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Abstract

I present a three-dimensional map of interstellar dust reddening, covering three-quarters of the

sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 and 2MASS photometry. The

map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a

hybrid angular resolution, with most of the map at an angular resolution of 3.4′ to 13.7′, and a max-

imum distance resolution of ∼25%. The three-dimensional distribution of dust is determined in a

fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line

of sight, as well as stellar distances, reddenings and classifications for 800 million stars detected by

Pan-STARRS 1. The method developed here compares observed stellar photometry with empirical

stellar templates, incorporating prior knowledge about the structure of the Galaxy.

I validate the per-star reddening estimates by comparison with reddening estimates for stars with

both SDSS photometry and SEGUE spectral classifications, finding per-star agreement to within

∼0.15 mag out to a stellar E(B−V ) of 1mag. I demonstrate the consistency of the resulting redden-

ing estimates with those of two-dimensional emission-based maps of dust reddening. In particular,

I find agreement with the Planck τ353 GHz-based reddening map to within 0.05mag in E(B−V ) to a

depth of 0.5mag, and explore systematics at reddenings less than E(B−V ) ≈ 0.08mag. I compare

the 3Dmap developed here to two existing three-dimensional dust maps, by Marshall et al. (2006)
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and Lallement et al. (2014), exploring the strengths and weaknesses of the different 3Dmapping

methods. The map presented here has better angular resolution than both 3Dmaps compared, and

it has better distance resolution thanMarshall et al. (2006) within ∼3 kpc, but shows radial “finger-

of-God” features not contained in Lallement et al. (2014).

The map can be queried or downloaded at http://argonaut.skymaps.info. I expect the

three-dimensional reddening map presented here to find a wide range of uses, among them correct-

ing for reddening and extinction for objects embedded in the plane of the Galaxy, studies of Galactic

structure, calibration of future emission-based dust maps and determining distances to objects of

known reddening. The method we present is not limited to the passbands of the Pan-STARRS 1

and 2MASS surveys, but may be extended to incorporate photometry from other optical and near-

infrared surveys, such as WISE, Spitzer GLIMPSE, UKIDSS, SDSS, and in the future, LSST and

Gaia. The method can also be naturally extended to stellar kinematic data, such as that soon to be

released byGaia.
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0
Introduction

LL
ooking up on a dark night, one can make out a faint, nebulous glow that

arcs across the sky. If the night is especially clear and dark, one can perceive dark

lanes reaching through this band of light. Today, we know that this nebulosity is

actually a mass of billions of stars, too faint and close together for our eyes to discern them as individ-

ual points of light. Because most of the stars of our Galaxy, the MilkyWay, are located in a flattened
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disc, in which our Solar system is embedded, these stars appear to trace out an arc across the sky. The

dark lanes and spots that appear superimposed on this arc are regions where intervening clouds of

small particles absorb or scatter away a substantial portion of the background starlight. These parti-

cles are known in astrophysics as “dust.”

Because interstellar dust attenuates the light of background objects, knowing howmuch dust is

along the line of sight is of critical importance when determining the true brightness of an object.

Further complicating matters, interstellar dust does not absorb equally across the entire electro-

magnetic spectrum. Dust extinction peaks in the ultraviolet (UV), and declines as wavelength in-

creases through the visible and infrared (IR) regions of the spectrum. Thus, not only is the apparent

brightness of an object affected by dust, but also the shape of the spectrum. A precise knowledge of

both the total column density of dust and the shape of the wavelength–extinction curve is therefore

needed to accurately correct observations in the ultraviolet, visible, and infrared.

Up until recently, most work on mapping interstellar dust extinction has focused on the two-

dimensional distribution of dust across the sky. The distribution of dust along the third dimen-

sion, distance, is much more difficult to obtain. This thesis presents work that I have carried out

on mapping the extinction caused by interstellar dust in the MilkyWay in three dimensions. The

second critical aspect required for precision astronomy – the problem of mapping variation in the

wavelength–extinction curve of dust across the MilkyWay – is left for future investigation.

The thesis is organized as follows. § 0 discusses the history of the investigation of interstellar dust,

gives a brief overview of relevant dust properties, and introduces several methods which have been

used to map dust reddening and extinction in two dimensions across the sky. § 1 presents a proba-
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bilistic framework for inferring the three-dimensional structure of dust reddening. In § 2, the em-

pirical models necessary to apply this framework to the Pan-STARRS 1 and 2MASS photometric

surveys are developed. In § 3, I validate the methods developed in § 1, using both simulated catalogs

and comparisons with real data. § 4 presents the resulting three-dimensional map of dust redden-

ing, and compares it with previous two- and three-dimensional maps. Finally, § 5 points to some

directions forward in the field of dust mapping.

0.1 The Discovery of Dust

The pre-Socratic Greek philosopher Democritus, an atomist who lived from the late 5th to the early

4th century B.C., held that the light of the MilkyWay comes from a large number of stars. In a short

overview of the views of various philosophers on the subject, Pseudo Plutarch* writes that Dem-

ocritus believed the MilkyWay to be “the splendor which ariseth from the coalition of many small

bodies, which, being firmly united amongst themselves, do mutually enlighten one another” (Ps.

Plut. Plac. 3.1; trans. W. Goodwin, 1874). In the modern age, it was Galileo who first confirmed this

hypothesis, soon after first directing his telescope at the sky. Through the telescope, the faint glow of

the MilkyWay resolves into individual points of light. In a wonderful passage of Sidereॺ Nunciॺ

(The Starry Messenger) that emphasizes the importance of empiricism in science, Galileo relates,

In third place, I have observed the essence or substance of the MILKYWAY circle. By
the aid of a telescope anyone may behold this in a manner which so distinctly appeals

*Placita Philosophorumwas long falsely attributed to the great Greek historian Plutarch. Pseudo Plutarch
therefore refers to the unknown author of Placita. As no works of Democritus have survived to the present
day, we rely on second-hand reports, including the works of so-called doxographers, such as Pseudo Plutarch,
to relate Democritus’ views.
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to the senses that all the disputes which have tormented philosophers through so
many ages are exploded at once by the unquestionable evidence of our eyes, and we
are freed from wordy disputes upon this subject, for the GALAXY is nothing else but
a mass of innumerable stars planted together in clusters. Upon whatever part of it you
direct the telescope straightway a vast crowd of stars presents itself to view; many of
them are tolerably large and extremely bright, but the number of small ones is quite
beyond determination. (Galileo, 1610; trans. P. Baker, 2004)

In the late 18th century, WilliamHerschel undertook a careful count of the number of visible

stars, in an attempt at determining “the construction of the Heavens” (Herschel 1785). Scanning

along lines of constant Galactic longitude, Herschel counts the number of stars visible in his tele-

scope at different Galactic latitudes. He notices that while the number of stars increases as one ap-

proaches the MilkyWay, there are areas where the star count drops suddenly to zero. Herschel terms

such apparently starless regions of the MilkyWay “opening[s] in the Heavens.” Because he notices

dense clusters of stars in the vicinity of some of these “openings,” he speculates that they are indeed

devoid of stars, with all the stars having fallen into the nearby clusters.

The nature of these seemingly empty regions of the MilkyWay – whether they indeed lack stars

or whether some obscuring matter blocks our view of them – remained open until the early 20th

century, when astronomers converged on the problem from a number of different angles. Two as-

tronomers in particular, E.E. Barnard andMaxWolf, approached the problem directly by imaging

dark regions on the sky. Barnard (1916) advances a number of arguments as to why so-called “dark

markings on the sky” are caused by obscuring masses, rather than stellar voids. Perhaps the most

convincing arguments he makes involve comparisons with bright nebulae – that is, nebulae that are

bright in visible light (due to reflection of the light of nearby stars, although this mechanism was

4



(a) Gaseous Nebula NGC 6995. (b)Dark Object in Cepheus.

Figure 0.1: Adapted from Plate I of Barnard (1916), comparing a reflection nebula (left) with a dark nebula
(right). Note the similarity in the shape of the two nebulae. Barnard (1916) argues on the basis of such similari-
ties that “bright” and “dark” nebulae may be of similar nature, and that dark nebulae are therefore not regions
of space devoid of stars. © AAS. Reproduced with permission.

not known at the time). Barnard notes the similarity in shape and size between many bright nebulae

and “dark markings,” suggesting that they may be a related class of objects. A particularly striking

example is shown in Fig. 0.1. Barnard also notes that in some regions of the sky, nebula-shaped “dark

markings” are superimposed on bright nebulae, again suggesting that these dark regions are indeed

nebulae, rather than simply being starless regions of the Galaxy.

Wolf (1923) pursues this comparison further, pointing to regions of the sky where bright and dark

nebulae seem to be intertwined in complex forms, and arguing that the two types of nebulae must

somehow be connected. Wolf attempts here as well perhaps the first distance determination to a

dark nebula, by comparing distribution of stellar apparent magnitudes in the direction of the nebula

and in an unobscured field offset from the nebula.
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In order to understandWolf’s method, it is first necessary to introduce the concept of “distance

modulus,” a logarithmic unit of distance which will be used frequently throughout this thesis.

When dealing with magnitudes, distance modulus, denoted by µ, is often more useful than “raw”

distance. It is related to distance r by:

µ

1 mag
= 5 log10

(
r

10 pc

)
. (0.1)

Note that µ has units of magnitudes. The primary use of this unit is that increasing the distance

modulus of a source by a given number of magnitudes increases the apparent magnitude by an

equal amount.

Wolf’s method for determining distances to dark nebulae works as follows. Imagine that all stars

were to have the same absolute magnitude,M⋆. Because stars lie at different distances, we observe

them at a range of apparent magnitudes. Denote the number of stars brighter than apparent magni-

tudem asN⋆(< m). We observe two fields that are identical, except for the fact that the first is com-

pletely unobscured, while the second field has a dark nebula at fixed distance, which extinguishes

background stars. Let us assume the cloud in the obscured field is at distance modulus µcloud, and

extinguishes background stars byAmagnitudes. In the obscured sightline, stars with apparent mag-

nitudesm < M⋆ + µcloud are in front of the dust cloud. N⋆(< m) is therefore exactly the same

in the unobscured and obscured sightlines out to this apparent magnitude. Beyond this apparent

magnitude, however, stars in the obscured sightline are an additionalAmagnitudes fainter. In the

obscured sightline, there is therefore a break in the curveN⋆(< m), which allows one to determine
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Figure 0.2: A prototypical Wolf diagram, an early method of determining distances to dust clouds, in-
troduced byWolf (1923). The number of stars brighter than a given apparent magnitude is plotted for two
sightlines. The gray line corresponds to an unobscured sightline with no dust cloud, while the green line cor-
responds to a sightline with a single dust cloud. The two sightlines are identical, except that in the obscured
sightline, all the stars that are behind the cloud areAmagnitudes fainter.

the distance modulus and extinction of the dust cloud. An illustration of Wolf’s method is given in

Fig. 0.2.

In reality, things are not so simple as in this toy example. Stars come in a wide range of different

absolute magnitudes, and the dust along a given line of sight does not necessarily all reside at one dis-

tance. After Wolf’s initial paper on the subject, others began using “Wolf diagrams” to study cloud

distances, with varying levels of sophistication, and often questionable results (Bok 1960). A correct

implementation of Wolf’s idea requires a good knowledge of the luminosity function of stars, and

their spatial distribution throughout the MilkyWay, and requires a level of statistical modeling not

common in astronomy at the time.

Wolf (1923) finally studies the colors of stars in the region of a dark nebula, and away from the
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nebula. Wolf notes that neutral gas would redden stellar spectra through Rayleigh scattering, but

erroneously assumes that dust would have such an effect. In an example of two wrongs making a

right, Wolf measures no difference in colors of stars in the direction of the nebula and away from the

nebula, and concludes that dark nebulae contain dust.

A separate line of reasoning that led astronomers to consider the existence of interstellar extinc-

tion of light had to do with the number of observed stars in different regions of the sky. In 1847,

F.G.W. von Struve considered the observed distribution of stars across the sky, as a function of ap-

parent magnitude, finding it to be inconsistent with the hypothesis that the density of stars is the

same everywhere in space (Struve 1847). In fact, von Struve found that star counts rose less quickly

with magnitude than expected in all directions, implying that the density of stars falls off in all di-

rections from the Sun. One has to either accept that the Sun is in the center of the Galaxy, or that

observed stellar flux drops off faster than with the square of the distance. Let us again assume that all

stars have the same absolute magnitude,M⋆. At a given distance modulus, µ, stars will have appar-

ent magnitudem = M⋆ + µ. As before, denote the number of stars fainter than magnitudem as

N⋆(< m). The number of stars per unit distance is given by

dN
dr = 4πn0r 2 , (0.2)

where n0 is the number density of stars (which we are assuming to be uniform throughout the uni-
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verse). Using the fact that dr = ln 10
5 r dµ (which can be easily derived from Eq. (0.1)), we find that

dN
dµ

=
4π ln 10

5
n0r 3 ∝ 103µ/5 . (0.3)

Since apparent magnitude increases linearly with apparent magnitude, the above implies that

dN
dm ∝ 103m/5 . (0.4)

In a universe filled uniformly with stars of the same absolute magnitude, the number of observed

stars increases exponentially with apparent magnitude. If we now allow stars to have a range of ab-

solute magnitudes, we can see that we arrive at the same result. Each class of stars contributes a term

of the form Eq. (0.4) to the observed distribution of apparent magnitudes, with the result that dN
dm

is proportional to 103m/5, regardless of the distribution of absolute magnitudes. All that we have as-

sumed here is that stellar density is uniform, and that there is no obscuring matter.

Because the observed abundance of stars does not rise as quickly with apparent magnitude as

Eq. (0.4) dictates, Struve (1847) considers the possibility of an absorbing medium. Von Struve is also

motivated to assume the existence of interstellar extinction by Olbers’ paradox, which states that in

an infinite universe of infinite age, filled uniformly with stars, the sky will be as bright as the surface

of a star. Jacobus Kapteyn, at Groningen University, elaborates a similar argument to von Struve, re-

jecting the idea that the Sun is in a special position in the Galaxy (i.e., at the center) (Kapteyn 1904).

Kapteyn finds that if interstellar extinction increases by ∼ 1.6 magnitudes per kiloparsec, the data

9



available at the time implies a uniform stellar density throughout space. A smaller rate of increase

of extinction implies that stellar number density falls in all directions from the Sun, while a greater

extinction implies that the stellar number density rises in all directions.

Kapteyn then set about looking for selective extinction – that is, extinction that depends on wave-

length. If either gas or particulate matter causes extinction, one expects greater extinction at short

wavelengths than at long wavelengths. This means that stars that suffer greater extinction will also

appear redder, since less of their blue light reaches us. Kapteyn (1909a) and Kapteyn (1909b) con-

sider the measured photographic and visual magnitudes† (corresponding roughly to blue and green,

respectively) of stars with distance estimates and well-determined spectral classifications. Modeling

the dependence of observed photographic - visual magnitudes on apparent magnitude, absolute mag-

nitude and distance, Kapteyn finds that selective absorption increases by ∼ 0.66mag/kpc in these

passbands.

Kapteyn had found in 1890 that there were systematic differences in the distribution over the

sky of stars observed by surveys at different wavelengths. In particular, the ratio of the number of

stars observed in the Galactic plane to the number observed at the Galactic poles varied between

surveys (de Sitter 1900). Motivated by this finding, Kapteyn’s student, Willem de Sitter, undertook

a number of efforts to systematically compare the photographic - visual colors of stars in the Galac-
†The terms “photographic” and “visual” derive originally from the fact that there were two methods, in the

late 19th century, of determining the apparent brightness of stars. To the age-old method of assigning magni-
tudes based on the visual appearance of stars had been added the newmethod of assigning magnitudes based
on the appearance of stars on photographic plates. As photographic plates at the time were more sensitive to
blue light than the human eye, photographicmagnitudes could differ from visual magnitudes, depending on
the color of the object being observed. Thus, photographicmagnitudes are more a measure of the apparent
brightness of a star in blue light, while visual magnitudes are more a measure of apparent brightness in green
light.
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tic plane with those of stars at the Galactic poles (de Sitter 1900, 1904). As this was long before the

era of CCDs and electronic computers, accurate calibration of stellar magnitudes was a much more

painstaking and fraught task than it is today. Magnitudes at the time were determined from the

isophotal size of sources on photographic plates, and there was a worry that in crowded stellar fields

in the MilkyWay, isophotal size might vary differently with magnitude than in sparse fields. De Sit-

ter (1904) tested for this effect by taking two exposures on the same plate – one off the plane of the

Galaxy one in the plane. By switching the order in which these two exposures were taken (whether

the Galactic plane was imaged first or second), de Sitter could test the effect of crowding on the mag-

nitudes of stars at the Galactic poles. After convincing himself that his photometry war sufficiently

accurate, de Sitter concluded that the colors of stars at the Galactic poles are largely homogeneous,

while the colors of stars in the Galactic plane are redder, with large differences in the colors of stars

in different regions of the Galactic plane. De Sitter raised the possibility that this is due to the pres-

ence of a selectively absorbing medium, and references photographs of “extended faint nebulosities”

taken byMaxWolf and E.E. Barnard.

However, the existence of interstellar extinction was not completely uncontroversial. As late as

1916, Harlow Shapley argued that selective absorption was negligible (Shapley 1916). Noting that

Kapteyn and others had measured selective absorption with nearby stars, Shapley pointed out that

if the effect increases linearly with distance, a greater baseline would give a more accurate measure-

ment. Shapley took photometric and spectroscopic measurements in the globular cluster Messier

13, known then to be at a distance of more than a kiloparsec. To his surprise, Shapley found that the

colors of stars in M13 are similar to those of nearby stars. Given the great distance of the globular
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cluster, a uniform selective absorption of the magnitude claimed by Kapteyn (1909b) would be easily

observable. Shapley therefore concluded that selective absorption in interstellar space is negligible,

and that by extension, non-selective absorption is also most likely negligible. Interestingly, Shapley’s

findings convinced Kapteyn of the absence of interstellar absorption, which led him to conclude fur-

ther that the Sun must reside near the center of the MilkyWay (Gingerich 2000). The source of the

discrepancy between Shapley and Kapteyn’s results on selective absorption, of course, lies in the fact

that dust is not evenly distributed throughout the Galaxy. Interstellar dust is concentrated in a thin

(and extremely inhomogeneous) layer in the midplane of the MilkyWay. M13 lies significantly out

of the plane of the Galaxy, and therefore suffers little extinction from our point of view. As Gilmore

(2000) points out, it is difficult, from a modern perspective, to undestand how early-20th century as-

tronomers, looking up at the rifts of the MilkyWay (visible even to the naked eye) did not ascertain

that interstellar absorption is the norm, or indeed highly variable throughout space.

The photographs whichMaxWolf and E.E. Barnard published of “dark markings” on the sky did

much to persuade astronomers that such markings were indeed obscuring clouds. In 1922, Henry

Norris Russell, Harlow Shapley’s doctoral advisor, wrote that Bernard’s photographs had been par-

ticularly persuasive (Russell 1922). Russell was also of the opinion that such obscuring clouds in

the plane of the MilkyWay were the cause of the “region of avoidance,” the equatorial band of the

Galaxy where Globular Clusters were not observed (Seeley & Berendzen 1972a). Russell speculated

that the cause of obscuration in such clouds is fine dust. As larger grains are more efficient at absorb-

ing and scattering than very small grains or gas molecules, if they make up even a small portion of

total mass of such clouds, they should dominate the extinction (Russell 1922). Russell additionally
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discussed how light with wavelength much larger than the grain size is selectively extinguished (Rus-

sell assumed that Rayleigh scattering is the primary means of extinction), and concluded that grains

several microns in diameter will dominate interstellar extinction (Russell 1922).

A simple mathematical explanation of the dependence of extinction on grain size goes as follows.

Imagine that a cloud with total massM is composed of spherical particles of radius a. The mass of

each particle goes asm ∝ a 3, while the geometric cross-section of each particle goes as σgeom ∝ a 2.

However, the efficiency with which a particle extinguishes light of wavelength λ depends on the

ratio a/λ. The effective cross-section is then given by

σ = σgeom q
( a
λ

)
∝ a 2q

( a
λ

)
, (0.5)

where the efficiency q(a/λ) depends on the detailed scattering and absorption properties of the par-

ticles. The total number of particles in the cloud is given byN = M/m, and the total cross section of

all the particles is given byNσ. Thus,

Nσ =
Mσ

m ∝ 1
a q

( a
λ

)
. (0.6)

We can therefore see that the effect of grain size on the extinction of the cloud depends on how ef-

ficiency q scales with a/λ. When the grains are large compared to the wavelength of the impinging

light (i.e., a/λ ≫ 1), we are in the geometric optics limit, where diffraction of light around the parti-

cle is negligible, and q ≈ 1. Extinction therefore scales with 1/a. In the limit of large grains, increas-
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ing grain size decreases the total extinction of the cloud. In the opposite limit, where the grains are

much smaller than the wavelength (i.e., a/λ ≪ 1), scattering and absorption efficiency fall off more

quickly than a/λ, so total extinction scales with a positive power of a. In the limit of small grains,

therefore, decreasing grain size reduces the total extinction of the cloud. Thus, the maximum extinc-

tion is produced when the cloud is made up of particles for which a ∼ λ. As extinction is greatest in

the ultraviolet and optical regions of the spectrum, we can deduce that the grains causing the extinc-

tion are hundreds of nanometers to microns in scale.

In his 1909 paper, “On the Absorption of Light in Space,” Jacobus Kapteyn discusses an addi-

tional effect that interstellar matter might have: discrete spectral lines, which he terms “space lines.”

He remarks, however, that “[as] I have no evidence as to the real occurrence of such lines or bands,

no more need be said about them at present.” (Kapteyn 1909a) In the same year, the Lowell Obser-

vatory astronomer Vesto Slipher reported the discovery of Calcium absorption lines in stellar spectra

(Slipher 1909). If these lines were to arise from Calcium in the stellar atmsopheres, one would ex-

pect them to be red- or blueshifted in accordance with the proper motion of the stars. Slipher finds,

however, that these Calcium absorption lines do not shift in wavelength according to stellar proper

motions, and that, moreover, stars near to one another on the sky often share similar Calcium ab-

sorption features. Slipher references Kapteyn’s prediction, concluding that the observed Calcium

absorption lines arise from interstellar clouds (Slipher 1909; Seeley & Berendzen 1972a).

Thus, in the early 1900s, astronomers pursuing different avenues of research suggested that there

is extinction in interstellar space, that this extinction might be selective (i.e., that it might depend on

wavelength), that it might be associated with interstellar emission lines, and that it might be related
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to the problem of Herschel’s “opening[s] in the Heavens.”

In 1930, Robert J. Trumpler published a number of groundbreaking papers which firmly estab-

lished the existence of interstellar dust, established that it causes both general and selective extinc-

tion, gave an estimate of the grain size, traced how extinction varied with wavelength, and showed

that dust is concentrated in the plane of the Galaxy. Trumpler’s investigation of dust grew out of

his work on open clusters, groups of young stars that formed out of a single primordial cloud of gas

and dust. Trumpler measured the distance to open clusters using two different methods (Trumpler

1930b):

1. Comparison of the apparent diameters of open clusters with the expected physical diameter
of clusters having similar characteristics, and

2. Comparison of the apparent magnitudes of cluster stars with those of nearby stars having the
same spectral type.

For the first method, Trumpler divided open clusters into twelve categories, based on the level

of concentration of stars in the center of the cluster and the total richness (or number of stars) of

the cluster. Within each class of open clusters, Trumpler was able to derive a relation between the

apparent diameter of the cluster and its distance (Trumpler 1930b; Seeley & Berendzen 1972b). This

distance measure rests on the assumption that within each class of clusters, the physical diameter of

the cluster is predictable, so that distance can be inferred from apparent diameter. For the second

method, Trumpler derived absolute magnitudes for cluster stars by matching them with nearby

stars of the same spectral classification. If the absolute magnitude,M, of a star is known, then the
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distance modulus, µ, can be determined according to the equation

m = M+ µ , (0.7)

wherem is the apparent magnitude. This equation assumes that there is no obscuration of the star’s

light. Trumpler found that the magnitude-based measure systematically gives a larger distance es-

timate than the diameter-based measure (Trumpler 1930b,a). Additionally, Trumpler found that

the colors of cluster stars are systematically redder than their nearby counterparts of the same spec-

tral type. The presence of dust would both reconcile the two types of distance measurements and

explain the reddishness of stars in open clusters. The presence of extinction modifies Eq. (0.7) to

read

m = M+ µ+A , (0.8)

whereA is extinction, in magnitudes. Holdingm andM constant, larger extinctionA implies

smaller distance modulus µ. Assume thatA varies with distance, and rearrange the above, to obtain:

µ+A(µ) = m−M . (0.9)

Varying how extinction depends on distance will alter the solution for µ, and thus distance. Trum-

pler found that 0.7mag/kpcwould remove the discrepancy between his two types of distance mea-

sures (Trumpler 1930b,a). Trumpler’s results are visualized in Fig. 0.3. Consistency with Shapley’s
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Figure 0.3: Open cluster distances derived from photometry and from diameters, adapted from Trum-
pler (1930a), using distances from Table 3 of Trumpler (1930b). Open clusters with less certain photometric
distance estimates are denoted by lighter dots. The solid line shows the one-to-one relationship one would
expect in the absence of extinction, while the dotted line shows the relation one would expect if there were
unaccounted-for extinction. Even if the diameter distances are off by a linear scale factor, the non-linear rela-
tionship between the two distance measures indicates the presence of extinction.

finding of little selective extinction for globular clusters at high Galactic latitudes required that the

dust be concentrated in the plane of the MilkyWay (Trumpler 1930b,a). Trumpler’s work therefore

reconciled Kapteyn’s finding of significant general and selective absorption with Shapley’s finding

that distant globular clusters, significantly above the plane of the Galaxy, have little reddening.

Trumpler (1930a) contains a thorough discussion of the possible effects that an interposing

medium could have on our observations of astronomical sources, which is still well worth reading

in this day. The five effects he lists are

1. General absorption: extinction that does not depend on wavelength, which we would now
term the “gray component” of extinction.

2. Selective absorption: which we would also term “reddening” today.

3. Monochromatic absorption: extinction at discrete wavelengths, due to specific absorption
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lines in the interstellar medium.

4. Obscuration effects: complete absorption or scattering of the light of background objects,
which might be subsumed into the first category.

5. Dispersion of light: variation in the wave speed of light in the interstellar medium, which
would cause light of different wavelengths from transient events to reach us at different times.

Tentatively assuming extinction to come from Rayleigh scattering by small particles, Trumpler

calculates the density of obscuring matter that would be required to produce the observed extinc-

tion of 0.7mag/kpc. Rayleigh scattering occurs in the limit that the scattering particles are much

smaller than the wavelength of the impinging light. In the language of Eq. (0.5), q(a/λ) ∝ (a/λ)4.

Scattering efficiency thus drops dramatically as one decreases the size of the scattering particles. Mo-

tivated by the existence of calcium lines in the interstellar medium (as discovered by Vesto Slipher),

Trumpler (1930a) calculates the mass density that would be required if the scatterers were individual

calcium atoms. Because of the very small size of an individual calcium atom, its scattering efficiency

for optical light is extremely small, and an enormous density of atoms – equivalent to 1700 Solar

masses per cubic parsec – would be required to produce the observed growth of extinction with dis-

tance. By comparison, the total mass of stars in the solar neighborhood is on the order of one Solar

mass per cubic parsec. In order to reduce the necessary mass density of scatters to a reasonable level,

which Trumpler sets at half a Solar mass per cubic parsec, Trumpler calculates that each grain should

contain 3400 calcium atoms.‡ Thus, Trumpler (1930a) for the first time firmly established that the

matter responsible for interstellar extinction is dust-like in nature. Trumpler notes that this dust

‡As we now now, calcium is not the primary constituent of the interstellar medium. See § 0.2 for an
overview of the graphite/silicate model of dust. Trumpler’s reasoning, however, still stands, as it does not
depend on the atoms involved in the scattering being calcium.
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may be distributed highly unevenly throughout the MilkyWay, and that the “dark nebulae” may be

particularly dense condensations.

In a third paper from 1930, Trumpler investigates the wavelength–dependence of extinction, by

use of what we would now term the “pair method”: by comparing the spectrum of a distant star

with a nearby, and therefore presumably unreddened star, one can trace how extinction changes

with wavelength (Trumpler 1930c). Trumpler finds that the wavelength–dependence of interstellar

extinction does not follow Rayleigh’s law, and proposes that there may be a range of grain sizes in

the interstellar medium. From a modern perspective, we now know that this is half of the explana-

tion, but that absorption due to dust does not fall off as λ−4 at large wavelengths (see, e.g., Fig. 0.4).

Thus, by the end of 1930, one can say that the existence of dust in the interstellar medium was

firmly established. Since then, the study of interstellar dust has branched out in many directions,

including the effort to map its distribution throughout space in detail – an effort which this thesis

extends.

0.2 An Overview of Dust Properties

In the present era, while there has been much progress in the study of dust properties, our knowl-

edge of the composition of dust is still highly uncertain. It is beyond the scope of this introduction

to catalog the different models of dust composition. In what follows, I briefly review the present

state of knowledge about the basic properties of interstellar dust, focusing on the graphite/silicate

model, although it is by no means the only existing model.

The interstellar medium is 1% dust by mass, yet dust plays an outsize role in the physics of the
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ISM. Dust absorbs and scatters light in the UV, optical and NIR regions of the spectrum, re-radiating

away the energy it gains in the MIR and FIR. By one estimate, dust reprocesses an estimated 30% of

all stellar light in the Universe in this manner (Draine 2003). In optical UV, optical and NIR astron-

omy, one must often make corrections for the effect of dust extinction on one’s observations. In FIR

astronomy – particularly in studies of the cosmic microwave background – dust emission is often

a foreground contaminant. Thus, in many areas of astronomy, a good understanding of the dust

properties is important for precision measurements.

Given this fact, it is perhaps surprising that our current knowledge of the basic composition of

dust is highly uncertain. Models of dust composition must be designed to produce the observed

extinction and emission spectrum of interstellar dust, and are constrained in the range of dust com-

positions they can propose by the known abundance of different elements. Additional information

about grain properties come frommeasurements of the polarization of extinction. In what follows,

I will give a brief overview of dust extinction features, leaning heavily on one particular model of

dust composition, the graphite/silicate model of Weingartner &Draine (2001).

The modeled dust extinction spectrum ofWeingartner &Draine (2001) is plotted in Fig. 0.4.

The particular extinction spectrum plotted in Fig. 0.4 is for “average” MilkyWay dust, while Wein-

gartner &Draine (2001) also allows for variation in the dust properties. This is because the compo-

sition and radiative environment of dust varies throughout the MilkyWay, and, of course, from

galaxy to galaxy, leading to different extinction and emission spectra. However, some general fea-

tures of the dust extinction spectrum are:

• Extinction peaks in the UV, and then declines with increasing wavelength through the optical
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Figure 0.4: The dust extinction spectrum for “average” MilkyWay dust, according to the graphite/silicate
model of Weingartner &Draine (2001). Extinction is given in units of optical depth per hydrogen nucleon,
as a function of wavelength. The different regions of the spectrum are marked for ease of interpretation.
Both scattering and absorption of light by dust grains cause extinction. Of particular note are the 2175 Å
(0.2175µm) feature, likely caused by electronic π → π∗ transitions in PAHmolecules; and the broad ab-
sorption features in the MIR, likely caused by Si–O stretching and O–Si–O bending modes in amorphous
silicates. At long wavelengths, scattering obeys the Rayleigh’s law, with a λ−4 dependence, while absorption
drops off with λ−2.
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and IR.

• A “bump” in extinction at 2175 Å.

• Broad extinction features at λ ≈ 10µm and 18µm.

Polycyclic aromatic hydrocarbon (PAH) molecules or small graphite spheres are the most likely

cause of the peak in extinction at 2175 Å (Draine 2003). Both PAHs and graphite contain aromatic

rings – particularly stable hexagonal rings of carbon – with a delocalized electron in a π bonding

orbital. This electron has an excited anti-bonding state, π∗, with a gap approximately equivalent to

the energy of a photon with wavelength 2175 Å. Graphite and PAHmolecules therefore generally

have a π→ π∗ absorption feature in the 2175 Å region. The abundance of carbon in the interstellar

medium and the oscillator strength of this transition are sufficient to account for the observed 2175 Å

feature. This, together with the presence of what are likely PAH emission features in the MIR, make

PAHs and graphite an attractive explanation for the extinction peak at λ ≈ 2175 Å (Draine 2003). In

the Weingartner &Draine (2001) graphite–silicate model, PAHmolecules smaller than 0.01µm lock

up about 15% of the carbon in the interstellar medium (Draine 2003).

Broad extinction features in the MIR indicate the presence of silicates in the interstellar medium.

Si–O bonds in silicates have a stretching mode with energy spacing corresponding to λ = 9.7µm.

Because of the lack of detailed features in this absorption peak, most interstellar silicates are thought

to be amorphous, rather than crystalline (Draine 2003). A broad absorption feature at 18µm is likely

due to an O–Si–O bending mode in silicates. These two silicate absorption features are labeled in

Fig. 0.4.

The overall shape of the absorption and scattering spectrum over a wide range of wavelengths
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is produced largely by the distribution of grain sizes and the dielectric function of the grain mate-

rial. In the Weingartner &Draine (2001) model, the distribution of carbonaceous grain size, a, has

peaks at radii a ≈ 0.0005µm, 0.005µm and 0.3µm, while the silicate size distribution peaks at

a ≈ 0.2µm (Draine 2003). At wavelengths longer than the largest grain sizes, extinction drops

off rapidly, due to suppression by the factor q(a/λ) in Eq. (0.5). At short wavelengths, below a ∼

0.07µm, absorption is suppressed due to the high-frequency cut-off in the dielectric response func-

tion of the grains. Incident electric fields induce a polarization field within the grain materials by

adjustment of the electron orbitals. This polarization cannot be driven at frequencies significantly

higher than the classical electron orbital frequency, which for a bonding energy on the order of

13.6 eV is approximately 3 × 1015 Hz. This corresponds to a photon wavelength of ∼90 nm, not far

from the true dust absorption peak. Far above this frequency, the polarization field is increasingly

unable to react to the incident electric field, and the grain material becomes transparent.

In this thesis, we deal with photometric data from stars, taken in broad passbands. For this rea-

son, we are not sensitive to the precise behavior of extinction with wavelength, but rather to its ef-

fect on the apparent magnitudes of stars in each passband. The extinction in a passband is depen-

dent on the dust transmission curve (which is unitless), T(ν), the stellar spectral flux density (which

has units of energy flux per unit frequency), fν(ν), and the filter response curve (which is unitless),
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W(ν). The definition of the ABmagnitude§ is

mAB = −2.5 log10

[∫
fν(ν)W(ν) dν∫
f 0
ν W(ν) dν

]
, (0.10)

where f 0
ν = 3631 Jy is a constant. ExtinctionA is the increase in magnitude if we apply the dust

transmission T(ν) to the flux density fν(ν):

A = −2.5
[
log10

∫
fν(ν)T(ν)W(ν) dν − log10

∫
fν(ν)W(ν) dν

]
. (0.11)

If the dust transmission T(ν) is independent of frequency across the passband, thenA is indepen-

dent of fν andW:

A = −2.5
[
log10

∫
fν(ν)T0W(ν) dν − log10

∫
fν(ν)W(ν) dν

]
= −2.5 log10 T0 . (0.12)

Alternatively, if the filter response functionW(ν) is a Dirac delta centered on ν0,

A = −2.5
[
log10

∫
fν(ν)T(ν) δ(ν − ν0) dν − log10

∫
fν(ν) δ(ν − ν0) dν

]
= −2.5 log10 T(ν0) , (0.13)

§There are two common definitions of magnitudes in astronomy: the older “Vega magnitude” and the
newer “ABmagnitude.” While the former uses the flux density of Vega as its zeroeth-magnitude reference,
the latter uses an idealized reference of constant flux density. For Vega magnitudes, the term f 0

ν should be
replaced with f Vega

ν (ν).
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and extinction is again independent of the stellar spectrum. Because to some level, T(ν) is always de-

pendent on frequency, and because the filter response function is never infinitely narrow, the same

dust screen does not produce precisely the same extinction for two stars with different spectra. This

is typically a small effect, which we will ignore in the remainder of this thesis. For our purposes, dust

extinction is described by a vector, A⃗, the extinction in each band, which increases in magnitude

equally for all stars with increasing column density of dust, and whose direction and magnitude can

change if the dust properties are altered.

In this work, we rely on empirical prescriptions for dust extinction, rather than the models calcu-

lated from first principles, such as that of Weingartner &Draine (2001). Cardelli et al. (1989) found

that the variation in observed dust wavelength–extinction relation can be approximately described

by a one-parameter family of curves. Given a single parameter, RV, the shape of the 2175 Å bump

and the slope of the UV extinction curve is predictable for most lines of sight. This single parameter

is defined as the ratio of B− V color excess, E(B−V ), to total V-band extinction,AV:

RV =
E(B−V )

AV
, (0.14)

and can be understood as the ratio of selective to total extinction. Based on the findings of Cardelli

et al. (1989), we can write the extinction in any set of UV, optical or NIR bands as

A⃗ = R⃗(RV) E(B−V ) , (0.15)
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(a) SDSS r (λ ≈ 0.617µm) (b) SDSS i (λ ≈ 0.748µm) (c) SDSS z (λ ≈ 0.892µm)

(d) 2MASS J (λ ≈ 1.24µm) (e) 2MASSH (λ ≈ 1.66µm) (f) 2MASSKs (λ ≈ 2.16µm)

Figure 0.5: An interstellar cloud at six wavelengths in the optical and NIR. The cloud extinguishes a greater
fraction of the background starlight at shorter wavelengths. The imprint of the cloud is therefore strongest in
the SDSS r photograph, and weakest in the 2MASSKs photograph.

where R⃗ encodes the response of all the bands to a given color excess E(B−V ), and is, to first ap-

proximation, dependent only on the quantity RV. In the bulk of this thesis, we make the simplifying

assumption that all dust follows the same, “average” MilkyWay extinction law, with RV = 3.1. As

will be seen, there is evidence that this approximation is very rough indeed, but since fitting dust

properties throughout space adds an additional layer of complexity, it is left for future work.

The observable effect of dust in the optical and NIR can be seen in Fig. 0.5, which shows the

same stellar field, deep in the plane of the Galaxy, imaged in six different passbands, spanning the
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(a) SDSS r, i and z (b) SDSS r, i and z, stretched

(c) 2MASS J,H andKs (d) 2MASS J,H andKs. stretched

Figure 0.6: The same cloud as in Fig. 0.5, but in color. In the top panels, each image shows the SDSS r, i
and z passbands as blue, green and red, respectively. In the bottom panels, the same is done for the 2MASS
J,H andKs passbands. In both cases, the longest-wavelength passband is mapped to the red channel, and
the shortest-wavelength passband is mapped to the blue channel. In the right panels, the image intensity is
stretched in order to boost faint stars. As can be seen, stars lying behind the core of the cloud look redder, on
average, than stars elsewhere in the frame.
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optical and the NIR. A cloud with E(B−V ) ∼ 2.5mag blocks out a large fraction of foreground

stars in the “bluest” passband (i.e., the shortest-wavelength passband), but far fewer stars in the “red-

dest” passband (i.e., the longest-wavelength passband). This is due to the decrease in dust optical

depth with increasing wavelength through the optical and NIR (see Fig. 0.4). Thus, while in the

bluest pictured passband, SDSS r, the dust in the interstellar cloud extinguishes stellar light from an

extended area, in the reddest pictured passband, 2MASSKs, only the dense core of the cloud blocks

out a significant fraction of stars.

A different way of visualizing this effect is to look at the change in color of stars behind a dust

cloud. As the dust has greater optical depth for blue light than red light, stars behind the cloud ap-

pear not only fainter, but redder, an effect termed “reddening.” This effect can be seen in Fig. 0.6,

which shows the exact same field as Fig. 0.5, but with the different passbands mapped to the blue,

green and red channels of the images. In each panel of Fig. 0.6, the shortest-wavelength passband is

mapped to the blue channel, and the longest-wavelength passband to the red channel. The intrinsic

colors of stars vary, but on average, the stars in regions of space obscured by dust appear redder than

their counterparts away from the dust cloud.

0.3 Two-Dimensional DustMaps

While this thesis focuses on the three-dimensional distribution of dust throughout the Galaxy, it is

helpful to review some of the methods that have been used in the past to map dust in two dimen-

sions. Here, I will focus on just a few works which span a range of dust-mapping techniques, rather

than attempting to give a comprehensive listing of all dust mapping efforts.
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One of the earliest prescriptions for accounting for dust was to treat it as a thin, flat slab in the

midplane of the MilkyWay, extending out to infinite distance in the all but the vertical direction.

Given a slab height h, and extinction per unit distance of κ, the total extinction (out to infinite dis-

tance) at Galactic latitude bwould be given by

A =
hκ
2

csc (b) . (0.16)

This was often formulated as

A = A0 csc (b) , (0.17)

which obviates the need to know the slab height or rate of extinction, combining these two terms

into a single quantity, equal to the extinction at the Galactic poles (Burstein &Heiles 1978a). Given

the highly non-uniform nature of the interstellar medium, the slab model is a brutal approximation.

0.3.1 Burstein &Heiles

Recognizing the inadequacy of the slab model of dust, Burstein &Heiles (1978a,b) developed a new

method for mapping reddening across the sky, based on a combination of neutral atomic hydrogen

(Hi) column density and galaxy counts. If gas and dust in the Galaxy are well mixed, and Hi makes

up a constant fraction of the gas, then Hi column density will be a good proxy of dust column den-

sity, and by extension, extinction. If galaxies are uniformly distributed and have similar properties

(e.g., a similar distribution of luminosities) across the sky, then an under-abundance of galaxies in
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one region of the sky is indicative of interstellar extinction.

Both of these proxies for extinction suffer from difficult systematics. The gas-to-dust ratio varies

throughout the galaxy, making Hi column density a very imperfect proxy for dust column density.

Dust properties (e.g., the grain-size distribution and the PAH abundance) vary as well, meaning

that the same column density of dust does not necessarily translate into the same magnitude of ex-

tinction in two regions of the sky. Galaxy counts suffer from two effects: large noise due to small-

number Poisson statistics, and galaxy clustering, deriving from the large-scale structure of the uni-

verse, which violates the assumption that galaxy positions are uncorrelated and increases the occur-

rence of regions with anomalously high or low counts. Thus, a map that traces dust extinction with

Hi column density may, in reality, trace the gas-to-dust ratio, while a map that uses galaxy counts

may instead trace cosmological large-scale structure.

Burstein &Heiles (1978a,b) take several steps to mitigate these systematics. First, galaxy counts

from the Shane–Wirtanen galaxy survey (Shane &Wirtanen 1967) are smoothed on 13◦ scales, reduc-

ing the impact of galaxy clustering. In order to find a good proxy for reddening, Burstein &Heiles

(1978a,b) then look for a combination of galaxy counts and Hi column density which correlates best

with the reddening of a set of calibrators. Two sets of calibrators are used: RR Lyrae stars, for which

a period-luminosity-color relation is available, and globular clusters, for which several good meth-

ods of determining reddening exist. Each of these calibrators trace reddening, rather than extinction,

making the resulting map a reddening map. While there is large scatter in the relationship between

reddening and Hi column density alone, or between reddening and galaxy counts alone, Burstein

&Heiles (1978a,b) find a function of both proxies with smaller scatter. Burstein &Heiles (1982)
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presents the resulting map, and evaluates its accuracy as 10% outside of the plane of the Galaxy. The

map is not homogeneous across the entire sky: the Shane &Wirtanen (1967) galaxy survey does not

cover equatorial declinations δ ≤ −23◦, and the gas-to-dust ratio is assumed to be relatively constant

at Galactic latitudes b ≥ 65◦, obviating the need to use galaxy-count correction (Burstein &Heiles

1982).

The resulting map was a great advance over the simple slab models in common use at the time,

and could be rightly viewed as representing the dawn of serious dust mapping. As can be seen in

the top panels of Figs. 0.7 and 0.8, the Burstein &Heiles (BH) map shows Galactic structure that

varies in a non-trivial way across the sky, and which is not well captured by any simple mathematical

prescription.

0.3.2 Schlegel, Finkbeiner &Davis

Dust in the diffuse interstellar medium has a typical temperature of ∼20K. The larger dust grains

therefore radiate thermally in the FIR, with emission peaking in the range 100µm to 200µm (Li &

Draine 2001). From the ground, this FIR emission is unobservable, because of the enormous ambi-

ent thermal background produced by the telescope itself, the telescope dome and the atmosphere.

In 1983, NASA, in collaboration with the Netherlands and UK, launched the Infrared Astronomical

Satellite (IRAS), which conducted the first-ever all-sky infrared survey from space (Neugebauer et al.

1984; Lemke 2009; Low et al. 2007). IRAS had a 0.57 m aperture, and was cryogenically cooled by

an onboard liquid helium reservoir, with the mirrors at< 10 K and the focal plane at< 3 K. This en-

abled IRAS to survey more than 95% of the sky in four passbands, centered on 12, 25, 60 and 100µm
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Figure 0.7: Three generations of two-dimensional emission-based maps of dust reddening. These three
maps, discussed in the text, show the progression of dust mapping over time.
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Figure 0.8: A detailed view of three generations of two-dimensional emission-based maps of dust redden-
ing. The difference in resolution between the earliest dust map, Burstein &Heiles (1982), and more recent
maps is stark. The differences between the latter two maps, Schlegel et al. (1998, SFD) and Planck Collabora-
tion (2015) are more subtle. As discussed in the text, the low-resolution temperature correction in SFD leads
to smearing of cold filamentary structures, which are captured in greater detail by the Planck dust maps.
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(Neugebauer et al. 1984). The availability of maps of the FIR sky allowed a more direct approach to

mapping dust, which did not rely on estimation of uncertain gas-to-dust ratios.

Schlegel et al. (1998, hereafter “SFD”) maps dust by carefully modeling FIR dust emission at 100

and 240µm. SFD relies on 100µm IRAS data, as well as 100 and 240µm data from the Dust In-

frared Background Experiment (DIRBE), an instrument aboard the Cosmic Background Explorer

(COBE) satellite (Boggess et al. 1992). This work is complicated by the uncertain emission properties

of dust and several foregrounds and backgrounds, including zodiacal light emitted by dust grains

in our Solar system, extragalactic background radiation and foreground point sources. The zodia-

cal light, in particular, is extremely difficult to model. “Interplanetary dust” (IPD) within the Solar

system is arranged non-trivially in three dimensions and heated differentially by the Sun, and our

view through the IPD changes as we orbit the Sun. Due to its proximity to the Sun, the IPD is sig-

nificantly hotter (∼ 280K) than interstellar dust, but has a much smaller total column density. This

combination means that the IPD radiates significantly in the FIR, but contributes only negligible

extinction, on the level of ∼10−6 mag at optical wavelengths (Schlegel et al. 1998).

SFD takes an empirical approach to removing the zodiacal light, cleaning DIRBE images at each

observation epoch by finding the function of 25µmDIRBE emission which, when subtracted from

the 100 or 240µmDIRBEmaps, maximizes the correlation of the latter with high-Galactic-latitude

21 cmHi emission maps. This process rests on the fact that 25µm emission is the best tracer of zodi-

acal light, and that Hi column density is expected to correlate well with diffuse dust column density

at high Galactic latitudes (recall that this was the basis for the Burstein &Heiles maps). Interestingly,

this process leads to a measurement of the Cosmic Infrared Background zero-point, perhaps the first
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measurement of this quantity. SFD additionally cleans the IRAS maps, and creates a hybrid IRAS–

DIRBE 100µmmap, which combines large-scale information from the zodiacal-light-corrected

DIRBEmaps and small-scale information from the IRAS 100µmmap, which has much better angu-

lar resolution.

In order to determine dust column density, which can be translated into dust reddening, SFD

models the 100 and 240µm FIR emission as a modified blackbody. Dust is assumed to radiate with

intensity

Iν(ν, T ) = σdust κν(ν)Bν(ν, T ) , (0.18)

where Bν(ν, T ) is the Planck blackbody spectrum, κν(ν) is a wavelength-dependent opacity, and

σdust is the line-of-sight dust column density. As dust emits inefficiently at wavelengths larger than

the grain size, the dust opacity should decrease at high frequencies – SFD assumes κν ∝ ν2. SFD ap-

plies this model to the DIRBE 100 and 240µmmaps in order compute a map of dust temperature,

with an angular resolution of 0.7◦. SFD then uses this temperature map, in conjunction with the

hybrid IRAS–DIRBE 100µmmap to determine dust column density on 6.1′ angular scales.

SFD translates dust column densities into reddening by calibrating against a set of 389 elliptical

galaxies with E(B−V ) determinations (derived from aMg2 abundance – color relation). The result-

ing map is plotted in the second panel of Figs. 0.7 and 0.8. SFD has several advantages over BH, in-

cluding its much finer angular resolution and the fact that it is more directly tied to dust, rather than

inferring dust through the intermediary of Hi column density. SFD, and the recalibrated version of
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Schlafly & Finkbeiner (2011), are now standard tools in astronomy for making dust corrections, and

therefore widely cited.

0.3.3 Planck Collaboration

The basic method employed by SFD has been applied to newer datasets as well. The Planck satel-

lite, which launched in 2009 and operated until 2013, surveyed the sky in a large number of bands,

spanning the wavelength regime ∼300µm to ∼1 cm. The primary goal of Planckwas to measure

the anisotropy of the Cosmic Microwave Background (CMB), in order to constrain cosmological

models (Planck Collaboration 2011). In order to complete this goal, however, the Planck Collabora-

tion had to separate out the CMB from various foregrounds, including thermal dust emission. The

Planck Collaboration has therefore published a series of dust models. Planck Collaboration (2014)

fits dust as a modified blackbody, in a similar manner to SFD, to Planck and IRAS data. Planck

Collaboration (2015) fits a set of foreground components, including dust thermal emission, to a com-

bination of Planck, WISE¶ and 408MHz data in a self-consistent manner. Planck Collaboration

(2016) fits the free parameters of a more physically motivated model of dust by Draine & Li (2007),

using a combination of Planck, WISE, DIRBE and IRAS data.

The Planck Collaboration (2014) dust map is plotted in the bottom panels of Figs. 0.7 and 0.8.

Although similar in nominal resolution to SFD, the Planck dust maps trace cold cloud cores and

filaments in the interstellar medium somewhat better. This is because while SFD derived dust col-
¶TheWide-field Infrared Survey Explorer (Wright et al. 2010, WISE) is a space telescope that completed an

all-sky MIR survey between 2010 and 2011, but which was reactivated in 2013 in order to conduct a search for
near-Earth asteroids and comets (Mainzer et al. 2011, 2014).
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umn densities from a 100µmmap with 6.1′ resolution, the temperature correction in SFD is derived

fromDIRBEmaps with 0.7◦ resolution. Cold cloud cores and filaments are therefore surrounded

by a halo of low temperature in the SFD temperature maps. In order to achieve the same intensity

at lower temperature, SFD therefore has to infer the presence of a larger column density in the sur-

roundings of these filaments. This has the effect, in SFD, of creating a halo of increased reddening

around cold, dense features in the interstellar medium.

0.3.4 NICE, NICER, NICEST

The preceding dust maps relied on either FIR emission (in the case of SFD and Planck) or Hi emis-

sion (in the case of BH) to trace dust column, and then used extragalactic sources with predictable

intrinsic color to derive a calibration from dust column to reddening. The implicit assumption in

such techniques is that there is some standard relation between the FIR thermal emission properties

of dust and its UV, optical and NIR absorption and scattering properties. Additionally, we would

expect dust column density to be more correlated with dust extinction than with reddening, yet the

preceding maps use reddening calibrators, rather than extinction calibrators. This is for good reason

– reddenings are easier to obtain, because they do not require precise absolute photometry, but rather

only precise relative photometry between different passbands. Nevertheless, because of these defi-

ciencies in emission-based maps, the idea of mapping dust reddening using some dense population

of reddening tracers is appealing. Even a glance at Fig. 0.6 should convince one that stellar colors

provide a promising means of tracing dust.
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Lada et al. (1994) does just this, mapping dust reddening by way of NIR color measurements

of stars, a technique termed the “Near-Infrared Color Excess” (NICE) method. The central idea of

NICE is that most stars have fairly similar NIRH−K colors. Denote the trueH−K color of a given

star by (H−K )tr. The observed color of the star is then

(H−K )obs = (H−K )tr + kHKAV , (0.19)

where kHK is the scaling between total V-band extinction andH−K color excess. For any given point

on the sky, NICE estimates the extinction as

ÂV =
1

kHKN

N∑
n=1

[
(H−K )obsn −

⟨
(H−K )tr

⟩]
, (0.20)

where the sum is taken over all stars within some chosen angular distance. Increasing the angular

distance reduces noise by averaging over more stars, but also reduces the angular resolution of the

map. While NICE technically reports an extinction, it is, in essence a reddening map, as extinction

has simply been obtained by scaling an estimatedH−K color excess.

Lombardi & Alves (2001) notes two major problems with NICE – the intrinsic scatter in (H−K )tr

is unaccounted for, and stars cannot all be assumed to lie behind all the dust – and develops a more

robust technique, termed the “Near-Infrared Color Excess method Revisited” (NICER). This

method makes use of an arbitrary number of passbands, making the assumption that in each pair
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i of passbands, the observed color, cobsi , is related to the true color, ctri , by

cobsi = ctri + kiAV + ϵi . (0.21)

As before, ki is the ratio of color excess in color i toAV. The term ϵi is the photometric error in color

i, and will be different for each observation of each star. Taking care to consider both the covariance

of photometric errors, Covij(ϵ), and the covariance in true stellar colors, Covij(ctr), NICER deter-

mines the minimum-variance unbiased estimator of the form

ÂV =

Ncolors∑
i=1

bi cobsi . (0.22)

The coefficients bi turn out to be a function of the covariances mentioned above, as well as the vec-

tor k⃗ (encoding ki in each color). NICER similarly returns an estimate of the variance in ÂV for each

star.

NICER transforms individual stellar extinction estimates into a smooth extinction map in a sim-

ilar manner to NICE. At any given point in space, NICER estimates extinction from a weighted

average of stellar extinctions. The weight contains an angular smoothing kernel, which determines

the effective resolution of the map, and the inverse variance of each star, down-weighting stars with

more uncertain extinction estimates.

As dust and stars fill a three-dimensional volume, one cannot, in general, assume that all stars in

a given direction on the sky suffer the same extinction. However, above or below the plane of the
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Galaxy, there is often only one dense cloud along a given line of sight, making it a decent approxima-

tion to assume that all stars are either in front of or behind a single screen of dust. Because the scale

height of stars in the plane of the Galaxy is larger than the scale height of the dust, more stars are gen-

erally behind the dust than in front of it (this assumption can break down, however, if the dust is

optically thick enough to block out most background stars). NICER therefore attempts to deal with

the 3D nature of dust by assuming that some fraction of stars are in the foreground, and attempting

to remove those stars from the extinction estimate. This is achieved by iterating the NICER proce-

dure, clipping stars with anomalous ÂV estimates after each step.

While this procedure quickly converges and will in many cases effectively remove foreground

stars, it breaks the fundamental assumption that the calculated map of ÂV is a smoothed version of

the true, full-resolution extinction map. In regions with complicated dust structure that varies on

small angular scales, NICER’s σ-clipping procedure may systematically cull stars from certain small

regions of the sky, on scales smaller than the smoothing kernel. An additional problem which con-

fronts NICER is the fact that stars themselves are not observed equally in high- and low-extinction

regions of the sky. If a narrow filament of dust runs through a given region of the sky, fewer stars

will be observed behind the filament than away from the filament, due to differential extinction.

This will have the effect of biasing maps produced by NICER towards lower extinctions, especially

in more complicated regions of the sky. In order to deal with the twin problems of foreground stars

and biases deriving from small-scale extinction variations, Lombardi (2009) develops a more prin-

cipled method, which gives more weight to stars behind a greater column of dust. This method is

termed, appropriately, NICEST. A detailed description of this method, which is considerably more
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sophisticated than that of NICE and NICER, is beyond the scope of this introduction. Foster et al.

(2008) develops an additional extension to NICER, which uses not just the colors of stars, but also

of galaxies to trace reddening. This method is called “GNICER,” with the “G” standing for “galax-

ies.”

0.4 Three-Dimensional DustMaps

As we have seen, a variety of methods have been developed to map extinction and reddening across

the sky. However, it is the last family of methods, NICE/NICER/NICEST, which point towards the

method used in this thesis for determining the three-dimensional distribution of dust throughout

the Galaxy.

The principle upon which NICE, NICER and NICEST work is that stars, due to the effect that

dust has on their appearance, can trace the distribution of dust throughout the Galaxy. As stars are

distributed in three dimensions throughout the volume of the MilkyWay, however, it is possible to

use them as tracers not just of the total integrated column of dust across the sky, but rather as tracers

of the density of dust throughout space. Whereas NICE, NICER and NICEST treat the dust as a

screen that the stars lie behind, we will treat the dust as a field in which the stars are embedded. This

requires us to model the distance to each star, as well as the column of dust that lies in front of it.

The dust column is measured on the basis of the extinction and reddening it applies to stellar pho-

tometry, but as we do not know the intrinsic luminosity and color of any given star in a photometric

survey, we are required to infer the star’s spectral type at the same time that we infer the distance and

dust column. In order to produce a three-dimensional dust map, we therefore have to model the
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distance and spectral type of stars, as well as the distribution of dust in one self-consistent model.

I am not the first work to pursue this type of work. Marshall et al. (2006) developed a method

that iteratively improves distance and reddening estimates to post-main sequence stars, updating

the dust column in each distance bin with each iteration so that the intrinsic stellar colors match

those predicted by the Besançon model of the Galactic stellar population (Robin et al. 2003). Mar-

shall et al. (2006) applied this method to 2MASS photometry of the Galactic plane, producing a

three-dimensional reddening map out to a distance of several kiloparsecs in the region |b| < 10◦,

−100◦ ≤ ℓ ≤ 100◦. A number of groups have pursued methods that determine maximum-

likelihood parameters for the stars along each sightline, combining the estimates in each sightline

into a distance-reddening relation. Berry et al. (2012) applied such a method to SDSS photometry,

producing a 3D reddening map and measuring variation in the dust extinction spectrum across the

SDSS footprint. Chen et al. (2014) used optical XSTPS-GAC, NIR 2MASS andMIRWISE pho-

tometry to produce a 3D reddening map of the Galactic anticenter. Sale (2012) developed a proba-

bilistic framework to simultaneously infer stellar parameters and the dust extinction distribution

along each line of sight, and Sale et al. (2014) applied this method to IPHAS photometry of the

northern Galactic plane. Hanson & Bailer-Jones (2014) developed a similar probabilistic framework

for inferring stellar types, distances and dust foreground properties, and applied this method to

SDSS and UKIRT Infrared Deep Sky Survey (UKIDSS) photometry in regions of the high-Galactic-

latitude sky. Lallement et al. (2014) took a somewhat different approach, using ∼ 23, 000 stellar

parallaxes and reddening estimates from a number of sources to infer the 3D distribution of dust

opacity out to a distance of 800 - 1000 pc in the plane of the Galaxy, and ∼300 pc out of the plane.
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The work of Lallement et al. (2014) is particularly interesting, in that it explicitly takes into the ac-

count that dust is spatially smooth, placing a prior on correlations in the dust density field. Vergely

et al. (2001) and Lallement et al. (2003) pursue a conceptually similar method of mapping out the

distribution of dust, mapping out the “Local Bubble” (i.e., the local interstellar medium, believed to

be under-dense) by measuring absorption lines imprinted by the interstellar medium on the spectra

of stars with parallaxes from theHipparcos satellite (ESA 1997).

This thesis ties together work laid out in Green et al. (2014, 2015), which developed the methodol-

ogy used here, and then released the 3Dmap featured in this thesis, respectively. Within the Finkbeiner

research group at Harvard, we have conducted additional work on three-dimensional dust mapping.

Schlafly et al. (2014a) presented a map of dust reddening integrated to 4.5 kpc, covering three quar-

ters of the sky, based on applying this method to optical Pan-STARRS 1 stellar photometry. Using

this same 3Dmapping technique, Schlafly et al. (2015) found that the Orion molecular complex

appears to form part of a larger bubble structure. Finally, Schlafly et al. (2014b) determined the dis-

tance to a large number of molecular clouds by applying a related method to Pan-STARRS 1 stellar

photometry.
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Now since there ॹ illimitable space empty in every di-
rection, and since seeds innumerable in number in the
unfathomable universe are flying about in many ways
driven in everlasting movement, it cannot by any means
be thought likely that thॹ ॹ the only round earth and
sky that hॷ been made, that all those bodiॸ of matter
without do nothing: especially since thॹ world wॷ made
by nature, and the seeds of things themselvॸ of their
own accord, knocking together by chance, clashed in
all sorts of ways, heedless, without aim, without inten-
tion, until at length those combined which, suddenly
thrown together, could become in each case the begin-
nings of mighty things, of earth and sea and sky and the
generations of living creaturॸ.

Lucretius, de rerum natura, 2.1052–1063 1
Method

TT
he goal of this thesis is to develop a method for inferring the three-dimensional

distribution of dust throughout the Galaxy, and then to apply it to photometric

data in order to produce a map. This chapter lays out just such a method, begin-

ning with § 1.1, which details the mathematical formalism underpinning this mapping technique.

Going into more detail, § 1.2 describes the model used to describe individual stars, while § 1.3 explains
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the model used to describe the distribution of dust throughout space. Extensions to the model that

render it more realistic and robust are described in § 1.4. In § 1.5, I explain how to sample from the

resulting model of stars and dust. Finally, § 1.6 gives a concise summary of the model, while § 1.7 de-

scribes how additional information about individual stars can be extracted from the 3D dust map

that will be produced.

1.1 Line-of-Sight Reddening Profile

Here, I lay out the basic method used in this thesis for inferring the three-dimensional distribution

of dust in the MilkyWay. A number of basic assumptions of our model should be stated at the out-

set. The most basic assumption is that stars which are close to one another in 3D space lie behind

the same column of dust from our perspective in the Solar system. A consequence of this principle

is that by grouping together stars which are angularly close to one another on the sky, we obtain a

sample of stars that trace the same column of dust. Along one sightline, therefore, stars that are at

greater distance are behind a greater column of dust, and are thus extinguished and reddened to a

greater extent. This allows us to group stars into small angular pixels, and then use stars within each

pixel as tracers of the dust column to different distances along the given sightline. So long as the dust

column does not vary significantly over small angular scales, then this is procedure is approximately

correct.

A second assumption is that the extinction properties of dust are uniform throughout the Galaxy.

As discussed in § 0.2, the extinction spectrum of dust is determined by a number of factors, in-

cluding the grain-size distribution, the dielectric response function of the grain material and the
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abundance of chemical species with certain absorption lines (e.g., the π → π⋆ transition in PAH

molecules). The wavelength–extinction relation has been determined for individual stars using the

“pair method” (discussed in § 0.1 in the context of Robert Trumpler’s pioneering work on interstellar

dust), revealing significant deviation from the average MilkyWay extinction law (See Draine 2003

for a brief introduction to variation in dust extinction). However, the assumption of uniform dust

properties, while being a rough approximation, significantly simplifies the problem of creating a 3D

dust map. Future work will certainly relax this assumption, but as will be shown in the remainder of

this thesis, significant progress can be made with relatively simplified models of the more complex

reality.

The strategy pursued in this thesis for inferring the 3D structure of dust in the MilkyWay is there-

fore as follows. A three-dimensional dust map is constructed pixel-by-pixel from independently

determined line-of-sight reddening profiles. Stars are grouped into sightlines with typical angular

scales of ∼6.8′. The reddening, distance and type of each star is then determined independently. As-

suming that the distances and reddenings of the stars in a given line of sight lie along a single profile,

with reddening increasing monotonically with distance, I then sample from the posterior density

of distance–reddening profiles, returning the uncertainty in the line-of-sight reddening in the pixel.

By repeating this process in each angular pixel, I obtain the 3D distribution of dust throughout the

MilkyWay, out to a distance of several kiloparsecs.
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Let us denote the reddening profile along a particular sightline by

E(µ ; α⃗) , (1.1)

where E, the color excess in some pair of passbands (e.g., E(B−V ) for B and V bands), is a func-

tion of distance modulus µ, and α⃗ denotes any fitting parameters defining the distance–reddening

profile. For example, α⃗ could encode the dust density in each distance bin, and could in principle

include the value of RV, which parameterizes the wavelength dependence of the extinction law

(Cardelli et al. 1989; Fitzpatrick 1999). The extinction A⃗ in any set of passbands is then assumed

to be a function of the reddening, which we denote by E, and RV, which will be held fixed in this

work:

A⃗ = A⃗(E,RV) . (1.2)

Along one line of sight, denote the photometry of star i by m⃗i, and the set of all observed stellar

magnitudes by {m⃗}. We wish to determine how the model parameters α⃗ for the line-of-sight red-

dening profile depend on the stellar photometry {m⃗}. That is, we wish to determine

p(α⃗ | {m⃗}) . (1.3)
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Using Bayes’ rule,

p(α⃗ | {m⃗}) = p({m⃗} | α⃗) p(α⃗)
p({m⃗})

. (1.4)

The likelihood, p({m⃗} | α⃗), is the probability density of obtaining the set of observed magnitudes

{m⃗}, given the reddening profile defined by α⃗.

The evidence, p({m⃗}), remains constant as we vary α⃗, since it depends only on the observed stel-

lar apparent magnitudes, {m⃗}. Conceptually, the idea of assigning a probability density to our ob-

servationsmight seem strange. One should think of this term, however, as the probability density

of the observed stellar apparent magnitudes being generated by our model of the structure of the

MilkyWay. If we were to simulate stellar observations for an infinite number of Milky-Way-like

galaxies, with statistically equivalent three-dimensional distributions of stars and dust, the simulated

datasets would populate a space of possible datasets. Some regions of this dataset-space would be

more densely populated than others. The evidence, p({m⃗}), is the density of simulated datasets in

the region of our actual observed dataset. In other words, it tells us whether the data we observe is

“typical” of what we would observe, were our statistical model of the Galaxy correct. The evidence is

therefore a conceptually interesting term, but since it only enters into our problem as a normalizing

constant, we can disregard it in the following.

The likelihood of the entire set of stellar observations is just the product of the individual likeli-
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hoods, i.e.

p({m⃗} | α⃗) =
∏
i
p(m⃗i | α⃗) . (1.5)

This is just a statement that the photometry of one star does not influence the photometry of any

other star – a good assumption if the stars are not strongly blended in our imaging, and if stars are

not clustered in three-dimensional space. Plugging Eq. (1.5) into Eq. (1.4), and dropping the normal-

izing factor p({m⃗}),

p(α⃗ | {m⃗}) ∝ p(α⃗)
∏
i
p(m⃗i | α⃗) . (1.6)

We now introduce nuisance parameters describing the distance to and intrinsic type of each star,

and then marginalize over these parameters to obtain the likelihood. Denote the distance modulus

to star i by µi, and the parameters describing the stellar type by Θ⃗i. For an individual star,

p(m⃗ | α⃗) =
∫

dµ dΘ⃗ p
(
m⃗, µ, Θ⃗ | α⃗

)
(1.7)

=

∫
dµ dΘ⃗ p

(
m⃗ |µ, Θ⃗, α⃗

)
p
(
µ, Θ⃗ | α⃗

)
(1.8)

=

∫
dµ dΘ⃗ p

(
m⃗ |µ, Θ⃗,E(µ; α⃗)

)
p
(
µ, Θ⃗

)
. (1.9)

In the last step, we have assumed that the joint prior on the distance and intrinsic stellar type are in-

dependent of the reddening profile. Up to a normalizing constant, the above integrand is equivalent
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to the posterior density

p
(
µ,E, Θ⃗ | m⃗

)
(1.10)

for an individual star, where the prior on E is flat. Intuitively, this is because the prior on reddening

is on the fitting parameters α⃗, rather than the reddening of an individual star. After marginalizing

over the stellar typeΘ,

p(m⃗ | α⃗) ∝
∫

dµ p(µ,E(µ; α⃗) | m⃗) . (1.11)

Plugging the above into Eq. (1.6), we find that the full posterior density for α⃗ is given by

p(α⃗ | {m⃗}) ∝ p(α⃗)
∏
i

∫
dµi p(µi,E(µi; α⃗) | m⃗i) , (1.12)

where we have defined the function

p(µi,Ei| m⃗i) ≡
1
Zi

∫
dΘ⃗i p

(
m⃗i |µi, Θ⃗i,Ei

)
p
(
µi, Θ⃗i

)
, (1.13)

which is equivalent to the posterior probability density of finding a single star at distance µi and

reddening Ei, where the prior on reddening is flat. Here, Zi is a normalizing constant. Effectively,

it is the Bayesian evidence for star i, a measure of how likely the star is to be generated by the model.

A higher evidence indicates that the data is more consistent with the model, while a low value for

50



Zi indicates that the model does not well describe the object i. Our strategy for sampling from a

posterior of the form given by Eq. (1.12) is to pre-compute Eq. (1.13) for each star byMarkov-Chain

Monte Carlo (MCMC) sampling, and then to sample from p(α⃗ | {m⃗}). This approach has two ad-

vantages. First, it factorizes the full problem into a series of smaller problems of lower dimension,

potentially speeding up the computation. The second advantage of this two-step approach is that

it allows outlier rejection on the basis of the Bayesian evidence for each star before proceeding to

the second step. Point sources which do not fit the chosen stellar model (e.g., blue stragglers, white

dwarfs and galaxies mistakenly classified as stars) can be filtered out by imposing a cut on the evi-

dence Zi (See § 1.5.2). More principled approaches to reducing the influence of outliers exist (e.g.,

Hogg et al. 2010), though in the context of our problem they are significantly more computationally

expensive to implement.

A more general limitation to the approach taken here is that it does not allow the simultaneous

fitting of parameters describing the stars and the spatial variation in dust properties. One could

imagine simultaneously constraining stellar types and distances, as well as the dust density and

RV parameter throughout space. By fitting the dust properties in many voxels simultaneously,

one would be able to place priors on the density power spectrum of the dust, and to infer RV as a

function of position in the Galaxy. By fitting dust properties throughout the entire volume of the

Galaxy simultaneously, one could even attempt to constrain global parameters, such as the dust

scale height and scale length. This would represent a hierarchical approach to the problem of cre-

ating a 3D dust map (See, for example, Kruschke 2010, for an introduction to hierarchical Bayesian

models). At the highest level in the hierarchy, one has global parameters, which describe the overall
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dust distribution and density power spectrum. One level below in the hierarchy, one would have

parameters describing the dust properties in each voxel in the Galaxy. At the lowest level, one could

have the type and distance for each star. Such a hierarchical approach is appealing because it takes

into account spatial correlations in dust properties, and because it directly fits the global structure

of the Galaxy’s dust component. However, this hierarchical approach potentially requires much

greater computational power than the approach I take in this thesis, as it does not allow one to pro-

cess each star individually and treat each line of sight separately, greatly increasing the dimensionality

of parameter space. This thesis therefore confines itself to fitting each star independently, and then

combining the information from each star along any given line of sight to determine the reddening

profile as a function of distance.

1.2 Individual Stars

Now that we have factorized the problem of determining the line-of-sight reddening profile into

one of determining p
(
µi,Ei, Θ⃗i | m⃗i

)
for each star, we need to determine the individual stellar like-

lihoods and priors. In the following, we will drop the subscript i, as it is assumed that we are dealing

with one star.

Using Bayes’ Rule,

p
(
µ,E, Θ⃗ | m⃗

)
∝ p

(
m⃗ |µ,E, Θ⃗

)
p
(
µ,E, Θ⃗

)
. (1.14)

The likelihood, p
(
m⃗ |µ,E, Θ⃗

)
, is the probability density of a star having apparent magnitudes m⃗,
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given a distance, reddening and stellar type. The likelihood is discussed directly below, in § 1.2.1. The

priors, p
(
µ,E, Θ⃗

)
, which are dependent on the distribution of stars of different types throughout

the Galaxy, are discussed in § 1.2.2.

1.2.1 Stellar Likelihood

We adopt a simple stellar model, in which each star is described by two intrinsic parameters – its

absolute magnitude,Mr, in the PS1 rP1 band and its metallicity, [Fe/H]. In terms of our previous

notation, Θ⃗ = (Mr, [Fe/H]). Given a set of stellar templates, M⃗(Mr, [Fe/H]), which map intrinsic

stellar type to a set of absolute magnitudes, one obtains theoretical apparent magnitudes

m⃗mod = M⃗(Mr, [Fe/H]) + A⃗(E,RV) + µ . (1.15)

The likelihood is thus dependent on our model of intrinsic stellar colors, M⃗(Mr, [Fe/H]), which

must be tailored to the specific photometric survey data that one uses. I discuss stellar models tai-

lored to Pan-STARRS 1 and 2MASS photometry in § 2.3.

For the PS1 passbands, we adopt an extinction vector, A⃗(E,RV), that follows the Fitzpatrick

(1999) reddening law with RV = 3.1, adapted to the grizyP1 filter set by Schlafly & Finkbeiner

(2011, see Table 6). In the 2MASS passbands, we adopt the reddening coefficients RJ = 0.786,

RH = 0.508 and RKs = 0.320, calculated by Yuan et al. (2013) for a 7000 K source spectrum at

E(B−V ) = 0.4mag, using the Cardelli et al. (1989) reddening law and assuming RV = 3.1.

The likelihood of observing apparent magnitudes m⃗with Gaussian uncertainties σ⃗ is then given

53



by

p(m⃗ |µ,Mr, [Fe/H] ,E) = N (m⃗ | m⃗mod , σ⃗) , (1.16)

with m⃗mod given by Eq. (1.15). In this work, I use the notationN (⃗x | µ⃗,Σ) to denote the probability

density of a multivariate normal with mean µ⃗ and covarianceΣ, evaluated at x⃗. If the covariance

matrix is diagonal, I instead writeN (⃗x | µ⃗, σ⃗), where the covariance is taken to beΣ = diag(σ⃗).

1.2.2 Stellar Priors

I now present the priors that we place on the intrinsic (i.e., luminosity and metallicity) and extrinsic

(i.e., distance and reddening) parameters describing each star. I factorize the priors as follows:

p(µ,Mr, [Fe/H]) = p(µ) p([Fe/H] |µ) p(Mr) . (1.17)

The luminosity fuction, p(Mr), is therefore taken to be universal throughout the Galaxy, while

the distribution of stellar metallicities depends on position in the Galaxy, which for one sightline

reduces to distance modulus, µ. I describe the distance prior in § 1.2.2.a, the metallicity prior in

§ 1.2.2.b and the luminosity prior in § 1.2.2.c.

1.2.2.a Stellar Distance Prior

For a given line of sight, the prior probability of finding a star in a small range dµ in distance mod-

ulus is proportional to the number of stars per unit distance modulus per unit solid angle in the
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direction of the pixel:

p(µ) ∝ dN
dµdΩ

=
dN
drdΩ

dr
dµ

= n(µ) r 2 dr
dµ

∝ 103µ/5 n(µ) . (1.18)

Here, r denotes physical distance from the Sun, and n(µ) is the stellar number density at distance

modulus µ along the chosen line of sight. The distance prior is thus controlled by the line-of-sight

number density of stars, as well as a volume factor, 103µ/5, which grows with distance. This latter

term takes into account that the volume represented by a beam of constant, small width in distance

modulus grows with distance, and should be familiar from the earlier discussion, in § 0.1, of von

Struve and Kapteyn’s argument about the distribution of stellar apparent magnitudes. For a typi-

cal line of sight, the stellar distance prior is driven upwards by the volume factor at small distances,

while farther out it is suppressed by the decline in density in the outer reaches of the Galaxy. For

constant density, n(µ), Eq. (1.18) simply reduces to the Euclidean counts equation.

The distance prior thus requires us to calculate the stellar number density at arbitrary locations in

the Galaxy. We employ the three-component Galactic model developed in Jurić et al. (2008), which

comprises a thin disk, a thick disk and an oblate halo. In cylindrical coordinates centered on the

Galactic center, and with the Galactic plane defining Z = 0, each disk component has number

density of the form

ni(R,Z ) = n0,i e−(R/R0,i+|Z|/Z0,i) , (1.19)
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where R0, i and Z0, i are the scale radius and height respectively, of each disk component, and n0,i is

the stellar number density of each component at the Galactic center. In the Solar neighborhood,

ni(R⊙, Z⊙) = n0,i e−(R⊙/R0,i+|Z⊙|/Z0,i) , (1.20)

where R⊙ and Z⊙ are the Galactocentric Solar radius and height in cylindrical coordinates, respec-

tively. We can thus write the number density of each disk component in terms of locally defined

quantities, which are more readily measurable than quantities defined at the Galactic center:

ni(R,Z ) = ni(R⊙, Z⊙) e−[(R−R⊙)/R0,i+(|Z|−|Z⊙|)/Z0,i] . (1.21)

From this point onwards, we will denote nthin(R⊙, Z⊙) as n⊙, and write

nthick(R⊙, Z⊙) ≡ fthick n⊙ . (1.22)

The halo is assumed to have stellar number density

nhalo(R,Z ) = n⊙ fh
(
Reff

R⊙

)−η

, (1.23)

with

Reff ≡
√

R2 + (Z/qh)
2 + R2

ϵ . (1.24)

56



Table 1.1: Stellar Number Density Parameters

Thin Disk Thick Disk Halo

Rthin 2600 pc Rthick 3600 pc Rbr 27.8 kpc†

Zthin 300 pc Zthick 900 pc qh 0.70†
fthick 0.12 fh 0.0006⋆

ηinner 2.62†
ηouter 3.80†

† Values from Sesar et al. (2011).
⋆ Chosen to match Robin et al. (2003).
All other values adopted from Jurić et al. (2008).

Here, qh controls the oblateness of the halo and η controls the steepness of the power law. Follow-

ing Sesar et al. (2011), the power law breaks at Reff = Rbr, becoming steeper. We therefore define

ηinner and ηouter, corresponding to the halo steepness inside and outside of the break. We also intro-

duce a distance scale, Rϵ, over which the inner region of the halo is smoothed, in order to remove

the singularity at the Galactic Center. We choose Rϵ to be 500 pc; at this scale, it has a negligible ef-

fect on the halo density in the regions which Jurić et al. (2008) studied, but it prevents the halo from

dominating over the disk at the Galactic Center and is the same scale adopted by Robin et al. (2003).

I employ the parameters given in Table 10 of Jurić et al. (2008) and Sesar et al. (2011). These are

listed in Table 1.1. I adopt, however, a less dense halo prior than Jurić et al. (2008), reducing the local

halo density (relative to the local thin-disk stellar density) from fh = 0.0051 to fh = 0.0006, a similar

value to that used by the Besançon model (Robin et al. 2003). Throughout, I use R⊙ = 8 kpc and

Z⊙ = 25 pc.

The shape of the distance prior for a line of sight centered on ℓ = 90◦ and b = 10◦ is shown in

Fig. 1.1. Of course, the shape of the distance prior depends on the angle on the sky. At high Galactic
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Figure 1.1: The distance prior for (ℓ, b) = (90◦, 10◦). The contributions of the disk and halo are shown
individually in green and purple, respectively, while the total prior is given by the gray contour. The break in
the contribution from the halo is due to the use of a broken power law for the number density of stars in this
component. The shape of the distance prior varies across the sky.

latitudes, the halo is relatively stronger, while at low Galactic latitudes, in the plane of the Milky

Way, the stellar disk terms dominate.

1.2.2.b StellarMetallicity Prior

I adopt the model of Galactic metallicity developed in Ivezić et al. (2008a) and Bond et al. (2010),

assigning separate metallicity distributions to the disk and halo. The metallicity distribution of the

disk varies with height above the Galactic plane, and is thus dependent on line-of-sight distance.
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The metallicity prior takes the form

p([Fe/H] |µ) = p([Fe/H] |µ, disk) p(disk |µ) + p([Fe/H] | halo) p(halo |µ) . (1.25)

The membership probabilities are simply

p(disk |µ) = nthin(µ) + nthick(µ)

nthin(µ) + nthick(µ) + nhalo(µ)
, (1.26)

p(halo |µ) = 1− p(disk |µ) , (1.27)

which can be calculated on the basis of the preceding discussion (§ 1.2.2.a).

For the disk, stellar metallicity is distributed as a sum of Gaussians. The mean of each Gaussian

varies with height above the Galactic plane, so that the prior is best written in terms of cylindrical

coordinates:

p([Fe/H] |Z, disk) = cN ([Fe/H] | a(Z), σD) + (1−c)N ([Fe/H] | a(Z)+∆a, σD) , (1.28)

where

a(Z) = aD +∆µe−|Z|/Hµ . (1.29)

The parameters aD, controlling the central disk metallicity, and∆µ andHµ, describing the vertical

metallicity gradient in the disk, are defined in Table 1.2. We assume the halo metallicity to be spa-
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Table 1.2: Metallicity Parameters

Disk Halo

aD −0.89 aH −1.46
σD 0.20 σH 0.30
c 0.63
∆a 0.14
∆µ 0.55
Hµ 0.5 kpc

tially invariant, and distributed as

p([Fe/H] | halo) = N ([Fe/H] | aH, σH) . (1.30)

The parameters, aH and σH, describing the halo metallicity, are given in Table 1.2. The metallicity

prior is plotted in Fig. 1.2 as a function of height above the Galactic midplane in the Solar neighbor-

hood.

1.2.2.c Stellar Luminosity Prior

I use the rP1-band absolute magnitude to parameterize the luminosity of each star. The joint prior

on luminosity and distance is

p(µ, Mr) ∝
dN(µ, Mr)

dµ dMr
. (1.31)
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Figure 1.2: The metallicity prior, p([Fe/H] |Z), in the Solar neighborhood (R = 8 kpc). High above the plane
of the Galaxy, where the halo dominates, the metallicity distribution has a constant mean and variance. In
the plane, where the disk dominates, the mean decreases with scale height. Adapted from Fig. 9 of Ivezić et al.
(2008a).
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The luminosity function is assumed to be same in the halo and both disk components, and further-

more independent of position. The priors on distance and luminosity are then separable, so that

p(µ, Mr) = p(µ) p(Mr) , (1.32)

with p(Mr) = LF(Mr) ∝ dN
dMr

.

I adapt the PS1 luminosity functions provided by the Padova & Triese Stellar Evolution Code

(Bressan et al. 2012, PARSEC), assuming a Chabrier (2001) log-normal initial mass function. I av-

erage over luminosity functions for populations with ages of τ = 7 ± 2Gyr and metallicities

[Fe/H] = −0.5 ± 0.5 dex. Denote the luminosity function for a population of age τ and metallic-

ity [Fe/H] as LF(Mr | τ, [Fe/H]). The luminosity function I adopt is then

LF(Mr) ∝
∫

dτ
∫

d[Fe/H] LF(Mr | τ, [Fe/H]) exp

[
−(τ − τ0)

2

2σ2
τ

−
([Fe/H]− [Fe/H]0)

2

2σ2
[Fe/H]

]
, (1.33)

with τ0 = 7Gyr, στ = 2Gyr, [Fe/H]0 = −0.5 dex and σ[Fe/H] = 0.5 dex. In principle, it is possible

to make the luminosity function depend on metallicity, by not averaging over [Fe/H] in Eq. (1.33). For

simplicity, I assume here that the luminosity function is universal.

1.2.2.d Stellar Reddening

As explained in § 1.1, the manner in which we have factorized the line-of-sight reddening problem

requires us to place a flat prior on the color excess, E, for each star. The priors on the reddening

profile are imposed on the parameters which control the line-of-sight reddening, rather than on
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Figure 1.3: The SFD dust map, compared to a random draw from the priors on the 3D dust reddening distri-
bution, used in the construction of our map. The top two panels, from left to right, show the SFD reddening
and the 2D reddening map that results from a draw from the priors, both on a log scale. The bottom two pan-
els show the same maps, after dividing out the mean projected reddening in the priors. The priors are limited
so that the mean expected reddening in any given distance bin does not exceed a pre-defined amount. This is
done in order to avoid inferring large amounts of reddening in the absence of data. Regions that are affected
by this clipping are shaded in gray. The priors do not include spatial correlations, as can be seen by comparing
the bottom two panels.

individual stellar reddenings. The line-of-sight reddening priors are discussed below, in § 1.3. For

example, if one divides each sightline intoN distance bins and assigns a different dust density ρi to

each bin, then the reddening prior would take the form p(ρ1, ρ2, . . . , ρN).

1.3 3D Dust Priors

As laid out in § 1.1, the parameters describing the distribution of dust along a chosen sightline are

denoted by α⃗. As we saw in Eq. (1.6), it is necessary to choose a prior on α⃗ – I describe this prior in

what follows.

In this work, reddening is parameterized in each sigtline as a monotonically increasing, piecewise-
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linear function in distance modulus. Dividing up the line of sight into bins of equal width in dis-

tance modulus, we infer the increase in reddening in each bin, so that

α⃗ = {∆Ek | k = 1, 2, . . . ,Nbins} , (1.34)

where k denotes the bin index, andNbins is the number of distance bins. We place a log-normal prior

on the reddening in each bin:

∆Ek = eϵk , where ϵk ∼ N (ϵ̄k , σϵ) . (1.35)

In each bin, we set ϵ̄k so that the mean reddening in each voxel matches what would be expected

from the smooth disk component of Drimmel & Spergel (2001), up to a constant normalization

that is the same for the entire map. In order to fully define the priors, there are therefore two global

parameters that must be set:

1. dE(B−V )/ds
∣∣
s=0, the local normalization of the dust reddening per unit distance, and

2. σϵ, the width of the log-normal prior on dust column density in each voxel.

We fit these two numbers so that our priors, in projection, produce two-dimensional dust maps

with the same overall normalization and standard deviation as the SFD dust map. We find that

σϵ = 1.4 and a local reddening per unit distance of dE(B−V )/ds = 0.2mag kpc−1 roughly matches

the mean and variance of the SFD dust map over large angular scales.

Fig. 1.3 shows a random realization of these 3D dust priors, next to the SFD dust map. In each

bin, we limit ϵ̄ to the range−12 ≤ ϵ̄ ≤ −4. On the lower end, the limit helps our fit to converge
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by preventing the prior from becoming too stringent. On the upper end, the limit prevents the fit

from inferring large amounts of dust in the absence of data. Regions where ϵ̄ has been limited to−4

are shaded in Fig. 1.3. These priors do not impose spatial correlations across lines of sight, and thus

in the absence of data, produce cloud-free maps. The detailed cloud structures that emerge from this

3D dust modeling therefore derive entirely from the data, rather than from the priors.

It is worth noting that the above 3D dust priors diverge from what one should expect for the real

distribution of dust in a number of ways. In order to render the problem of fitting the 3D distribu-

tion of dust tractable, we fit the dust column along each sightline separately. We know, however,

that in real life, dust density has spatial correlations. Moreover, there is nothing special about the

Sun’s place in the Galaxy, but our dust map voxelizes the sky into pencil beams centered on the So-

lar System. This of course makes practical sense, since angles are much easier to measure than dis-

tances in astronomy, but it is again an unreal feature of the chosen voxelization. A more realistic

model would treat the dust density as a continuous field, or voxelize the Galaxy in a way that treats

the angular and radial directions equally, and would impose correlations between dust density in

nearby points in space (See, e.g., Lallement et al. 2014; Sale &Magorrian 2014). This entails signifi-

cantly more algorithmic and computational complexity than the method used here, and I defer such

work to the future. Within the constraints of the present setup – independent sightlines with pencil-

beam-like voxels – the priors attempt to reasonably trace the properties of the Galaxy, including the

mean dust density in each voxel and the overall variance in dust column across the sky.
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1.4 Additions to the BasicModel

1.4.1 Survey Selection Function

The stellar distance prior developed in § 1.2.2.a only asks howmany stars are in a thin shell at each

distance. However, for a magnitude-limited survey, we would like instead to know the number of

observable stars at a given distance. We should assign zero prior probability to the possibility of

a star being observed which our instrument cannot detect. The fact that a star has been observed

by a given instrument therefore tells us something about its stellar type, distance and extinction.

Using the notation from Sale (2012), define the vector S⃗ for each star, where Si is true if a star has

been observed in passband i, and false if the star is not detected in that passband. The PS1 dataset

used in this thesis is not based on forced photometry, so there is a separate probability of a source

being detected in each passband. If forced photometry were conducted, there would be one single

probability p(S), equal to the probability of detecting the source in at least one of the passbands.

Including this information in the single-star posterior, Eq. (1.13), we get

p
(
µ,E, Θ⃗ |mobs, S⃗

)
∝ p

(
mobs|µ,E, Θ⃗, S⃗

)
p
(
µ,E, Θ⃗ | S⃗

)
. (1.36)

But the prior is now just

p
(
µ,E, Θ⃗ | S⃗

)
∝ p

(⃗
S |µ,E, Θ⃗

)
p
(
µ,E, Θ⃗

)
, (1.37)
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so in full,

p
(
µ,E, Θ⃗ |mobs, S⃗

)
∝ p

(
mobs|µ,E, Θ⃗, S⃗

)
p
(
µ,E, Θ⃗

)
p
(⃗
S |µ,E, Θ⃗

)
. (1.38)

The first term is simply the likelihood we found earlier, since the knowledge that the star has been

detected has no effect on the apparent magnitudes the model predicts, assuming the stellar type,

distance and reddening are known. That is to say,

m⃗mod = M⃗mod

(
Θ⃗
)
+ A⃗(E) + µ , (1.39)

and

p
(
mobs|µ,E, Θ⃗, S⃗

)
= N (mobs| m⃗mod, σ⃗) . (1.40)

The only element of the calculation which changes when we take into account Malmquist bias is

therefore the prior, which picks up an extra factor of

p
(⃗
S |µ,E, Θ⃗

)
= p

(⃗
S | m⃗mod

)
=

∏
i
p (Si |mmod, i) . (1.41)

This is the survey selection function used in this work. The precise form of this function for each

passband is derived in § 2.4.

If forced photometry were used instead, then we would have a single detection parameter S,
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denoting that the source was detected in at least one passband, and the survey selection function

would be

p
(
S= true |µ,E, Θ⃗

)
= p(S | m⃗mod) = 1−

∏
i
p (Si= false |mmod, i) (1.42)

in place of the expression in Eq. (1.41).

1.4.2 Scatter in Line-of-Sight Reddening Profile

A basic assumption of our model, as described in § 1.1, is that within a given angular pixel, the dust

density varies only with distance, and not with angle. If the pixels are sufficiently small, this is a good

assumption. We are limited, however, in how small we can make each pixel by the need to include

enough stars in each pixel to probe the dust density at a range of distances. Increasing the angular

resolution of the map decreases the number of stars in each pixel, effectively decreasing the distance

resolution of the map. We have found that we obtain best results for pixels containing a few hun-

dred stars, and we vary the resolution of our pixels across the sky to obtain approximately the same

number of stars in each pixel (See Fig. 2.1).

Note that varying the pixel size across the sky in this way technically violates the principles of

Bayesian inference. From a forward-modeling point of view, the distribution of dust influences the

number of stars that are observed in any given region of the sky. Sale (2015), for example, provides an

excellent discussion of how a catalog of stars observed in a survey can be described as a Poisson point

process whose rate is determined by the distribution of stars in the Galaxy, the three-dimensional
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distribution of dust, and the survey selection function. Yet we are using the number of stars ob-

served in each part of the sky to determine how to pixelize the sky. Our pixelization is therefore set,

in part, by an observable (the density of stars across the sky) that is a consequence of the model. Nev-

ertheless, as we are treating each pixel independently, and we would like to keep pixels as small as

possible without reducing the number of stars per pixel below a few hundred, this rules violation is

difficult to avoid. We expect the impact of this violation to be small in most regions of the sky. In

regions with large sub-pixel variation in dust reddening, however, our map may be biased towards

lower reddenings, as we preferentially detect stars in regions of the pixel with lower reddening.

The typical resolution of the map is 6.8′ × 6.8′, corresponding to an nside = 512 HEALPix

pixelization (Gorski et al. 2005). At this resolution, there can still be significant power in the dust

density spectrum below the pixel scale. This can pose problems for our method, especially in the

vicinity of dense clouds and filamentary structures, where the sub-pixel angular variation is largest.

In order to deal with sub-pixel angular variation in the dust density, we relax our assumption that all

stars lie along the same dust column by allowing each star to deviate from the local “average” dust

column by a small amount. The reddening of star i is parameterized as

Ei = (1+ δi)E(µi; α⃗) , (1.43)

where δi is the fractional offset of the star from the local dust column, E(µi; α⃗).

In effect, our model is therefore that within each HEALPix pixel, the reddening is a white noise

process, with a mean that increases piecewise linearly with distance. Each star samples this white
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noise process at a particular distance and angular position within the pixel. The parameter δi is then

understood as the fractional residual (from the mean reddening in the pixel at the given distance) of

the reddening column at the angular location and distance of star i.

We put a Gaussian prior on δi, with zero mean and standard deviation dependent to the scale

of the pixel (allowing more variation in larger pixels) and the local dust column (allowing greater

fractional variation in regions of greater reddening). In detail,

p(δi |µi, α⃗) = N (δi | 0, σδ) , (1.44)

with

σδ = a E(µi; α⃗) + b . (1.45)

Here, a and b are parameters that we set in order to match the variation we see at the given pixel

angular scale in the Planck radiance-based two-dimensional dust map. We compute the RMS scatter

within HEALPix pixels of difference scales, finding that the scatter is well described by setting the

coefficients a and b to

log10 a = 0.88 log10
(φ
1′
)
− 2.96 , (1.46)

log10 b = 0.58 log10
(φ
1′
)
− 1.88 , (1.47)

where φ is the angular pixel scale, defined as the square-root of the pixel solid angle.
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We have found through trial and error that it is preferable to impose a minimum scatter of∼

10% on the in-pixel dust column. Additionally, if we allow δi to approach unity, we clearly risk the

possibility of scattering a star to negative dust column. We therefore never allow σδ > 0.25.

Although the complication introduced in this section adds an additional parameter, δi, for each

star, it can be achieved with minimal additional computational resources. We are introducing a

Gaussian scatter in the reddening of each star from the “average” reddening in the pixel, and an

appropriate Gaussian smoothing of the individual stellar probability density surfaces, p(µi, Ei | m⃗i),

achieves this effect.

To see exactly how this works out mathematically, let us begin with the full posterior density on

line-of-sight reddening given our stellar photometry (See Eq. (1.6)), and include a deviation, δi, for

each star i,

p(α⃗ | {m⃗}) ∝ p(α⃗)
∏
i

∫
dµi dΘ⃗i dδi p

(
m⃗i |µi, Θ⃗i, α⃗, δi

)
p
(
µi, Θ⃗i, δi | α⃗

)
. (1.48)

Here, Θ⃗i is the type of star i. Taking just the integrand, and ignoring the subscript i for the moment,

I ≡ p
(
m⃗ |µ, Θ⃗, α⃗, δ

)
p
(
µ, Θ⃗, δ | α⃗

)
(1.49)

= p
(
m⃗ |µ, Θ⃗, α⃗, δ

)
p
(
µ, Θ⃗ | α⃗

)
p
(
δ |µ, Θ⃗, α⃗

)
. (1.50)
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As before, we assume that

p
(
µ, Θ⃗ | α⃗

)
= p

(
µ, Θ⃗

)
, (1.51)

with the only complication being the survey completeness limit, which has no impact on the modifi-

cation being discussed here. We also assume that

p
(
δ |µ, Θ⃗, α⃗

)
= p(δ |µ, α⃗) , (1.52)

since δ is a property of the sub-pixel variation in dust density, and should be unrelated to stellar type.

Then,

I = p
(
m⃗ |µ, Θ⃗, α⃗, δ

)
p
(
µ, Θ⃗

)
p(δ |µ, α⃗) . (1.53)

The likelihood term (the first term on the right-hand side), can be rewritten as

p
(
m⃗ |µ, Θ⃗,E(µ; α⃗, δ)

)
, (1.54)

since the modeled apparent magnitude is simply determined by the stellar distance, type and red-

dening, and the individual stellar reddening is determined by the line-of-sight reddening profile, the

stellar distance, and the fractional deviation of the stellar reddening from the local reddening.
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By Bayes’ Rule, the product

p
(
m⃗ |µ, Θ⃗,E(µ; α⃗, δ)

)
p
(
µ, Θ⃗

)
(1.55)

is proportional to the posterior density on distance, reddening and stellar type for an individual star,

in the presence of a flat prior on reddening. Thus,

I ∝ p
(
µ, Θ⃗,E | m⃗

)
p(δ |µ, α⃗) , (1.56)

evaluated at E = (1+ δ)E(µ; α⃗). After marginalizing over stellar type,Θ, we are left with

∫
dΘ I ∝ p(µ,E) = (1+ δ)E(µ; α⃗ | m⃗) p(δ |µ, α⃗) , (1.57)

Recall that the prior on δ is a Gaussian centered on zero, with width determined by E(µ; α⃗). Then,

∫
dΘ I ∝ p(µ,E = (1+ δ)E(µ; α⃗) | m⃗) p(δ |E(µ; α⃗)) , (1.58)

Marginalizing over δ now leaves us with a smoothed version of the individual stellar posterior den-

sity in distance and reddening:

∫
dΘ dδ I = p̃(µ,E(µ; α⃗) | m⃗) , (1.59)
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where we have defined the “smoothed” individual stellar posterior probability density

p̃(µ,E) =
∫

dδ p(µ, (1+ δ)E | m⃗) p(δ |E) . (1.60)

In Eq. (1.12), we therefore replace the individual stellar posterior densities with “smoothed” poste-

rior densities:

p(α⃗ | {m⃗}) ∝ p(α⃗)
∏
i

∫
dµi p̃(µi,E(µi; α⃗) | m⃗i) . (1.61)

Our method relies on calculating the individual stellar posterior probability densities for all stars

along a line of sight first, before sampling from the line-of-sight reddening distribution, as described

in detail in § 1.5. The above derivation shows that the addition of scatter in individual lines of sight,

allowing stars to deviate from the line-of-sight reddening profile, can be accomplished by an interme-

diate step, in which the individual stellar posterior densities are smoothed in reddening, according to

Eq. (1.60).

1.5 Sampling Strategy

1.5.1 Individual Stars

We use Markov ChainMonte Carlo (MCMC) sampling to explore the parameter space for indi-

vidual stars. The sampling must be performed with great care, owing to two features of the distri-

butions p(µ,E). First, the distributions are invariably highly elongated, and second they are often
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multimodal. The elongation stems from the close alignment between the reddening vector and

the stellar locus in the PS1 bands, as shown in Fig. 1.4. The multimodality has two causes. First, the

reddening vector in general intersects the gri stellar locus in two locations, creating a degeneracy

between blue and red main-sequence stars. Second, the PS1 bands do not distinguish dwarfs from

giants, leading to the possibility that a star can be either a faraway red giant or a nearby red dwarf.

These degeneracies are easier to visualize if we consider only three passbands, as shown in Fig. 1.4.

In this reduced space, stellar photometry is fully described by a single overall observed magnitude

and two colors. If we observe a star at a given location in color-color space, we can then move back-

wards along the reddening vector until we intersect the stellar locus. One can then compare the ob-

served apparent magnitude with the absolute magnitude of the stellar locus at the point of intersec-

tion. One thus obtains both a reddening and distance for the star. If there are multiple intersections,

then the observed star could be of different intrinsic types, and thus have different reddening and

distance combinations. The relative probability of each mode is in practice given by the space of

stellar types lying close to the gray line, as well as the priors applied to the problem.

We perform anMCMC sampling of these surfaces using a custom C++ implementation of the

affine-invariant sampler introduced in Goodman &Weare (2010) and recently given in a python

implementation by Foreman-Mackey et al. (2012). We employ both short-range “stretch” and long-

range “replacement” moves (Goodman &Weare 2010). The long-range moves allow mixing be-

tween widely separated modes in parameter space, but are more computationally expensive than the

short-range “stretch” steps. The replacement moves are closely related to the Normal Kernel Cou-

pler of Warnes (2001). We have found that with the addition of long-range “replacement” steps, the
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Figure 1.4: Sketch of how photometric parallax works, for illustrative purposes, adapted from Berry et al.
(2012). A star is observed at location 1 in color-color space. Its de-reddened colors may lie along any point
on the gray line, parallel to the reddening vector. The intersections of this line with the model stellar locus,
labeled 2 and 3, represent the most likely intrinsic stellar types. The posterior density for the star will thus have
two modes – one at larger distance and lesser reddening (2), and one at smaller distance and greater reddening
(3). For simplicity, we assume Solar metallicity in this example. This is how one would make a distance and
reddening determination by eye. The more rigorous probabilistic method laid out in § 1.1 takes into account
photometric uncertainties, as well as priors on stellar type and Galactic structure.
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affine-invariant sampler is capable of handling the multimodality of the problem, and that it is well

suited to the strong degeneracies in parameter space. For each star, we sample from each stellar poste-

rior density in four independent runs and screen for non-convergence by way of the Gelman-Rubin

diagnostic (Gelman &Rubin 1992). The Gelman-Rubin diagnostic essentially verifies that the vari-

ance between the means of separate chains is small compared with the variance within the chains.

If independent MCMC runs produce significantly different estimates of the parameter means, one

or more of the runs must not have converged. Each run employs 20 samplers, with a mix of 80%

stretch steps and 20% replacement steps, and 2000 steps per sampler. The first 1000 steps from each

sampler are discarded as burn-in. Thus, excluding the burn-in phase, a total of 80000 samples are

drawn for each star across the four chains, with the number of independent samples being lower due

to correlations between successive samples. On four cores of a 2.67 GHz Intel Xeon X5650 with 12

MB of L3 cache, our run time per star is typically 0.15 seconds per run per core, or 0.8 CPU seconds

for four independent runs.

1.5.2 Bayesian Evidence &Outlier Rejection

When an observed object does not match our stellar model, the inferences we draw on its distance,

reddening and stellar type are unreliable. One means of quantifying the reliability of our inferences

for an individual star is to compute the evidence

Z ≡
∫

dµ dE dΘ⃗ p
(
m⃗, S⃗ |µ,E, Θ⃗

)
p
(
µ,E, Θ⃗

)
, (1.62)
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which is the probability density of drawing the observed magnitudes m⃗ from the stellar model and

observing the star in a photometric survey. A low evidence indicates that the observed point source

is a member of a stellar population not included in our model (e.g., a young blue giant or an unre-

solved binary system with colors that do not match any stellar template), is not a star (e.g., a white

dwarf or galaxy), that the errors in the photometry have been underestimated, or that the redden-

ing vector is inaccurate. Here, our approach is similar to Berry et al. (2012), which identifies objects

which do not fit the stellar model by a threshold χ2 statistic.

Note that as we do not include priors on the extinction to individual stars, but rather on the line-

of-sight reddening profile, we do not strictly calculate the evidence. Instead, we calculate the evi-

dence of a model with a prior on Ewith wide support (i.e. a prior which allows E to take on a wide

range of values), such that the prior is nearly constant across all relevant reddennings:

p(E) ≈

a 0 ≤ E ≲ E0

a f (E) E ≳ E0
, (1.63)

where f (E) is some integrable function whose precise behavior is unimportant, a is a normalizing

constant, and E0 is some large extinction. We thus effectively calculate the evidence Z for a model of

this form, up to a constant factor a, which is the same for every star. This allows for outlier rejection,

based on comparisons between the evidence for different stars.

We employ a bounded harmonic mean estimate, which is obtained directly from theMarkov

chain produced in sampling the posterior density, and thus requires little additional computation
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(Gelfand &Dey 1994; Robert &Wraith 2009). This method is presented in more detail in § A.1.

1.5.3 Line-of-Sight Sampling

We choose the HEALPix pixelization scheme (Gorski et al. 2005) as our method of dividing the

sky into individual lines of sight. Once we have determined p(µ, E | m⃗) for each star in a given

HEALPix pixel and rejected stars which fall below the evidence cut, we can apply Eq. (1.12) to de-

termine the posterior probability of the parameters α⃗ describing the reddening profile. We param-

eterize the reddening profile as a piecewise-linear function in distance modulus, with αi = ∆E(i)

describing the rise in rP1-band reddening in distance segment i. We split up each line of sight into

30 distance segments of equal width in µ, with the closest distance being at µ = 4, corresponding

to 63pc, and the furthest distance being at µ = 19, corresponding to 63kpc. It must be cautioned

that, in general, our method does not tightly constrain reddening at this latter distance, where PS1

observes very few stars.

We use a number of different types of step proposals to draw a representative sample of possible

reddening profiles: We use the affine-invariant “stretch” and “replacement” proposals, Gaussian

Metropolis-Hastings proposals, as well as an additional proposal type, which we term “swap propos-

als,” tailored to the degeneracies inherent in our line-of-sight reddening parameterization. This last

step proposal is laid out in § A.2. We sample from the posterior density given by Eq. (1.6), with the

modifications described above, in § 1.4. We can thus produce a three-dimensional reddening map

which includes the uncertainty in reddening as a function of distance.
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1.6 Summary ofModel

In summary, the model of each sightline contains the following elements:

• The increase in the “average” reddening in each distance bin: α⃗ = {∆Ek | k = 1, . . . , nbins}.

• The distance modulus, µi, stellar type,Θi and fractional offset, δi from the “average” redden-
ing of each star i.

The reddening of star i is therefore determined both by α⃗ and δi. Together with the distance and

type of the star, one can obtain model apparent magnitudes for the star, and thus a likelihood:

p
(
m⃗i |µi, Θ⃗i, δi, α⃗

)
. (1.64)

We also have per-star priors on distance and stellar type, given by a smooth model of the distribu-

tion of stars throughout the Galaxy, and a prior on the offset of each star from the local reddening

column:

p
(
µi, Θ⃗i, δi | α⃗

)
= p

(
µi, Θ⃗i

)
p(δi |µi, α⃗) . (1.65)

We finally have a log-normal prior on the increase in reddening in each distance bin along each sight-

line, p(α⃗), whose mean is chosen to match a smooth model of the distribution of dust throughout

the Galaxy.
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The posterior on the line-of-sight reddening along one sightline is then given by

p(α⃗ | {m⃗}) ∝ p(α⃗)
nstars∏
i=1

∫
dµi dΘ⃗i dδi p

(
m⃗i |µi, Θ⃗i, δi, α⃗

)
p
(
µi, Θ⃗i

)
p(δi |µi, α⃗) . (1.66)

In order to sample from this model, we first pre-compute the likelihood and prior terms for the

individual stars, marginalizing over Θ⃗i and δi. We then sample in α⃗, taking the required integral over

µi in each step.

1.7 Extracting Additional Stellar Information from the 3DMap

In order to create the 3D dust map, we first probabilistically infer the distance and reddening to

each star individually, with no information about the 3D structure of the dust. After creating the

3D dust map, however, we have a very strong constraint on how reddening should increase with

distance, and this should impact our inferences about individual stellar distances and reddenings. In

order to improve our stellar parameter inferences, we should replace our initial assumption about

stellar reddening (a flat prior) with a new one that favors stellar reddenings close to the measured

distance-reddening relation along the sightline. This can be done, in practice, by reweighting the

probability density functions we initially calculated for each star. In this section, we therefore define

a reweighting of the Markov Chain samples for the individual stars which takes into account the

line-of-sight reddening.

Let us first consider the case in which we fix the line-of-sight reddening profile. In the formalism

used here, that means that we fix the parameters α⃗, expressing the line-of-sight reddening profile
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Figure 1.5: ReweightingMarkov Chain samples for an individual star, based on the line-of-sight reddening
profile. Each black line is a reddening profile drawn from the posterior on line-of-sight reddening. The dots
are posterior samples of parameters (including distance and reddening) for one star viewed in isolation, i.e.,
not conditioned on the line-of-sight reddening. The samples are reweighted in order to condition them on
the line-of-sight reddening, assigning greater weight to samples that are consistent with the reddening profile.
Including information about the line-of-sight reddening can significantly reduce the uncertainties in stellar
distance, reddening and type.

as E(µ; α⃗). The reddening of an individual star is then determined by the distance modulus of the

star, µ, as well as the fractional deviation, δ, of the stellar reddening from the local dust column. As

before, there are also parameters representing the stellar type, Θ⃗. In this formulation, the posterior

density of the stellar parameters, given its photometry m⃗ and the line-of-sight reddening profile, is

determined by

p
(
µ, Θ⃗, δ | m⃗, α⃗

)
∝ p

(
m⃗ |µ, Θ⃗, δ, α⃗

)
p
(
µ, Θ⃗

)
p(δ |µ, α⃗) . (1.67)

We already have Markov chain samples in distance, reddening and stellar type for each star, for a

model which does not take the line-of-sight reddening into account. We would like to apply weights
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to these samples, so that they correspond to the model sketched out directly above. As shown in

detail in § A.3, the correct reweighting of the stellar Markov chain samples, assuming a particular

line-of-sight reddening profile α⃗, is

wk ∝
N (δk | 0, σδ)
E(µk; α⃗)

, (1.68)

where k indexes the sample, and δk is the fractional offset of the sample reddening, Ek, from the line-

of-sight reddening, E(µk; α⃗), at distance µk. The numerator in the above weight corresponds to a

prior on the offset of the stellar reddening from the local dust column, while the denominator comes

from the Jacobian transformation from reddening to fractional offset from the local reddening.

Reweighting each of the stellar parameter samples by the above factor, and normalizing the sum

of the weights to unity, we obtain an inference for the stellar parameters, conditioned on a particular

line-of-sight reddening profile, E(µ; α⃗). We marginalize over the line-of-sight reddening profile by

repeating this procedure for each sampled value of α⃗, summing the weight applied to each stellar

sample.

It might be objected that since we infer α⃗ using the photometry of all the stars in the given pixel,

the samples we drew for α⃗ in our initial processing are already dependent on the photometry for the

star whose samples we are reweighting. Put more formally, the prior we use here when marginalizing

over line-of-sight reddenings is the inference we obtained earlier, p(α⃗ | {m⃗}), which is conditional

on all the photometry in the pixel, {m⃗}. We are using the photometry of a given star to infer the line-

of-sight reddening, and then again to infer the stellar parameters, conditional on that line-of-sight
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reddening.

This would be a problem if the photometry of any single star significantly affected the line-of-

sight reddening inference. However, if photometry from a large number of stars informs the line-

of-sight reddening, then no one star should have a significant impact on the inferred line-of-sight

reddening profile. In a more formally correct formulation of the problem, we would first infer the

line-of-sight reddening using all the stars in the pixel except the star whose parameters we wish to

infer, and we would then infer the parameters for that star, conditional on the inferred line-of-sight

reddening profile. As each pixel contains hundreds of stars, however, we expect our procedure to

approximate this formally correct procedure closely.

Fig. 1.5 shows the result of reweighting the samples for one star. Depending on the line-of-sight

reddening profile and the distribution of the unweighted stellar parameter samples, individual stellar

inferences can be tightened dramatically by taking the line-of-sight reddening into account. Our

knowledge of the parameters describing one star is therefore dependent not only on its photometry,

but also on the photometry of its neighbors on the sky. Because neighboring stars lie along the same

dust column, inferences for nearby stars are coupled through the requirement that the dust column

increase with distance.
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For ॷ soon ॷ your reasoning begins to proclaim the
nature of things revealed by your divine mind, away
flee the mind’s terrors, the walls of the world open out,
I see actions going on throughout the whole void: before
me appear the gods in their majesty, and their peaceful
abodॸ, which no winds ever shake nor clouds besprinkle
with rain, which no snow congealed by the bitter frost
mars with its white fall, but the air ever cloudless en-
compassॸ them and laughs with its light spread wide
abroad.
Lucretius, de rerum natura, 3.14–22, to Epicurus

2
Data

NN
ow thatwe have developed a mathematical model for the distribution

of stars and dust throughout the MilkyWay, I describe how this model can be

tailored to two specific datasets, produced by Pan-STARRS 1 (PS1) and the Two

Micron All-Sky Survey (2MASS). PS1 has surveyed three-quarters of the sky in the optical and NIR,

while 2MASS has surveyed the entire sky in the NIR. In § 2.1, I introduce these two projects, while
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in § 2.2, I describe how the survey data is partitioned across the sky. In § 2.3, I describe empirical

templates of stellar spectral energy distributions developed for PS1 and 2MASS, and in § 2.4 study

the completeness of each photometric survey.

2.1 Photometric Surveys

2.1.1 Pan-STARRS 1

Pan-STARRS 1 (PS1) is a 1.8-meter optical and NIR telescope located onMount Haleakala, Hawaii

(Kaiser et al. 2010; Hodapp et al. 2004). The telescope is equipped with the GigaPixel Camera 1

(GPC1), consisting of an array of 60 CCD detectors, each 4800 pixels on a side (Tonry &Onaka

2009; Onaka et al. 2008). FromMay 2010 to April 2014, the majority of the observing time was ded-

icated to a multi-epoch 3π steradian survey of the sky north of δ = −30◦ (Chambers in prep.). The

3π survey observes in five passbands gP1, rP1, iP1, zP1, and yP1, similar to the Sloan Digital Sky Survey

(SDSS; York et al. 2000), with the most significant difference being the replacement of the Sloan

u band with a near-infrared band, yP1. The PS1 filter set spans 400–1000 nm (Stubbs et al. 2010).

The images are processed by the Pan-STARRS 1 Image Processing Pipeline (IPP) (Magnier 2006),

which performs automatic astrometry (Magnier et al. 2008) and photometry (Magnier 2007). The

data is photometrically calibrated to better than 1% accuracy (Schlafly et al. 2012; Tonry et al. 2012).

The 3π survey reaches typical single-exposure depths of 22 mags (AB) in gP1, 21.5 mags in rP1 and iP1,

20.8 mags in zP1, and 20 mags in yP1. The resulting homogeneous optical and near-infrared coverage

of three quarters of the sky makes the Pan-STARRS1 data ideal for studies of the distribution of the
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Galaxy’s dust.

2.1.2 TwoMicron All Sky Survey

The TwoMicron All Sky Survey (2MASS) is a uniform all-sky survey in three near-infrared band-

passes, J,H andKs (Skrutskie et al. 2006). The survey derives its name from the wavelength range

covered by the longest-wavelength band,Ks, which lies in the longest-wavelength atmospheric win-

dow not severely affected by background thermal emission (Skrutskie et al. 2006). The survey was

conducted from two 1.3-meter telescopes, located at Mount Hopkins, Arizona and Cerro Tololo,

Chile, in order to provide coverage for both the northern and southern skies, respectively. The fo-

cal plane of each telescope was equipped with three 256 × 256 pixel arrays, with a pixel scale of

2′′ × 2′′. Each field on the sky was covered six times, with dual 51-millisecond and 1.3-second expo-

sures, achieving a 10σ point-source depth of approximately 15.8, 15.1 and 14.3 mag (Vega) in J,H and

Ks, respectively. Calibration of the survey is considered accurate at the 0.02 mag level, with photo-

metric uncertainties for bright sources below 0.03 mag (Skrutskie et al. 2006).

2.1.3 Source Selection

Wematch each PS1 source to the nearest source in the 2MASS point-source catalog, rejecting stars

at greater than 2′′ separation. We require detection in at least four passbands, two of which must be

PS1 passbands. In order to reject extended sources, we require thatmpsf − maperture < 0.1 mag in at

least two PS1 passbands. We additionally reject sources flagged as extended sources in 2MASS.

Individual PS1 passbands are rejected if they have photometric uncertainty greater than 0.2mag,
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Table 2.1: Pixelization

nside
Max.

Stars / Pixel
Solid Angle

at Resolution (deg2)
# of
Pixels

64 200 77 91
128 250 90 430
256 300 11980 228373
512 800 16071 1225471
1024 1200 2957 901971
2048 — 66 80956

total — 31240 2437292

or if the sources are beyond or close to the saturation limit for PS1 (here considered 14.5, 14.5, 14.5,

14 and 13mag in grizyP1, respectively). In 2MASS passbands, we make the recommended “high-

reliability catalog” selection cuts,* in addition to the following requirements:

• contamination/confusion flag = 0,

• galaxy contamination flag = 0.

Our final catalog contains 798,611,689 sources, of which 32% are detected in four passbands, 49%

in five passbands, and 19% in six or more passbands.

2.2 Pixelization

We divide the sky into HEALPix pixels (Gorski et al. 2005), adjusting the pixel scale in order to

keep the number of stars per pixel roughly constant (see Fig. 2.1). Our procedure is to begin with

nside = 64 pixels, and then subdivide each pixel recursively, as long as the number of stars exceeds

some threshold, dependent on the pixel scale. We use thresholds given in Table 2.1, chosen to allow

*For a full description of the 2MASS “high-reliability catalog” requirements, see the 2MASS All-Sky Data
Release Explanatory Supplement: http://www.ipac.caltech.edu/2mass/releases/allsky/doc/
sec1_6b.html#composite.
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Figure 2.1: Assigning stars to different pixels, in which the line-of-sight dust profile will be fit independently.
Here, each dot represents a point-source detection, and the dots are colored by the HEALPix pixel they are
assigned to. The pixel scale varies in order to keep the number of stars per pixel roughly constant. Note that
some pixels show significant extinction-induced variations in stellar density.

us to reach a resolution of nside = 512 with a relatively small number of stars, but to avoid going

to higher resolutions unless the stellar density is much higher. We reject pixels with fewer than ten

stars. Such pixels comprise a negligible fraction of the sky. In all, we assign just under 800 million

stars, covering just over three quarters of the sky, to 2.4 million pixels, with an average of 327 stars

per pixel.
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2.3 Stellar Templates

In order to infer stellar types, distances and reddenings, we require a set of templates that give the

absolute magnitude of stars of different types. As described earlier, we parametrize stellar type by

rP1-band absolute magnitude and metallicity: Θ⃗ = {Mr, [Fe/H]}.

We adopt a set of empirical stellar templates based on stellar observations in PS1, with photomet-

ric parallaxes and metallicities derived from the work of Ivezić et al. (2008b). That work determines

the absolute magnitude of a star as a function of its intrinsic color and metallicity, using observa-

tions of globular clusters in SDSS. These globular clusters are uniformly old, and as a result our

stellar templates are appropriate only for old populations and do not include age as a parameter.

This means that young blue stars are not included, and that the morphology of the subgiant and

giant branches is only approximate. Accordingly, our giant branch distances are less reliable than

our main sequence distances. Nevertheless, we include the giant branches in our models because any

given star may indeed be a distant giant rather than a nearby dwarf.

The colors of our stellar templates are derived from stellar colors near the North Galactic Pole.

We select ∼ 1 million stars with E(B−V )SFD < 0.1 mag, detections in all PS1 and 2MASS pass-

bands, and photometric errors less than 0.5mag in every passband. The resulting sample has a me-

dian reddening of 0.016mag in E(B−V ). After dereddening the photometry, we fit a stellar locus

in 7-dimensional color space, using the algorithm laid out in Newberg & Yanny (1997). The result-

ing stellar locus is plotted in Fig. 2.2. All main-sequence stars are required to have intrinsic colors

lying along this one-dimensional curve.
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We then associate each position along the main sequence with an absolute magnitude and a

metallicity using the relations of Ivezić et al. (2008b), which give absolute magnitude as a function

of color and metallicity. Models for the giants are obtained from linear fits of absolute magnitude

to color and metallicity by Ivezić (private communication), based on observations of globular clus-

ters. These giant branch fits are joined to the main sequence via a cubic interpolating polynomial

for 4 > Mr > 2.35. We are able to use relations derived from SDSS because of the close similar-

ity between the PS1 and SDSS filter sets; we transform from the PS1 to SDSS colors using the color

transformations of Finkbeiner et al. (in prep.), which have residuals of less than about 1% across the

full range of stellar types considered in this work.

Our empirical approach produces a close match to the observed colors of stars, and comparison

with Globular and Open Clusters indicates that the absolute magnitudes are accurate along the

main sequence (See § 3.2.2). An alternative approach would have been to adopt template colors

from a library of synthetic spectra, such as the Padova & Trieste Stellar Evolution Code (PARSEC;

Bressan et al. 2012), giving us access to age as an additional stellar parameter. However, the synthetic

libraries have difficulty reproducing the colors of M-dwarfs in detail. We choose therefore to adopt

a set of empirical models that match the colors of most stars well, though in future work a hybrid

approach may be best suited to the problem.

Briefly, metallicity-independent main-sequence stellar colors were obtained by fitting a stellar lo-

cus in color-color space, and metallicity-dependent absolute magnitudes were obtained from the

metallicity-dependent photometric parallax relation given in Ivezić et al. (2008b). For the giant

branch, linear fits to globular cluster color-magnitude diagrams from Ivezić et al. (2008b) were used.
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Figure 2.2: Stellar locus fit in join PS1-2MASS color space. For this fit, ∼ 1 million stars in the vicinity of the
North Galactic Pole, with SFD reddening less than 0.1 mag in E(B−V ), were used. The fitted stellar locus
anchor points are plotted over the density of stars in each color-color projection. A reddening vector with
magnitude 0.5mag in E(B−V ) is overplotted for each combination of colors.
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2.4 Survey Completeness

As discussed in § 1.4.1, in order to avoidMalmquist bias in photometric inferences, it is necessary to

characterize the survey selection function, which we characterize this as the detection probability in

each passband as a function of apparent magnitude and position on the sky. Denote the detection or

non-detection of a point source on a particular location on the sky in passband i as a binary variable,

Si. Denote the intrinsic (or modeled) apparent magnitude of the star in passband i asmmod, i. The

detection probability is written as

p(Si |mmod, i) . (2.1)

For point-source detections in PS1, we model the detection probability based on the sky back-

ground, read noise and point-spread function. We do this by way of comparison with the 275 deg2

SDSS Stripe 82 survey (York et al. 2000; Annis et al. 2014). The co-added Stripe 82 images go more

than a magnitude deeper than the individual PS1 3π images, allowing us to use Stripe 82 detections

as a complete catalog of point sources past the detection limits of the PS1 3π survey. For each Stripe

82 source, we deteremine whether there is a Pan-STARRS 1 detection within 1′′. The completeness

fraction of the PS1 3π survey is the percentage of Stripe-82 detections with a PS1 match.

We determine the completeness fraction of the PS1 3π survey as a function of

∆m ≡ m−mlim , (2.2)
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wherem is the PS1 magnitude, andmlim is an estimate of the local PS1 5σ magnitude limit, based on

the point-spread function of nearby PS1 detections and local sky and read noise. We divide the SDSS

Stripe 82 footprint into HEALPix nside = 128 pixels (with ∼27′ scale). In each pixel, we select

all Stripe-82 detections classified as stars, and transform their ugrizmagnitudes to grizyP1, using color

transformations derived by Finkbeiner (in prep.), based on standard-star catalogs. In each pixel,

we determine the PS1 limiting grizyP1 magnitudes from the median limiting magnitudes estimated

for individual PS1 detections. For each Stripe 82 detection in the pixel, we obtain∆m in each band

by subtracting the local limiting magnitude from the transformed detection magnitude. In each

passband, we bin Stripe 82 detections by∆m, obtaining an empirical estimate of the completeness

in each bin from the number of PS1 matches.

We find that the completeness fraction is reasonably well fit by

p(Si = true |mmod, i) =

[
1+ exp

(
mmod, i −mlim, i −∆m1

∆m2

)]−1
, (2.3)

wheremlim, i is a limiting magnitude calculated for each point-source detection in the PS1 3π survey,

equal to the magnitude of a source that would be detected at 5σ in one exposure, given the sky and

read noise. ∆m1 = 0.16mag and∆m2 = 0.2mag are fitting parameters. The positive value of

∆m1 indicates that the PS1 pipeline goes somewhat deeper than our naive estimatemlim. The same

fitting parameter values reproduce the completeness curve in all five PS1 passbands reasonably well,

reflecting the consistency of the PS1 optics and pipeline across the entire filter set. The empirically

measured completness fraction and our fit are plotted for each passband in Fig. 2.3.
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Figure 2.3: Completeness of the PS1 3π survey, as a function of magnitudes past a locally estimated 5σ mag-
nitude limit. The completeness is estimated by comparison with SDSS Stripe 82 (York et al. 2000; Annis et al.
2014). The shaded curve shows the median completeness, with 1σ-range of completeness in each bin, based
on estimates in 27’ pixels. The solid black line shows our fit to the completeness curve. The dashed black line
shows the effect of adding a small floor to our fit, which takes into account an assumed small rate of false coin-
cidences between PS1 and Stripe 82 detections.
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As the 2MASS point-source catalogs do not contain detailed completeness information, we

model the 2MASS selection function empirically, from the histogram of detections as a function

of apparent magnitude across the sky.

There are two ways to approach this problem. The first approach is to construct a full forward

model, drawing stellar types, locations and reddenings from our Galactic and stellar priors, gener-

ating model photometry for the simulated stars, and applying a trial selection function and photo-

metric errors to obtain a sample of simulated “observed” apparent magnitudes. One would then

vary the selection function until the histogram of detections versus observed apparent magnitude

matched observed histogram in a given region of the sky. This method suffers from its reliance on

our relatively crude priors on Galactic reddening, and its sensitivity to any errors in our Galactic and

stellar priors.

We therefore opt for a simpler approach. We make the assumption that near the limiting magni-

tude, the true sky density of objects is a smooth function of apparent magnitude. In small patches of

the sky, we locate the turnoff in the histogram of detections,mto, i, as a function of apparent magni-

tude. In the range−3.5 < mi − mto, i < −0.1, we model the logarithm of the number of detections

in each apparent magnitude bin as a third-order polynomial in magnitude. This is our smooth esti-

mate of the intrinsic sky density of sources as a function of apparent magnitude. For each 2MASS

passband, we define the limiting magnitude as the bin in which the observed sky density per unit

magnitude falls below 50% of the estimated true sky density per unit magnitude.

We use this procedure to construct maps of the 2MASS J,H andKs limiting magnitudes at two

HEALPix resolutions, nside = 32 and 64. In each region of the sky, we adopt the nside = 64
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map, unless the given pixel contains fewer than 1000 detections in the given passband, in which case

we switch to the lower resolution, nside = 32 map of limiting magnitude. Fig. 2.4 shows the

resulting, multi-resolution map of limiting magnitude in each passband.
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Figure 2.4: Limiting magnitude of the 2MASS survey in all three passbands, across the PS1 survey footprint.
The limiting magnitude is defined as the apparent magnitude at which 50% of point sources are detected. Ef-
fective survey depth is relatively uniform over most of the sky, but falls off precipitously towards the Galactic
Center due to source crowding.

98



Again, do you not see that even stonॸ are conquered by
time, that tall turrets fall and rocks crumble, that the
gods’ templॸ and their imagॸ wear out and crack, nor
can their holy divinity carry forward the boundariॸ of
fate, or strive against nature’s laws? Again, do we not see
the monuments of men fall to piecॸ, [asking whether you
believe that they in their turn must grow old?] Do we
not see lumps of rock roll down torn from the lofty moun-
tains, too weak to bear and endure the mighty force of
time finite? For they would not fall thॺ suddenly torn
off, if they had endured all through from time infinite
and all the wrenchings of the agॸ without breaking up.

Lucretius, de rerum natura, 5.306–317

3
Validation

TT
his chapter validates the model developed in §§ 1 and 2, by applying it

both to simulated data, in § 3.1, and to real data, in § 3.2. The goal of this chapter

is to verify that we can recover accurate and unbiased inferences about individual

stars and line-of-sight distance–reddening profiles from stellar photometry, both simulated and real.
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3.1 Tests withMock Photometry

The first and most straightforward test of our method is to generate mock photometry for stars

of varying stellar type, distance and extinction, and to see how well we can recover those parame-

ters. This is less of a test of the particular stellar model used than a demonstration that photometry

alone is capable of sufficiently constraining stellar parameters. We find that our method is capable

of accurately recovering both single-star parameters and the line-of-sight reddening profile. In the

mock-photometry tests described here, we use only PS1 passbands, rather than the full PS1+2MASS

model.

3.1.1 GeneratingMock Catalogs

In order to generate a mock photometric catalog for a particular region on the sky, we begin by

drawing intrinsic stellar types (metallicities and absolute rP1 magnitudes) and distances from our

priors (See § 1.2.2). We assign a reddening to each star, either according to an assumed distance – red-

dening relationship, or from a reddening distribution we define, depending on the purpose of the

mock catalog. For each star in the catalog, we generate model magnitudes, as described in §§ 1.2.1

and 2.3.

We determine which passbands each star is detected in, according to our probabilistic complete-

ness model, Eq. (2.3). In the remainder of the tests with mock photometry described in this thesis,

we use PS1 passbands only, and reject simulated stars which do not have detections in all PS1 pass-

bands.
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We apply magnitude-dependent Gaussian photometric errors to each simulated star to obtain

observed magnitudes. The error we apply to each star in each passband is a function of the model

apparent magnitude:

σ2(m) = σ2
floor + σ2

0 exp
[
2 (m−mlim)

∆m3

]
. (3.1)

As before,mlim is the 5σ limiting magnitude in the given passband. We set the error floor to σfloor =

0.02. For PS1 passbands, we find that σ0 = 0.16 and∆m3 = 0.8 give a reasonable fit to the photo-

metric uncertainties.

Our final catalog thus contains noisy observed magnitudes of each star, along with the photomet-

ric uncertainty in each passband. As a final step, we plug the observed magnitudes back into Eq. (3.1)

to obtain a new estimate of the photometric uncertainties for each star. The final catalog that we

pass to our pipeline thus reports inexact photometric uncertainties, much as a realistic catalog would.

The usefulness of these mock catalogs is that they allow us to generate a large amount of photometry

for stars whose ‘true” distances and reddenings are known.

3.1.2 Single-Star Tests

We illustrate the typical appearance of single-star posterior distributions in distance and redden-

ing in Fig. 3.1. For each of the four simulated stars in Fig. 3.1, the “true” distance and reddening are

indicated by a dot, while the background heat map shows the probability density inferred by our

pipeline.
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Figure 3.1: Distance and reddening estimates for four simulated stars. The joint posterior in distance and
reddening is shown as a heat map. As this is mock photometry, we know the “true” distances and redden-
ings for the stars, which are shown as green dots. The true stellar parameters lie in regions of high inferred
probability, as expected. The shape of the probability density functions traces that of the stellar locus. The
probability density at closer distances corresponds to the main sequence, with increasing reddening compen-
sating for the bluer intrinsic colors as one travels up the stellar locus. The peak in reddening corresponds to
the main-sequence turnoff. Distances beyond the turnoff correspond to the giant branch.
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In order to determine how far off our estimates are on average, we define the centered probability

density

p̃(∆µ, ∆E ) ≡ 1
N

N∑
i=1

p(µ∗
i +∆µ, E ∗

i +∆E ) , (3.2)

where µ∗
i and E ∗

i are the true distance modulus and reddening, respectively, for star i. For a simu-

lated line-of-sight, this function gives the average probability density of our inference being offset

from the true stellar parameters by (∆µ, ∆E ). We plot p̃ for a typical line of sight in Fig. 3.2. The

typical spread of in∆µ and∆E varies across different lines of sight, but the centered probability

density generally peaks at the origin, as should be expected. In the bottom two panels of Fig. 3.2,

we show the effect of applying flat priors to the stellar parameters, in place of the priors developed

in § 1.2. The effect is to widen and bias the inferred probability density functions. Due to the near-

alignment of the reddening vector with the PS1 stellar locus for much of the main sequence, this bias

remains even for stars with low observational uncertainties. The stellar priors are thus important

in correctly inferring stellar parameters from Pan-STARRS 1 photometry. In the right two panels

of Fig. 3.2, we only use inferences for stars with low signal-to-noise detections. The low signal-to-

noise population is generated using an inflated error model that applies 3× the normal observational

uncertainty to the mock photometry. As expected, the inferred parameters for such stars are less

constrained, but they are nonetheless unbiased.

In Table 3.1, we present typical uncertainties in the inferred distance and reddening of individual

stars. To do this, we generate mock catalogs along two different lines of sight. For our high-Galactic-
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latitude target, we choose the North Galactic Pole, where the stellar population is dominated by the

halo. Here, we apply reddenings of E(B−V ) ≲ 0.1 to the simulated stars. For the low Galactic

latitude target, we choose ℓ = 45◦, b = 0◦, and draw reddening uniformly from the range 0 ≤

E(B−V ) ≤ 2. We run the two mock catalogs through our pipeline, and compare the inferred

distances and reddenings, drawn from the posterior probability density p(µ, A ), to the true values.

For this test, we allow our inferred reddenings to go slightly negative (E(B−V ) > −0.25), to avoid

introducing a bias into the inferred values. We give the median, and 15.87th and 84.13th percentiles

of ∆d
d and∆E(B−V ), equivalent to the one-standard-deviation range for a Gaussian distribution.

Uncertainties in distance modulus can be transformed to uncertainties in distance by making use

of the relation

d
10 pc

= 10µ/5 . (3.3)

Let µinferred = µtrue +∆µ. Then,

∆d
d ≡ dinferred − dtrue

dinferred
= 10∆µ/5 − 1 . (3.4)

Similarly, we define∆E(B−V ) as E(B−V )inferred − E(B−V )true.

Our distance and reddening estimates are unbiased. However, if one selects a subsample of stars

of a certain known type, a bias in distance is introduced. Thus, distance estimates for mock dwarf

stars are biased low, as the model assigns some probability to the possibility of them being giants.
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Table 3.1: Uncertainty in Inferred Distances and Reddenings

Low Latitude High Latitude
∆d
d

∗
(%) ∆E(B−V ) ∆d

d (%) ∆E(B−V )

−1<Mr≤4 −20+41
−30 −0.03+0.07

−0.12 −37+48
−32 −0.03+0.09

−0.11

4<Mr≤6 6+55
−33 0 +0.12

−0.20 12+79
−37 0+0.10

−0.12

6<Mr≤8 23+97
−34 0.17+0.28

−0.36 8+92
−21 0.04 +0.22

−0.20

8<Mr≤ 10 33+261
−39 0.29 +0.62

−0.42 4 +31
−14 0.02 +0.33

−0.09

10<Mr≤ 12 5+14
−15 0.02+0.13

−0.13 1 +15
−12 0 +0.10

−0.09

Dwarfs† 9+63
−33 0.01 +0.16

−0.20 4+50
−18 0.01+0.17

−0.12

All Stars −3+55
−35 −0.01 +0.12

−0.16 2+45
−23 0.01+0.16

−0.12
∗ ∆d

d is given in percent. See Eq. (3.4).
† Dwarfs are defined here as all stars in the range 4<Mr≤ 12.

Inversely, distances to giants are biased high. A star drawn at random, however, has an unbiased dis-

tance estimate. Distance and reddening constraints depend upon the quality of the photometry and

direction on the sky, and therefore vary significantly on a star-per-star basis. It is, in general, more

informative to look at the detailed shape of the posterior distribution for a given star in distance and

reddening space (See Fig. 3.1).

Next, we test that the true stellar parameters are drawn from the probability density functions we

calculate. For each simulated star, we derive the posterior density p(µ, E ), based on the simulated

photometry. Since we know the true distance modulus µ∗ and reddening E ∗ of the star, a natural

question is whether µ∗ and E ∗ are drawn from p(µ, E ). This cannot be answered for a single star,

but we can test this hypothesis for a large number of stars. Assign a percentile to a given star as fol-
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Figure 3.2: Centered and stacked probability densities on a linear scale for 5000 stars along a simulated line
of sight pointed at ℓ = 90◦, b = 20◦. In the bottom panels, we fit the stars using flat priors, so that only the
likelihood function comes into play. In the right panels, we show inferences for low signal-to-noise detections,
generated using 3× the normal observational uncertainties. Removing the priors biases the inferred distances
and, to a much lesser extent, reddenings. Inferred distances and reddenings for stars with high signal-to-noise
detections have smaller uncertainties. In each panel, each stellar probability density function has first been
centered on the true distance and reddening, before the probability densities for the stars have been summed,
as described in the text. The “X” shape of the stacked probability densities in the top-left panel reflects the
existence of separate giant and dwarf modes. The feature stretching from the bottom left to the top right
corresponds to the main sequence, while the perpendicular feature corresponds to the giant mode. The his-
tograms bordering each panel show the distribution of∆µ and∆E(B−V ), with the 15.87% to 84.13% region
shaded.
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lows:

P ( p < p∗) ≡
∫
p(µ, E )< p∗
dµ dE p(µ, E ) , (3.5)

where p∗ ≡ p(µ∗, E ∗). This represents the probability that the true stellar parameters would

be found at a point in (µ, E)-space of lower posterior density. If (µ∗, E ∗) lies at the point of maxi-

mum posterior density, then P ( p < p∗) = 1. Conversely, if (µ∗, E ∗) lies in a region of vanishing

probability density, then P ( p < p∗) ≈ 0. This percentile is therefore similar to a cumulative dis-

tribution function, and is uniformly distributed between 0 and 1. A straightforward test of whether

P ( p < p∗) ∼ U(0, 1) is to generate mock photometry for a large number of stars, to calculate the

percentile for each simulated star, and to then bin the results. Each bin is expected to contain the

same number of stars, with the precise number of stars in the bins determined by a multinomial

distribution. We can therefore derive approximate confidence intervals for the number of stars that

should fall into any given bin. Fig. 3.3 shows this test for a set of 1000 simulated stars along a line of

sight with Galactic coordinates ℓ = 90◦, b = 10◦. The results are consistent with our expectations,

indicating that our method recovers correct posterior densities for the simulated photometry.

3.1.3 Mock Line of Sight

Finally, we demonstrate that we are able to recover line-of-sight reddening profiles for simulated

photometry. We first invent an arbitrary relationship E(B−V )(µ) between distance and reddening.

We add in low-level scatter to the distance-reddening relationship, as the reddening relation across
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Figure 3.3: Distribution of percentiles for simulated photometry of 1000 stars, as defined in Eq. (3.5). The
percentiles are expected to be drawn from the standard uniform distribution, resulting in each bin being of
equal height. In 50% of trials, we would expect all the bins to fall within the dark green band, and in 95% of
trials, all the bins should lie within the light green band. The percentiles are consistent with being drawn from
a uniform distribution, indicating that we are sampling from the model correctly.

one HEALPix pixel may vary. We then generate mock photometry for 150 stars along the line of

sight. We then infer our model parameters from the simulated photometry, following the procedure

outlined in § 1.5, first determining a posterior density in distance and reddening space for each star,

and then combining the information from all of the stars to find the range of allowable reddening

profiles. Our final product is thus a set of reddening profiles, drawn from the probability density

over reddening profiles (See Eq. (1.12)). As described in §§ 1.3 and 1.5.3, we parameterize the redden-

ing as a piecewise-linear function in distance, and apply a log-normal prior to the differential redden-

ing in each distance bin, with the mean in each bin chosen to match a smooth model of the space

density of dust throughout the Galaxy. The results for one simulated line of sight, shown in Fig. 3.4,

demonstrate that we are able to correctly infer the reddening profile for mock data. The method
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produces the best results at distances where there are many stars. We choose in this demonstration to

use a finer distance binning than normal – 40 distance bins instead of the usual 30 – in order to high-

light one of the degeneracies in our parameterization. Because we represent the distance–reddening

relation by a piecewise-linear function, clouds can only appear at discrete distances. This sometimes

leads to a cloud being placed at different discrete distances in different MCMC samples, as can be

seen in Fig. 3.4.

3.2 Tests with Real Data

We have found that we can recover stellar distances and reddenings, as well as line-of-sight distance–

reddening profiles, from simulated photometry. These tests assume that our stellar templates are

perfect, which is surely not the case. In this section, we therefore show that our stellar templates have

accurate colors and luminosities, and that our rejection method (See § 1.5.2) can screen areas of stellar

parameter space that are not well represented by the models.

3.2.1 Colors

We compare our model colors to PS1 stellar photometry from low-extinction regions at high Galac-

tic latitudes. It is important to choose low-extinction regions, so that assumptions about the redden-

ing law and what percentage of the total dust column is in front of each star play only a minor role.

This allows us to obtain a comparison between the intrinsic colors in our model and of real stars. We

de-redden the stellar colors assuming that they are behind the full dust column predicted by Schlegel

et al. (1998, SFD).
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Figure 3.4: Recovery of the line-of-sight reddening profile from simulated photometry for 150 stars, taken
to be at a Galactic longitude of ℓ = 90◦, and latitude b = 10◦. The large panel shows the inferred posterior
densities of the stars, stacked on top of one another. The contrast is stretched at each distance for purposes
of visualization. This gives a picture of the information which is fed into the second stage of our analysis, in
which we recover the reddening as a function of distance from the individual stellar probability densities (See
Eq. (1.12)). The stacked image, however, plays no direct role in this inference. The curves show sampled red-
dening profiles, conditioned on the mock photometry. The green curve traces the most probable reddening
profile. The remaining curves are colored according to the logarithm of their probability density, with blue
denoting high probability and red denoting low probability. The upper four panels show individual stellar
posterior density functions over the same domain, with the same reddening profiles overplotted. We recover
a reddening profile similar to the original, which had a single cloud of depth E(B−V ) = 0.5mag at distance
modulus µ = 8.5 (shown as a dashed black line on the plot). At large distances, beyond the most distant stars,
the distance–reddening relation is constrained by the prior that there be little dust far outside the plane of
the MilkyWay. Each star is consistent with the range of possible reddening profiles. The cloud is inferred to
lie in different distance bins in different samples, reflecting the discrete nature of our line-of-sight reddening
parameterization.
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The results for the North Galactic Pole are shown in Fig. 3.5. We compute an evidence for each

star, as described in § 1.5.2. As expected, objects which lie far from the stellar locus in color-color

space tend to have lower evidence. This helps us to reject objects that are either not stars, are not

included in our stellar model (e.g., young and BHB stars), or that have particularly bad photome-

try. In the window shown here, 15% of the detected objects would fail an evidence cut of lnZ >

lnZmax − 20. These objects tend to have problematic photometry for which the PS1 pipeline

may have produced inaccurate results, though some are variables, quasars, and unrecognized galax-

ies, which our technique is not designed to handle. Our line-of-sight reddening inferences are not

strongly dependent on the choice of the evidence threshold.

3.2.2 Distances

Correct distance determination requires not only correct model colors, but correct absolute magni-

tudes. We therefore compare our stellar models to globular and open clusters. In Fig. 3.6, we com-

pare our model magnitudes to photometry from four globular and open clusters.

We find that the model absolute magnitudes match the main sequence. The model magnitudes

are unreliable past the main sequence turnoff, particularly for younger clusters. Our model mag-

nitudes trace the giant branch of intermediate-age clusters – typical of the age of most stars in the

Galaxy – somewhat better. Nevertheless, we expect that most of the information in our dust maps

will come from the main sequence, where distance and reddening estimates are better constrained.

Massive young blue stars and blue horizontal branch stars, which are not included in the stellar tem-

plates, are found to have low evidence, allowing them to be identified and excluded from the line-of-
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Figure 3.5: Comparison of PS1 stellar colors in the vicinity of the North Galactic Pole with our model colors.
Each object is colored according to the evidence Zwe compute (See § 1.5.2). Objects represented by redder
dots have a lower probability of being drawn from our stellar model. Those below a chosen threshold are
rejected before the line-of-sight reddening determination. The solid black line traces our model stellar colors.
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Figure 3.6: PS1 color-magnitude diagrams of three globular and one open cluster. For each cluster, the
model isochrone with the catalog metallicity of the cluster is overplotted. The stellar photometry has been
de-reddened and shifted by the catalog distance modulus to produce absolute magnitudes. The reddening
vector is plotted in the top left corner of each panel in red for reference. Each star is colored by its evidence,
with red stars unlikely to be drawn from our stellar model. In particular, stars which are blueward of the the
main-sequence turnoff, which are bluer than any star in our template library, have low evidence.

sight dust inference. Inclusion of age-dependent stellar models, and therefore more reliable distance

and reddening determinations for the most massive stars, could potentially increase the distance to

which our dust maps are reliable, and is an important direction for future work.
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The door of death therefore ॹ not closed for the heavens,
nor for the sun and earth and the deep waters of the sea,
but stands open and awaits them with vast and hideoॺ
maw. Therefore also you must confess that these same
things have had their birth; for things which are of mor-
tal body could not have despised the mighty strength of
immeasurable agॸ from infinite time up to thॹ present.

Lucretius, de rerum natura, 5.373–379

4
Results

AA
fter burning through ∼200 CPU-years on the Harvard Odyssey com-

pute cluster, we obtain a map of dust across the entire footprint of the PS1 sur-

vey – that is, the sky north of a declination of δ ≈ −30◦. This map is based on

both PS1 and 2MASS photometry, as described in § 2. The map is built sightline-by-sightline, us-

ing the method developed in § 1, following the sampling strategy detailed in § 1.5. In this chapter, I
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first showcase the map in § 4.1. Then, in § 4.2, I compare this 3D dust map with previous 2D and 3D

maps. Finally, in § 4.3, I describe how to access the map.

4.1 Distance Slices ofMap

In Figs. 4.1 and 4.2, I present the differential reddening in four spherical shells, centered on the Sun.

Each panel shows the median dust reddening in a different range of Solar-centric distances. Due to

perspective, dust at high Galactic latitudes resides nearby, as Galactic dust lies in a thin disk. The

map recovers the wealth of structure seen in the ISM across a wide range of scales, from thin fila-

ments to large cloud complexes. Large, coherent cloud complexes appear at consistent distances.

Fig. 4.3 gives a closer view of the anticentral region (ℓ ∼ 180◦). Different features appear clearly

in each rendered distance slice. The Perseus, Taurus and Auriga cloud complexes dominate the an-

ticentral region in the closest distance slice, while the Orion molecular cloud complex (ℓ ∼ 210◦,

b ∼ −15◦) and the California nebula (ℓ ∼ 160◦, b ∼ −8◦) appear very strikingly in the second

distance slice. Of particular interest is the ring-like structure that Orion A and B appear to be em-

bedded within. This ring-like structure is only apparent when the background dust is removed. In

particular, the northeast portion of the ring is confused with the plane of the Galaxy in projection.

Schlafly et al. (2015) discusses the “Orion ring,” including possible formation scenarios for the ring,

in greater depth.

Fig. 4.4 shows the Galactic plane from ℓ = 60◦ to 155◦ in more detail. The Cepheus flare, which

lies at the center of the frame, at 95◦ ≲ ℓ ≲ 110◦, b ≈ 15◦, separates into two components at differ-

ent distances, visible in the first and third panels. Using a modified version of the methods presented
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Figure 4.1: Median differential reddening in two Solar-centric distance ranges. The distance breaks are
chosen to coincide with distance moduli µ = 7.5 and 9.5, which line up with edges of distance bins in our
map. We adopt a square-root stretch, in order to capture both low- and high-reddening features. The hole at
ℓ ≈ 120◦, b ≈ 30◦ corresponds to declinations above ∼84◦, which had not yet been fully processed at the
time we created our 3Dmap.
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Figure 4.2: As in Fig. 4.1, but with breaks at distance moduli µ = 11.5 and 14.5.
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Figure 4.3: A closer view of the dust in the anticentral region in three distance bins. As in Figs. 4.1 and 4.2,
we plot the median differential reddening. The Taurus-Perseus-Auriga complex is visible in the right half of
the nearest distance bin. In the second distance bin, the Orion complex is visible on the left, while the Califor-
nia cloud is visible on the right. Note the ring-like shape of the Orion complex, which is only revealed by 3D
mapping when confusion from background dust is removed. See Schlafly et al. (2015) for discussion of this
feature. Monoceros R2 appears beyond Orion, in the third distance bin, flanked by the plane of the Galaxy at
yet greater distance.
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Figure 4.4: A closer view of the dust in the direction of Cepheus and Polaris flares and the eastern portion
of the Great Rift, including Cygnus X. The Cepheus flare (95◦ ≲ ℓ ≲ 110◦, b ≈ 15◦) separates into two
components in distance, visible in the first and third panels. The dust associated with the Cygnus X region
(ℓ ≈ 80◦, b ≈ 0◦) appears in the third panel.
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in this thesis along individual sightlines, Schlafly et al. (2014b) finds that the two components of the

Cepheus flare lie at distances of 360 ± 35pc and 900 ± 90pc. The dust associated with Cygnus X

(ℓ ≈ 80◦, b ≈ 0◦) appears in the third panel, along with a wealth of fine structure along the Galactic

plane.

We note that each pixel is fit independently, and our only prior assumption about the spatial

structure of the dust is that if forms a diffuse disk, as shown in Fig. 1.3. The detailed spatial structure

in the interstellar medium that our analysis reveals indicates that the PS1 and 2MASS photometry

dominates over our priors out to a distance of several kiloparsecs and reddening of E(B−V ) ≈

1.5mag. With the assumption of spatial correlations between neighboring pixels, we expect that

one would be able to significantly reduce the uncertainty in the map, and achieve better distance

resolution (See, e.g., Sale &Magorrian 2014).

4.1.1 Maximum&MinimumReliable Distances inMap

Our 3D dust map is based on measurements of stellar distances and reddenings. Beyond the most

distant stars, we have no sensitivity to dust, and in front of the nearest stars, we have no informa-

tion about the distance to the dust. Therefore, we estimate the minimum and maximum distance

to which our map is reliable by locating the nearest and farthest stars in each pixel. Outside of this

distance range, our line-of-sight reddening inferences are dominated by our priors. Using the im-

proved stellar parameter inferences (described in § 1.7), we define the minimum reliable distance in

each line of sight as the distance out to which there areNcloser observed main-sequence stars, and the

maximum reliable distance as the distance beyond which there areNfarther observed main-sequence
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stars.

For this calculation, we count eachMarkov Chain sample in stellar distance as a fraction of a star.

We exclude stars that fail to converge, for which the model is a very poor match to the data (as deter-

mined by the Bayesian evidence for the star; See § 1.5.2), or which are inconsistent with the inferred

line-of-sight reddening profile. We consider a star inconsistent with the line-of-sight reddening infer-

ence if none of the 100 storedMarkov Chain samples of the stellar distance and reddening is within

a fractional distance σδ (the modeled intra-pixel scatter in the dust column; See § 1.7) of the line-of-

sight reddening profile. Such objects are likely not well fit by any of our stellar templates, or alterna-

tively signal that there is more variation in the dust column at fine angular scales than we allow.

In determining the minimum and maximum reliable distances in the 3D dust map, we use only

main-sequence stars. This is because we consider our inferences for giants to be less reliable than our

inferences for dwarfs. The colors and luminosities of giants depend more strongly on metallicity and

age, the latter of which we do not model.

In the left two panels of Fig. 4.5, we show the results obtained by requiringNcloser = 2 and

Nfarther = 10. The results are qualitatively similar for other choices of these parameters, as long as

they are small compared to the typical number of stars in a pixel. The closest reliable distance is set

almost entirely by the angular pixel scale. The nearby density of stars is, to a very rough estimation,

uniform, meaning that the distance to the closest star in a pixel is a function primarily of the solid

angle covered by the pixel. Accordingly, the top left panel of Fig. 4.5 is essentially a map of pixel solid

angle, with boundaries in distance following pixel scale boundaries.

The farthest reliable distance of the 3D dust map is strongly influenced not only by the pixel
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Figure 4.5: The minimum and maximum reliable distances in the 3D dust map. The left two panels are
based on the inferred distribution of stars along each line of sight, while the right two panels are based on
simulated stellar catalogs generated from our Galactic priors. We consider the map reliable if there are at least
two stars closer than the given distance, and at least ten stars beyond the distance. Pixel size, survey depth
and completeness, stellar density throughout the Galaxy and the presence of dust all affect the distribution of
observed stars along the line of sight, and therefore the distance range over which the map is reliable. Sharp
transitions in reliable distance occur at pixel size boundaries, where the number of stars per pixel changes
discontinuously, as well as in patches of the sky with missing PS1 passbands.
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scale, but also by the distribution of stars throughout the Galaxy, the 3D distribution of dust and

the survey depth. The survey depth plays a larger role in the far limit because the most distant ob-

served stars lie preferentially near the limiting survey magnitude. The closest stars, by contrast, are

distributed more evenly in apparent magnitude. Accordingly, the high-latitude patches with partic-

ularly shallow maximum reliable distances (e.g., the shallow patch near ℓ = 205◦, b = −55◦) corre-

spond to areas which are missing one or more PS1 bands, or which have fewer observation epochs in

the PS1 3π survey, and therefore worse coverage.

As a check on these estimated nearest and farthest reliable distance maps, we construct equiv-

alent maps using simulated stellar catalogs. For each pixel in our map, we use our Galactic priors

and the estimated limiting magnitudes for grizyP1 and 2MASS JHKs to generate an equal number

of stars as actually observed. We then determine the distance in front of which there areNcloser

and beyond which there areNfarther main-sequence stars. In order to remove the complicating

factor of the line-of-sight dust inference, we restrict this test to |b| > 15◦ and to pixels for which

E(B−V )τ353 < 0.05mag, and assume for our simulated catalogs that there is zero dust extinction. In

these comparisons, we find that a halo number density close to the value given in Jurić et al. (2008) is

required to reproduce inferred map depths of Fig. 4.5. The results for a halo strength of nh = 0.004,

binned down to nside = 64, are shown in the right two panels of Fig. 4.5.

These results indicate that while we dialed down the halo strength in our priors, the data, as re-

flected in our photometric stellar inferences, nonetheless prefers a stronger halo. In future work, we

will investigate the implications of our stellar and line-of-sight dust inferences for a global Galactic

structure model.
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4.1.2 Individual Stellar Reddenings

In order to test the accuracy of our reddening inferences for individual stars, we compare our pho-

tometric reddenings to independently measured reddenings for a sample of stars. For this, we use

the set of stellar reddening standards developed by Schlafly & Finkbeiner (2011). The Sloan Exten-

sion for Galactic Understanding and Exploration (SEGUE; Yanny et al. 2009) obtained moderate-

resolution spectroscopy for 240,000 stars with SDSS photometry. Whereas most of the SDSS foot-

print is at low reddening, some of the SEGUE targets are at moderate reddening, up to ∼1 mag in

E(B−V ). The SEGUE Stellar Parameter Pipeline (SSPP) fits an atmospheric model to each star

to derive the temperature, metallicity, and gravity of the star, as well as other parameters (Lee et al.

2008a,b; Allende Prieto et al. 2008). These stellar parameters were used by Schlafly & Finkbeiner

(2011) to predict the intrinsic colors of stars, and to study the effect of reddening by attributing the

differences between the observed and intrinsic colors to dust. Empirically adjusted SDSS colors

based on model atmospheres can then be compared with observed SDSS photometry to obtain re-

liable reddening estimates. We select the same sample of 200,000 SEGUE target stars as Schlafly &

Finkbeiner (2011), which excludes white dwarfs andM dwarfs (the former because they are not con-

tained in our model, and the latter because of their unreliable spectral classification).

We estimate the reddening of each selected SEGUE target star in a manner similar to that of

Schlafly & Finkbeiner (2011), based on a comparison of the predicted and observed data in the four

SDSS colors, assuming a Fitzpatrick (1999) reddening vector with RV = 3.1. The details of how

one derives reddening from on SEGUE-determined intrinsic colors and observed SDSS colors are
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described in § A.4.

As described in § 1.7, after generating our 3D dust map, we reweight the naively inferred pa-

rameters for each star in order to take the line-of-sight reddening profile into account. In order to

demonstrate the improvement in stellar inferences after this reweigthing procedure, we compare the

SEGUE standards to our stellar reddening inferences, both with and without the 3D-dust-informed

reweighting.

Fig. 4.6 therefore compares reddening inferences from our PS1+2MASS-based stellar inferences

to the SEGUE-based estimates. We bin the stars by the reddening expected from the dust maps of

Schlegel et al. (1998, SFD), and plot a histogram of the difference in the two reddening measures in

each bin. We place the SFD reddening on the x-axis because it is a good proxy for reddening and is

independent of both of the two reddening estimates we wish to compare. Placing either the SEGUE-

derived reddening or the Bayesian reddening along the x-axis would introduce spurious trends in

the resulting comparison. We draw multiple samples for each star, from the samples stored for our

PS1+2MASS-based reddenings and the Gaussian uncertainties in the SEGUE reddenings. The top

panel of Fig. 4.6 conducts this comparison with unweighted samples, while the bottom panel con-

ducts the comparison using the reweighting scheme introduced in § 1.7.

The agreement with SEGUE reddening estimates improves significantly after reweighting our

PS1+2MASS-based stellar inferences, as can be seen from comparison of the upper and lower panels

of the figure. The improvement is most pronounced at low reddenings. This is likely due to the fact

that we do not allow negative stellar reddenings when deriving the 3D dust map, while the SEGUE-

based estimates have no hard bound that E(B−V ) ≥ 0. For the unweighted PS1+2MASS-based
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Figure 4.6: Histograms of the residuals of our PS1+2MASS-based stellar reddenings (referred to as “GSF”
here), versus reddening estimates obtained by comparing SEGUE spectral classifications with SDSS photom-
etry. The histograms are spread out along the x-axis by the local SFD reddening. The blue lines trace the
16th, 50th and 84th percentiles of the residuals in each bin of SFD reddening. In the upper panel, we use un-
weighted samples drawn from the individual stellar parameter Markov Chains. In the lower panel, we use
reweighted samples, as described in the text (See §§ 1.7 and 4.1.2).
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reddening samples, the non-negativity constraint causes a negative slope vs. the SEGUE reddening

measurements at low reddening. The improvement from reweighting the samples is negligible for

E(B−V ) ≳ 1 mag, due to the fact that we allow the individual stars to deviate from the local line-

of-sight reddening profile by about 10%. The scatter between the unweighted samples and SEGUE

reddening estimates is approximately 0.15 mag in E(B−V ), with the overall estimate being unbi-

ased to within 0.03mag. This result is indicative of the accuracy we achieve for high-signal-to-noise

detections, as most SEGUE targets are well above the detection limit in PS1.

4.2 Comparisonwith Previous DustMaps

Schlafly et al. (2014a) compares an earlier version of our 3D dust map with the two-dimensional,

far-infrared emission-based SFD (Schlegel et al. 1998) and Planck dust maps (Planck Collaboration

2014). Here, I repeat this comparison using the newer 3D dust map described in this thesis, and

additionally compare our dust map with previous 3D dust maps, which are also based on stellar

photometry.

4.2.1 2D DustMaps

It is possible to obtain a 2D dust map from our 3Dmap by projecting out distance, i.e., by taking the

cumulative reddening out to some large distance. Such a map is of particular interest for extragalac-

tic astronomy, where MilkyWay dust is essentially a foreground screen to be removed. As discussed

in § 0.3, several all-sky 2Dmaps of dust reddening already exist, among them Burstein &Heiles

(1982), based on Hi emission and galaxy number counts, Schlegel et al. (SFD; 1998) and two recent
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Figure 4.7: A comparison of our new 3D dust map (“GSF”), integrated to 4.5 kpc, with the 2Dmap pre-
sented in Schlafly et al. (2014a). The left panel shows the difference between our map and Schlafly et al.
(2014a) as a function of a third reddening measure with uncorrelated errors, the Planck τ353 GHz-based dust
reddening map. The right panel maps the median residuals between our map and Schlafly et al. (2014a) across
the sky. All units are in magnitudes of E(B−V ).

reddening maps derived from Planck data (Planck Collaboration 2014), which model dust optical

depth and temperature from far infrared emission, and then calibrate a dust optical depth to red-

dening relation. Near-infrared stellar colors have also been used to determine dust reddening more

directly, as in the NICE/NICER/NICEST family of algorithms (Lada et al. 1994; Lombardi & Alves

2001; Lombardi 2009, respectively) discussed earlier, and Rowles & Froebrich (2009).

Schlafly et al. (2014a) compares a 2D projection of an earlier version of our 3D dust map with the

widely used SFD reddening map, as well as the newer Planck reddening maps. We repeat a number

of the same tests for our new 3D dust map.

We begin, however, with a comparison between the map presented in this thesis and the map

presented in Schlafly et al. (2014a). The most important differences between the 3Dmaps used here

and in Schlafly et al. (2014a) are addition of near-infrared 2MASS photometry in our newer map,

and that we sample here from the full posterior distribution on line-of-sight reddening, rather than
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finding the maximum-likelihood line-of-sight reddening. Because Schlafly et al. (2014a) requires that

each star be detected in gP1, and because we incorporate near-infrared 2MASS photometry alongside

PS1 photometry, our map reaches to deeper dust extinctions. This is apparent in the right panel of

Fig. 4.7, where our newmap predicts more reddening both in the inner Galactic plane and in dense

dust clouds off the plane, such as Orion, Taurus and Perseus.

At reddenings below E(B−V ) ≲ 0.08mag, our newmap predicts significantly less reddening

than Schlafly et al. (2014a), as can be seen in the left panel of Fig. 4.7. Beyond E(B−V ) ≈ 0.1 mag,

our reddening scales agree very closely, with our newmap predicting ∼4%more reddening. The

scatter between the two reddening measures comes to ∼0.04mag, with a maximummedian offset

of 0.04mag at E(B−V ) ≈ 0.08mag, decreasing gradually to an offset of less than 0.01mag be-

tween the two measures at E(B−V ) = 1 mag. The behavior of the residuals suggests that at very

low reddenings, our new 3D dust map prefers essentially zero reddenings too strongly. This may be

due to the stronger priors on dust reddening used in the present work, or due to slight differences

in our new combined PS1-2MASS stellar locus, versus the PS1 stellar locus used in Schlafly et al.

(2014a).

Next, we compare our inferred cumulative reddening out to 5 kpc with the SFDmap, the Planck

τ353 GHz-based reddening (hereafter, denoted simply as τ353, with units of magnitudes of E(B−V )),

and the Planck radiance-based map (hereafter denotedR, likewise with units of magnitudes of

E(B−V )). All three of these maps are derived by modeling dust emission, and should therefore

have different types of systematic errors than our stellar reddening-based dust map.

The upper panel of Fig. 4.8 shows the SFD reddening across the footprint of our map, while
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Figure 4.8: A comparison of the 2D SFD reddening map with our PS1-based map (“GSF”), integrated out
to 5 kpc. The top panel shows the SFD reddening over the footprint of the PS1 survey, clipped to 0.25mag,
while the bottom panel shows the residuals after subtracting off the median cumulative reddening out to 5 kpc
predicted by our 3D dust map. Both panels use the same color scale, and the units are magnitudes.
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Figure 4.9: A comparison of our PS1-based reddening to 5 kpc (denoted by “GSF”) with SFD, the Planck
τ353 GHz-based reddening, and the Planck radiance-based map (denoted byR). Each panel shows the resid-
uals between one of the three emission-based dust maps and the median integrated reddening in our map
on a square-root stretch. The units are magnitudes of E(B−V ). Out of the plane of the Galaxy, we agree
well with the emission-based maps. Deep in the plane of the Galaxy, where extinction and stellar crowding
prevent us from observing stars beyond all of the dust, our 3D dust map traces less total extinction than the
emission-based maps. MilkyWay dust is optically thin in emission, whereas it is optically thick in optical/NIR
extinction, so the fact that emission-based maps trace dust out to greater distances should not be surprising.
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Figure 4.10: A comparison of our PS1-based reddening to 5 kpc (denoted by “GSF”) with SFD, the Planck
τ353 GHz-based reddening, and the Planck radiance-based map (denoted byR). Each panel shows histograms
of the residuals between one of the emission-based maps and posterior samples drawn from our map. Instead
of showing a single histogram in each panel, we divide up the sky according to E(B−V ), and produce a his-
togram for each E(B−V ) bin. Each histogram is shown at a different location along the x-axis, according to
the E(B−V ) bin it was computed in. In the upper panel, we put the τ353 GHz-based reddening estimate, in
magnitudes, along the x-axis, since its errors should be largely uncorrelated with the errors in the PS1 and SFD
reddening estimates. In the bottom two panels, we use the SFD reddening estimate, in units of magnitudes, as
our proxy for reddening, likewise because its errors should be uncorrelated with those of the quantities along
the y-axis. An inset in the top-right panel shows the regions that are masked in this analysis. The detailed
behavior of the residuals, particularly at large reddenings, depends on which regions are masked, indicating
that there are systematic differences in the residuals between our reddening map and emission-based map in
different regions of the sky.

132



the lower panel shows the residuals after subtracting off our 5 kpc map. Off the Galactic plane, the

residuals are small, while larger residuals are found in the plane of the Galaxy, where there is signifi-

cant dust past 5 kpc, and where PS1 does not necessarily detect stars beyond all of the dust. Near the

Galactic center, but several degrees off the plane of the Galaxy, one noticeable feature is a blue halo,

where we infer more dust than SFD. The residuals are correlated with dust reddening in this area,

indicating a scale offset between the two maps, rather than a constant offset.

The “blue halo” is again apparent if we compare our map to the the Planck τ353 map. In Figs. 4.9

and 4.10, we compare our inferred reddening at 5 kpc with SFD, τ353, andR. Fig. 4.9 map the residu-

als across the PS1 survey footprint on a square-root stretch, emphasizing small-amplitude differences.

In Fig. 4.9, the Planck-based maps have been scaled by a constant factor to match our inferred PS1

reddening for |b| > 20◦.

As the “blue halo” occurs in the direction of the nearby Aquila Rift, it is possible that the cloud

has anomalous dust properties. For example, the grain size distribution or composition may vary,

so that RV = 3.1 is not a good assumption in the Aquila Rift. Another possible explanation for the

“blue halo” is that our stellar inferences may be systematically biased towards greater reddenings in

this direction due to limitations in our Galactic model. Our priors do not, for example, include a ra-

dial metallicity gradient in the disk components of the Galaxy, which could lead to biased metallicity

estimates for stars towards the Galactic center. We leave this question for future investigation.

In Fig. 4.10, we plot the residuals of our inferred reddening to 5 kpc with SFD and the Planck

emission-based maps as a function of reddening. Here, we do not scale the Planckmaps by any

factor to bring them into alignment with our map. To conduct this comparison, we compare the

133



emission-based maps to multiple random realizations drawn from the posterior on reddening to

5 kpc from our 3D dust map. We restrict our comparison to high-Galactic-latitude regions (|b| >

30◦), and cut out the ecliptic plane (|β| < 20◦), where imperfectly subtracted Zodiacal light might

contaminate the emission-based reddening maps. When comparing our PS1-based reddening with

SFD, we place the Planck τ353 GHz-based reddening on the x-axis, as its errors are uncorrelated with

both maps on the y-axis. When displaying the residuals between our PS1-based reddening and the

Planck reddening maps, we place SFD along the x-axis for the same reason.

For reddenings above E(B−V ) ≳ 0.05mag, we see broadly similar residuals as found in Schlafly

et al. (2014a), with with different behaviors above and below E(B−V ) ≈ 0.15 mag. Above

E(B−V ) ≈ 0.15 mag, our map predicts about 10% less reddening than SFD, but is in good agree-

ment with τ353. As in Schlafly et al. (2014a), we find an overall difference in scale between our PS1-

based map and the PlanckR-based map. For E(B−V ) ≲ 0.05mag, we see the same residual be-

tween our map and the emission-based maps as found between our map and Schlafly et al. (2014a).

For these small reddenings, our map favors essentially zero reddening too heavily.

The exact behavior of the residuals depends on which regions of the sky are masked in the analy-

sis, indicating that there are spatially-dependent systematic differences in the residuals between our

reddening map and emission-based maps. However, the essential features remain the same, with dif-

ferent slopes in the residuals below and above E(B−V ) ≈ 0.15 mag, and our map favoring lower

reddening below E(B−V ) ≈ 0.05mag.

A striking difference between our 3D dust map and SFD is the prominence of fine filamentary

structure in the former. An example of this difference is shown in Figs. 4.11 and 4.12, which com-
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pares the 3Dmap, integrated to 8 kpc, with SFD. Although SFD nominally has a similar angular

resolution (6.1′) as our 3D dust map, our map often appears sharper. This is likely due to the resolu-

tion of the SFD correction, which at 0.8◦ is much coarser than the 100µm IRASmap that SFD uses

to trace dust emission. If fine filaments in the interstellar medium are colder than their surround-

ings, the SFD temperature map will overestimate their temperature. Since hotter dust emits more

strongly per unit column density than cold dust, SFD will therefore underestimate the column den-

sity of regions where the temperature has been overestimated. In regions where the temperature of

the interstellar medium varies on small angular scales, the SFD temperature map therefore has the

effect of smoothing out fine features, such as cold filaments and the cores of dense clouds. This con-

clusion is bolstered by the fact that the Planck τ353-based reddening map, which does not suffer from

a low-resolution temperature correction, shows the same filamentary features as our 3D dust map.

4.2.2 Marshall et al. (2006)

Marshall et al. (2006) developed a method to determine the reddening-distance relation along indi-

vidual lines of sight by comparing 2MASS J − Ks stellar colors to those of simulated catalogs based

on the Besançon model of the Galaxy (Robin et al. 2003). Marshall et al. (2006) then applied this

method to a regular grid of sightlines separated, by 15′ covering the region |ℓ| < 100◦, |b| < 10◦.

The result is a 3Dmap of reddening in the inner Galaxy, extending to a maximum extinction of

∼ 1.4 − 3.75mag in the 2MASSKs band (equivalent to ∼4.5 − 12mag in E(B−V )), and a maxi-

mum distance of ∼ 7 kpc. Because Marshall et al. (2006) use only giants in their analysis, the dust

map they produce has little information in the nearest kiloparsec. We will refer to this map as the
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Figure 4.11: Reddening in the Aquila South region, showing fine filamentary structure in our 3Dmap (top
panel) which is missing in SFD (bottom panel). The top panel shows median cumulative reddening to 8 kpc
from the 3Dmap, while the bottom panel shows SFD reddening. The maps are shown with a square-root
stretch, with units of magnitude. Although both maps have similar nominal angular resolution, SFD relies on
a relatively low-resolution temperature correction, which may cause cold filamentary structures to be blurred
out.
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Figure 4.12: Reddening residuals in the Aquila South region between the median integrated reddening
(to 8 kpc) in our 3D dust map and SFD. Positive values (blue) indicate that our 3D dust map infers more
reddening. Before the residuals are taken, the median scale difference between the two maps has been divided
out. In detail, the reddening of the 3D dust map has been multiplied by a uniform factor of 0.86. Both panels
show the residuals on a square-root color stretch, which emphasizes small residuals. The bottom panel uses
a narrower scale, and thus shows small residuals more clearly. While most of the recognizable structure from
Fig. 4.11 cancels out (e.g., the cloud at ℓ ≈ 38◦, b ≈ −18◦), filamentary structure remains. As discussed in the
text, this is likely due to the SFD temperature map blurring out small-scale features in the map.
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“Marshall map.”

Our dust map overlaps with the Marshall map in the approximate region 0◦ < ℓ < 100◦, |b| <

10◦. Fig. 4.13 shows the cumulative reddening at increasing distances in both the Marshall map and

our 3D dust map. When converting from extinction to reddening, we assumeAKs = 0.320 E(B−V ),

as calculated by Yuan et al. (2013) for a 7000 K source spectrum at E(B−V ) = 0.4mag, using the

Cardelli et al. (1989) reddening law and assuming RV = 3.1. We mask our map beyond our predicted

maximum reliable distance, as determined in § 4.1.1. In the large-distance limit, our maps show good

qualitative agreement outside of the masked areas. Fig. 4.14 shows the differential reddening in the

two maps in bins of increasing distance.

In the nearest two to three kiloparsecs, our map shows clearly differentiated structures at dis-

crete distances that are spread over several distance bins in the Marshall dust map. For example, the

Cygnus rift (located at ℓ ∼ 80◦, b ∼ 0◦) appears clearly in our map in the distance bin spanning

0.5 − 1 kpc, while in the Marshall map, it is spread over all the distance bins closer than ∼ 3 kpc,

and is therefore not cleanly separated from superimposed dust structures at greater distances. The

greater distance resolution of our map at nearby distances is most likely due to the fact that we use

both main-sequence stars and giants, while Marshall et al. (2006) relies solely on giants, which are

saturated nearby and form a larger fraction of the observable stellar population at greater distances.

In addition to better distance resolution in the first few kiloparsecs, the greater source density of

PS1 relative to 2MASS allows us to achieve better angular resolution than the Marshall map. Fig. 4.15

demonstrates the difference in angular resolution between the two maps. In most of the region of

overlap between our reddening map and the Marshall map, we achieve an angular resolution of 3.4′,

138



Figure 4.13: A comparison of the median cumulative reddening out to increasing distances in the Marshall
map (left panel) and our map (right panel). Regions beyond the maximum reliable distance in our map are
masked out in blue in the right panel. At large distances, the two maps agree qualitatively, with the masked
regions in our map corresponding to the most heavily obscured regions in the Marshall et al. (2006) map. The
Marshall map has greater depth, but lower angular resolution, and lower distance resolution in the nearest
two to three kiloparsecs.
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Figure 4.14: A comparison of the median differential reddening in bins of increasing distance in the Mar-
shall map (left panel) and our map (right panel). In the nearest two to three kiloparsecs, we achieve much
better distance resolution, as evidenced by the differentiated structures visible in successive distance bins.
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Figure 4.15: A zoom-in of median cumulative reddening to 3 kpc, showing the difference in angular resolu-
tion between the Marshall 3D reddening map (left panel) and our map (right panel), as well as the lower noise
of the latter. TheMarshall dust map has an anuglar resolution of 15′, while our dust map has a typical angu-
lar resolution of 3.4′ in the region of the Galactic plane displayed above. The reliability mask has not been
applied our map in this figure.

as opposed to the constant 15′ resolution of the Marshall map. This allows us to resolve detailed fil-

amentary structure not seen in the latter map. As dust reddening can vary significantly on small an-

gular scales, this increased angular resolution will be important in practice for correctly de-reddening

extinguished sources in regions with complex dust structure.

Deep in the plane of the Galaxy, where high extinction reduces source counts, our finer angu-

lar resolution limits the distance to which our map can trace dust, compared to the Marshall map.

Although the PS1 3π survey is deeper than 2MASS, the 2MASS passbands are less affected by dust

extinction, and the advantage of PS1 decreases in regions of high extinction. In such regions, the

greater depth of PS1 does not fully compensate for our smaller pixels, limiting the depth to which

we trace dust deep in the Galactic plane. The fact that our map derives its most accurate reddening
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information frommain-sequence stars also limits the maximum extinction to which it is reliable.

4.2.3 Lallement et al. (2013)

Combining distance and reddening estimates for ∼23, 000 stars with the assumption of spatial cor-

relation in dust density, Lallement et al. (2014) infer reddening in 3D out to a distance of ∼800 pc

from the Sun. We find close morphological agreement between our 3D dust map and that of Lalle-

ment et al. (2014), with some differences which are worth taking note of.

In Fig. 4.16, we show the distribution of dust and stars in a slice 25 pc above the Galactic plane,

level with the Sun. We show the median dust density. In order to generate the stellar locations, we

draw a sample at random from the improved distance posterior of each star (See § 1.7), and select

only those stars that lie within 5pc of the chosen plane. For display purposes, we only display one

out of every thousand stars.

Just as Lallement et al. (2014), we find cavities in the dust density in the directions of ℓ = 70◦ and

225◦. The overall morphology of the dust structure in the right panel of Fig. 4.16 matches that of Fig.

1 in Lallement et al. (2014).

The most obvious difference between our maps and those of Lallement et al. (2014) is the differ-

ent voxel shapes employed in our work and theirs. Lallement et al. (2014) use small cubic voxels, and

assume a spatial correlation function that favors similar dust densities in nearby voxels. This allows

them to densely sample the reddening distribution, with voxels that are not directly constrained by

stellar reddening measurements being constrained by neighboring voxels. In contrast, we infer the

dust distribution in each line of sight separately, without assuming spatial correlations in the dust
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Figure 4.16: Dust density in a 10pc-thick slice lying 25 pc above the Galactic plane (i.e., level with the Sun),
with positions of stars within this slice overplotted in the left panel. In detail, we show the median (over multi-
ple realizations of the 3D dust map) of the reddening column density along each sightline passing through the
slice (i.e., into the page). The Sun is at the origin of each panel, with the right panel being a zoomed-in version
of the left (without the overplotted stars). Only every 1000th star has been plotted. The dust map is reliable
out to distances at which the stellar density becomes too small to trace the dust column. Compare with Fig.
C2 of Lallement et al. (2014), in which the stellar density is concentrated within ∼200 pc of the Sun.

density, as laid out in § 1.1. While our map has excellent angular resolution, it has distance bins with

a width of about 25%, giving our voxels their pencil-beam shape.

Although we see roughly the same structures, such as cavities in the reddening distribution cen-

tered on ℓ = 70◦ and 225◦, the distances we derive for a number of clouds is greater than the dis-

tances Lallement et al. (2014) find. In particular, while Lallement et al. (2014) place the Cygnus rift

between 500 and 600 pc, we place it at a distance of 800 to 1000 pc.

4.3 Accessing theMap

Our 3D dust map can be accessed at http://argonaut.skymaps.info. The website provides

an interface for querying individual lines of sight, as well as the ability to download the entire map
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and software to read it. We also provide an API through the website, which allows users to query the

map remotely with a few lines of code, without the need to download the entire data cube. The data

is also accessible at http://dx.doi.org/10.7910/DVN/40C44C, through the Harvard Dataverse.

4.3.1 Data Cube

The basic data product our map contains is samples of the differential reddening in 31 distance bins,

in each of 2.4 million pixels. The data structure is thus

(
2.4× 106 pixels

)
× (500 samples)× (31 distance bins) .

This allows us to determine the probability density of the cumulative reddening to any distance

(within a few kiloparsecs) in the 3π steradians covered by the PS1 survey.

We encourage users to use the Markov chain samples of reddening versus distance provided by

our interface in their analyses, as the samples contain the full statistical information generated by

our method. These samples can be queried using our web API, downloaded as an ASCII table for

individual lines of sight, or accessed directly in the complete data cube provided for download.

An additional, and larger, dataset that we produce while generating the 3D dust map is a library

of photometrically determined stellar parameters. As described in §§ 1.1 and 1.5, we infer the proba-

bility distribution of distance modulus, reddening, metallicity and absolute rP1-magnitude for each
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star. We thus have a second data cube with shape

(
8× 108 stars

)
× (100 samples)× (4 parameters) .

In addition, we store quality assurance information for each star, including whether the Markov

Chain converged during the fitting procedure, and the Bayesian evidence for the stellar model, which

is similar to the χ2 statistic in maximum-likelihood fitting. Point sources with poor evidence are

likely either of stellar types not contained in our model, such as very young stars or binary systems,

or are not stars (e.g., white dwarfs, quasars, unresolved galaxies).
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5
Conclusion

TT
his thesis has presented a general method for deriving a three-dimensional

map of Galactic reddening from stellar photometry. This technique is based on

grouping stars into pixels, determining the joint posterior of distance and redden-

ing for each star, and then inferring the distance–reddening relation in each pixel. I have applied this

method to ∼800 million stars with high-quality multiband photometry in Pan-STARRS 1, using
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matched 2MASS photometry for ∼200 million stars, obtaining a three-dimensional map of dust

reddening covering the three quarters of the sky at declinations of δ > −30◦. This map provides

a window into the structure of the interstellar medium, revealing detailed structure from the small-

est scales in the map, 3.4′, all the way to large cloud complexes spanning many degrees. I provide

interfaces to query and download the map at http://argonaut.skymaps.info.

Projecting the map down to two dimensions, I find good agreement with emission-based dust

maps at high Galactic latitudes, where one would expect our method to trace the entire dust column.

Comparison with the 3Dmap of nearby dust presented in Lallement et al. (2014) shows the same

morphological features. In comparison with the 3D dust map of the inner Galactic plane presented

inMarshall et al. (2006), the map developed in this thesis has greater angular resolution and superior

distance resolution within ∼3 kpc. However, due to its reliance primarily on main-sequence stars, as

opposed to giants, this map does not penetrate to as great a depth as Marshall et al. (2006).

In addition to tracing the dust density in nearby regions of the Galaxy (within several kilopar-

secs), this map can be used to determine the distribution of stars in the Galactic plane. Earlier opti-

cal studies of the distribution of stars in the Galaxy traditionally consider only high-latitude stars,

where the correction for dust extinction is straightforward (e.g., Jurić et al. 2008). Infrared surveys

of the plane are less sensitive to dust extinction, but their wavelength coverage also makes them less

sensitive to intrinsic stellar type, rendering photometric distances uncertain. The mapping efforts

described here provide distances to stars throughout the Galactic plane, enabling future studies of

the distribution of stars in the disk.

The technique described in this thesis is not limited to PS1 and 2MASS photometry. Near-infrared
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photometry, in particular, has the potential to extend the map to greater extinctions, due to the

steep drop-off in extinction with increasing wavelength. Three near-infrared surveys are of partic-

ular interest. WISE, discussed in § 0.3.3 in the context of the Planck dust maps, has conducted an

all-sky survey in the NIR andMIR. Most useful to stellar inference are the passbands centered on

3.4 and 4.6µm. Spitzer GLIMPSE surveyed the Galactic plane in the NIR andMIR (Churchwell

et al. 2009), providing a deeper view into some of the regions of the MilkyWay with the most com-

plicated dust structure. Finally, UKIDSS is in the process of surveying over 7000 deg2 of the North-

ern sky, including a strip through the Galactic plane, in the NIR J,H andK bands (Lawrence et al.

2007). In the areas covered, UKIDSS will constitute a significant improvement over 2MASS.

Additional near-UV/optical/NIR surveys are also of interest. The Dark Energy Survey (DES;

The Dark Energy Survey Collaboration 2005) is surveying 5000 deg2 of the southern sky, largely

complementary to the PS1 footprint, in a similar filter set. The LSST (Ivezic et al. 2008) will provide

deep ugrizy photometry for the sky south of a declination of δ ≈ 34.5◦. The ESAGaiamission (Lin-

degren et al. 1994) is currently in the process of collecting multiband photometry, geometric parallax

distance measurements and proper motions for one billion stars. Parallax distances, where avail-

able, will vastly improve stellar distance estimates, breaking the dwarf-giant degeneracy in particular.

Proper motion measurements fromGaiawill provide additional information about the populations

stars belong to, helping us to infer stellar distances and types.

In addition to determining the dust density in the nearby Galaxy, our method can be used to

determine the distribution of stars in the Galactic plane. Earlier optical studies of the distribution

of stars in the Galaxy traditionally consider only high-latitude stars, where the correction for dust
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extinction is straightforward (e.g., Jurić et al. 2008). Infrared surveys of the plane are less sensitive to

dust extinction, but their wavelength coverage also makes them less sensitive to intrinsic stellar type,

rendering photometric distances uncertain. Our technique provides distances to stars throughout

the Galactic plane, enabling future studies of the distribution of stars in the disk.

The technique described in this thesis is not limited to PS1 and 2MASS photometry. Inclusion

of information fromWISE, Spitzer GLIMPSE, as well as SDSS u-band photometry will improve

our distance and reddening estimates. In addition, kinematic information, such as proper motion,

may be incorporated into our framework in order to allow a more precise determination of stellar

distances.

Upcoming surveys will also dramatically enhance our ability to measure the distances and redden-

ings to stars in the Galaxy. The LSST (Ivezic et al. 2008) will provide deeper photometry spanning

a similar set of filters as those used in SDSS and Pan-STARRS 1, providing photometry for the sky

south of δ < +34.5◦. In the nearer future, the Dark Energy Survey (DES) will survey a complemen-

tary 5000 deg2 of sky to Pan-STARRS 1, in a similar filter set (The Dark Energy Survey Collabora-

tion 2005). TheGaiamission (Lindegren et al. 1994), meanwhile, will provide multiband photome-

try and low-resolution spectroscopy alongside parallax distance measurements and proper motions

for one billion stars. Gaia’s parallax distances, in particular, will break many of the degeneracies in

our model for rP1 ≲ 20 stars, while its proper motions will aid in inferring the population each star

belongs to. These new datasets will increase the power of our method to determine Galactic redden-

ing and structure.

Improvements to the model also have the potential to greatly improve on the 3D dust map pre-

149



sented here. The technique developed in this thesis does a remarkable job of tracing dust structure

in 3D, despite the fact that it is built up sightline-by-sightline and does not assume any spatial cor-

relations in the 3D dust density field. A more physical model would characterize the distribution of

dust throughout the volume of the MilkyWay as a density field with some power spectrum. Doing

so would allow neighboring regions of the sky to “share” information in an optimal way, and allevi-

ate the “finger-of-God” phenomenon observed in the dust map presented here. Several researchers

have conducted work in this direction, including Lallement et al. (2014) and Sale &Magorrian

(2014).

A reliable map the three-dimensional distribution of dust is important to a wide range of astro-

physics research. Nearly all observational work in the ultraviolet, optical and near infrared requires

accurate dust correction. A three-dimensional dust map is particularly important for Galactic astron-

omy, where reddening is strongly distance-dependent. For extra-Galactic astronomy, a dust map

derived from stellar colors is complementary to far-infrared dust-emission-based maps, due to the

very different systematics that affect the two methods. But dust is not just a nuisance to be corrected

for – by tracing the three-dimensional structure of the interstellar medium, we shed light on the

morphology of the MilkyWay. The data product developed and presented in this thesis – a three-

dimensional map of dust in the nearest several kiloparsecs of our Galaxy – is incredibly rich, and I

expect that it will find many different uses not yet envisioned by the author.
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A
Mathematical Details

A number of derivations of methods used in the text are presented in somewhat greater detail below.

A.1 BoundedHarmonicMean Estimate of the Bayesian Evidence

The harmonic mean approximation, developed in Gelfand &Dey (1994), allows one to compute

the Bayesian evidence using samples returned from aMarkov ChainMonte Carlo simulation. For a
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model with parameters θ and dataD, Bayes’ rule tells us that

p(θ|D) =
p(D|θ) p(θ)

p(D)
. (A.1)

We wish to compute the evidence p(D), often denoted by Z. Multiplying each side of the above by

an arbitrary function ϕ(θ), rearranging terms and taking the integral over all θ,

1
p(D)

∫
dθ ϕ(θ) =

∫
dθ p(θ|D)

ϕ(θ)

p(D|θ) p(θ) . (A.2)

The r.h.s. is simply the expectation value of

ϕ(θ)

p(D|θ) p(θ) (A.3)

for samples drawn from the posterior density p(θ|D). This is convenient, since MCMCmethods

draw a set of samples from the distribution p(θ|D). If the integral of ϕ(θ) is normalized to unity,

then

1
p(D)

≡ 1
Z ≈

⟨
ϕ(θ)

p(D|θ) p(θ)

⟩
chain

. (A.4)

With ϕ(θ) = const., the harmonic mean estimate is known to have infinite variance, which gives the

method a somewhat notorious reputation. However, the “bounded” harmonic mean estimate has

finite variance as long as ϕ has steeper wings than p(θ|D) (Robert &Wraith 2009). We choose ϕ to
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be constant within an ellipse centered on a point of high density within the chain, and zero outside

(Robert &Wraith 2009). The ellipse is aligned with the principle axes of the covariance matrix, in

order to ensure that it contains only well sampled regions of parameter space.

We find a point of high density by first centering an ellipse on a random point in the chain. Be-

cause the points in the chain are sampled proportionately to the posterior probability density, this

point is already likely to lie in a well-sampled region of parameter space. We then find the mean of

the points in the chain falling in the ellipse, and move the center of the ellipse to that position in pa-

rameter space. One can iterate this procedure several times to settle into a densely sampled region of

parameter space. The size of the ellipse we use to define ϕ(θ) is chosen such that a preset fraction of

samples in the chain are enclosed. For our calculations, we iterate five times to find a dense region of

parameter space, and scale the ellipse such that it contains 5% of samples.

A.2 Markov Chain “Swap” Proposals

Because of the way in which we parameterize the line-of-sight distance versus reddening profile,

there can be strong anticorrelations between the different parameters. The differential reddening in

one distance bin is often strongly anticorrelated with the differential reddening in neighboring dis-

tance bins, because transferring some differential reddening from one bin to a neighboring bin keeps

the cumulative reddening constant in following distance bins. Similarly, if the data is well fit by a

large jump in reddening in one bin, it is often also well fit by a jump in reddening in a neighboring

bin. These strong anticorrelations between the differential reddening in neighboring distance bins

can slow downMarkov chain convergence when fitting the line-of-sight reddening profile.
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Figure A.1: Generation of anMCMC proposal state by the “swap” proposal method. The proposal state
is identical to the current state, up to a swap in differential reddening in two bins. The black curve shows the
cumulative reddening of the current state, while the light gray curve shows the cumulative reddening of the
proposal state. The blue bars show the current differential reddening in each distance bin, while the striped
green bars show the proposed differential reddening in each distance bin. Note that the two are identical, up
to a swap between two distance bins.

We therefore introduce a new type of Markov ChainMonte Carlo (MCMC) proposal step, which

we term the “swap” proposal. In order to generate a proposal state for the Markov chain, we swap

the differential reddening in two distance bins, as shown in Fig. A.1.

The swap proposal is symmetric, allowing the usual Metropolis-Hastings acceptance probabil-

ity to be used. Call the current stateX and the proposal state Y, and denote the two distance bins

that were swapped to generate Y as i and j. The probability of proposing Y,Q(X → Y ), is simply

the probability that bins i and j are selected to be swapped. As long as the choice of i and j has noth-

ing to do with the current state of the chain, the reverse step, from Y toX, is equally likely to be

proposed. That is, Q(Y → X ) is also simply equal to the probability that distance bins i and j are
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selected to be swapped. The acceptance probability,A(X → Y ), is therefore given by

A(X → Y ) = min
(
1,

p(Y )

p(X )

Q(Y → X )

Q(X → Y )

)
= min

(
1,

p(Y )

p(X )

)
, (A.5)

where p(X ) and p(Y ) are the probability densities ofX and Y, respectively. This is simply the usual

Metropolis-Hastings acceptance probability.

The addition of swap proposals, alongside Metropolis-Hastings proposals and affine stretch pro-

posals, allows the Markov chain to mix more quickly. Many distance-reddening curves for the sight-

line plotted in Fig. 1.5, for example, differ primarily in which distance bin the large jump in redden-

ing occurs. In such a sightline, the addition of swap proposals allows the Markov chain to transition

quickly between probable states, greatly improving convergence times.

A.3 Stellar Sample Reweighting

Here, we derive in detail how to reweight the Markov Chain samples resulting from the naive stellar

inferences, in order to condition the stellar parameters on the line-of-sight reddening profile. This

discussion complements § 1.7.

Given a fixed line-of-sight reddening profile parameterized by, E(µ; α⃗), each star is described by a

distance µ, stellar type Θ⃗, and fractional offset δ from the reddening profile. The posterior of these

parameters, conditioned on the star’s photometry and the line-of-sight reddening profile, is given by

p
(
µ, Θ⃗, δ | m⃗, α⃗

)
∝ p

(
m⃗ |µ, Θ⃗, δ, α⃗

)
p
(
µ, Θ⃗, δ | α⃗

)
. (A.6)
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The second term on the right-hand side can be broken down into two parts,

p
(
µ, Θ⃗, δ | α⃗

)
∝ p

(
µ, Θ⃗

)
p(δ |µ, α⃗) . (A.7)

Thus,

p
(
µ, Θ⃗, δ | m⃗, α⃗

)
∝ p

(
m⃗ |µ, Θ⃗, δ, α⃗

)
p
(
µ, Θ⃗

)
p(δ |µ, α⃗) . (A.8)

The two stellar parameterizations,
{
µ, Θ⃗, δ, α⃗

}
and

{
µ, Θ⃗,E

}
, are equivalent, as the stellar dis-

tance modulus, µ, the line-of-sight reddening parameters, α⃗, and the star’s fractional offset, δ, from

the line-of-sight reddening are sufficient to determine the stellar reddening, E. We would like to

reweight the samples we store in the space
{
µ, Θ⃗,E

}
, so that they correspond to the posterior den-

sity given above, in Eq. (A.8). As described in § 1.2, the samples we store in our initial processing are

drawn from the posterior density

p
(
µ, Θ⃗,E | m⃗

)
∝ p

(
m⃗ |µ, Θ⃗,E

)
p
(
µ, Θ⃗

)
p(E ) , (A.9)

with a flat prior on E, so that p(E ) = const. Transforming to the parameterization
{
µ, Θ⃗, δ, α⃗

}
,

we have to transform the flat prior p(E ) to an equivalent prior, p(δ |µ, α⃗). This prior is given by

p(δ |µ, α⃗) = p(E )
∂E
∂δ

∣∣∣∣
µ,α⃗

∝ ∂E
∂δ

∣∣∣∣
µ,α⃗

, (A.10)
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where we have taken out the constant factor p(E ) on the r.h.s. and replaced the equality with a

proportionality. The stellar reddening is related to µ, α⃗ and δ by Eq. (1.43). Taking the derivative

w.r.t. δ,

∂E
∂δ

∣∣∣∣
µ,α⃗

=
∂

∂δ
[(1+ δi)E(µi; α⃗)] = E(µi; α⃗) . (A.11)

The flat prior in E thus implies a prior on δ equal to

p(δ |µ, α⃗) ∝ E(µi; α⃗) . (A.12)

In order to sample from Eq. (A.8), we can weight the samples from our initial processing by the

ratio of the prior in the new parameterization, where reddening is conditioned on the line-of-sight

reddening profile, to the prior used in the initial sampling, where a flat prior on reddening is used.

From the above calculation, this ratio is given by

pnew(δ |µ, α⃗)
pold(δ |µ, α⃗)

∝ pnew(δ |µ, α⃗)
E(µi; α⃗)

. (A.13)

The functional form of pnew(δ |µ, α⃗) is given by Eq. (1.44).

A.4 SEGUE-Derived Reddenings

Here, we review a method for calculating stellar reddenings on the basis of SDSS photometry and

SEGUE predicted intrinsic stellar colors. As explained in Schlafly & Finkbeiner (2011), since the

157



extinction in an individual bandX is given by

AX = RXE(B−V ) , (A.14)

colors transform as

E(X−Y ) = AY −AX = (RY − RX) E(B−V ) . (A.15)

If we have only one color,X− Y, we can therefore estimate reddening as

E(B−V ) =
E(X−Y )

RY − RX
. (A.16)

Our goal is to extend this formula to allow the use of multiple colors, possibly with strong co-

variance. Since Schlafly & Finkbeiner (2011) only predict the colors of stars, and not their overall

magnitudes, we work in color space. Denote the intrinsic stellar colors as c⃗i, and the reddened colors

as c⃗r.

In a multidimensional color space, Eq. (A.15) becomes

c⃗r − c⃗i = R⃗ E(B−V ) , (A.17)

where R⃗ has one component per colorX − Y, given by RXY ≡ RY − RX. The estimated intrinsic

colors and observed reddened colors are Gaussian random variables, with covariancesΣi andΣr,
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respectively. Denote the estimated intrinsic colors as c⃗ ′i , and the observed reddened colors as c⃗ ′r . The

likelihood of these two quantities taking on a particular set of values is given by

p
(⃗
c ′i , c⃗ ′r | E(B−V ) , c⃗r

)
= N

(⃗
c ′r | c⃗r, Σr

)
N
(⃗
c ′i | c⃗i, Σi

)
(A.18)

= N
(⃗
c ′r | c⃗r, Σr

)
N
(⃗
c ′i | c⃗r − R⃗ E(B−V ) , Σi

)
. (A.19)

In the second step, we have replaced c⃗i using Eq. (A.17). Using the symmetry of the Gaussian distri-

bution,

p
(⃗
c ′i , c⃗ ′r | E(B−V ) , c⃗r

)
= N

(⃗
cr | c⃗ ′r , Σr

)
N
(⃗
cr − R⃗ E(B−V ) | c⃗ ′i , Σi

)
(A.20)

= N
(⃗
cr | c⃗ ′r , Σr

)
N
(
R⃗ E(B−V )− c⃗r | − c⃗ ′i , Σi

)
. (A.21)

If we assume a flat prior on E(B−V ) and c⃗r, then the above is proportional to the posterior prob-

ability density p(E(B−V ) , c⃗r | c⃗ ′i , c⃗ ′r). We could, in practice, frame the question in terms of the

intrinsic colors c⃗i, and put priors on them based on our Galactic and stellar model, but we wish to

avoid tying our SEGUE-derived reddenings in any way to our Bayesian photometric reddening es-

timates. Now, integrating over c⃗r, we obtain a convolution of two Gaussians, which is itself a Gaus-

sian distribution:

p
(
E(B−V ) | c⃗ ′i , c⃗ ′r

)
∝

∫
d⃗cr N

(⃗
cr | c⃗ ′r , Σr

)
N
(
R⃗ E(B−V )− c⃗r | − c⃗ ′i , Σi

)
(A.22)

= N
(
R⃗ E(B−V ) | c⃗ ′r − c⃗ ′i , Σr +Σi

)
. (A.23)
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The probability density function of E(B−V ) is thus a ray taken through a multivariate Gaussian. It

can be shown that the above is also Gaussian, with mean and standard deviation given by

⟨E(B−V )⟩ = (⃗c ′r − c⃗ ′i )
T (Σr +Σi)

−1 R⃗
R⃗T (Σr +Σi)

−1 R⃗
, (A.24)

σ2
E(B−V ) =

[
R⃗T (Σr +Σi)

−1 R⃗
]−1

. (A.25)

We plug intrinsic stellar colors appropriate for the SSPP stellar parameters into c⃗ ′r , and use the ob-

served SDSS colors for c⃗′i.

One final note is that Schlafly & Finkbeiner (2011) used the SSPP stellar types to derive estimates

of the mean and covariance of the magnitudes, rather than the colors. We will now show how to

obtain the covariance of the colors from the covariance matrix of the magnitudes. Denote the covari-

ance matrix of the magnitudes asΣij, where i and j label passbands. Label the colormi − mj as cij.

We then refer to the covariance matrix of the colors cij and ckℓ asΣ ′
ij,kℓ. By expanding out

Σ ′
ij,kℓ =

⟨
cijckℓ

⟩
−

⟨
cij
⟩
⟨ckℓ⟩ (A.26)

in terms of magnitudes, one obtains

Σ ′
ij,kℓ = Σik − Σiℓ − Σjk +Σjℓ . (A.27)

The common choice of colors is to set the i th color tomi − mi+1. Plugging j = i + 1 and ℓ = k + 1
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into the above, we find that the covariance of the i th color with the kth color is given by

Σ ′
i,k = Σi,k − Σi,k+1 − Σi+1,k +Σi+1,k+1 . (A.28)
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