MW2 unmarked pbp3 deletion strain 
Memmi et al. Antimicrob 
Agents Chemother. 2008 

MW2 ∆pbp4 MW2 unmarked pbp4 deletion strain 
Memmi et al. Antimicrob 
Agents Chemother. 2008 

tn::pbp3 
Nebraska Transposon library mutant NE420 
transduced into TM283 

transduced from strain from 
Fey et al. MBio. 2013  

tn::pbp4 
Nebraska Transposon library mutant NE679 
transduced into TM283 

transduced from strain from 
Fey et al. MBio. 2013  

SHM161 
HG003 ∆lyrA pTM63-lyrA-cmyc (integrated 
into genome), camR  

tn::lytD 
Nebraska Transposon library mutant NE1909 
transduced into TM283 

transduced from strain from 
Fey et al. MBio. 2013  

USA300-pLOW-
lytD 

pLOW-lytD electroporated into TM283 
 

USA300 ∆lyrA ∆lyrA (kanR marked) transduced into TM283 
 

∆lyrA-pLOW-lytD pLOW-lytD electroporated into USA300 ∆lyrA 
 

JE2 
WT USA300_FPR3757, parent background 
fro Nebraska transposon mutant library, 
ATCC BAA-1556 

Fey et al. MBio. 2013  

tn::ndh 
Nebraska Transposon library mutant NE1884 
transduced into JE2 

transduced from strain from 
Fey et al. MBio. 2013  

tn::qoxB 
Nebraska Transposon library mutant NE732 
transduced into JE2 

transduced from strain from 
Fey et al. MBio. 2013  

tn::qoxA 
Nebraska Transposon library mutant NE92 
transduced into JE2 

transduced from strain from 
Fey et al. MBio. 2013  

tn::fmtA 
Nebraska Transposon library mutant NE1022 
transduced into JE2 

transduced from strain from 
Fey et al. MBio. 2013  

Newman MSSA strain Newman, ATCC 25904 
Hawiger et al. J Lab Clin 
Med. 1970 

Newman ∆graR unmarked graR deletion in Newman 
Santa Maria et al. PNAS. 
2014 

Newman ∆mprF unmarked mprF deletion in Newman  
transduced from strain from 
Ting Pang, Bernhardt Lab 

Newman ∆dltA unmarked dltA deletion in Newman 
Santa Maria et al. PNAS. 
2014 

tn::1025 
Nebraska Transposon library mutant NE1044 
transduced into JE2 

transduced from strain from 
Fey et al. MBio. 2013  
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tn::1050 
Nebraska Transposon library mutant NE1420 
transduced into JE2 

transduced from strain from 
Fey et al. MBio. 2013  

tn::02149 
Nebraska Transposon library mutant NE1894 
transduced into HG003 

transduced from strain from 
Fey et al. MBio. 2013  

tn::00969 
Nebraska Transposon library mutant NE50 
transduced into HG003 

transduced from strain from 
Fey et al. MBio. 2013  

tn::uppP 
Nebraska Transposon library mutant NE480 
transduced into HG003 

transduced from strain from 
Fey et al. MBio. 2013  

HG003 pLOW-
02149 

HG003 expressing SAOUHSC_02149 from 
pLOW plasmid  

HG003 pLOW-
00969 

HG003 expressing SAOUHSC_00969 from 
pLOW plasmid  

HG003 pLOW-
02164 

HG003 expressing SAOUHSC_02164 from 
pLOW plasmid  

HG003 pLOW-
uppP 

HG003 expressing SAOUHSC_00691 (uppP) 
from pLOW plasmid  

 

Plasmids Genotype/Phenotype Source (if other than here) 

pKFC 
temperature-sensitive shuttle vector; Ampr in 
E. coli, Cmr in S aureus 

Kate and Sugai. J Microbiol 
Methods. 2011 

pUC19 
pMB1 ori lacZ’ ApR Clontech pTM402 pT181 
repC- cop Clontech 

pTM402 

pT181 repC- cop 623 ori sso; 1-kb DNA Φ 11 
fragment; mini-Tnp cassette with ermB of 
Tn551 and outward facing Ppen promoter; 
Em R 

Wang et al. Nat Chem Biol. 
2011 

pTM378 
pWV01ts ori aphA-3 Gram+ RBS HMAR1 C9 
transposase ; KmR 

Wang et al. Nat Chem Biol. 
2011 

pTM381 
pWV01ts ori aphA-3 Gram+ RBS ΔHMAR1 
C9 truncated transposase ; KmR 

Wang et al. Nat Chem Biol. 
2011 

pCP20 
Vector containing the S. cervesiae FLP 
recombinase 

Cerepanov and Wackernagel. 
Gene. 1995 

pMS182 
E. coli/S. aureus shuttle vector Cmr pLI50 
with Ppen GFP-mut2 

Swoboda et al. ACS Chem 
Biol. 2009 

pORF5 Tnp+ 
pTM378 with the cI-like repressor ORF5 from 
Φ11 

 

pORF5 Tnp- 
pTM381 with the cI-like repressor ORF5 from 
Φ11 

 

pTM239 (Blunt) 

pTM402 modified with NotI-P7 annealing site-
ITR2::MmeI-NotI with DNA barcode (gGTAa) - 
EmR 

 

pTM240 (Ppen) 

pTM402 modified with NotI-P7 annealing site-
ITR2::MmeI-NotI with DNA barcode (gAATa) 
and outward facing Ppen promoter- EmR 
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pTM241 (Pcap) 

pTM402 modified with NotI-P7 annealing site-
ITR2::MmeI-NotI with DNA barcode (gTGGa) 
for outward facing Pcap promoter- EmR 

 

pTM242 (Ptuf) 

pTM402 modified with NotI-P7 annealing site-
ITR2::MmeI-NotI with DNA barcode (gGATa) 
for outward facing Ptuf promoter- EmR 

 

pTM243 (Perm) 

pTM402 modified with NotI-P7 annealing site-
ITR2::MmeI-NotI with DNA barcode (gGCAa) 
for outward facing Perm promoter- EmR 

 

pTM244 (Pdual) 

pTM402 modified with NotI-P7 annealing site-
ITR2::MmeI-NotI with DNA barcode (gATTa) 
for outward facing PDual promoter- EmR 

 

pTM204attLint 

pKFC vector with 1-kb DNA homology regions 
flanking attLint on each side of FRT 
recombination sequence 

 

pTM204attR 

pKFC vector with 1-kb DNA homology regions 
flanking attR on each side of FRT 
recombination sequence 

 

pTM195 
pLI50- Ppen-FLP recombinase of 
Saccharomyces cervesiae 

 

(pKFC-lyrA) 

pKFC vector with 1-kb DNA homology regions 
flanking lyrA on each side of the kanamycin 
resistance cassette 

Santa Maria et al. PNAS. 
2014 

(pKFC-mprF) 

pKFC vector with 1-kb DNA homology regions 
flanking mprF on each side of the kanamycin 
resistance cassette 

 pKFC-hsdR 
(MW016) 

pKFC vector for in fame knockout of hsdR 
using Clontech assembly 

 

pTM283 
pKFC vector with in frame deletion of ermR 
allele 

 

pTP63 
vector for single copy integration of 
gene/construct into genome Ting Pang, Bernhardt lab 

pTP44 
same as pRAB14, encodes integrase for 
integration of pTP63 into S. aureus genome Ting Pang, Bernhardt lab 

pLOW-lytD 
USA300HOU_1765 cloned into pLOW 
plasmid (constitutive upregulation), ermR 

 

pLOW-02149 
SAOUHSC_02149 cloned into pLOW plasmid 
(constitutive upregulation), ermR 

 

pLOW-02164 
SAOUHSC_02164 cloned into pLOW plasmid 
(constitutive upregulation), ermR 

 

pLOW-00969 
SAOUHSC_00969 cloned into pLOW plasmid 
(constitutive upregulation), ermR 
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pLOW-uppP 
uppP (SAOUHSC_00691) cloned into pLOW 
plasmid (constitutive upregulation), ermR 
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C. Detailed protocol for the preparation of transposon library DNA for NGS 

 

Unless otherwise described, reactions are mixed and incubated in 1.5 mL Eppendorf 

LoBind tubes. DNA was stored at -20°C overnight, and at -80°C long term. At least 10 μg of 

high molecular weight genomic DNA was purified. 10 μg of genomic DNA was digested with 50-

100 U NotI in a 600 μl reaction in NEB Buffer #3 supplemented with BSA. The reaction was 

vortexed gently, mixed by inversion, spun down, and incubated at 37°C for seven hours (mixing 

and spinning down once halfway through). NotI was inactivated at 70°C for 20 minutes, and 

cooled to room temperature (5 minutes).  

Next, the transposon-plasmid junctions were removed through a size-selective 

precipitation. The 4x Precipitation buffer contains 32% PEG8000, 2.2M NaCl (autoclaved), 

40mM Na2PO4 or K2PO4 pH 7.5 (autoclaved), and brought to volume with autoclaved ddH2O. 

200μl of 4x precipitation buffer was added to the 600μl digest reaction and vortexed and 

inverted (not pipetted) to mix. This reaction was incubated in an ice water bath in a 4°C cold 

room for 12-16 hours. After incubation, the reaction was spun down in a tabletop centrifuge at 

maximum speed for 20 minutes at 4°C. Then, the supernatant was removed, and the 

precipitated DNA was washed once with cold 1x Precipitation buffer, spinning down the DNA at 

maximum speed for 10 minutes at 4°C. To further purify the DNA, pellets were washed twice 

with room temperature 70% ethanol, spinning down the DNA at maximum speed for 5 minutes 

at room temperature between washes. The final DNA pellet was dried and resuspended in 50- 

100μl standard elution buffer (10mM Tris, pH 8.5) by pipetting.  

A PCR check was performed on one sample (undigested and NotI digested) to confirm 

that the DNA was sufficiently digested using primers that anneal to the transposon on either 

side of a NotI site. As a control, other primers were also used that anneal to a genomic fragment 

inside the tarK gene. Seven reactions were set up for each primer set for both undigested and 
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digested DNA. The 25μl PCR reaction consisted of 2.5μl 10x KOD Hot Start Buffer, 5 μl 5x CES 

mix, 1.5μl 25mM MgSO4, 2.5 μl 2mM dNTPs, 0.25 μl of each primer (experimental or control), 

0.25 μl KOD Hot Start Polymerase, 25 ng of DNA (digested or undigested), and autoclaved 

ddH2O to bring the reaction to 25 μl. Reactions were incubated in a thermocycler at 95°C for 2 

minutes; with 30 cycles of 95°C for 20 seconds, 55°C for 20 seconds, and 70°C for 30 seconds; 

and 12°C for storage. CES buffer consists of 2.7M betaine, 6.7mM DTT, 6.7% DMSO, and 

55μg/ml BSA. Beginning at the end of 9 cycles, a tube from each category of reaction 

(undigested with experimental primers, digested with experimental primers, undigested with 

control primers, digested with control primers) was removed from the thermocycler every three 

cycles and quenched with DNA gel loading buffer supplemented with 0.1% SDS. Samples were 

stored at -20°C until all cycles were completed. The final tubes were removed at the end of the 

27th cycle. These reactions were run on a 1% agarose gel in TAE buffer. In a sample deemed 

sufficiently digested, a six cycle product detection threshold difference between the undigested 

and digested samples when using the experimental primers (785 bp) in comparison to the 

control primers (1298 bp) was required.  

Once we confirmed that the DNA had been sufficiently digested, the biotinylated 

adaptors were ligated. 50 μM of annealed adaptors were prepared by mixing 15 μl of 100 μM 

TM214 and 15 μl of 100 μM TM215 with 1.5 μl 1M NaCl. This reaction was incubated in a 

thermocycler at 95°C for 5 minutes followed by cooling to 4°C at a rate of 0.1°C/second. Each 

150μl ligation reaction consisted of 15 μl of 10x T4 ligase buffer, 8 μg digested DNA in 100 μl of 

ddH2O, 3 μl of T4 ligase enzyme, 4.5 μl of annealed adaptors diluted 1:10 to 5 μM in ice cold 1x 

T4 ligase buffer, and 27.5 μl autoclaved ddH2O. Reactions were incubated at 16°C overnight. 

Another size-selective precipitation was performed to remove un-ligated adaptors from genomic 

DNA. 50 μl of the same 4x PEG solution described above was added to the ligation reaction, 

and the tube mixed by vortexing, spun down, and incubated at 4°C or in the cold room for 12-16 
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hours. After incubation, the DNA is washed and dried in the same manner as described above 

after the NotI digest.  

Next, transposon-genome junctions were captured by digesting the DNA with MmeI 

which digests 20 bp 3’ from its asymmetric recognition site near the end of the transposon ITR. 

The M12 oligonucleotides were first annealed together as described above to create 50 μM 

double-stranded DNA. MmeI digests take place in 200μl reactions and require at least 5 μg of 

DNA from the previous step diluted to 50 μl in autoclaved ddH2O. MmeI reactions consist of 20 

μl 10x NEB CutSmart Buffer, 0.8 μl 32 mM SAM, 2 μl 50 μM annealed M12 oligos, 50 μl DNA, 2 

μl MmeI enzyme, and 125.2 μl autoclaved ddH2O. The reactions were incubated at 37°C for 

two hours.  

MmeI-digested DNA was ligated to streptavidin dynabeads via the biotinylated adaptor. 

This required three buffers. The 2x BandW Buffer consists of 2 M NaCl, 10 mM Tris, and 1 mM 

EDTA pH 7.5 with concentrated HCl [9]. LoTE Buffer consists of 3 mM Tris, 0.2 mM EDTA pH 

7.5 with concentrated HCl [9]. LoTE+Tween Buffer is the same as LoTE buffer, but 

supplemented with 0.05% Tween 20. 200 μl of 2x BandW buffer was added to each sample. 32 

μl/sample of Dynabeads® M-280 Streptavidin beads was added to a LoBind tube and placed in 

the magnetic particle collector (MPC). Then, the supernatant was removed, and the beads were 

washed three times with 1 mL of 1x BandW buffer. Finally, the sample was resuspended in 32 

μl/sample of 1x BandW buffer, and 32 μl of beads were added to each diluted MmeI digest 

sample. These were incubated at room temperature for one hour, resuspending by tapping and 

inversion every 10-15 minutes. At this point, all biotinylated DNA should be bound to the beads, 

so the beads were collected using the MPC, washed once with LoTE+Tween and twice with 

LoTE (no Tween). Finally, the beads were resuspended in 100μl of LoTE, and transferred to a 

PCR tube. Beads can be stored in LoTE buffer at 4°C overnight.  
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With one end of the DNA attached to beads, the other Illumina adaptors with index 

barcodes were ligated to the other end. We used six adaptors (LIB_AdaptT_1_long, 

LIB_AdaptB_1_long, LIB_AdaptT_2_long, LIB_AdaptB_2_long, LIB_AdaptT_3_long, 

LIB_AdaptB_3_long, LIB_AdaptT_4_long, LIB_AdaptB_4_long, LIB_AdaptT_5_long, 

LIB_AdaptB_5_long, LIB_AdaptT_6_long, LIB_AdaptB_6_long) annealed to each other (T to B) 

as described above. We would like to note that neither the barcodes in these adaptors nor the 

transposon construct-specific barcodes use an error-correcting barcode sequence. Without 

error correcting barcodes, it is possible that sequences could be mis-assigned to the wrong 

sample or wrong transposon construct due to errors in sequencing. However, because we only 

used sequences with a high quality score in our analysis, we assume that the fraction of mis-

assigned sequences is negligible. These double-stranded adaptors were diluted tenfold to 5 μM 

in ice cold T4 ligase buffer. The ligation mix consisted of 16.4 μl ddH2O and 2 μl 10x T4 ligase 

buffer per sample. Beads were collected in the MPC and resuspended in 18.4 μl ligation mix. 

0.6 μl of the double-stranded adaptor is added to each tube, a different adaptor to each tube. 

Then 1 μl of T4 ligase is added to each tube. The reaction is mixed by pipetting, and the 

reactions were incubated for 6-7 hours at 16°C in a thermocycler, mixing by tapping and 

pipetting every 15 minutes. After incubation, the beads were washed once with 150 μl 

LoTE+Tween and twice with 150 μl LoTE. Again, beads can be stored in LoTE buffer at 4°C 

overnight.  

The final PCR reaction amplifies the transposon-genome junction off of the beads and 

adds the adaptor sequences required for Illumina sequencing. Beads were collected in the MPC 

and resuspended in 50 μl of the final PCR reaction mix. This 50 μl PCR reaction consists of 5 μl 

10x KOD buffer, 3 μl 25 mM MgSO4, 5 μl 2 mM dNTPs, 35.5 μl autoclaved ddH2O, 0.5 μl 

100μM TM199, 0.5 μl 100 μM LIB-PCR_3, and 0.5 μl KOD Hot Start Polymerase per sample. 

The reaction was incubated in the thermocycler using the following program: 95°C for 2 
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minutes; 15- 18 cycles of 95°C for 20 seconds, 60°C for 20 seconds, 72°C for 20 seconds. The 

beads were collected, and the supernatant was transferred to new tubes where DNA loading 

buffer was added, and the samples were run on a 2% agarose gel in TAE at 130V for 20 

minutes. Bands of the expected size (161 bp) were extracted using the Qiagen gel extraction kit 

with a few minor modifications. The gel fragments were dissolved in Buffer QG at room 

temperature to prevent dissociation of the short strands of DNA. After the final Buffer PE wash, 

excess buffer was removed from the column by pipette. The DNA was eluted in 30 μl Buffer EB, 

and DNA concentration was determined using the Quant-ITTM PicoGreen kit from Invitrogen. 

The final TnSeq sample was diluted to 10 nM in Buffer EB, and six samples with different 

barcodes were typically multiplexed together in a single lane. Samples were sequenced on a Hi-

Seq2000 or HiSeq2500 for 100 cycles with 40% ΦX174 spiked in to the sequencing reaction. 
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D. Essential genes with different promoter constructs 

 

Blunt Erm Promoters 

Gene Locus Gene Locus Gene Locus 

SAOUHSC_00001-dnaA SAOUHSC_00001-dnaA SAOUHSC_00001-dnaA 

SAOUHSC_00005 SAOUHSC_00004-recF SAOUHSC_00004-recF 

SAOUHSC_00006 SAOUHSC_00005 SAOUHSC_00005 

SAOUHSC_00009 SAOUHSC_00006 SAOUHSC_00006 

SAOUHSC_00015 SAOUHSC_00009 SAOUHSC_00009 

SAOUHSC_00017-rplI SAOUHSC_00015 SAOUHSC_00015 

SAOUHSC_00018 SAOUHSC_00018 SAOUHSC_00018 

SAOUHSC_00021 SAOUHSC_00021 SAOUHSC_00021 

SAOUHSC_00226 SAOUHSC_00226 SAOUHSC_00226 

SAOUHSC_00349 SAOUHSC_00349 SAOUHSC_00349 

SAOUHSC_00350-rpsR SAOUHSC_00350-rpsR SAOUHSC_00350-rpsR 

SAOUHSC_00374 SAOUHSC_00375-guaA SAOUHSC_00374 

SAOUHSC_00375-guaA SAOUHSC_00413 SAOUHSC_00375-guaA 

SAOUHSC_00413 SAOUHSC_00442 SAOUHSC_00413 

SAOUHSC_00442 SAOUHSC_00444 SAOUHSC_00420 

SAOUHSC_00444 SAOUHSC_00451-tmk SAOUHSC_00442 

SAOUHSC_00445-recR SAOUHSC_00454 SAOUHSC_00451-tmk 

SAOUHSC_00451-tmk SAOUHSC_00461 SAOUHSC_00461 

SAOUHSC_00454 SAOUHSC_00471-glmU SAOUHSC_00471-glmU 

SAOUHSC_00461 SAOUHSC_00472 SAOUHSC_00482 

SAOUHSC_00471-glmU SAOUHSC_00482 SAOUHSC_00484 

SAOUHSC_00472 SAOUHSC_00484 SAOUHSC_00485 

SAOUHSC_00481 SAOUHSC_00485 SAOUHSC_00490 

SAOUHSC_00482 SAOUHSC_00490 SAOUHSC_00491 

SAOUHSC_00484 SAOUHSC_00491 SAOUHSC_00493-lysS 

SAOUHSC_00485 SAOUHSC_00493-lysS SAOUHSC_00511-cysS 

SAOUHSC_00486-ftsH SAOUHSC_00511-cysS SAOUHSC_00518-rplK 

SAOUHSC_00490 SAOUHSC_00518-rplK SAOUHSC_00519-rplA 

SAOUHSC_00491 SAOUHSC_00519-rplA SAOUHSC_00520-rplJ 

SAOUHSC_00493-lysS SAOUHSC_00520-rplJ SAOUHSC_00521-rplL 

SAOUHSC_00510 SAOUHSC_00521-rplL SAOUHSC_00524-rpoB 

SAOUHSC_00511-cysS SAOUHSC_00524-rpoB SAOUHSC_00525 

SAOUHSC_00518-rplK SAOUHSC_00525 SAOUHSC_00527-rpsL 

SAOUHSC_00519-rplA SAOUHSC_00526 SAOUHSC_00528 

SAOUHSC_00520-rplJ SAOUHSC_00527-rpsL SAOUHSC_00529-fusA 

SAOUHSC_00521-rplL SAOUHSC_00528 SAOUHSC_00530-tuf 

SAOUHSC_00524-rpoB SAOUHSC_00529-fusA SAOUHSC_00574-eutD 
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SAOUHSC_00525 SAOUHSC_00530-tuf SAOUHSC_00575 

SAOUHSC_00527-rpsL SAOUHSC_00575 SAOUHSC_00578 

SAOUHSC_00528 SAOUHSC_00578 SAOUHSC_00579 

SAOUHSC_00529-fusA SAOUHSC_00579 SAOUHSC_00611-argS 

SAOUHSC_00530-tuf SAOUHSC_00611-argS SAOUHSC_00641-tarB 

SAOUHSC_00574-eutD SAOUHSC_00641-tarB SAOUHSC_00643-tarH 

SAOUHSC_00575 SAOUHSC_00643-tarH SAOUHSC_00645-tarD 

SAOUHSC_00578 SAOUHSC_00645-tarD SAOUHSC_00742 

SAOUHSC_00579 SAOUHSC_00742 SAOUHSC_00743-nrdF 

SAOUHSC_00610 SAOUHSC_00743-nrdF SAOUHSC_00752-murB 

SAOUHSC_00611-argS SAOUHSC_00752-murB SAOUHSC_00771 

SAOUHSC_00641-tarB SAOUHSC_00771 SAOUHSC_00778 

SAOUHSC_00643-tarH SAOUHSC_00778 SAOUHSC_00785 

SAOUHSC_00645-tarD SAOUHSC_00785 SAOUHSC_00788 

SAOUHSC_00742 SAOUHSC_00788 SAOUHSC_00795 

SAOUHSC_00743-nrdF SAOUHSC_00789 SAOUHSC_00796-pgk 

SAOUHSC_00752-murB SAOUHSC_00795 SAOUHSC_00797-tpiA 

SAOUHSC_00769-secA SAOUHSC_00796-pgk SAOUHSC_00798 

SAOUHSC_00771 SAOUHSC_00797-tpiA SAOUHSC_00799-eno 

SAOUHSC_00778 SAOUHSC_00798 SAOUHSC_00804-smpB 

SAOUHSC_00785 SAOUHSC_00799-eno SAOUHSC_00832 

SAOUHSC_00788 SAOUHSC_00804-smpB SAOUHSC_00848 

SAOUHSC_00795 SAOUHSC_00832 SAOUHSC_00849 

SAOUHSC_00796-pgk SAOUHSC_00848 SAOUHSC_00850 

SAOUHSC_00797-tpiA SAOUHSC_00849 SAOUHSC_00851 

SAOUHSC_00798 SAOUHSC_00850 SAOUHSC_00868 

SAOUHSC_00799-eno SAOUHSC_00851 SAOUHSC_00869-dltA 

SAOUHSC_00804-smpB SAOUHSC_00868 SAOUHSC_00870-dltB 

SAOUHSC_00832 SAOUHSC_00869-dltA SAOUHSC_00871-dltC 

SAOUHSC_00848 SAOUHSC_00870-dltB SAOUHSC_00872-dltD 

SAOUHSC_00849 SAOUHSC_00871-dltC SAOUHSC_00884 

SAOUHSC_00850 SAOUHSC_00872-dltD SAOUHSC_00885 

SAOUHSC_00851 SAOUHSC_00884 SAOUHSC_00886 

SAOUHSC_00868 SAOUHSC_00885 SAOUHSC_00887 

SAOUHSC_00869-dltA SAOUHSC_00886 SAOUHSC_00888 

SAOUHSC_00870-dltB SAOUHSC_00887 SAOUHSC_00889 

SAOUHSC_00871-dltC SAOUHSC_00888 SAOUHSC_00900-pgi 

SAOUHSC_00872-dltD SAOUHSC_00889 SAOUHSC_00903 

SAOUHSC_00884 SAOUHSC_00900-pgi SAOUHSC_00904 

SAOUHSC_00885 SAOUHSC_00903 SAOUHSC_00905 

SAOUHSC_00886 SAOUHSC_00904 SAOUHSC_00921 

SAOUHSC_00887 SAOUHSC_00905 SAOUHSC_00933 
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SAOUHSC_00888 SAOUHSC_00921 SAOUHSC_00943-ppnK 

SAOUHSC_00889 SAOUHSC_00933 SAOUHSC_00953-ypfP 

SAOUHSC_00900-pgi SAOUHSC_00943-ppnK SAOUHSC_00980-menA 

SAOUHSC_00903 SAOUHSC_00947 SAOUHSC_00982-menF 

SAOUHSC_00904 SAOUHSC_00953-ypfP SAOUHSC_00983-menD 

SAOUHSC_00905 SAOUHSC_00980-menA SAOUHSC_00985 

SAOUHSC_00921 SAOUHSC_00981 SAOUHSC_01035 

SAOUHSC_00933 SAOUHSC_00982-menF SAOUHSC_01036 

SAOUHSC_00943-ppnK SAOUHSC_00983-menD SAOUHSC_01040 

SAOUHSC_00947 SAOUHSC_00984 SAOUHSC_01041 

SAOUHSC_00953-ypfP SAOUHSC_00985 SAOUHSC_01042 

SAOUHSC_00980-menA SAOUHSC_01000 SAOUHSC_01043 

SAOUHSC_00981 SAOUHSC_01035 SAOUHSC_01063-ftsW 

SAOUHSC_00982-menF SAOUHSC_01036 SAOUHSC_01075-coaD 

SAOUHSC_00983-menD SAOUHSC_01040 SAOUHSC_01093-pheT 

SAOUHSC_00985 SAOUHSC_01041 SAOUHSC_01144-ftsL 

SAOUHSC_01000 SAOUHSC_01042 SAOUHSC_01145 

SAOUHSC_01002 SAOUHSC_01043 SAOUHSC_01146-mraY 

SAOUHSC_01035 SAOUHSC_01063-ftsW SAOUHSC_01147-murD 

SAOUHSC_01036 SAOUHSC_01075-coaD SAOUHSC_01148-div1B 

SAOUHSC_01040 SAOUHSC_01078 SAOUHSC_01149 

SAOUHSC_01041 SAOUHSC_01093-pheT SAOUHSC_01150-ftsZ 

SAOUHSC_01042 SAOUHSC_01144-ftsL SAOUHSC_01159-ileS 

SAOUHSC_01043 SAOUHSC_01145 SAOUHSC_01163 

SAOUHSC_01063-ftsW SAOUHSC_01146-mraY SAOUHSC_01166-pyrB 

SAOUHSC_01075-coaD SAOUHSC_01147-murD SAOUHSC_01168-pyrC 

SAOUHSC_01077 SAOUHSC_01148-div1B SAOUHSC_01169 

SAOUHSC_01078 SAOUHSC_01149 SAOUHSC_01170-carB 

SAOUHSC_01092-pheS SAOUHSC_01150-ftsZ SAOUHSC_01172-pyrE 

SAOUHSC_01093-pheT SAOUHSC_01159-ileS SAOUHSC_01179 

SAOUHSC_01142 SAOUHSC_01163 SAOUHSC_01183 

SAOUHSC_01143-mraW SAOUHSC_01166-pyrB SAOUHSC_01189 

SAOUHSC_01144-ftsL SAOUHSC_01168-pyrC SAOUHSC_01190 

SAOUHSC_01145 SAOUHSC_01169 SAOUHSC_01194 

SAOUHSC_01146-mraY SAOUHSC_01170-carB SAOUHSC_01197 

SAOUHSC_01147-murD SAOUHSC_01171 SAOUHSC_01198 

SAOUHSC_01148-div1B SAOUHSC_01172-pyrE SAOUHSC_01199 

SAOUHSC_01149 SAOUHSC_01178 SAOUHSC_01201-acpP 

SAOUHSC_01150-ftsZ SAOUHSC_01179 SAOUHSC_01205 

SAOUHSC_01158 SAOUHSC_01183 SAOUHSC_01207 

SAOUHSC_01159-ileS SAOUHSC_01188 SAOUHSC_01210-trmD 

SAOUHSC_01163 SAOUHSC_01189 SAOUHSC_01211-rplS 
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SAOUHSC_01166-pyrB SAOUHSC_01190 SAOUHSC_01216-sucC 

SAOUHSC_01168-pyrC SAOUHSC_01194 SAOUHSC_01222 

SAOUHSC_01169 SAOUHSC_01197 SAOUHSC_01228-codY 

SAOUHSC_01170-carB SAOUHSC_01198 SAOUHSC_01233 

SAOUHSC_01171 SAOUHSC_01199 SAOUHSC_01234-tsf 

SAOUHSC_01172-pyrE SAOUHSC_01201-acpP SAOUHSC_01235-pyrH 

SAOUHSC_01178 SAOUHSC_01205 SAOUHSC_01236-frr 

SAOUHSC_01179 SAOUHSC_01207 SAOUHSC_01238 

SAOUHSC_01183 SAOUHSC_01210-trmD SAOUHSC_01240 

SAOUHSC_01188 SAOUHSC_01211-rplS SAOUHSC_01241-polC 

SAOUHSC_01189 SAOUHSC_01216-sucC SAOUHSC_01243-nusA 

SAOUHSC_01190 SAOUHSC_01218 SAOUHSC_01244 

SAOUHSC_01194 SAOUHSC_01222 SAOUHSC_01245 

SAOUHSC_01197 SAOUHSC_01228-codY SAOUHSC_01246-infB 

SAOUHSC_01198 SAOUHSC_01234-tsf SAOUHSC_01249 

SAOUHSC_01199 SAOUHSC_01235-pyrH SAOUHSC_01250-rpsO 

SAOUHSC_01200 SAOUHSC_01236-frr SAOUHSC_01252 

SAOUHSC_01201-acpP SAOUHSC_01238 SAOUHSC_01260 

SAOUHSC_01205 SAOUHSC_01240 SAOUHSC_01262-recA 

SAOUHSC_01207 SAOUHSC_01241-polC SAOUHSC_01287 

SAOUHSC_01209-rimM SAOUHSC_01243-nusA SAOUHSC_01337 

SAOUHSC_01210-trmD SAOUHSC_01244 SAOUHSC_01351 

SAOUHSC_01211-rplS SAOUHSC_01245 SAOUHSC_01352 

SAOUHSC_01216-sucC SAOUHSC_01246-infB SAOUHSC_01373 

SAOUHSC_01218 SAOUHSC_01249 SAOUHSC_01374 

SAOUHSC_01222 SAOUHSC_01250-rpsO SAOUHSC_01424-murG 

SAOUHSC_01228-codY SAOUHSC_01252 SAOUHSC_01434 

SAOUHSC_01230 SAOUHSC_01260 SAOUHSC_01467 

SAOUHSC_01234-tsf SAOUHSC_01262-recA SAOUHSC_01470 

SAOUHSC_01235-pyrH SAOUHSC_01287 SAOUHSC_01473 

SAOUHSC_01236-frr SAOUHSC_01337 SAOUHSC_01474 

SAOUHSC_01238 SAOUHSC_01351 SAOUHSC_01481 

SAOUHSC_01239 SAOUHSC_01352 SAOUHSC_01482-aroB 

SAOUHSC_01240 SAOUHSC_01373 SAOUHSC_01483-aroF 

SAOUHSC_01241-polC SAOUHSC_01374 SAOUHSC_01487-ubiE 

SAOUHSC_01243-nusA SAOUHSC_01424-murG SAOUHSC_01491-gpsA 

SAOUHSC_01244 SAOUHSC_01434 SAOUHSC_01492-engA 

SAOUHSC_01245 SAOUHSC_01467 SAOUHSC_01496-cmk 

SAOUHSC_01246-infB SAOUHSC_01470 SAOUHSC_01501 

SAOUHSC_01249 SAOUHSC_01473 SAOUHSC_01591 

SAOUHSC_01250-rpsO SAOUHSC_01474 SAOUHSC_01592-fur 

SAOUHSC_01252 SAOUHSC_01481 SAOUHSC_01598 
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SAOUHSC_01259 SAOUHSC_01482-aroB SAOUHSC_01612-bkdA2 

SAOUHSC_01260 SAOUHSC_01483-aroF SAOUHSC_01613-bkdA1 

SAOUHSC_01262-recA SAOUHSC_01487-ubiE SAOUHSC_01619 

SAOUHSC_01265 SAOUHSC_01492-engA SAOUHSC_01621-nusB 

SAOUHSC_01267 SAOUHSC_01501 SAOUHSC_01623 

SAOUHSC_01287 SAOUHSC_01550 SAOUHSC_01624 

SAOUHSC_01337 SAOUHSC_01553 SAOUHSC_01659 

SAOUHSC_01351 SAOUHSC_01555 SAOUHSC_01661 

SAOUHSC_01352 SAOUHSC_01556 SAOUHSC_01662 

SAOUHSC_01373 SAOUHSC_01567 SAOUHSC_01663 

SAOUHSC_01374 SAOUHSC_01575 SAOUHSC_01666 

SAOUHSC_01424-murG SAOUHSC_01591 SAOUHSC_01668-era 

SAOUHSC_01434 SAOUHSC_01592-fur SAOUHSC_01672 

SAOUHSC_01467 SAOUHSC_01598 SAOUHSC_01690-holA 

SAOUHSC_01470 SAOUHSC_01612-bkdA2 SAOUHSC_01697 

SAOUHSC_01473 SAOUHSC_01613-bkdA1 SAOUHSC_01698 

SAOUHSC_01474 SAOUHSC_01623 SAOUHSC_01700 

SAOUHSC_01481 SAOUHSC_01624 SAOUHSC_01701 

SAOUHSC_01482-aroB SAOUHSC_01659 SAOUHSC_01720 

SAOUHSC_01483-aroF SAOUHSC_01661 SAOUHSC_01721 

SAOUHSC_01487-ubiE SAOUHSC_01662 SAOUHSC_01722-alaS 

SAOUHSC_01488 SAOUHSC_01663 SAOUHSC_01727 

SAOUHSC_01491-gpsA SAOUHSC_01666 SAOUHSC_01738-hisS 

SAOUHSC_01492-engA SAOUHSC_01668-era SAOUHSC_01746 

SAOUHSC_01496-cmk SAOUHSC_01672 SAOUHSC_01753-obgE 

SAOUHSC_01501 SAOUHSC_01690-holA SAOUHSC_01756 

SAOUHSC_01591 SAOUHSC_01697 SAOUHSC_01757-rplU 

SAOUHSC_01592-fur SAOUHSC_01698 SAOUHSC_01766 

SAOUHSC_01598 SAOUHSC_01700 SAOUHSC_01767-valS 

SAOUHSC_01599 SAOUHSC_01701 SAOUHSC_01772 

SAOUHSC_01612-bkdA2 SAOUHSC_01702 SAOUHSC_01773 

SAOUHSC_01613-bkdA1 SAOUHSC_01720 SAOUHSC_01774-hemC 

SAOUHSC_01614 SAOUHSC_01721 SAOUHSC_01776-hemA 

SAOUHSC_01619 SAOUHSC_01722-alaS SAOUHSC_01782 

SAOUHSC_01623 SAOUHSC_01727 SAOUHSC_01784-rplT 

SAOUHSC_01624 SAOUHSC_01738-hisS SAOUHSC_01785-rpmI 

SAOUHSC_01635 SAOUHSC_01746 SAOUHSC_01786-infC 

SAOUHSC_01659 SAOUHSC_01753-obgE SAOUHSC_01787 

SAOUHSC_01661 SAOUHSC_01756 SAOUHSC_01791 

SAOUHSC_01662 SAOUHSC_01757-rplU SAOUHSC_01792 

SAOUHSC_01663 SAOUHSC_01766 SAOUHSC_01807 

SAOUHSC_01666 SAOUHSC_01767-valS SAOUHSC_01809 
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SAOUHSC_01668-era SAOUHSC_01772 SAOUHSC_01826 

SAOUHSC_01670 SAOUHSC_01773 SAOUHSC_01839 

SAOUHSC_01672 SAOUHSC_01774-hemC SAOUHSC_01865-trmB 

SAOUHSC_01690-holA SAOUHSC_01776-hemA SAOUHSC_01858 

SAOUHSC_01697 SAOUHSC_01784-rplT SAOUHSC_01866 

SAOUHSC_01698 SAOUHSC_01785-rpmI SAOUHSC_01871 

SAOUHSC_01699-aroE SAOUHSC_01786-infC SAOUHSC_01875-leuS 

SAOUHSC_01700 SAOUHSC_01787 SAOUHSC_01915-menC 

SAOUHSC_01701 SAOUHSC_01791 SAOUHSC_01916 

SAOUHSC_01720 SAOUHSC_01792 SAOUHSC_01961-hemH 

SAOUHSC_01721 SAOUHSC_01807 SAOUHSC_01962-hemE 

SAOUHSC_01722-alaS SAOUHSC_01809 SAOUHSC_01973 

SAOUHSC_01727 SAOUHSC_01811 SAOUHSC_02106 

SAOUHSC_01738-hisS SAOUHSC_01812 SAOUHSC_02107 

SAOUHSC_01741 SAOUHSC_01826 SAOUHSC_02114 

SAOUHSC_01746 SAOUHSC_01839 SAOUHSC_02116-gatB 

SAOUHSC_01750-ruvB SAOUHSC_01865-trmB SAOUHSC_02117-gatA 

SAOUHSC_01753-obgE SAOUHSC_01866 SAOUHSC_02118-gatC 

SAOUHSC_01756 SAOUHSC_01871 SAOUHSC_02122 

SAOUHSC_01757-rplU SAOUHSC_01875-leuS SAOUHSC_02123 

SAOUHSC_01766 SAOUHSC_01909 SAOUHSC_02133 

SAOUHSC_01767-valS SAOUHSC_01915-menC SAOUHSC_02140 

SAOUHSC_01772 SAOUHSC_01916 SAOUHSC_02143 

SAOUHSC_01773 SAOUHSC_01961-hemH SAOUHSC_02151 

SAOUHSC_01774-hemC SAOUHSC_01962-hemE SAOUHSC_02152 

SAOUHSC_01776-hemA SAOUHSC_01973 SAOUHSC_02228 

SAOUHSC_01778-clpX SAOUHSC_02106 SAOUHSC_02277-gcp 

SAOUHSC_01782 SAOUHSC_02107 SAOUHSC_02279 

SAOUHSC_01783 SAOUHSC_02114 SAOUHSC_02280 

SAOUHSC_01784-rplT SAOUHSC_02116-gatB SAOUHSC_02318-ddl 

SAOUHSC_01785-rpmI SAOUHSC_02117-gatA SAOUHSC_02336-fabZ 

SAOUHSC_01786-infC SAOUHSC_02118-gatC SAOUHSC_02357 

SAOUHSC_01787 SAOUHSC_02122 SAOUHSC_02359-prfA 

SAOUHSC_01789 SAOUHSC_02123 SAOUHSC_02369 

SAOUHSC_01791 SAOUHSC_02133 SAOUHSC_02400 

SAOUHSC_01792 SAOUHSC_02140 SAOUHSC_02409 

SAOUHSC_01793-nrdR SAOUHSC_02143 SAOUHSC_02480-truA 

SAOUHSC_01807 SAOUHSC_02151 SAOUHSC_02486 

SAOUHSC_01809 SAOUHSC_02152 SAOUHSC_02487-rpsM 

SAOUHSC_01811 SAOUHSC_02219 SAOUHSC_02488-rpmJ 

SAOUHSC_01828 SAOUHSC_02220 SAOUHSC_02489-infA 

SAOUHSC_01839 SAOUHSC_02227 SAOUHSC_02490-adk 
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SAOUHSC_01865-trmB SAOUHSC_02228 SAOUHSC_02491-secY 

SAOUHSC_01858 SAOUHSC_02233 SAOUHSC_02492-rplO 

SAOUHSC_01866 SAOUHSC_02255-groES SAOUHSC_02493-rpmD 

SAOUHSC_01871 SAOUHSC_02277-gcp SAOUHSC_02494-rpsE 

SAOUHSC_01875-leuS SAOUHSC_02279 SAOUHSC_02495-rplR 

SAOUHSC_01915-menC SAOUHSC_02280 SAOUHSC_02496-rplF 

SAOUHSC_01916 SAOUHSC_02318-ddl SAOUHSC_02498-rpsH 

SAOUHSC_01961-hemH SAOUHSC_02336-fabZ SAOUHSC_02499-rpsN 

SAOUHSC_01962-hemE SAOUHSC_02357 SAOUHSC_02500-rplE 

SAOUHSC_01973 SAOUHSC_02359-prfA SAOUHSC_02501-rplX 

SAOUHSC_02106 SAOUHSC_02369 SAOUHSC_02502-rplN 

SAOUHSC_02107 SAOUHSC_02400 SAOUHSC_02503-rpsQ 

SAOUHSC_02114 SAOUHSC_02409 SAOUHSC_02504 

SAOUHSC_02116-gatB SAOUHSC_02480-truA SAOUHSC_02505-rplP 

SAOUHSC_02117-gatA SAOUHSC_02486 SAOUHSC_02506-rpsC 

SAOUHSC_02118-gatC SAOUHSC_02487-rpsM SAOUHSC_02507-rplV 

SAOUHSC_02122 SAOUHSC_02488-rpmJ SAOUHSC_02508-rpsS 

SAOUHSC_02123 SAOUHSC_02489-infA SAOUHSC_02509-rplB 

SAOUHSC_02133 SAOUHSC_02490-adk SAOUHSC_02510-rplW 

SAOUHSC_02140 SAOUHSC_02491-secY SAOUHSC_02511-rplD 

SAOUHSC_02143 SAOUHSC_02492-rplO SAOUHSC_02512a 

SAOUHSC_02151 SAOUHSC_02493-rpmD SAOUHSC_02512-rplC 

SAOUHSC_02152 SAOUHSC_02494-rpsE SAOUHSC_02515 

SAOUHSC_02255-groES SAOUHSC_02495-rplR SAOUHSC_02528 

SAOUHSC_02277-gcp SAOUHSC_02496-rplF SAOUHSC_02612 

SAOUHSC_02278 SAOUHSC_02498-rpsH SAOUHSC_02623 

SAOUHSC_02279 SAOUHSC_02499-rpsN SAOUHSC_02793-pgcA 

SAOUHSC_02280 SAOUHSC_02500-rplE SAOUHSC_03053-trmE 

SAOUHSC_02318-ddl SAOUHSC_02501-rplX SAOUHSC_03054-rnpA 

SAOUHSC_02336-fabZ SAOUHSC_02502-rplN SAOUHSC_A01514 

SAOUHSC_02357 SAOUHSC_02503-rpsQ 

 SAOUHSC_02359-prfA SAOUHSC_02504 

 SAOUHSC_02369 SAOUHSC_02505-rplP 

 SAOUHSC_02400 SAOUHSC_02506-rpsC 

 SAOUHSC_02409 SAOUHSC_02507-rplV 

 SAOUHSC_02480-truA SAOUHSC_02508-rpsS 

 SAOUHSC_02483-cbiO SAOUHSC_02509-rplB 

 SAOUHSC_02486 SAOUHSC_02510-rplW 

 SAOUHSC_02487-rpsM SAOUHSC_02511-rplD 

 SAOUHSC_02488-rpmJ SAOUHSC_02512a 

 SAOUHSC_02489-infA SAOUHSC_02512-rplC 

 SAOUHSC_02490-adk SAOUHSC_02515 
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SAOUHSC_02491-secY SAOUHSC_02528 

 SAOUHSC_02492-rplO SAOUHSC_02612 

 SAOUHSC_02493-rpmD SAOUHSC_02623 

 SAOUHSC_02494-rpsE SAOUHSC_02805 

 SAOUHSC_02495-rplR SAOUHSC_03053-trmE 

 SAOUHSC_02496-rplF SAOUHSC_03054-rnpA 

 SAOUHSC_02498-rpsH 

  SAOUHSC_02499-rpsN 

  SAOUHSC_02500-rplE 

  SAOUHSC_02501-rplX 

  SAOUHSC_02502-rplN 

  SAOUHSC_02503-rpsQ 

  SAOUHSC_02504 

  SAOUHSC_02505-rplP 

  SAOUHSC_02506-rpsC 

  SAOUHSC_02507-rplV 

  SAOUHSC_02508-rpsS 

  SAOUHSC_02509-rplB 

  SAOUHSC_02510-rplW 

  SAOUHSC_02511-rplD 

  SAOUHSC_02512a 

  SAOUHSC_02512-rplC 

  SAOUHSC_02515 

  SAOUHSC_02528 

  SAOUHSC_02612 

  SAOUHSC_02623 

  SAOUHSC_02793-pgcA 

  SAOUHSC_03052 

  SAOUHSC_03053-trmE 

  SAOUHSC_03054-rnpA 

  SAOUHSC_03055-rpmH 

  SAOUHSC_A01514 
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E. Essential genes in three studies 

 

Valentino Essential Genes Chaudhuri Essential Genes Santiago Essential Genes 

SAOUHSC_00001 SAOUHSC_00001 SAOUHSC_00001 

SAOUHSC_00002 SAOUHSC_00002 SAOUHSC_00005 

SAOUHSC_00005 SAOUHSC_00003 SAOUHSC_00006 

SAOUHSC_00006 SAOUHSC_00005 SAOUHSC_00009 

SAOUHSC_00009 SAOUHSC_00006 SAOUHSC_00015 

SAOUHSC_00017 SAOUHSC_00015 SAOUHSC_00017 

SAOUHSC_00018 SAOUHSC_00018 SAOUHSC_00018 

SAOUHSC_00020 SAOUHSC_00020 SAOUHSC_00021 

SAOUHSC_00021 SAOUHSC_00021 SAOUHSC_00226 

SAOUHSC_00038 SAOUHSC_00226 SAOUHSC_00349 

SAOUHSC_00112 SAOUHSC_00336 SAOUHSC_00350 

SAOUHSC_00223 SAOUHSC_00345 SAOUHSC_00374 

SAOUHSC_00226 SAOUHSC_00349 SAOUHSC_00375 

SAOUHSC_00227 SAOUHSC_00350 SAOUHSC_00413 

SAOUHSC_00275 SAOUHSC_00375 SAOUHSC_00442 

SAOUHSC_00345 SAOUHSC_00442 SAOUHSC_00444 

SAOUHSC_00348 SAOUHSC_00444 SAOUHSC_00445 

SAOUHSC_00374 SAOUHSC_00454 SAOUHSC_00451 

SAOUHSC_00375 SAOUHSC_00461 SAOUHSC_00454 

SAOUHSC_00444 SAOUHSC_00474 SAOUHSC_00461 

SAOUHSC_00451 SAOUHSC_00475 SAOUHSC_00471 

SAOUHSC_00453 SAOUHSC_00482 SAOUHSC_00472 

SAOUHSC_00454 SAOUHSC_00484 SAOUHSC_00481 

SAOUHSC_00461 SAOUHSC_00489 SAOUHSC_00482 

SAOUHSC_00471 SAOUHSC_00490 SAOUHSC_00484 

SAOUHSC_00472 SAOUHSC_00491 SAOUHSC_00485 

SAOUHSC_00473 SAOUHSC_00493 SAOUHSC_00486 

SAOUHSC_00475 SAOUHSC_00509 SAOUHSC_00490 

SAOUHSC_00481 SAOUHSC_00510 SAOUHSC_00491 

SAOUHSC_00482 SAOUHSC_00511 SAOUHSC_00493 

SAOUHSC_00484 SAOUHSC_00516 SAOUHSC_00510 

SAOUHSC_00486 SAOUHSC_00518 SAOUHSC_00511 

SAOUHSC_00489 SAOUHSC_00519 SAOUHSC_00518 

SAOUHSC_00490 SAOUHSC_00520 SAOUHSC_00519 

SAOUHSC_00491 SAOUHSC_00521 SAOUHSC_00520 

SAOUHSC_00509 SAOUHSC_00525 SAOUHSC_00521 

SAOUHSC_00510 SAOUHSC_00527 SAOUHSC_00524 

SAOUHSC_00516 SAOUHSC_00529 SAOUHSC_00525 
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SAOUHSC_00518 SAOUHSC_00530 SAOUHSC_00527 

SAOUHSC_00519 SAOUHSC_00549 SAOUHSC_00528 

SAOUHSC_00521 SAOUHSC_00575 SAOUHSC_00529 

SAOUHSC_00524 SAOUHSC_00577 SAOUHSC_00530 

SAOUHSC_00525 SAOUHSC_00578 SAOUHSC_00574 

SAOUHSC_00526 SAOUHSC_00579 SAOUHSC_00575 

SAOUHSC_00527 SAOUHSC_00611 SAOUHSC_00578 

SAOUHSC_00529 SAOUHSC_00640 SAOUHSC_00579 

SAOUHSC_00549 SAOUHSC_00642 SAOUHSC_00610 

SAOUHSC_00573 SAOUHSC_00643 SAOUHSC_00611 

SAOUHSC_00574 SAOUHSC_00645 SAOUHSC_00641 

SAOUHSC_00578 SAOUHSC_00741 SAOUHSC_00643 

SAOUHSC_00579 SAOUHSC_00742 SAOUHSC_00645 

SAOUHSC_00611 SAOUHSC_00752 SAOUHSC_00742 

SAOUHSC_00640 SAOUHSC_00760 SAOUHSC_00743 

SAOUHSC_00641 SAOUHSC_00762 SAOUHSC_00752 

SAOUHSC_00642 SAOUHSC_00769 SAOUHSC_00769 

SAOUHSC_00643 SAOUHSC_00771 SAOUHSC_00771 

SAOUHSC_00680 SAOUHSC_00781 SAOUHSC_00778 

SAOUHSC_00728 SAOUHSC_00785 SAOUHSC_00785 

SAOUHSC_00735 SAOUHSC_00788 SAOUHSC_00788 

SAOUHSC_00741 SAOUHSC_00790 SAOUHSC_00795 

SAOUHSC_00778 SAOUHSC_00803 SAOUHSC_00796 

SAOUHSC_00790 SAOUHSC_00849 SAOUHSC_00797 

SAOUHSC_00794 SAOUHSC_00850 SAOUHSC_00798 

SAOUHSC_00795 SAOUHSC_00851 SAOUHSC_00799 

SAOUHSC_00796 SAOUHSC_00868 SAOUHSC_00804 

SAOUHSC_00799 SAOUHSC_00870 SAOUHSC_00832 

SAOUHSC_00851 SAOUHSC_00920 SAOUHSC_00848 

SAOUHSC_00857 SAOUHSC_00921 SAOUHSC_00849 

SAOUHSC_00871 SAOUHSC_00947 SAOUHSC_00850 

SAOUHSC_00872 SAOUHSC_00954 SAOUHSC_00851 

SAOUHSC_00886 SAOUHSC_00998 SAOUHSC_00868 

SAOUHSC_00887 SAOUHSC_01028 SAOUHSC_00869 

SAOUHSC_00896 SAOUHSC_01038 SAOUHSC_00870 

SAOUHSC_00900 SAOUHSC_01040 SAOUHSC_00871 

SAOUHSC_00920 SAOUHSC_01050 SAOUHSC_00872 

SAOUHSC_00921 SAOUHSC_01063 SAOUHSC_00884 

SAOUHSC_00933 SAOUHSC_01075 SAOUHSC_00885 

SAOUHSC_00934 SAOUHSC_01077 SAOUHSC_00886 

SAOUHSC_00938 SAOUHSC_01078 SAOUHSC_00887 

SAOUHSC_00943 SAOUHSC_01093 SAOUHSC_00888 
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SAOUHSC_01023 SAOUHSC_01148 SAOUHSC_00889 

SAOUHSC_01028 SAOUHSC_01149 SAOUHSC_00900 

SAOUHSC_01035 SAOUHSC_01150 SAOUHSC_00903 

SAOUHSC_01063 SAOUHSC_01159 SAOUHSC_00904 

SAOUHSC_01075 SAOUHSC_01176 SAOUHSC_00905 

SAOUHSC_01093 SAOUHSC_01179 SAOUHSC_00921 

SAOUHSC_01106 SAOUHSC_01183 SAOUHSC_00933 

SAOUHSC_01118 SAOUHSC_01188 SAOUHSC_00943 

SAOUHSC_01143 SAOUHSC_01190 SAOUHSC_00947 

SAOUHSC_01144 SAOUHSC_01191 SAOUHSC_00953 

SAOUHSC_01145 SAOUHSC_01197 SAOUHSC_00980 

SAOUHSC_01146 SAOUHSC_01198 SAOUHSC_00981 

SAOUHSC_01154 SAOUHSC_01208 SAOUHSC_00982 

SAOUHSC_01176 SAOUHSC_01211 SAOUHSC_00983 

SAOUHSC_01178 SAOUHSC_01214 SAOUHSC_00985 

SAOUHSC_01179 SAOUHSC_01216 SAOUHSC_01000 

SAOUHSC_01183 SAOUHSC_01222 SAOUHSC_01002 

SAOUHSC_01190 SAOUHSC_01234 SAOUHSC_01035 

SAOUHSC_01191 SAOUHSC_01235 SAOUHSC_01036 

SAOUHSC_01196 SAOUHSC_01236 SAOUHSC_01040 

SAOUHSC_01197 SAOUHSC_01237 SAOUHSC_01041 

SAOUHSC_01198 SAOUHSC_01238 SAOUHSC_01042 

SAOUHSC_01199 SAOUHSC_01240 SAOUHSC_01043 

SAOUHSC_01200 SAOUHSC_01241 SAOUHSC_01063 

SAOUHSC_01203 SAOUHSC_01244 SAOUHSC_01075 

SAOUHSC_01207 SAOUHSC_01246 SAOUHSC_01077 

SAOUHSC_01224 SAOUHSC_01260 SAOUHSC_01078 

SAOUHSC_01232 SAOUHSC_01287 SAOUHSC_01092 

SAOUHSC_01234 SAOUHSC_01337 SAOUHSC_01093 

SAOUHSC_01235 SAOUHSC_01350 SAOUHSC_01142 

SAOUHSC_01236 SAOUHSC_01351 SAOUHSC_01143 

SAOUHSC_01237 SAOUHSC_01352 SAOUHSC_01144 

SAOUHSC_01238 SAOUHSC_01359 SAOUHSC_01145 

SAOUHSC_01239 SAOUHSC_01361 SAOUHSC_01146 

SAOUHSC_01240 SAOUHSC_01362 SAOUHSC_01147 

SAOUHSC_01241 SAOUHSC_01373 SAOUHSC_01148 

SAOUHSC_01259 SAOUHSC_01467 SAOUHSC_01149 

SAOUHSC_01260 SAOUHSC_01470 SAOUHSC_01150 

SAOUHSC_01262 SAOUHSC_01473 SAOUHSC_01158 

SAOUHSC_01270 SAOUHSC_01477 SAOUHSC_01159 

SAOUHSC_01285 SAOUHSC_01490 SAOUHSC_01163 

SAOUHSC_01287 SAOUHSC_01492 SAOUHSC_01166 
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SAOUHSC_01338 SAOUHSC_01598 SAOUHSC_01168 

SAOUHSC_01350 SAOUHSC_01599 SAOUHSC_01169 

SAOUHSC_01374 SAOUHSC_01625 SAOUHSC_01170 

SAOUHSC_01390 SAOUHSC_01627 SAOUHSC_01171 

SAOUHSC_01409 SAOUHSC_01661 SAOUHSC_01172 

SAOUHSC_01434 SAOUHSC_01666 SAOUHSC_01178 

SAOUHSC_01435 SAOUHSC_01668 SAOUHSC_01179 

SAOUHSC_01441 SAOUHSC_01672 SAOUHSC_01183 

SAOUHSC_01473 SAOUHSC_01683 SAOUHSC_01188 

SAOUHSC_01474 SAOUHSC_01684 SAOUHSC_01189 

SAOUHSC_01487 SAOUHSC_01700 SAOUHSC_01190 

SAOUHSC_01490 SAOUHSC_01701 SAOUHSC_01194 

SAOUHSC_01492 SAOUHSC_01714 SAOUHSC_01197 

SAOUHSC_01496 SAOUHSC_01720 SAOUHSC_01198 

SAOUHSC_01501 SAOUHSC_01721 SAOUHSC_01199 

SAOUHSC_01550 SAOUHSC_01725 SAOUHSC_01200 

SAOUHSC_01551 SAOUHSC_01726 SAOUHSC_01201 

SAOUHSC_01554 SAOUHSC_01727 SAOUHSC_01205 

SAOUHSC_01555 SAOUHSC_01737 SAOUHSC_01207 

SAOUHSC_01573 SAOUHSC_01738 SAOUHSC_01209 

SAOUHSC_01619 SAOUHSC_01755 SAOUHSC_01210 

SAOUHSC_01623 SAOUHSC_01756 SAOUHSC_01211 

SAOUHSC_01624 SAOUHSC_01757 SAOUHSC_01216 

SAOUHSC_01625 SAOUHSC_01766 SAOUHSC_01218 

SAOUHSC_01662 SAOUHSC_01770 SAOUHSC_01222 

SAOUHSC_01663 SAOUHSC_01777 SAOUHSC_01228 

SAOUHSC_01669 SAOUHSC_01784 SAOUHSC_01230 

SAOUHSC_01672 SAOUHSC_01785 SAOUHSC_01234 

SAOUHSC_01682 SAOUHSC_01786 SAOUHSC_01235 

SAOUHSC_01683 SAOUHSC_01787 SAOUHSC_01236 

SAOUHSC_01684 SAOUHSC_01788 SAOUHSC_01238 

SAOUHSC_01687 SAOUHSC_01791 SAOUHSC_01239 

SAOUHSC_01698 SAOUHSC_01806 SAOUHSC_01240 

SAOUHSC_01700 SAOUHSC_01807 SAOUHSC_01241 

SAOUHSC_01727 SAOUHSC_01837 SAOUHSC_01243 

SAOUHSC_01737 SAOUHSC_01839 SAOUHSC_01244 

SAOUHSC_01738 SAOUHSC_01856 SAOUHSC_01245 

SAOUHSC_01741 SAOUHSC_01866 SAOUHSC_01246 

SAOUHSC_01746 SAOUHSC_01871 SAOUHSC_01249 

SAOUHSC_01753 SAOUHSC_01875 SAOUHSC_01250 

SAOUHSC_01755 SAOUHSC_01908 SAOUHSC_01252 

SAOUHSC_01756 SAOUHSC_01909 SAOUHSC_01259 
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SAOUHSC_01757 SAOUHSC_01928 SAOUHSC_01260 

SAOUHSC_01760 SAOUHSC_01930 SAOUHSC_01262 

SAOUHSC_01767 SAOUHSC_02102 SAOUHSC_01265 

SAOUHSC_01772 SAOUHSC_02106 SAOUHSC_01267 

SAOUHSC_01773 SAOUHSC_02107 SAOUHSC_01287 

SAOUHSC_01774 SAOUHSC_02114 SAOUHSC_01337 

SAOUHSC_01777 SAOUHSC_02117 SAOUHSC_01351 

SAOUHSC_01778 SAOUHSC_02118 SAOUHSC_01352 

SAOUHSC_01784 SAOUHSC_02122 SAOUHSC_01373 

SAOUHSC_01785 SAOUHSC_02123 SAOUHSC_01374 

SAOUHSC_01786 SAOUHSC_02132 SAOUHSC_01424 

SAOUHSC_01787 SAOUHSC_02133 SAOUHSC_01434 

SAOUHSC_01788 SAOUHSC_02140 SAOUHSC_01467 

SAOUHSC_01789 SAOUHSC_02151 SAOUHSC_01470 

SAOUHSC_01791 SAOUHSC_02152 SAOUHSC_01473 

SAOUHSC_01792 SAOUHSC_02254 SAOUHSC_01474 

SAOUHSC_01804 SAOUHSC_02260 SAOUHSC_01481 

SAOUHSC_01805 SAOUHSC_02277 SAOUHSC_01482 

SAOUHSC_01807 SAOUHSC_02279 SAOUHSC_01483 

SAOUHSC_01808 SAOUHSC_02280 SAOUHSC_01487 

SAOUHSC_01809 SAOUHSC_02306 SAOUHSC_01488 

SAOUHSC_01811 SAOUHSC_02317 SAOUHSC_01491 

SAOUHSC_01827 SAOUHSC_02318 SAOUHSC_01492 

SAOUHSC_01829 SAOUHSC_02327 SAOUHSC_01496 

SAOUHSC_01837 SAOUHSC_02336 SAOUHSC_01501 

SAOUHSC_01839 SAOUHSC_02337 SAOUHSC_01591 

SAOUHSC_01841 SAOUHSC_02357 SAOUHSC_01592 

SAOUHSC_01856 SAOUHSC_02359 SAOUHSC_01598 

SAOUHSC_01857 SAOUHSC_02361 SAOUHSC_01599 

SAOUHSC_01858 SAOUHSC_02366 SAOUHSC_01612 

SAOUHSC_01859 SAOUHSC_02368 SAOUHSC_01613 

SAOUHSC_01871 SAOUHSC_02371 SAOUHSC_01614 

SAOUHSC_01875 SAOUHSC_02399 SAOUHSC_01619 

SAOUHSC_01905 SAOUHSC_02405 SAOUHSC_01623 

SAOUHSC_01906 SAOUHSC_02407 SAOUHSC_01624 

SAOUHSC_01908 SAOUHSC_02477 SAOUHSC_01635 

SAOUHSC_01909 SAOUHSC_02478 SAOUHSC_01659 

SAOUHSC_01911 SAOUHSC_02484 SAOUHSC_01661 

SAOUHSC_01924 SAOUHSC_02485 SAOUHSC_01662 

SAOUHSC_01961 SAOUHSC_02486 SAOUHSC_01663 

SAOUHSC_01962 SAOUHSC_02487 SAOUHSC_01666 

SAOUHSC_01973 SAOUHSC_02488 SAOUHSC_01668 
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SAOUHSC_01977 SAOUHSC_02489 SAOUHSC_01670 

SAOUHSC_01993 SAOUHSC_02490 SAOUHSC_01672 

SAOUHSC_02084 SAOUHSC_02499 SAOUHSC_01690 

SAOUHSC_02102 SAOUHSC_02500 SAOUHSC_01697 

SAOUHSC_00015 SAOUHSC_00009 SAOUHSC_01698 

SAOUHSC_00022 SAOUHSC_00223 SAOUHSC_01699 

SAOUHSC_00023 SAOUHSC_00225 SAOUHSC_01700 

SAOUHSC_00100 SAOUHSC_00227 SAOUHSC_01701 

SAOUHSC_00225 SAOUHSC_00348 SAOUHSC_01720 

SAOUHSC_00349 SAOUHSC_00451 SAOUHSC_01721 

SAOUHSC_00396 SAOUHSC_00471 SAOUHSC_01722 

SAOUHSC_00442 SAOUHSC_00472 SAOUHSC_01727 

SAOUHSC_00493 SAOUHSC_00524 SAOUHSC_01738 

SAOUHSC_00511 SAOUHSC_00528 SAOUHSC_01741 

SAOUHSC_00520 SAOUHSC_00574 SAOUHSC_01746 

SAOUHSC_00528 SAOUHSC_00620 SAOUHSC_01750 

SAOUHSC_00530 SAOUHSC_00641 SAOUHSC_01753 

SAOUHSC_00577 SAOUHSC_00728 SAOUHSC_01756 

SAOUHSC_00610 SAOUHSC_00743 SAOUHSC_01757 

SAOUHSC_00742 SAOUHSC_00793 SAOUHSC_01766 

SAOUHSC_00743 SAOUHSC_00795 SAOUHSC_01767 

SAOUHSC_00752 SAOUHSC_00796 SAOUHSC_01772 

SAOUHSC_00762 SAOUHSC_00797 SAOUHSC_01773 

SAOUHSC_00769 SAOUHSC_00798 SAOUHSC_01774 

SAOUHSC_00771 SAOUHSC_00799 SAOUHSC_01776 

SAOUHSC_00781 SAOUHSC_00804 SAOUHSC_01778 

SAOUHSC_00785 SAOUHSC_00847 SAOUHSC_01782 

SAOUHSC_00786 SAOUHSC_00848 SAOUHSC_01783 

SAOUHSC_00797 SAOUHSC_00869 SAOUHSC_01784 

SAOUHSC_00804 SAOUHSC_00871 SAOUHSC_01785 

SAOUHSC_00819 SAOUHSC_00872 SAOUHSC_01786 

SAOUHSC_00847 SAOUHSC_00881 SAOUHSC_01787 

SAOUHSC_00848 SAOUHSC_00892 SAOUHSC_01789 

SAOUHSC_00849 SAOUHSC_00900 SAOUHSC_01791 

SAOUHSC_00850 SAOUHSC_00903 SAOUHSC_01792 

SAOUHSC_00867 SAOUHSC_00922 SAOUHSC_01793 

SAOUHSC_00868 SAOUHSC_00933 SAOUHSC_01807 

SAOUHSC_00869 SAOUHSC_00934 SAOUHSC_01809 

SAOUHSC_00870 SAOUHSC_00943 SAOUHSC_01811 

SAOUHSC_00884 SAOUHSC_00957 SAOUHSC_01829 

SAOUHSC_00885 SAOUHSC_00980 SAOUHSC_01839 

SAOUHSC_00888 SAOUHSC_01035 SAOUHSC_01856 
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SAOUHSC_00889 SAOUHSC_01036 SAOUHSC_01859 

SAOUHSC_00939 SAOUHSC_01092 SAOUHSC_01866 

SAOUHSC_00947 SAOUHSC_01100 SAOUHSC_01871 

SAOUHSC_00954 SAOUHSC_01106 SAOUHSC_01875 

SAOUHSC_00957 SAOUHSC_01119 SAOUHSC_01915 

SAOUHSC_00980 SAOUHSC_01144 SAOUHSC_01916 

SAOUHSC_00981 SAOUHSC_01145 SAOUHSC_01961 

SAOUHSC_00985 SAOUHSC_01146 SAOUHSC_01962 

SAOUHSC_01003 SAOUHSC_01147 SAOUHSC_01973 

SAOUHSC_01036 SAOUHSC_01154 SAOUHSC_02106 

SAOUHSC_01092 SAOUHSC_01178 SAOUHSC_02107 

SAOUHSC_01142 SAOUHSC_01189 SAOUHSC_02114 

SAOUHSC_01147 SAOUHSC_01199 SAOUHSC_02116 

SAOUHSC_01148 SAOUHSC_01201 SAOUHSC_02117 

SAOUHSC_01149 SAOUHSC_01205 SAOUHSC_02118 

SAOUHSC_01150 SAOUHSC_01207 SAOUHSC_02122 

SAOUHSC_01158 SAOUHSC_01209 SAOUHSC_02123 

SAOUHSC_01159 SAOUHSC_01210 SAOUHSC_02133 

SAOUHSC_01189 SAOUHSC_01232 SAOUHSC_02140 

SAOUHSC_01201 SAOUHSC_01243 SAOUHSC_02143 

SAOUHSC_01205 SAOUHSC_01245 SAOUHSC_02151 

SAOUHSC_01209 SAOUHSC_01249 SAOUHSC_02152 

SAOUHSC_01214 SAOUHSC_01250 SAOUHSC_02255 

SAOUHSC_01222 SAOUHSC_01252 SAOUHSC_02277 

SAOUHSC_01230 SAOUHSC_01285 SAOUHSC_02278 

SAOUHSC_01233 SAOUHSC_01333 SAOUHSC_02279 

SAOUHSC_01243 SAOUHSC_01374 SAOUHSC_02280 

SAOUHSC_01244 SAOUHSC_01424 SAOUHSC_02318 

SAOUHSC_01245 SAOUHSC_01434 SAOUHSC_02336 

SAOUHSC_01246 SAOUHSC_01435 SAOUHSC_02357 

SAOUHSC_01249 SAOUHSC_01462 SAOUHSC_02359 

SAOUHSC_01252 SAOUHSC_01466 SAOUHSC_02368 

SAOUHSC_01263 SAOUHSC_01474 SAOUHSC_02399 

SAOUHSC_01289 SAOUHSC_01496 SAOUHSC_02407 

SAOUHSC_01293 SAOUHSC_01501 SAOUHSC_02478 

SAOUHSC_01294 SAOUHSC_01504 SAOUHSC_02482 

SAOUHSC_01333 SAOUHSC_01592 SAOUHSC_02485 

SAOUHSC_01351 SAOUHSC_01605 SAOUHSC_02486 

SAOUHSC_01362 SAOUHSC_01623 SAOUHSC_02487 

SAOUHSC_01373 SAOUHSC_01624 SAOUHSC_02488 

SAOUHSC_01410 SAOUHSC_01662 SAOUHSC_02489 

SAOUHSC_01424 SAOUHSC_01663 SAOUHSC_02490 
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SAOUHSC_01467 SAOUHSC_01678 SAOUHSC_02491 

SAOUHSC_01470 SAOUHSC_01682 SAOUHSC_02492 

SAOUHSC_01477 SAOUHSC_01690 SAOUHSC_02493 

SAOUHSC_01483 SAOUHSC_01697 SAOUHSC_02494 

SAOUHSC_01544 SAOUHSC_01722 SAOUHSC_02495 

SAOUHSC_01578 SAOUHSC_01739 SAOUHSC_02496 

SAOUHSC_01579 SAOUHSC_01741 SAOUHSC_02498 

SAOUHSC_01580 SAOUHSC_01742 SAOUHSC_02499 

SAOUHSC_01592 SAOUHSC_01746 SAOUHSC_02500 

SAOUHSC_01598 SAOUHSC_01750 SAOUHSC_02501 

SAOUHSC_01599 SAOUHSC_01751 SAOUHSC_02502 

SAOUHSC_01605 SAOUHSC_01753 SAOUHSC_02503 

SAOUHSC_01627 SAOUHSC_01767 SAOUHSC_02504 

SAOUHSC_01666 SAOUHSC_01782 SAOUHSC_02505 

SAOUHSC_01690 SAOUHSC_01792 SAOUHSC_02506 

SAOUHSC_01697 SAOUHSC_01795 SAOUHSC_02507 

SAOUHSC_01701 SAOUHSC_01808 SAOUHSC_02508 

SAOUHSC_01714 SAOUHSC_01809 SAOUHSC_02509 

SAOUHSC_01722 SAOUHSC_01811 SAOUHSC_02510 

SAOUHSC_01725 SAOUHSC_01827 SAOUHSC_02511 

SAOUHSC_01726 SAOUHSC_01829 SAOUHSC_02512 

SAOUHSC_01766 SAOUHSC_01979 SAOUHSC_02512a 

SAOUHSC_01776 SAOUHSC_02116 SAOUHSC_02527 

SAOUHSC_01795 SAOUHSC_02255 SAOUHSC_02612 

SAOUHSC_02002 SAOUHSC_02491 SAOUHSC_02623 

SAOUHSC_02017 SAOUHSC_02492 SAOUHSC_02793 

SAOUHSC_02053 SAOUHSC_02493 SAOUHSC_03052 

SAOUHSC_02054 SAOUHSC_02494 SAOUHSC_03053 

SAOUHSC_02055 SAOUHSC_02495 SAOUHSC_03054 

SAOUHSC_02065 SAOUHSC_02496 SAOUHSC_03055 

SAOUHSC_02076 SAOUHSC_02498 SAOUHSC_A01514 

SAOUHSC_02106 SAOUHSC_02501 
 SAOUHSC_02107 SAOUHSC_02502 
 SAOUHSC_02114 SAOUHSC_02503 
 SAOUHSC_02116 SAOUHSC_02504 
 SAOUHSC_02117 SAOUHSC_02505 
 SAOUHSC_02118 SAOUHSC_02506 
 SAOUHSC_02122 SAOUHSC_02507 
 SAOUHSC_02123 SAOUHSC_02508 
 SAOUHSC_02132 SAOUHSC_02509 
 SAOUHSC_02133 SAOUHSC_02510 
 SAOUHSC_02140 SAOUHSC_02511 
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SAOUHSC_02151 SAOUHSC_02512 
 SAOUHSC_02152 SAOUHSC_02527 
 SAOUHSC_02154 SAOUHSC_02571 
 SAOUHSC_02164 SAOUHSC_02572 
 SAOUHSC_02175 SAOUHSC_02575 
 SAOUHSC_02183 SAOUHSC_02612 
 SAOUHSC_02209 SAOUHSC_02623 
 SAOUHSC_02214 SAOUHSC_02720 
 SAOUHSC_02215 SAOUHSC_02757 
 SAOUHSC_02219 SAOUHSC_02791 
 SAOUHSC_02224 SAOUHSC_02805 
 SAOUHSC_02235 SAOUHSC_02859 
 SAOUHSC_02237 SAOUHSC_02860 
 SAOUHSC_02238 SAOUHSC_03049 
 SAOUHSC_02254 SAOUHSC_03052 
 SAOUHSC_02255 SAOUHSC_03053 
 SAOUHSC_02277 SAOUHSC_03054 
 SAOUHSC_02279 SAOUHSC_03055 
 SAOUHSC_02280 

  SAOUHSC_02294 
  SAOUHSC_02306 
  SAOUHSC_02307 
  SAOUHSC_02317 
  SAOUHSC_02318 
  SAOUHSC_02325 
  SAOUHSC_02327 
  SAOUHSC_02332 
  SAOUHSC_02336 
  SAOUHSC_02357 
  SAOUHSC_02359 
  SAOUHSC_02361 
  SAOUHSC_02368 
  SAOUHSC_02371 
  SAOUHSC_02379 
  SAOUHSC_02383 
  SAOUHSC_02399 
  SAOUHSC_02405 
  SAOUHSC_02407 
  SAOUHSC_02410 
  SAOUHSC_02411 
  SAOUHSC_02412 
  SAOUHSC_02416 
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SAOUHSC_02437 
  SAOUHSC_02438 
  SAOUHSC_02440 
  SAOUHSC_02477 
  SAOUHSC_02478 
  SAOUHSC_02484 
  SAOUHSC_02485 
  SAOUHSC_02486 
  SAOUHSC_02487 
  SAOUHSC_02488 
  SAOUHSC_02489 
  SAOUHSC_02490 
  SAOUHSC_02491 
  SAOUHSC_02492 
  SAOUHSC_02493 
  SAOUHSC_02494 
  SAOUHSC_02495 
  SAOUHSC_02496 
  SAOUHSC_02498 
  SAOUHSC_02499 
  SAOUHSC_02500 
  SAOUHSC_02501 
  SAOUHSC_02502 
  SAOUHSC_02503 
  SAOUHSC_02504 
  SAOUHSC_02505 
  SAOUHSC_02506 
  SAOUHSC_02507 
  SAOUHSC_02508 
  SAOUHSC_02509 
  SAOUHSC_02510 
  SAOUHSC_02511 
  SAOUHSC_02512 
  SAOUHSC_02527 
  SAOUHSC_02534 
  SAOUHSC_02571 
  SAOUHSC_02623 
  SAOUHSC_02707 
  SAOUHSC_02720 
  SAOUHSC_02721 
  SAOUHSC_02745 
  SAOUHSC_02860 
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SAOUHSC_02872 
  SAOUHSC_03043 
  SAOUHSC_03054 
  SAOUHSC_03055 
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F. Genes important for S. aureus growth at different temperatures 

 

16°C blunt 
  

gene locus 
corrected p-
value 

ratio 
experiment/control 

SAOUHSC_01857 6.88E-05 6.06 

   23°C blunt 
  

gene locus 
corrected p-
value 

ratio 
experiment/control 

SAOUHSC_01857 1.69E-04 5.03 

   37°C blunt 
  

gene locus 
corrected p-
value 

ratio 
experiment/control 

SAOUHSC_00536-ilvE 6.18E-05 14.59 

SAOUHSC_01618-ispA 9.63E-04 12.82 
SAOUHSC_01613-
bkdA1 2.90E-03 8.00 

SAOUHSC_01611 2.03E-04 6.50 

SAOUHSC_00525 5.59E-03 6.40 
SAOUHSC_01612-
bkdA2 2.36E-02 6.18 

SAOUHSC_01153 5.05E-03 0.08 
SAOUHSC_01154-
sepF 3.55E-02 0.07 

   43°C blunt 
  

gene locus 
corrected p-
value 

ratio 
experiment/control 

SAOUHSC_00014 2.41E-03 22.85 

SAOUHSC_00015 1.60E-03 0.13 
SAOUHSC_00022-
yycH 2.20E-04 0.03 

SAOUHSC_00023-yycI 7.71E-05 0.03 

SAOUHSC_00290 1.27E-08 0.02 

SAOUHSC_00364 7.20E-06 0.07 

SAOUHSC_00373 4.35E-05 10.01 

SAOUHSC_00420 1.51E-05 10.69 

SAOUHSC_00455 1.81E-02 0.17 

SAOUHSC_00462 4.95E-03 6.42 
SAOUHSC_00464-
ksgA 8.11E-04 8.97 

SAOUHSC_00488 2.15E-04 0.04 

SAOUHSC_00504-yakI 4.53E-07 0.02 
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SAOUHSC_00505-clpC 5.43E-03 0.14 

SAOUHSC_00618 3.44E-03 0.07 
SAOUHSC_00646-
pbp4 2.64E-02 0.15 
SAOUHSC_00668-
vraG 2.89E-04 0.19 

SAOUHSC_00675 2.20E-02 0.16 

SAOUHSC_00678 1.29E-08 0.02 

SAOUHSC_00718-718 4.58E-03 0.06 

SAOUHSC_00755 1.67E-02 22.75 

SAOUHSC_00756 1.18E-09 0.02 
SAOUHSC_00760-
gdpS 1.66E-07 0.04 

SAOUHSC_00794 1.14E-03 0.02 

SAOUHSC_00803 7.71E-05 0.07 

SAOUHSC_00892 8.05E-03 0.11 

SAOUHSC_00935 1.02E-02 5.90 
SAOUHSC_00965-
CAAX 3.82E-02 5.04 
SAOUHSC_00982-
menF 1.59E-05 13.25 
SAOUHSC_00983-
menD 1.03E-09 9.73 

SAOUHSC_00996 1.92E-02 0.06 

SAOUHSC_00997-lcpB 2.60E-03 0.17 
SAOUHSC_01025-
1025 2.01E-09 0.04 

SAOUHSC_01039 4.45E-04 20.47 
SAOUHSC_01050-
1050 4.37E-09 0.03 

SAOUHSC_01095 4.91E-02 0.07 

SAOUHSC_01153 2.50E-05 0.04 
SAOUHSC_01154-
sepF 1.79E-02 0.10 

SAOUHSC_01165 2.23E-05 0.06 

SAOUHSC_01184 7.77E-04 0.12 

SAOUHSC_01186 1.60E-03 0.04 

SAOUHSC_01203-rnc 3.82E-02 0.16 

SAOUHSC_01265 9.22E-04 8.69 

SAOUHSC_01269 1.50E-07 0.03 

SAOUHSC_01271 1.93E-05 0.02 

SAOUHSC_01278 1.12E-10 15.60 

SAOUHSC_01346 6.44E-04 5.45 
SAOUHSC_01359-
mprF 1.10E-21 0.05 

SAOUHSC_01361-lcpA 6.76E-03 0.04 

SAOUHSC_01427 7.39E-10 25.24 
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SAOUHSC_01437 6.33E-04 0.10 
SAOUHSC_01462-
gpsB 2.03E-02 0.03 

SAOUHSC_01480 3.26E-04 10.79 

SAOUHSC_01481 3.71E-02 5.98 
SAOUHSC_01482-
aroB 2.57E-08 20.95 

SAOUHSC_01483-aroF 2.36E-03 8.05 

SAOUHSC_01497 2.16E-04 0.07 

SAOUHSC_01585 1.48E-06 8.10 

SAOUHSC_01586 7.43E-08 32.16 

SAOUHSC_01618-ispA 2.41E-04 20.18 

SAOUHSC_01627 6.59E-04 0.04 

SAOUHSC_01650 3.17E-03 0.06 
SAOUHSC_01652-
pbp3 1.10E-11 0.02 

SAOUHSC_01656 2.90E-07 12.64 

SAOUHSC_01657 7.87E-04 12.92 
SAOUHSC_01682-
dnaJ 2.40E-03 0.04 
SAOUHSC_01683-
dnaK 1.90E-09 0.02 

SAOUHSC_01685-hrcA 1.88E-08 0.02 

SAOUHSC_01696 1.11E-04 0.19 
SAOUHSC_01699-
aroE 9.58E-03 8.35 

SAOUHSC_01739 3.49E-02 0.09 
SAOUHSC_01758-
mreD 1.27E-05 0.02 
SAOUHSC_01759-
mreC 5.64E-07 0.02 

SAOUHSC_01779-tig 3.24E-05 16.96 

SAOUHSC_01803 7.76E-16 0.02 

SAOUHSC_01810 2.94E-04 0.06 

SAOUHSC_01821 3.24E-05 17.85 

SAOUHSC_01827-ezrA 1.15E-03 0.07 
SAOUHSC_01852-
aroA 3.55E-04 11.38 

SAOUHSC_01854 1.59E-05 0.04 

SAOUHSC_01857 2.98E-09 0.16 

SAOUHSC_01858 2.20E-04 0.02 

SAOUHSC_01895-lytD 3.18E-03 10.48 

SAOUHSC_01913 2.12E-02 0.04 
SAOUHSC_01960-
hemY 2.04E-05 9.79 
SAOUHSC_01975-
sbcD 4.58E-03 6.24 
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SAOUHSC_01979 4.06E-04 35.37 

SAOUHSC_01997 4.52E-02 0.10 

SAOUHSC_02004 7.92E-05 0.05 

SAOUHSC_02012-sgtB 4.58E-03 6.77 

SAOUHSC_02121 4.80E-05 0.06 

SAOUHSC_02131 3.71E-02 0.13 

SAOUHSC_02143 7.16E-05 19.13 

SAOUHSC_02264 9.53E-04 0.20 

SAOUHSC_02268 6.06E-03 0.15 

SAOUHSC_02305-alr1 6.74E-07 0.08 

SAOUHSC_02308 2.33E-07 0.03 

SAOUHSC_02309 9.60E-04 0.13 
SAOUHSC_02319-
rodA 1.32E-09 0.02 
SAOUHSC_02337-
murA 1.48E-06 0.02 
SAOUHSC_02341-F-
type 2.39E-04 0.07 
SAOUHSC_02345-F-
type 1.33E-05 0.05 
SAOUHSC_02347-F-
type 1.58E-02 0.17 
SAOUHSC_02350-F-
type 1.66E-02 0.06 

SAOUHSC_02351 1.79E-02 0.05 

SAOUHSC_02358 4.01E-03 23.16 

SAOUHSC_02366 3.31E-04 23.54 

SAOUHSC_02369 3.70E-02 11.09 

SAOUHSC_02372 1.26E-02 0.08 

SAOUHSC_02383 7.88E-13 0.02 

SAOUHSC_02481-cbiQ 5.09E-05 0.01 

SAOUHSC_02483-cbiO 1.59E-02 0.11 

SAOUHSC_02552 3.66E-05 0.06 

SAOUHSC_02571 8.02E-06 0.03 

SAOUHSC_02589 9.27E-03 5.47 

SAOUHSC_02611-lyrA 3.69E-05 24.09 

SAOUHSC_02664 3.30E-08 7.27 

SAOUHSC_02690 8.02E-03 11.85 

SAOUHSC_02885 5.76E-06 5.96 
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G. Tn-Seq hits with a panel of β-lactam antibiotics in MW2 and USA300 

 

USA300 0.1 ug/ml 
oxacillin ratio 

USA300 1 ug/ml 
oxacillin ratio 

USA300 10 ug/ml 
oxacillin ratio 

USA300HOU_0413 38.591 USA300HOU_0414 4364.00 USA300HOU_0413 7897.59 

USA300HOU_0504 37.224 USA300HOU_2045 2342.00 USA300HOU_0504 7415.57 

USA300HOU_1784 33.296 USA300HOU_0413 2129.04 USA300HOU_0414 3492.00 

USA300HOU_1197 32.898 USA300HOU_0504 2024.22 USA300HOU_0383 2303.80 

USA300HOU_0959 29.970 USA300HOU_0383 581.00 USA300HOU_1670 979.56 

USA300HOU_0505 26.869 USA300HOU_1666 170.09 USA300HOU_2045 674.50 

USA300HOU_2116 21.058 USA300HOU_1194 70.67 USA300HOU_1632 552.33 

USA300HOU_1823 17.964 USA300HOU_2515 34.03 USA300HOU_0275 40.56 

USA300HOU_0993 13.532 USA300HOU_0411 24.59 USA300HOU_1052 17.60 

USA300HOU_1727 12.620 USA300HOU_0275 12.78 
  USA300HOU_1403 12.402 USA300HOU_1667 12.25 
  USA300HOU_0990 12.370 

    USA300HOU_1539 11.124 
    USA300HOU_1404 10.499 
    USA300HOU_0136 0.099 
    USA300HOU_1385 0.099 
    USA300HOU_0035 0.097 
    USA300HOU_2368 0.092 
    USA300HOU_1293 0.091 
    USA300HOU_0693 0.090 
    USA300HOU_0703 0.089 
    USA300HOU_1856 0.089 
    USA300HOU_1765 0.088 
    USA300HOU_2655 0.087 
    USA300HOU_2130 0.085 
    USA300HOU_0718 0.085 
    USA300HOU_2503 0.085 
    USA300HOU_1729 0.067 
    USA300HOU_1728 0.064 
    USA300HOU_0498 0.063 
    USA300HOU_0351 0.062 
    USA300HOU_2302 0.058 
    USA300HOU_0681 0.056 
    USA300HOU_0769 0.056 
    USA300HOU_0662 0.053 
    USA300HOU_2109 0.053 
    USA300HOU_1350 0.052 
    USA300HOU_0682 0.043 
    USA300HOU_0683 0.024 
    USA300HOU_0794 0.023 
    USA300HOU_0031 0.023 
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MW2 WT 0.1µg/ml 
oxacillin ratio 

MW2 WT 1µg/ml 
oxacillin ratio 

MW2 WT 10µg/ml 
oxacillin ratio 

aroA 41.88 clpP 9297.33 relA 18665.86 

MW0926 14.68 MW2393 3058.90 MW0465 12952.65 

  
MW0465 3052.45 guaB 401.18 

  
relA 2661.21 clpP 156.33 

  
hemB 1359.00 hemB 118.00 

  
hemE 334.50 MW0177 69.80 

  
topB 173.81 pgk 33.27 

  
guaB 140.66 

  

  
aroA 134.63 

  

  
guaA 121.43 

  

  
hemH 70.87 

  

  
menE 59.88 

  

  
aroB 45.41 

  

  
aroC 36.04 

  

  
pyrC 34.52 

  

  
MW0765 16.10 

  

  
hemY 14.92 

  

  
MW1872 13.76 

  

  
MW0913 10.03 

   

 

 
MW2 ∆hsdR 0.1 
ug/ml oxacillin ratio 

MW2 ∆hsdR 1 
ug/ml oxacillin ratio 

MW2 10 ∆hsdR 
ug/ml oxacillin ratio 

MW2301 19.64 clpP 7491.25 relA 2188.66 

MW0883 14.12 srrA 1121.30 clpP 1029.00 

MW0926 14.11 fmt 1112.95 MW0465 943.76 

pbuX 10.06 relA 1028.63 guaB 115.70 

aapA 0.03 MW0465 425.69 MW2041 67.07 

  
guaB 194.70 

  

  
MW0883 54.23 

  

  
MW1145 32.00 

  

  
comEB 12.39 

  

  
MW0153 6.18 
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USA300 + 8µg/ml 
mecillinam 

 

USA300 + 0.2µg/ml 
cefoxitin 

 Locus ratio Locus ratio 

USA300HOU_0504 48.66 USA300HOU_1869 10.98 

USA300HOU_0413 48.04 USA300HOU_1841 10.95 

USA300HOU_2715 9.07 USA300HOU_1680 10.51 

USA300HOU_2714 8.81 USA300HOU_1403 10.35 

USA300HOU_1632 7.00 USA300HOU_1753 10.34 

USA300HOU_1667 5.50 USA300HOU_0014 10.31 

USA300HOU_1164 4.49 USA300HOU_1784 10.27 

USA300HOU_0505 4.26 USA300HOU_0836 10.09 

USA300HOU_1699 4.23 USA300HOU_1758 0.10 

USA300HOU_0021 4.17 USA300HOU_0995 0.10 

USA300HOU_0497 0.19 USA300HOU_1082 0.10 

USA300HOU_2302 0.18 USA300HOU_2694 0.10 

USA300HOU_1828 0.16 USA300HOU_2332 0.10 

USA300HOU_0693 0.15 USA300HOU_2126 0.10 

USA300HOU_0662 0.14 USA300HOU_1882 0.09 

USA300HOU_1559 0.13 USA300HOU_2702 0.09 

USA300HOU_0498 0.12 USA300HOU_1043 0.09 

USA300HOU_1022 0.11 USA300HOU_1497 0.09 

USA300HOU_0769 0.08 USA300HOU_1873 0.09 

USA300HOU_1224 0.07 USA300HOU_0790 0.09 

USA300HOU_0683 0.07 USA300HOU_1856 0.09 

USA300HOU_0794 0.07 USA300HOU_2598 0.09 

USA300HOU_1350 0.07 USA300HOU_1203 0.09 

USA300HOU_0681 0.06 USA300HOU_2276 0.09 

USA300HOU_0682 0.04 USA300HOU_1933 0.09 

USA300HOU_0031 0.03 USA300HOU_0809 0.08 

USA300HOU_0482 0.03 USA300HOU_2109 0.08 

  
USA300HOU_1357 0.08 

  
USA300HOU_0681 0.08 

  
USA300HOU_2120 0.08 

  
USA300HOU_0645 0.08 

  
USA300HOU_0722 0.08 

  
USA300HOU_0784 0.08 

  
USA300HOU_0636 0.07 

  
USA300HOU_1067 0.07 

  
USA300HOU_0072 0.07 

  
USA300HOU_2254 0.07 

  
USA300HOU_1880 0.07 

  
USA300HOU_1308 0.06 

  
USA300HOU_0100 0.06 

  
USA300HOU_1093 0.06 

  
USA300HOU_0684 0.06 

  
USA300HOU_0588 0.06 

  
USA300HOU_1846 0.05 

  
USA300HOU_0683 0.05 

  
USA300HOU_2587 0.05 

  
USA300HOU_1872 0.05 
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USA300HOU_1495 0.05 

  
USA300HOU_0693 0.05 

  
USA300HOU_1022 0.05 

  
USA300HOU_1876 0.04 

  
USA300HOU_1859 0.04 

  
USA300HOU_2038 0.04 

  
USA300HOU_0794 0.04 

  
USA300HOU_1913 0.04 

  
USA300HOU_1154 0.04 

  
USA300HOU_2175 0.04 

  
USA300HOU_1224 0.03 

  
USA300HOU_1042 0.03 

  
USA300HOU_2361 0.03 

  
USA300HOU_0480 0.02 

  
USA300HOU_0682 0.02 

  
USA300HOU_1556 0.02 

  
USA300HOU_0485 0.02 

  
USA300HOU_1155 0.02 

  
USA300HOU_2091 0.02 

  
USA300HOU_0889 0.02 

  
USA300HOU_0785 0.01 

  
USA300HOU_0031 0.01 

  
USA300HOU_0482 0.01 
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MW2 32ug/ml 
mecillinam 

 

MW2 0.4ug/ml 
cefoxitin 

 Locus ratio Locus ratio 

MW1169 164.125 rpsC 130.583 

relA 106.987 rpsB 52.800 

MW0465 73.078 fab 35.833 

rpoC 49.318 pnpA 21.351 

murE 24.125 murC 19.000 

MW0746 18.636 relA 14.094 

MW0413 17.364 MW0465 10.882 

fabZ 17.100 rpmB 10.833 

ksgA 15.667 leuS 0.098 

MW0766 14.283 MW2178 0.095 

MW0014 11.830 MW1502 0.081 

MW0896 11.233 mvaS 0.080 

menD 0.077 bfmBAB 0.076 

MW0408 0.076 MW1548 0.069 

MW0972 0.075 gyrB 0.067 

MW2178 0.070 recU 0.065 

mvaS 0.069 menD 0.063 

infB 0.065 dnaA 0.062 

bfmBAB 0.057 infB 0.043 

MW2509 0.055 MW0986 0.037 

recU 0.037 codY 0.027 

MW0718 0.028 MW1567 0.025 

dnaA 0.026 rplS 0.022 

MW1567 0.025 tagA 0.022 

codY 0.025 tagD 0.021 

gyrB 0.022 fni 0.007 

tagA 0.018 lexA 0.004 

rplS 0.015 
  tagD 0.010 
  fni 0.010 
  lexA 0.008 
  MW1548 0.005 
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H. How to run all custom R and Python scripts for analysis of Tn-Seq data  

 

The Python scripts for creating igv formatted files, finding the number of TA sites hit, performing 

the Mann-Whitney U analysis, and performing the Benjamini Hochberg correction were modified 

from ones made available upon request by Eric Rubin (Harvard Medical School). I wrote the 

rest. The simulation-based sampling normalization method was adapted from the EL-ARTIST 

Matlab scripts.  

 

Python scripts for identifying significant differences in mapped-reads 

Script: igv_staph_saouhsc_all_11-12.py  

This script takes the tabular hopcount files downloaded from Galaxy, and it converts them into 

igv-formatted files.  

Run: python igv_staph_saouhsc_all_11-12.py staph_TA.txt staph_genes.txt hopcountfile.tabular 

> output.igv 

Staph_TA.txt is any tab delimited file listing the genome, start of the TA site, and end of the TA 

site in three columns.  

Staph_genes.txt is any tab delimited file listing each gene, its starting location, and its ending 

location in three columns.  

Hopcountfile.tabular is the tab-delimited hop counts file downloaded from Galaxy 

Output will be in igv format 

1. import sys   
2.    
3. ## Gather all TA sites into dictionary   
4. TAsites = {}  
5. for line in open(sys.argv[1]):   
6.     split = line.split()   
7.     if split[0] == 'TA':   
8.         TAsites[int(split[4])] = [0]   
9. #print TAsites   
10.    
11. ## Add gene name as second string in dictionary value   
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12. for line in open(sys.argv[2]):   
13.     split = line.split('\t')   
14.     name = split[0]; start = int(split[1]); end = int(split[2])+1   
15.     for i in range(start, end):   
16.         if i in TAsites: TAsites[i].append(name)   
17. #print TAsites   
18.           
19. ## Add read counts to first item in dictionary value list   
20. whole_text=file(sys.argv[3]).read()   
21. arrayed = whole_text.split('\n')   
22. #lenarrayed = len(arrayed)   
23. #print lenarrayed   
24. #    print line   
25. for line in arrayed:   
26.     split = line.split("\t")   
27.     #print split[1]   
28.     #split = line.split('\t')   
29.     pos = 0 ## set pos as int denoting position   
30.     if len(split)>= 6 and split[1].isdigit() == True:   
31.         if int(split[4]) != 0:   
32.             pos = int(split[1]) ##    
33.             if pos+15 in TAsites:   
34.                 TAsites[pos+15][0] = TAsites[pos+15][0]+int(split[4])   
35.             elif pos+14 in TAsites:   
36.                 TAsites[pos+14][0] = TAsites[pos+14][0]+int(split[4])   
37.         if int(split[5]) != 0:   
38.             pos = int(split[1])   
39.             if pos-15 in TAsites:    
40.                 TAsites[pos-15][0] = TAsites[pos-15][0]+int(split[5])   
41.             elif pos-16 in TAsites:   
42.                 TAsites[pos-16][0] = TAsites[pos-16][0]+int(split[5])   
43.         else:   
44.             pass                   
45. ## Print   
46.    
47. keys = TAsites.keys()   
48. keys.sort()   
49.    
50. #print "#track name=vanc10_all color=255,255,255 altColor=RRR,GGG,BBB maxHeightPixels=1

28:128:11 graphType=bar midRange=20:80 midColor=200,200,200 viewLimits=0:600000 windowi
ngFunction=maximum coords=0 scaleType=linear featureVisivilityWindow=50 gffTags=off"   

51. for k in keys:   
52.     print 'SAOHSC', '\t', int(k), '\t', int(k) + 2, '\t', TAsites[k][0],   
53.     if len(TAsites[k]) > 1: print '\t', TAsites[k][1]   
54.     else: print  

 

Script: Hit_Sites_Counter.py 

This script only takes one argument, the igv file created above. It outputs the total possible 

number of TA sites, the number of reads that map to TA sites, and the number of TA sites those 

reads map to.  

Run: python Hit_Sites_Counter.py output.igv  



 

241 

 

1. import sys   
2.    
3. TA = 0; Reads = 0; HitSites = 0   
4.    
5. for line in open(sys.argv[1]):   
6.     split=line.split()   
7.     if len(split) > 3:   
8.         if split[3][0].isdigit() == True:   
9.             TA += 1   
10.             Reads += float(split[3])   
11.             if float(split[3]) > 0: HitSites += 1   
12.        
13. print 'TA = %d' % (TA)   
14. print 'Reads = %d' % (Reads)   
15. print 'Sites Hit = %d' % (HitSites)   

 

Script: combineigv.py 

If multiple biological replicates are done or if you simply want to combine multiple igv files, this 

script will do it. Takes any number of igv files as arguments, outputs combined igv file.  

Run: python igv1.igv, igv2.igv, igv3.igv, etc. > combinedigv.igv 

1. import sys   
2.    
3. #need to make dictionary of TA site and reads   
4.    
5. TAsites = {}   
6. for line in open(sys.argv[1]):   
7.     split = line.split('\t')   
8.     TAsites[int(split[1])]=[]   
9.    
10. #print TAsites   
11.    
12. for arg in sys.argv[1:]:   
13.     for line in open(arg):   
14.         split = line.split('\t')   
15.         site = int(split[1])   
16.         reads = int(split[3].rstrip())   
17.         if site in TAsites:   
18.             TAsites[site].append(reads)   
19.    
20. #print TAsites   
21.    
22. #Next add together read numbers and output as original igv   
23. allreads = {}   
24. for k,v in TAsites.iteritems():   
25.     sumreads = sum(v)   
26.     allreads[k]=sumreads   
27. #print allreads   
28.    
29. for line in open(sys.argv[1]):   
30.     split = line.split('\t')   
31.     #print len(split)   
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32.     site = int(split[1])   
33.     if site in allreads:   
34.         if len(split)<5:   
35.             print "%s\t%d\t%d\t%d" % (split[0],site,int(split[2]),allreads[site])   
36.         elif len(split)<6:   
37.             print "%s\t%d\t%d\t%d\t%s" % (split[0],site,int(split[2]),allreads[site],sp

lit[4].rstrip())  

 

Script: normalization.py 

This script is essentially a translation of the EL-ARTIST normalization method from MatLab to 

Python. It takes two arguments. The first should be the igv file with more TA sites hit, and the 

second the one with fewer TA sites hit. It outputs the first argument normalized down to the 

second argument’s level of diversity.  

Run: python normalization.py moretasiteshit.igv fewertasiteshit.igv > normalizedfirstigvfile.igv 

1. from math import *   
2. from numpy import *   
3.    
4. TActrl = 0; Readsctrl = 0; HitSitesctrl = 0   
5. inputreads = []   
6. saouhsc= []   
7. start = []   
8. end = []   
9. window = []   
10. for line in open(sys.argv[1]):   
11.     split=line.split('\t')   
12.     if len(split) > 4:   
13.         if split[3][0].isdigit() == True:   
14.             inputreads.append(float(split[3]))   
15.             saouhsc.append(split[0])   
16.             start.append(split[1])   
17.             end.append(split[2])   
18.             window.append(split[4].rstrip('\n'))   
19.             TActrl += 1   
20.             Readsctrl += float(split[3])   
21.             if float(split[3]) > 0: HitSitesctrl += 1   
22.    
23. TAexp = 0; Readsexp = 0; HitSitesexp = 0   
24. for line in open(sys.argv[2]):   
25.     split=line.split()   
26.     if len(split) > 3:   
27.         if split[3][0].isdigit() == True:   
28.             TAexp += 1   
29.             Readsexp += float(split[3])   
30.             if float(split[3]) > 0: HitSitesexp += 1   
31.    
32. TAproportion =  float(HitSitesexp)/HitSitesctrl      
33.    
34. inputproportion = []   
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35. for i in inputreads:   
36.     inputproportion.append(float(i)/Readsctrl)   
37. inputproportiontanorm = []   
38. for i in inputproportion:   
39.     inputproportiontanorm.append(float(i)*TAproportion)   
40.    
41. inputproportiontanorm.append(TAproportion-1)   
42.    
43. multinominputsample = numpy.random.multinomial(Readsexp,inputproportiontanorm,100)   
44. multinominputsample = multinominputsample.T   
45. for i in range(len(multinominputsample[0])):   
46.     summulti = sum(multinominputsample[:,i])   
47. multisum = numpy.repeat(summulti,100)   
48. difference=numpy.repeat(multisum-multinominputsample[-1,0],100)   
49. correctionfactor = round(float(Readsexp)/difference[0],4)   
50. correctedinput = [i*correctionfactor for i in multinominputsample]   
51. bootstrapcontrol = numpy.delete(correctedinput, (-1), axis=0)   
52. avgbootstrapcontrol = bootstrapcontrol.mean(axis=1)   
53.    
54. x = 0   
55. for x in range(0,len(avgbootstrapcontrol)):   
56.     print saouhsc[x], '\t', start[x], '\t', end[x], '\t', avgbootstrapcontrol[x], '\t',

 window[x]   
57.     x+=1   

 

Script: mannwhitneyu_8-24-15.py 

This program collects the reads mapping to each gene and identifies statistically significant 

differences between the control and experimental condition using the Mann-Whitney U test. It 

also performs some other calculations on the data which can be used to further analyze the 

data.  

Run: python mannwhitneyu_8-24-15.py staph_genes.txt control.igv experiment.igv > output.txt 

Staph_genes.txt is tab-delimited staph genes file described above 

Control.igv is igv file from control datasets 

Experiment.igv is igv file from experiment datasets 

Output.txt is a tab-delimited file that can be opened in Microsoft Excel. Column 1: gene loci, 

column 2, number of TA sites in that gene, column 3: number reads mapping to that gene in the 

control data, column 4: number of reads mapping to that gene in the experimental data, column 

5: U statistic, column 6: p-value, column 7: ratio in reads in the experiment normalized to the 

control, 8: length of the gene, column 9: reads mapping to that gene in the control normalized to 
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gene length, column 10: same as column 9 but for the experimental condition, column 11: 

location of the start of the gene, column 12: location of the end of the gene.  

1. import sys, random, scipy, numpy   
2. from math import *   
3. from scipy import stats   
4.    
5.    
6. ## DEFINE GENE NAMES, STARTS, ENDS   
7.    
8. genes = {}; genereads = {}   
9.    
10. init = 0   
11. count = 1   
12.    
13. for line in open(sys.argv[1]):   
14.     split = line.split('\t')   
15.     name = split[0]; start = int(split[1]); end = int(split[2])   
16.     genes[name] = [start, end]   
17.     genereads[name] = [[],[]]   
18. #print genes       
19.            
20. genelist = genes.keys()   
21. genelist.sort()   
22. #print genelist   
23. #print genereads   
24.    
25. ## DEFINE RATIO BETWEEN TOTAL READ COUNTS AS CORRECTION   
26. Lib1Reads = 0; Lib2Reads = 0   
27. Lib1TA = 0; Lib2TA = 0   
28.    
29. for line in open(sys.argv[2]):   
30.     #print line   
31.     split = line.split()   
32.     #print split[3][0]   
33.     if len(split)>1 and split[3][0].isdigit()==True:   
34.         Lib1TA += 1   
35.         Lib1Reads += float(split[3])   
36. #print Lib1Reads   
37.    
38. for line in open(sys.argv[3]):   
39.     split = line.split()   
40.     if len(split)>1 and split[3][0].isdigit()==True:   
41.         Lib2TA += 1   
42.         Lib2Reads += float(split[3])   
43.    
44. ratio = float(Lib1Reads)/float(Lib2Reads)   
45.    
46. ## SET DICTIONARIES WITH GENE READS   
47.    
48. ## set first for Library 1   
49. for line in open(sys.argv[2]):   
50.     split = line.split()   
51.     #print split   
52.     if len(split) > 4 and split[3][0].isdigit() == True and split[4] in genereads:   
53.         site = int(split[1]); start = int(genes[split[4]][0]); end = int(genes[split[4]

][1])   
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54.         length = end - start   
55.         if (start+(0.03*length)) <= site <= (end-(0.03*length)):   
56.             genereads[split[4]][0].append(float(split[3]))   
57.     #else:   
58.     # print split [4]   
59.    
60. ## set for Library 2   
61. for line in open(sys.argv[3]):   
62.     split = line.split()   
63.     if len(split) > 4 and split[3][0].isdigit() == True and split[4] in genereads:   
64.         site = int(split[1]); start = int(genes[split[4]][0]); end = int(genes[split[4]

][1])   
65.         length = end - start   
66.         if (start+(0.03*length)) <= site <= (end-(0.03*length)):   
67.             genereads[split[4]][1].append(float(split[3]))   
68.    
69. ## MANN-WHITNEY U TEST FOR ALL GENES   
70. #print genereads   
71. #print len(genelist)   
72. for i in range(len(genelist)):   
73.     #print genelist[i]   
74.     SAO = genelist[i]   
75.     start = genes[SAO][0]; end = genes[SAO][1]   
76.     #print end   
77.     Lib1Counts = genereads[SAO][0]   
78.     Lib2Counts = genereads[SAO][1]   
79.     TA = len(Lib1Counts)   
80.     readslib1 = sum(Lib1Counts)   
81.     readslib2 = sum(Lib2Counts)   
82.     length = end - start   
83.     if length > 0:   
84.         index1 = readslib1/length   
85.         index2 = readslib2/length   
86.     if TA == 0:   
87.         print "%s\t%d\t%s" % (SAO,TA,'Gene Has No TAs')   
88.     else:   
89.         if sum(Lib1Counts) == 0 and sum(Lib2Counts) ==0:   
90.             print "%s\t%d\t%s\t%s\t%s\t%s\t%s\t%d\t%s\t%s\t%r\t%r" % (SAO,TA,'0','0','0

','0','0',length,'0','0',start,end)   
91.         else:   
92.             try:   
93.                 U, p_val = scipy.stats.mannwhitneyu(Lib1Counts,Lib2Counts)   
94.                 CountRatio = float(sum(Lib2Counts)+1)/float(sum(Lib1Counts)+1)   
95.                 #print "%s\t%d\t%d\t%0.5f\t%0.3f" % (SAO,TA,U,p_val,CountRatio)   
96.                 print "%s\t%d\t%d\t%d\t%d\t%0.100f\t%0.10f\t%d\t%0.10f\t%0.10f\t%r\t%r"

 %    
97. (SAO,TA,readslib1,readslib2,U,p_val,CountRatio,length,index1,index2,start,end)   
98.             except (ValueError):   
99.                 pass   

 

Script: gene_fdr_taboutput.py 

This script corrects for multiple hypothesis testing by modifying the p-value using the Benjamini 

Hochberg procedure. It outputs a tab-delimited file with two columns: the gene locus and the 
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new p-value. This can be manually inserted into the Mann-Whitney output file. Note: This script 

does not work if there are non-numbers in your Mann-Whitney p-value column. Sometimes, 

SAOUHSC_01447 results in a p-value = nan. If script does not work, this could be why.  

Run: python gene_fdr_taboutput.py mannwhitneyoutput.txt > corrpvalue.txt 

Mannwhitneyoutput.txt should be the output of the previous script. Adding headings to columns 

will mess it up. After performing this analysis, headings can be added.  

1. import operator, random, sys   
2.    
3. ## Create Dictionary with genes and P-vals {gene:[p-val],...}   
4.    
5. gene_dict = {}   
6.    
7. for line in open(sys.argv[1]):   
8.     split = line.split('\t')   
9.     #print split   
10.     if len(split) >= 7:   
11.         gene_dict[split[0]] = [split[5]]   
12.    
13. #print gene_dict   
14. ## Function that calculates Benjamini-Hochberg FDR q-

values. Argument required is ordered list of p-values.   
15.    
16. def bh_qvalues(pv):   
17.     """  
18.     Return Benjamini-Hochberg FDR q-values corresponding to p-values C{pv}.  
19.   
20.     This function implements an algorithm equivalent to L{bh_rejected} but  
21.     yields a list of 'adjusted p-values', allowing for rejection decisions  
22.     based on any given threshold.  
23.   
24.     @type pv: list  
25.     @param pv: p-values from a multiple statistical test  
26.   
27.     @rtype: list  
28.     @return: adjusted p-values to be compared directly with the desired FDR  
29.       level  
30.     """   
31.     if not pv:   
32.         return []   
33.     m = len(pv)   
34.     args, pv = zip(*sorted(enumerate(pv), None, operator.itemgetter(1)))   
35.     #print args   
36.     qvalues = m * [0]   
37.     mincoeff = pv[-1]   
38.     qvalues[args[-1]] = mincoeff   
39.     for j in xrange(m-2, -1, -1):   
40.         coeff = m*pv[j]/float(j+1)   
41.         if coeff < mincoeff:   
42.             mincoeff = coeff   
43.         qvalues[args[j]] = mincoeff   
44.     return qvalues   
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45.    
46. ## Create ordered list of p_values with their corresponding genes   
47.    
48. genes_list = []   
49.    
50. for k,v in gene_dict.iteritems():   
51.     genes_list.append([v[0],k])   
52.    
53. genes_list.sort()   
54.    
55. p_vals = []; genes = []   
56.    
57. for i in genes_list:   
58.     p_vals.append(float(i[0]))   
59.     genes.append(i[1])   
60. #print p_vals   
61.    
62. ## Assign q values for each p value   
63.    
64. q_vals = bh_qvalues(p_vals)   
65. #print q_vals   
66.    
67. ## Return q values to dictionary   
68.    
69. for i in range(len(p_vals)):   
70.     if genes[i] in gene_dict:   
71.         gene_dict[genes[i]].append(q_vals[i])   
72. #print gene_dict   
73. ## Print   
74.    
75. for line in open(sys.argv[1]):   
76.     split = line.split('\t')   
77.     print "%s\t" % split[0],   
78.     if split[0] in gene_dict: print gene_dict[split[0]][1],   
79.     print  

 

Python scripts for identifying upregulated genes 

Script: igv_staph_saouhsc_plus.py and igv_staph_saouhsc_minus.py 

These scripts are both converts from tabular hopcount files to igv-formatted files and are run in 

the same way as igv_staph_saouhsc.py. The only differences are that the output for one 

consists of only reads mapping to the plus strand and the other consists of reads mapping only 

to the minus strand 

Run: python igv_staph_saouhsc_plus.py staph_TA.txt windowstable.txt hopcount.tabular > 

outputplusstrand.igv 
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Run: python igv_staph_saouhsc_minus.py staph_TA.txt staph_genes.txt hopcount.tabular > 

outputminusstrand.igv 

Windows_table.txt is a tab-delimited file that has split the entire genome into 270bp segments or 

windows. It consists of column 1: genome name, column 2: start of the window, and column 3: 

end of the window 

Igv_staph_saouhsc_plus.py 

1. import sys   
2.    
3. ## Gather all TA sites into dictionary   
4.    
5. TAsites = {}   
6.    
7. for line in open(sys.argv[1]):   
8.     split = line.split()   
9.     if split[0] == 'TA':   
10.         TAsites[int(split[4])] = [0]   
11. #print TAsites   
12. ## Add gene name as second string in dictionary value   
13.    
14. for line in open(sys.argv[2]):   
15.     split = line.split('\t')   
16.     name = split[0].rstrip(); start = int(split[1]); end = int(split[2])+1   
17.     for i in range(start, end):   
18.         if i in TAsites: TAsites[i].append(name)   
19. #print TAsites   
20.     
21.            
22.    
23. ## Add read counts to first item in dictionary value list   
24. whole_text=file(sys.argv[3]).read()   
25. arrayed = whole_text.split('\n')   
26. #lenarrayed = len(arrayed)   
27. #print lenarrayed   
28. #    print line   
29. for line in arrayed:   
30.     split = line.split("\t")   
31.     #print split[1]   
32.     #split = line.split('\t')   
33.     pos = 0 ## set pos as int denoting position   
34.     if len(split)>= 6 and split[1].isdigit() == True:   
35.         if int(split[4]) != 0:   
36.             pos = int(split[1]) ##    
37.             if pos+15 in TAsites:   
38.                 TAsites[pos+15][0] = TAsites[pos+15][0]+int(split[4])   
39.             elif pos+14 in TAsites:   
40.                 TAsites[pos+14][0] = TAsites[pos+14][0]+int(split[4])         
41.             else:   
42.                 pass              
43. ## Print   
44.    
45. keys = TAsites.keys()   
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46. keys.sort()   
47.    
48. for k in keys:   
49.     print 'SAOHSC', '\t', int(k), '\t', int(k) + 2, '\t', TAsites[k][0],   
50.     if len(TAsites[k]) > 1: print '\t', "'""'",TAsites[k][1],"'"   
51.     else: print   
52. import sys   

igv_staph_saouhsc_minus.py 

1. import sys   
2.    
3. ## Gather all TA sites into dictionary   
4.    
5. TAsites = {}   
6.    
7. for line in open(sys.argv[1]):   
8.     split = line.split()   
9.     if split[0] == 'TA':   
10.         TAsites[int(split[4])] = [0]   
11. #print TAsites   
12. ## Add gene name as second string in dictionary value   
13. for line in open(sys.argv[2]):   
14.     split = line.split('\t')   
15.     name = split[0].rstrip(); start = int(split[1]); end = int(split[2])+1   
16.     for i in range(start, end):   
17.         if i in TAsites: TAsites[i].append(name)   
18. #print TAsites   
19.     
20.            
21.    
22. ## Add read counts to first item in dictionary value list   
23.    
24.    
25. whole_text=file(sys.argv[3]).read()   
26. arrayed = whole_text.split('\n')   
27. #lenarrayed = len(arrayed)   
28. #print lenarrayed   
29. #    print line   
30. for line in arrayed:   
31.     split = line.split("\t")   
32.     #print split[1]   
33.     #split = line.split('\t')   
34.     pos = 0 ## set pos as int denoting position   
35.     if len(split)>= 6 and split[1].isdigit() == True:   
36.         if int(split[5]) != 0:   
37.             pos = int(split[1])   
38.             if pos-15 in TAsites:    
39.                 TAsites[pos-15][0] = TAsites[pos-15][0]+int(split[5])   
40.             elif pos-16 in TAsites:   
41.                 TAsites[pos-16][0] = TAsites[pos-16][0]+int(split[5])   
42.             else:   
43.                 pass                   
44. ## Print   
45.    
46. keys = TAsites.keys()   
47. keys.sort()   
48.    
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49. for k in keys:   
50.     print 'SAOHSC', '\t', int(k), '\t', int(k) + 2, '\t', TAsites[k][0],   
51.     if len(TAsites[k]) > 1: print '\t', "'""'",TAsites[k][1],"'"   
52.     else: print   

Script: normalization.py 

Essentially the same as the previously-described normalization file.  

Run: python normalization.py moretasiteshit.igv fewertasiteshit.igv > normalizedfirstigvfile.igv  

1. import sys, numpy   
2. from math import *   
3. from numpy import *   
4.    
5. TActrl = 0; Readsctrl = 0; HitSitesctrl = 0   
6. inputreads = []   
7. saouhsc= []   
8. start = []   
9. end = []   
10. window = []   
11. for line in open(sys.argv[1]):   
12.     split=line.split('\t')   
13.     if len(split) > 3:   
14.         if split[3][0].isdigit() == True:   
15.             inputreads.append(float(split[3]))   
16.             saouhsc.append(split[0])   
17.             start.append(split[1])   
18.             end.append(split[2])   
19.             window.append(split[4].rstrip('\n'))   
20.             TActrl += 1   
21.             Readsctrl += float(split[3])   
22.             if float(split[3]) > 0: HitSitesctrl += 1   
23.    
24. TAexp = 0; Readsexp = 0; HitSitesexp = 0   
25. for line in open(sys.argv[2]):   
26.     split=line.split()   
27.     if len(split) > 3:   
28.         if split[3][0].isdigit() == True:   
29.             TAexp += 1   
30.             Readsexp += float(split[3])   
31.             if float(split[3]) > 0: HitSitesexp += 1   
32.    
33. TAproportion =  float(HitSitesexp)/HitSitesctrl      
34.    
35. inputproportion = []   
36. for i in inputreads:   
37.     inputproportion.append(float(i)/Readsctrl)   
38. inputproportiontanorm = []   
39. for i in inputproportion:   
40.     inputproportiontanorm.append(float(i)*TAproportion)   
41.    
42. inputproportiontanorm.append(TAproportion-1)   
43.    
44. multinominputsample = numpy.random.multinomial(Readsexp,inputproportiontanorm,100)   
45. multinominputsample = multinominputsample.T   
46. for i in range(len(multinominputsample[0])):   
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47.     summulti = sum(multinominputsample[:,i])   
48. multisum = numpy.repeat(summulti,100)   
49. difference=numpy.repeat(multisum-multinominputsample[-1,0],100)   
50. correctionfactor = round(float(Readsexp)/difference[0],4)   
51. correctedinput = [i*correctionfactor for i in multinominputsample]   
52. bootstrapcontrol = numpy.delete(correctedinput, (-1), axis=0)   
53. avgbootstrapcontrol = bootstrapcontrol.mean(axis=1)   
54.    
55. x = 0   
56. for x in range(0,len(avgbootstrapcontrol)):   
57.     print saouhsc[x], '\t', start[x], '\t', end[x], '\t', avgbootstrapcontrol[x], '\t',

 window[x]   
58.     x+=1   

 

Script: promoter_analysis.py 

This takes the igv files and the normalized igv files and identifies TA sites with a large increase 

in number of reads compared to the control and a preference for insertion orientation. If 

experiment condition hit more TA sites and is the normalized one, arguments are run in the 

same order.  

Run: python promoter_analysis.py normalizedctrlplusreads.igv experimentplusreads.igv 

normalizedminusreads.igv experimentminusreads.igv > output.txt 

Output is a tab-delimited file with column 1: window name, column 2: TA site location, column 3: 

hit direction (if plus, upregulating downstream genes, if minus upregulating upstream genes, 

column 4: log(ratio) plus strand, column 5: log(ratio)minus strand, column 6: log(reads) plus 

strand, and column 7: log(reads) minus strand. Values are converted to log(1+value) to make 

distribution more normal.  

1. import sys, numpy   
2. from math import *   
3. from numpy import *   
4.    
5. TAdict = {}   
6. hitdict = {}   
7. #extract TAsite location and put it in as key for dictionary   
8. for line in open(sys.argv[1]):   
9.     split = line.split('\t')   
10.     TAsite = int(split[1])   
11.     TAdict[TAsite] = []   
12.     hitdict[TAsite] = []   
13.    
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14. #put reads into dictionary   
15. for line in open(sys.argv[1]):   
16.     split = line.split('\t')   
17.     name = split[4].rstrip('\n')   
18.     TAdict[int(split[1])].append(name)   
19.     reads = int(round(float(split[3]),0))   
20.     reads = reads + 1   
21.     TAdict[int(split[1])].append(reads)   
22.    
23. for line in open(sys.argv[2]):   
24.     split = line.split('\t')   
25.     reads = int(round(float(split[3]),0))   
26.     reads = reads+1   
27.     TAdict[int(split[1])].append(reads)   
28.    
29. for line in open(sys.argv[3]):   
30.     split = line.split('\t')   
31.     reads = int(round(float(split[3]),0))   
32.     reads = reads+1   
33.     TAdict[int(split[1])].append(reads)   
34.    
35. for line in open(sys.argv[4]):   
36.     split = line.split('\t')   
37.     reads = int(round(float(split[3]),0))   
38.     reads = reads+1   
39.     TAdict[int(split[1])].append(reads)   
40.    
41. #print TAdict   
42. #calculate and add ratios to dictionary   
43. for k in TAdict:   
44.     #print TAdict[k][3]   
45.     ratioplus = float(TAdict[k][2])/TAdict[k][1]   
46.     #print ratioplus   
47.     TAdict[k].append(ratioplus)   
48.     logratioplus = log10(ratioplus)   
49.     #print logratioplus   
50.     TAdict[k].append(logratioplus)   
51.     ratiominus = float(TAdict[k][4])/TAdict[k][3]   
52.     #print ratiominus   
53.     TAdict[k].append(ratiominus)   
54.     logratiominus = log10(ratiominus)   
55.     #print logratiominus   
56.     TAdict[k].append(logratiominus)   
57.     readsplus = int(TAdict[k][2])   
58.     logreadsplus = log10(readsplus)   
59.     TAdict[k].append(logreadsplus)   
60.     logreadsminus = log10(TAdict[k][4])   
61.     TAdict[k].append(logreadsminus)   
62.    
63. #print TAdict   
64. #make lists of logplus and log minus also of reads for exp   
65. logplus = []   
66. logminus = []   
67. logreadsplus = []   
68. logreadsminus = []   
69. for k in TAdict:   
70.     logplus.append(TAdict[k][6])   
71.     logminus.append(TAdict[k][8])   
72.     logreadsplus.append(TAdict[k][9])   
73.     logreadsminus.append(TAdict[k][10])   
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74.    
75. #calculate average and standard deviations - ADJUST NUMBERS HERE!   
76. meanplus = float(sum(logplus))/len(logplus)   
77. meanminus = float(sum(logminus))/len(logminus)   
78. meanreadsplus = float(sum(logreadsplus))/len(logreadsplus)   
79. meanreadsminus = float(sum(logreadsminus))/len(logreadsminus)   
80. twosdplus = 7*(numpy.std(logplus, axis=0)) #This value can be modified to increase/decr

ease cutoffs   
81. twosdminus = 7*(numpy.std(logminus, axis=0)) #This value can be modified to increase/de

crease cutoffs   
82. sdreadsplus = 7*(numpy.std(logreadsplus, axis=0)) #This value can be modified to increa

se/decrease cutoffs   
83. sdreadsminus = 7*(numpy.std(logreadsminus, axis=0)) #This value can be modified to incr

ease/decrease cutoffs   
84. ratiocutoffplus = meanplus+twosdplus   
85. ratiocutoffminus = meanminus+twosdminus   
86. readscutoffplus = meanreadsplus+sdreadsplus   
87. readscutoffminus = meanreadsminus+sdreadsminus   
88.    
89. #filter and print   
90. keys = TAdict.keys()   
91. keys.sort()   
92.    
93. hitsplus = "hitsplus"   
94. hitsminus = "hitsminus"   
95. #find hits   
96. for k in keys:   
97.     if TAdict[k][6] > ratiocutoffplus and TAdict[k][9] > readscutoffplus:   
98.         TAdict[k].append(hitsplus)   
99.     elif TAdict[k][8] > ratiocutoffplus and TAdict[k][10] > readscutoffminus:   
100.         TAdict[k].append(hitsminus)   
101. #print TAdict   
102. for k in keys:   
103.     #print TAdict[k][-1]   
104.     #print isinstance(TAdict[k][-1], str)   
105.     if isinstance(TAdict[k][-1],str)==True:   
106.         #print TAdict[k][-1]   
107.         #print k   
108.         hitdict[k].append(TAdict[k][0])   
109.         hitdict[k].append(TAdict[k][6])   
110.         hitdict[k].append(TAdict[k][8])   
111.         hitdict[k].append(TAdict[k][9])   
112.         hitdict[k].append(TAdict[k][10])    
113.         hitdict[k].append(TAdict[k][-1])      
114.    
115. hitkeys = hitdict.keys()   
116. hitkeys.sort()   
117.    
118. #this is the new printing part   
119. print 'window name \t TAsite \t hitdirection \t logratioplus \t logratiominus \t

 logreadsplus \t logreadsminus'   
120. for k in keys:   
121.     if len(hitdict[k]) > 4:      
122.         print hitdict[k][0], '\t', k, '\t', hitdict[k][-

1], '\t', hitdict[k][1], '\t', hitdict[k][2], '\t', hitdict[k][3], '\t', hitdict[k][4] 
  

123.        
124. #print hitdict 
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Script: driver.py 

Running the promoter analysis for each sample one script at a time is somewhat time-intensive, 

so this script can be run on everything at once. All control and experiment tabular files need to 

be in a directly with only the other scripts necessary for running this analysis. In addition, files 

must be named in a certain way. Control files must be named “control_tnconstruct.tabular” and 

experiment files must be named “experimentalcondition_tnconstruct.tabular” where tnconstruct 

= blunt, cap, dual, erm, pen or tuf.  

Run: python driver.py 

This file automatically outputs the files in the same format described above.  

1. import os   
2. from subprocess import call   
3.    
4. def without_extension(filename):   
5.     return os.path.splitext(filename)[0]   
6.    
7. def get_hit_sites(path):   
8.     TA = 0; Reads = 0; HitSites = 0   
9.    
10.     input_file = open(path)   
11.     for line in input_file:   
12.         split = line.split()   
13.         if len(split) > 3:   
14.             if split[3][0].isdigit() == True:   
15.                 TA += 1   
16.                 Reads += float(split[3])   
17.                 if float(split[3]) > 0: HitSites += 1   
18.     input_file.close()   
19.     return HitSites   
20.    
21. inputs = [path for path in os.listdir('.') if path.endswith('.tabular')]   
22. igv_files = []   
23. for data in inputs:   
24.     name = without_extension(data)   
25.     map_to_ta_plus = name + 'plus.igv'   
26.     map_to_ta_minus = name + 'minus.igv'   
27.     run_command = "python %s Staph_TA.txt windows_table.txt " + data   
28.     os.system(run_command % "igv_staph_saouhsc_plus.py" + " > " + map_to_ta_plus)   
29.     os.system(run_command % "igv_staph_saouhsc_minus.py" + " > " + map_to_ta_minus)   
30.     igv_files.append(map_to_ta_plus)   
31.     igv_files.append(map_to_ta_minus)   
32.    
33.    
34. def get_promoter_analysis_name(filename):   
35.     name = without_extension(filename)   
36.     # names are usually like moe16_tufminus   
37.     return name.split('_')[1]   
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38.    
39. # Normalize!   
40. # We need to group the igv files by promoter analysis name so we can   
41. # pass the control and experiment to normalize   
42. group_labels = set(map(get_promoter_analysis_name, igv_files))   
43. grouped_items = []   
44. for group_label in group_labels:   
45.     group = []   
46.     for igv_file in igv_files:   
47.         if group_label in igv_file: group.append((igv_file, get_hit_sites(igv_file)))   
48.     grouped_items.append(group)   
49.    
50. # We want to sort by the hit sit count. We already stored this count in the tuple:   
51. # [[(ctrl_path1, hit_site), (expr_path1, hit_site)], [(ctrl_path2, hit_site), (expr_pat

h2, hit_site)]]   
52. normalized_args = [sorted(group, key=lambda item: item[1], reverse=True) for group in g

rouped_items]   
53.    
54. # Extract only path from each tuple in the groups   
55. paths = [(group[0][0], group[1][0]) for group in normalized_args]   
56.    
57. # We will generate a list of the inputs for each pair to promoter_analysis   
58. # will have to repair plus and minus later   
59. # TODO make this not suck   
60. promoter_analysis_inputs = []   
61. for arg1, arg2 in paths:   
62.     # output arg1 with norm before extension   
63.     destination = without_extension(arg1) + ".norm.igv"   
64.     os.system("python normalization.py %s %s > %s" % (arg1, arg2, destination))   
65.     if arg1.startswith('control_'):   
66.         promoter_analysis_inputs.append((destination, arg2))   
67.     else:   
68.         promoter_analysis_inputs.append((arg2, destination))   
69.    
70. promoter_args = []   
71. # We need to re-pair plus with minus before calling promoter analysis   
72. plus_strands = [strand for strand in promoter_analysis_inputs if "plus" in strand[0]]   
73. minus_strands = [strand for strand in promoter_analysis_inputs if "plus" not in strand[

0]]   
74. for plus_strand in plus_strands:   
75.     promoter_name = str.replace(get_promoter_analysis_name(str.replace(plus_strand[0], 

'.norm', '')), 'plus', '')   
76.     for minus_strand in minus_strands:   
77.         if promoter_name in minus_strand[0]:   
78.             promoter_args.append(plus_strand + minus_strand)   
79.    
80. for arglist in promoter_args:   
81.     print arglist   
82.   # Changed line!   
83.     output_name = str.replace(str.replace(arglist[0].split('_')[1], '.norm.igv', ''), '

plus', '') + ".promoter.out"   
84.     command = "python promoteranalysis.py %s %s %s %s > " + output_name   
85.     # Changed line!   
86.     os.system(command % (arglist[1],arglist[0],arglist[3],arglist[2]))   
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Python scripts for identifying genes with similar resistance and sensitization patterns 

Script: mwu_to_cluster_11-1-15.py 

This converts a mann-whitney U output file and a false discovery rate file to put the data into the 

format required for performing the k-nearest neighbors classifier analysis. It modifies the ratio to 

account for a few number of reads in both the control and the experiment, and it also calculates 

the normalized fitness value which we use in these clustering analyses.  

Run: python mwu_to_cluster.py mwu_sample.txt fdr_sample.txt > outputforclustering.txt 

Output consists of a csv (comma-separated) file with column1: gene locus, column 2: number of 

TA sites, column 3: length, column 4: number of reads in the control sample mapping to this 

gene, column 5: number of reads in the experimental sample mapping to this gene, column 6: 

raw ratio value, column 7: corrected p-value, column 8: modified ratio, column 9: Reads 

mapping to the gene in the experiment normalized to the length of the gene, column 10: 

normalized fitness value (used for clustering) 

1. import operator, random, sys   
2.    
3. ## Create Dictionary with genes and P-vals {gene:[p-val],...}   
4.    
5. gene_dict = {}   
6.    
7. #find total reads in ctrl and exp   
8. readcountctrl = 0   
9. readcountexp = 0   
10. for line in open(sys.argv[1]):   
11.     split = line.split('\t')   
12.     #print split   
13.     if split[0][0:3]=='SAO':   
14.         try:   
15.             readcountctrl = readcountctrl + int(split[2])   
16.             readcountexp = readcountexp + int(split[3])   
17.         except Exception:   
18.             pass   
19.    
20.    
21. mincountctrl = float(readcountctrl)/10000   
22. mincountexp = float(readcountexp)/10000   
23.    
24. #put important info in a dictionary: 0-#TA sites, 1-length, 2-readsctrl,3-readsexp, 4-

rawratio, 5-modratio, 6-index, 7-rawfitscore   
25. for line in open(sys.argv[1]):   
26.     split = line.split('\t')   
27.     if split[0][0:3]=='SAO' and int(split[1])>=0:   
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28.         try:   
29.             readsctrl=int(split[2])   
30.         except Exception:   
31.             pass   
32.         if readsctrl < mincountctrl: readsctrl = mincountctrl   
33.         try:   
34.             readsexp = int(split[3])   
35.         except Exception:   
36.             pass   
37.         if readsexp <mincountexp: readsexp = mincountexp   
38.         ratio = float(readsexp)/readsctrl   
39.         try:   
40.             TAsites = int(split[1])   
41.             length = int(split[7])   
42.             rawratio = float(split[6])   
43.             #print split[6]   
44.             index = float(readsexp)/length   
45.             rawfit = ratio*index   
46.             gene_dict[split[0]] = [TAsites,length,int(split[2]),int(split[3]),rawratio,

ratio,index,rawfit]   
47.         except Exception:   
48.             pass   
49.           
50. #Add corrected pval from fdr file into dictionary   
51. #0-#TA sites, 1-length, 2-readsctrl,3-readsexp, 4-rawratio, 5-modratio, 6-index, 7-

rawfitscore, 8-corrpval   
52. for line in open(sys.argv[2]):   
53.     split = line.split('\t')   
54.     if split[0] in gene_dict:   
55.         gene_dict[split[0]].append(float(split[1].rstrip()))   
56.    
57. #print gene_dict   
58.    
59. #Make fitvals a list instead of a dict for calculating norm-fit value   
60. fitvals = []   
61. for k,v in gene_dict.iteritems():   
62.     fitvals.append([v[7],k])   
63.    
64. fitvals.sort()   
65. count=0   
66. for f in fitvals:   
67.     f.append(count)   
68.     count+=1   
69.     normorder = float(count)/len(fitvals)   
70.     f.append(normorder)   
71. #print fitvals   
72.    
73. #put normalized fitval into genedict   
74. for f in fitvals:   
75.     gene = f[1]   
76.     if gene in gene_dict:   
77.         gene_dict[gene].append(f[3])   
78. #print gene_dict   
79.    
80. genes = gene_dict.keys()   
81. genes.sort()   
82.    
83. for g in genes:   
84.     #print len(gene_dict[g])   
85.     if len(gene_dict[g]) > 6:   
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86.         print "%s,%d,%d,%d,%d,%0.10f,%0.100f,%0.10f,%0.10f,%0.6f" % (g,gene_dict[g][0],
gene_dict[g][1],gene_dict[g][2],gene_dict[g][3],gene_dict[g][4],gene_dict[g][8],gene_di
ct[g][5],gene_dict[g][6],gene_dict[g][9])   

87.    
88.         #genename,#TAsites,length,readsctrl,readsexp,rawratio,corrpval,modratio,index,n

ormfitscore   

 

Script: fit_to_array_for_knn_predictgene.py 

This script is used to identify the 5 nearest neighbors that have a similar resistance and 

sensitization pattern as a gene of interest. Inputs include outputs of mwu_to_cluster.py (as 

many as you want). Gene of interest is simply typed in. Essential genes are removed ahead of 

time for this analysis.  

Run: python fit_to_array_for_knn_predictgene.py essentials.txt clustfile1.txt clustfile2.txt 

clustfile3.txt etc SAOUHSC_01234 > output.txt 

Essentials.txt is list of essential genes  to be removed from the analysis 

Output is a list of every gene in the genome and the probability estimates for the list of five most 

similar genes. Probability estimates add up to one. Note: probability estimates will be one fewer 

than number of genes. You need to move the column down one row after your gene of interest 

to identify the correct most similar genes.  

1. import sys   
2. import numpy as numpy   
3. from sklearn import neighbors   
4.    
5. #put data in array format   
6.    
7. y = []   
8. X = []   
9. genenames = {}   
10. unknown = []   
11. essgenes = []   
12.    
13. #first value in dictionary is unknown   
14. for arg in sys.argv:   
15.     if "essentials" in arg:   
16.         for line in open(arg):   
17.             #print line.rstrip()   
18.             essgenes.append(line.rstrip())   
19.    
20. for arg in sys.argv:   
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21.     if arg.endswith('.txt') == True:   
22.         for line in open(arg):   
23.             split = line.split(',')   
24.             if len(split) > 2:   
25.                 name = split[0]   
26.                 if any(name in x for x in essgenes):   
27.                     pass   
28.                 else:   
29.                     fitval = float(split[9].rstrip())   
30.                     if name not in genenames:   
31.                         genenames[name]=[fitval]   
32.                     else:   
33.                         genenames[name].append(fitval)   
34.     else:   
35.         geneofinterest = arg   
36. #print essgenes   
37. #print len(genenames)   
38. for k,v in genenames.iteritems():   
39.     if k == geneofinterest:   
40.         unknown.append(v)   
41.     else:   
42.         X.append(v)   
43.         y.append(k)   
44. #print X   
45.    
46. #fit data wiht K nearest neighbors   
47. n_neighbors = 5 #this can be increased or decrease   
48. h=0.2 #this is the step size in mesh    
49.    
50. #see http://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html for diff
erent options here   

51. for weights in ['uniform','distance']:   
52.     neigh = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)   
53.     neigh.fit(X,y)   
54.    
55. #predict for unknown   
56.    
57. for i in neigh.predict_proba(unknown):   
58.     listofclosestneighbors = i   
59.     for i in listofclosestneighbors:   
60.         print i   

 

Python scripts for predicting antibiotic mechanism of action using machine learning 

Script: fit_to_array_for_knn_2-29.py 

This script identifies the antibiotic class most similar to a test/new antibiotic based on the 

resistance factor pattern for that antibiotic. First, you need to decide which antibiotics to use and 

how to classify them. Each class receives its own integer value to identify it. The unknown 

antibiotic must have the word “unknown” in its file name. This version of the script identifies the 
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unique set of genes in the top 25% and bottom 25% of fitness values for every antibiotic put into 

the training set and uses those genes to predict the mechanism of a new antibiotic.  

Run: python fit_to_array_for_knn_2-29.py clust_compound1.txt category1 clust_compound2.txt 

category2 clust_compound3.txt category3 etc. clust_unknown.txt 

Outputs the most similar category as well as the probability estimates for each category.  

1. import sys   
2. import numpy as numpy   
3. from sklearn import neighbors   
4.    
5. #put data in array format   
6.    
7. y = []   
8. X = []   
9. unknown = []   
10.    
11. cutoff=0.25   
12.    
13. for arg in sys.argv:   
14.     if arg.endswith('.txt') == True:   
15.         if "unknown" in arg:   
16.             for line in open(arg):   
17.                 split = line.split(',')   
18.                 #unknown.append(float(split[9].rstrip()))   
19.                 if float(split[5].rstrip()) >= 1-cutoff:   
20.                     unknown.append(split[5].rstrip())   
21.                 elif float(split[5].rstrip()) <= cutoff:   
22.                     unknown.append(split[5].rstrip())   
23.                 else:   
24.                     pass   
25.         else:   
26.             fitvals = []   
27.             for line in open(arg):   
28.                 split = line.split(',')   
29.                 #fitvals.append(float(split[9].rstrip()))   
30.                 if float(split[5].rstrip()) >= 1-cutoff:   
31.                     fitvals.append(split[5].rstrip())   
32.                 elif float(split[5].rstrip()) <= cutoff:   
33.                     fitvals.append(split[5].rstrip())   
34.                 else:   
35.                     pass   
36.             #print fitvals   
37.             X.append(fitvals)   
38.     else:   
39.         try:   
40.             y.append(int(arg))   
41.         except ValueError:   
42.             pass   
43. #print len(fitvals)   
44. print len(unknown)   
45. #print len(y)   
46. #print X   
47. #print y   
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48.    
49. #fit data wiht K nearest neighbors   
50.    
51. n_neighbors = 2   
52. h=0.2 #this is the step size in mesh - can change it to figure out what it does   
53. metric = "minkowski"   
54.    
55. #see http://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html for diff
erent options here   

56. for weights in ['uniform','distance']:   
57.     neigh = neighbors.KNeighborsClassifier(n_neighbors, weights=weights, metric=metric)

   
58.     neigh.fit(X,y)   
59.    
60. #predict for unknown   
61. print neigh.predict(unknown)   
62. print neigh.predict_proba(unknown)  

 

R scripts 

R scripts can be run all at once or line by line in the RGui. I recommend running them line by 

line in the Gui to better troubleshoot issues 

 

Script: pca.R 

This performs principal component analysis on Tn-Seq data and plots it on a graph. Inputs 

should be a comma-separated value formatted array containing the treatment conditions and 

genes you are interested in comparing. It can also be done with every gene in the genome.  

1. #Principle components analysis   
2.    
3. #set working directory   
4. setwd("C:/Users/etc")   
5.    
6. #load data   
7. mydata <- read.csv("data.csv")   
8.    
9. # Pricipal Components Analysis   
10. # entering raw data and extracting PCs    
11. # from the correlation matrix    
12. fit <- princomp(mydata, cor=TRUE)   
13. summary(fit) # print variance accounted for    
14. loadings(fit) # pc loadings    
15. plot(fit,type="lines") # scree plot    
16. fit$scores # the principal components   
17. biplot(fit)   
18.    
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19. #Plot PCA graph   
20. png("pca_donors.png",width=500, height=500, res=100)   
21. plot(loadings(fit),type="n", main="Compounds", cex.main=1.5,xlab="Component 1", ylab="C

omponent 2",cex.lab=1.5)   
22. text(loadings(fit),labels=colnames(mydata))   
23. dev.off()   

 

Script: hierarchicalclustering.R 

This script performs hierarchical clustering on any set of Tn-Seq data and outputs a heatmap of 

the results. Input should be a tab-delimited file containing an array of the antibiotic treatments 

and genes of interest 

1. setwd("C:/Users/etc/")   
2.    
3. #load data   
4. data <- read.table("tab-

delimitedarray.txt",header=T, stringsAsFactors=T, row.names=1)   
5. mydata=na.omit(data)   
6.    
7.    
8. ## Hierarchical clustering routine   
9. y <- mydata   
10. hr <- hclust(as.dist(1-cor(t(y), method="pearson")), method="complete"); hc <-

 hclust(as.dist(1-
cor(y, method="spearman")), method="complete") # Generates row and column dendrograms. 
  

11. mycl <- cutree(hr, h=max(hr$height)/1.5); mycolhc <-
 rainbow(length(unique(mycl)), start=0.1, end=0.9); mycolhc <-
 mycolhc[as.vector(mycl)] # Cuts the tree and creates color vector for clusters.   

12.    
13. library(gplots); myheatcol <-

 redgreen(66) # Assign your favorite heatmap color scheme. Some useful examples: colorp
anel(40, "darkblue", "yellow", "white"); heat.colors(75); cm.colors(75); rainbow(75); r
edgreen(75); library(RColorBrewer); rev(brewer.pal(9,"Blues")[-
1]). Type demo.col(20) to see more color schemes.   

14.    
15. png('graphfitvalknowns1.png', width=720, height=720)   
16. heatmap.2(as.matrix(y), Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=myheatcol, 

scale="row", density.info="none", trace="none", RowSideColors=mycolhc, margin=c(20,10),
 cexCol=2.0, cexRow=0.001) # Creates heatmap for entire data set where the obtained clu
sters are indicated in the color bar.   

17. dev.off()   
18.    
19. x11(height=6, width=2); names(mycolhc) <-

 names(mycl); barplot(rep(10, max(mycl)), col=unique(mycolhc[hr$labels[hr$order]]), hor
iz=T, names=unique(mycl[hr$order])) # Prints color key for cluster assignments. The num
bers next to the color boxes correspond to the cluster numbers in 'mycl'.   

20.    
21. clid <- c(4,6); ysub <- as.matrix(y[names(mycl[mycl%in%clid]),]); hrsub <-

 hclust(as.dist(1-cor(t(ysub), method="pearson")), method="complete")    
22.     # Select sub-

cluster number (here: clid=c(1,2)) and generate corresponding dendrogram.   
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23.    
24. x11(); heatmap.2(ysub, Rowv=as.dendrogram(hrsub), Colv=as.dendrogram(hc), col=myheatcol

, scale="row", density.info="none", trace="none", RowSideColors=mycolhc[mycl%in%clid]) 
# Create heatmap for chosen sub-cluster.   

25.    
26. #This gets you genes from any point you care about   
27. genenames <-

 data.frame(Labels=rev(hrsub$labels[hrsub$order])) # Print out row labels in same order
 as shown in the heatmap.   

28. write.table(genenames, file="genenames.txt")   


