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Associations between radiologist-
defined semantic and automatically 
computed radiomic features in non-
small cell lung cancer
Stephen S. F. Yip1, Ying Liu2, Chintan Parmar1, Qian Li2, Shichang Liu2, Fangyuan Qu2, 
Zhaoxiang Ye2, Robert J. Gillies  3,4 & Hugo J. W. L. Aerts  1,5

Tumor phenotypes captured in computed tomography (CT) images can be described qualitatively 
and quantitatively using radiologist-defined “semantic” and computer-derived “radiomic” features, 
respectively. While both types of features have shown to be promising predictors of prognosis, the 
association between these groups of features remains unclear. We investigated the associations 
between semantic and radiomic features in CT images of 258 non-small cell lung adenocarcinomas. 
The tumor imaging phenotypes were described using 9 qualitative semantic features that were scored 
by radiologists, and 57 quantitative radiomic features that were automatically calculated using 
mathematical algorithms. Of the 9 semantic features, 3 were rated on a binary scale (cavitation, air 
bronchogram, and calcification) and 6 were rated on a categorical scale (texture, border definition, 
contour, lobulation, spiculation, and concavity). 32–41 radiomic features were associated with the 
binary semantic features (AUC = 0.56–0.76). The relationship between all radiomic features and the 
categorical semantic features ranged from weak to moderate (|Spearmen’s correlation| = 0.002–0.65). 
There are associations between semantic and radiomic features, however the associations were not 
strong despite being significant. Our results indicate that radiomic features may capture distinct tumor 
phenotypes that fail to be perceived by naked eye that semantic features do not describe and vice versa.

Medical imaging is an indispensable clinical tool for cancer diagnosis, staging, and therapeutic assessment. In 
particular, computed tomography (CT) is the most widely used imaging modality and is the standard of care for 
lung cancer management1, 2. Lung cancer is the deadliest cancer type with a 5-year overall survival rate of only 
about 15% and affects over 1.5 million patients worldwide3. Several studies have indicated that the identification 
of unique characteristics of individual lung tumors may provide clinicians with crucial information to personalize 
treatments for patients4, 5. These unique characteristics can be qualitative CT-based descriptors, termed semantic 
features, that describe a tumor’s shape and internal structure that are scored by radiologists to characterize lung 
lesions5–8. Semantic features have been shown to predict prognosis9–13, therapeutic response14, 15, and genetic 
mutations16–18 in patients with lung cancer. For example, a tumor with cavitation has been shown to be an indi-
cator of high aggressiveness and poor prognosis, based on the rationale that fast growing tumors may exceed the 
growth of their blood supply resulting in air-filled cavities arising from central necrosis9. Semantic features are 
considered qualitative since they are scored according to the visual assessment of radiologists, which limits the 
extent of the tumor description to what is observable by the eye.

The quantitative nature of CT allows numerous imaging features to be defined using advanced mathematical 
algorithms to describe tumor shape, image intensity distribution, and the relationship between image voxels 
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in great detail that may fail to be perceived by the naked eye of physicians–even experienced radiologists19–22. 
Radiomics is a field that extracts these imaging features to quantitatively characterize the tumor phenotype with 
high-throughput23, 24. Many groups have reported that radiomic features may predict overall survival19, 25–27, dis-
tant metastasis28–30, treatment response31–33, and somatic mutations34–36 in lung cancer patients, as well as other 
malignancies.

While both semantic and radiomic features have been investigated for their promise in characterizing tumors 
for personalized therapy, the associations between the two feature types has yet to be investigated. Understanding 
the association between these two types of features may shed light on their complementary nature in outcome and 
genetic prediction. Furthermore, radiomic features are known as agnostic features as they are difficult to intui-
tively interpret or describe37, however, understanding their association with semantic features may help interpret 
some of the radiomic features, based on their highly correlated semantic counterparts. In this study, we investi-
gated the relationship between various semantic and radiomic features in 258 patients with lung adenocarcinoma.

Results
Our study cohort consisted of 183 early stage (Stage I and II) and 75 advanced stage (stage III and IV) patients 
with non-small cell lung adenocarcinoma (Table 1). This study investigated the association between 9 seman-
tic and 57 radiomic features. Although 296 radiomic features were initially extracted from CT images, only 57 
features (10 unfiltered and 47 filtered features) with |ρ| ≤ 0.85 were included to evaluate their relationship with 
semantic features. Cavities, tube-like or branched air structures (air bronchogram) were found in over 50% of the 

Number of Patients

Total

258

Sex

Male/Female 146 (57%)/112 (43%)

Median age (year) 59 (range 30–81)

Smoking history

Current or Former/Never 117 (45%)/141 (55%)

Clinical stage

I/II/III/IV 160 (62%)/23 (9%)/66 
(26%)/9 (3%)

Histology subtype

Minimally invasive adenocarcinoma 3 (1%)

Acinar predominant 109 (42%)

Lepidic predominant 60 (23%)

Papillary predominant 20 (8%)

Micropapillary predominant 12 (5%)

Solid predominant 49 (19%)

Variants of invasive adenocarcinomas 5 (2%)

Tumor grade

Low/Intermediate/High 3 (1%)/189 (73%)/66 (26%)

CT Scanners

Siemens

 Somatom Sensation 64 30 (12%)

GE scanner

 Lightspeed 16/Discovery CT750 HD 35 (14%)/193(75%)

Binary semantic features

Cavitation (score: 0/1) 106 (41%)/152 (59%)

Air Bronchogram (score: 0/1) 116 (45%)/142 (55%)

Calcification (score: 0/1) 229 (89%)/29(11%)

Categorical Semantic features

Texture (score: 1/2/3) 6 (2%)/68 (26%)/184 (71%)

Border definition (score: 1/2/3) 13 (5%)/178 (69%)/67 
(26%)

Contour (score: 1/2/3/4) 17 (7%)/26 (10%)/166 
(64%)/49 (19%)

Lobulation (score: 1/2/3/4) 10 (4%)/115 (45%)/102 
(40%)/31 (12%)

Spiculation (score: 1/2/3) 63 (24%)/85 (33%)/110 
(43%)

Concavity (score: 1/2/3) 9 (4%) /156 (61%)/93 (36%)

Table 1. Patient characteristics. Distribution of patient tumor characteristics and radiologists’ scoring for 
semantic features.
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tumors, while only 11% of the tumors were calcified (Table 1). The majority of the tumors had a solid texture with 
somewhat irregular contours and slight concavity (Table 1).

Binary semantic features. The area under the receiver operating characteristic curve (AUC) was used to 
quantify the association between binary semantic and radiomic features. Tumors with cavitation, tube-like or air 
branched structures (air bronchogram) were associated with low values of shape-based sphericity and had lower 
values for features that described homogeneity (e.g. gray level co-occurrence matrix derived (GLCM) energy), 
but greater values for features that described heterogeneity (e.g. gray level size zone matrix derived (GLSZM) 
size-zone-variability) (Fig. 1). For instance, as observed in Fig. 2, tumors with cavitation were less spheri-
cal and more heterogeneous than those without cavitation. 41, 32, and 10 radiomic features were significantly 
related to cavitation (AUCprop = 0.59–0.76, AUCinv-prop = 0.56–0.75), air bronchogram (AUCprop = 0.59–0.64, 
AUCinv-prop = 0.57–0.66), and calcification (AUCprop = 0.60–0.68, AUCinv-prop = 0.62), respectively. In particu-
lar, GLCM-Cluster Prominence (AUCprop = 0.76), Wavelet high-high-low pass filtered (HHL) GLCM-inverse 
Variability (AUCinv-prop = 0.66), and Kurtosis (AUCprop = 0.68) were most strongly associated with cavitation, air 
bronchogram, and calcification, respectively (Figs 1 and 3). Supplementary Table S2 and S3 show the AUC and 
q-values for all the features. However, tumor volume, statistic-based skewness, 5 Laplacian of Gaussian (LoG) and 
8 wavelet filtered features were not significantly associated with any of the binary features (AUCprop = 0.51–0.59, 
AUCinv-prop = 0.50–0.63; q-value ≥ 0.70).

Categorical semantic features. Radiomic features were also associated with categorical semantic features. 
Over 30 radiomic features were significantly related to texture (51 radiomic features), border definition (41 radi-
omic features), contour (35 radiomic features), lobulation (33 radiomic features), and spiculation (32 radiomic 
features) as evaluated with the Kruskal Wallis test (Figs 4 and 5). Only four radiomic features were found to have 
a significantly association with concavity (Figs 4 and 5).

Tumors with non-solid or poorly defined boundaries generally had higher values in features that quantified 
heterogeneity (e.g. GLSZM size zone variability) (Fig. 4). Tumors with strong lobulation and spiculation, deep 

Figure 1. Association between the binary semantic and unfiltered radiomic features assessed with the 
area under the ROC curve (AUC). *Indicates a significant association (q-value ≤ 0.05). “Rand.” = random 
association (AUC = 0.50). “Prop.” and “Inv. Prop.” indicate direct and inverse proportionality, respectively.

http://S2
http://S3
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Figure 2. Tumors with and without cavitation. (a) Tumor without cavitation (b) Tumor with minor Cavitation 
(c) Tumor with major Cavitation. The arrow indicates the location of the tumor.

Figure 3. Associations between the binary semantic and unfiltered radiomic features assessed with the 
area under the ROC curve (AUC). *Indicates a significant association (q-value ≤ 0.05). “Rand.” = random 
association (AUC = 0.50). “Prop.” And “Inv. Prop.” indicate direct and inverse proportionality, respectively. 
Wv = Wavelet. LoG = Laplacian of Gaussian.
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concavity, or poorly-defined borders were inversely correlated with shaped-based sphericity (Figs 4 and 6). For 
example, Fig. 6 shows that tumors with well-defined borders are more spherical and homogeneous than tum-
ors with irregular and poorly-defined borders. The absolute correlations (|ρ|) between these radiomic features 
and texture, border definition, contour, lobulation, spiculation, and concavity were 0.002–0.65 (median = 0.26), 
0.01–0.42 (median = 0.24), 0.01–0.57 (median = 0.28), 0.05–0.38 (median = 0.27), 0.003–0.25 (median = 0.11), 
and 0.02–0.23 (median = 0.10), respectively (Fig. 4). Shape-based sphericity was significantly associated with all 
categorical features and was most correlated with border definition, contour, and concavity. The median value of 
the tumor image intensity (Hounsfield Unit), Wavelet HLH statistics-based minimum, and tumor volume was 
most associated with texture, spiculation, and lobulation, respectively. Supplementary Table S4 and S5 show the ρ 
and Kruskal-Wallis test q-values for all the features.

Discussion
Semantic features are qualitative imaging features that are defined by experienced radiologists and have shown to 
be promising predictors of the aggressiveness of lung adenocarcinoma5, 24, 37. Radiomic features are automatically 
and quantitatively extracted from CT images using advanced mathematical algorithms that have also shown great 
potential to predict clinical outcomes and describe tumor heterogeneity23. Assessing the relationship between 
both types of features may help understand their complementary nature for outcome prediction and may allow a 
better and more intuitive interpretation of radiomic features. We investigated the relationship between 9 semantic 
and 57 radiomic features in lung adenocarcinoma patients.

When describing tumor characteristics, global qualitative features of tumors (e.g. border, roundness, and inte-
rior texture) are most noticeable to radiologists. However, radiomic features are based on mathematical algo-
rithms that describe tumor phenotypes that may not be noticeable to radiologists. Since both types of features 
aim to describe the tumor appearance captured on CT images, it is not surprising that all semantic features were 
associated with at least four radiomic features (Figs 1, 3, 4 and 5). In particular, shape-based sphericity was signif-
icantly related to all semantic features, except calcification (Figs 1 and 4). Sphericity quantifies the roundness of a 

Figure 4. Association between the six categorical semantic and ten unfiltered radiomic features assessed with 
Spearman coefficient correlation. *Indicates that the association was significant (q-value ≤ 0.05).

http://S4
http://S5


www.nature.com/scientificreports/

6Scientific RepoRts | 7: 3519  | DOI:10.1038/s41598-017-02425-5

tumor and is considered as a dominate feature of the tumor which may relate to the semantic features which also 
have some dependence on roundness.

Round tumors with a smooth border may tend to be more indolent. Lobulation and spiculation describe 
the undulating patterns and spikes on the tumor borders. Shape-based sphericity was negatively correlated with 
lobulation and spiculation, thus indicating that round tumors have fewer undulations and spikes. Indeed, tumors 
with no spiculation, no lobulation are less likely to be associated with local and distant metastasis and poor sur-
vival7, 12, 38, 39. Furthermore, the surrounding bronchus and blood vessels may hamper isotropic enlargement of the 
tumor leading to the “notch” appearance (or concave cuts) in its boundary. We also observed that irregular and 
non-spherical tumors often had higher concavity (Fig. 6 and Supplementary Figure S2). Tumors with high con-
cavity are often an indicator of poorly differentiated adenocarcinoma and outcomes40–42. Our observations were 
thus consistent with the previous studies that tumors with irregular and non-spherical shape are more aggressive, 
and thus are poor prognostic indicators12, 43, 44.

Tumors with a high median intensity were more likely to be calcified or solid. Single to multiple calcium 
“spots” can be observed on the calcified tumors. These spots were usually small and did not distort or contribute 

Figure 5. Associations between the categorical semantic and unfiltered radiomic features assessed 
with Spearman coefficient correlation. *Indicates a statistically significant association (q-value ≤ 0.05). 
Wv = Wavelet. LoG = Laplacian of Gaussian.

http://S2
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to the overall structure of the tumor (Supplemental Figure S1). This may explain why the relationship between 
shape-based Sphericity and calcification was not significant. Studies have reported that calcium layers generally 
have higher image intensity than tumor tissues45–47. We also found in this study that calcified tumors were signif-
icantly associated with higher median image intensity. Ground glass opacity (GGO) lesions refer to hazy regions 
with slightly increased CT attenuation in the lung without obscuring the visibility of normal lung parenchyma, 
airways, and vessels48 (Supplemental Figure S2). While partly solid tumors only partially obscure the bronchial 
and vascular structures, solid tumors completely obscured these structures (Supplemental Figure S2). Due to 
the hazy appearance of GGO (non-solid) tumors, their median image intensity was less than partly solid and 
solid tumors (Fig. 4). In addition, since GGO and partly solid tumors do not completely obscure the bronchi 
and vessels, they often appear to be more heterogeneous than solid tumors. Non- or partly solid tumors often 
had lower values in homogenous features (e.g. GLCM-Energy), but higher values in heterogeneous features (e.g. 
GLSZM-Size Zone Variability) than solid tumors (Fig. 4). Furthermore, GGO and partly solid tumors can be 
further described by radiologists as well-defined/coarse interface, the proportion of consolidation, or bronchus 
cut-off, etc49, 50. However, our radiologists only classified the textures of tumors into GGO, partly solid, and solid 
lesions. In the future, it would be interesting to investigate the relationship between these sub-semantic categories 
and radiomic features, specific to GGO or partly solid tumors.

Radiomic features that quantify the spatial relationship between image voxels (textural features) may be useful 
to measure the tumor cavitation and air bronochogram. Tumor cavitation and air bronchogram were significantly 
and moderately associated with all textual radiomic features (Fig. 1). GLCM-Cluster Shade and GLCM-Cluster 
Prominence emulate human perception and measure asymmetry and intensity variation within the tumors51. 
Textural features, for instance GLCM-Energy and GLSZM-Size Zone Variability, measure the degree of spatial 
intensity variability in a tumor52. Cavitation is often observed in rapidly growing tumors as they can outgrow the 
blood supply resulting in air-filled cavities8, 53, 54. Tumors with air bronchogram contain tube-like structures and 
are highly metastatic40, 44. Cavities and tube-like structures give tumors heterogeneous appearance (Fig. 2).

The binary and categorical scales employed to rate semantic features may be insufficient to describe subtle 
tumor characteristics. However, radiomic features have values on a continuous scale which can provide greater 
detail for changes in tumor characteristics. Despite the significant relationships between semantic and radiomic 
features, such relationships only ranged from weak to moderate. For example, although the contour semantic 
feature and the shape-based sphericity radiomic feature both measure the roundness of the tumor, they were 
only moderately correlated (ρ = −0.57, Fig. 4). Notably, shape-based Sphericity is a continuous feature whereas 
contour was rated on a categorical scale. Another example is cavitation. As observed in Fig. 2, tumors can exhibit 
various degrees of cavitation. However, tumors are only rated either with or without cavitation and make no dif-
ferentiation between high or low degrees of cavitation.

Furthermore, while GLCM-Cluster Prominence‒a intensity variability measure‒can be used to detect small 
intensity differences between image voxels51, radiologists may fail to identify such variations. It is assumed that 
radiomic features are able to capture tumor characteristics fail to be identified by radiologists22, 23. The weak to 
moderate relationship between semantic and radiomic features may thus be due to the fact that radiologists can-
not detect the subtle change in tumors using the categorical scales. Additionally, it has been reported that radi-
ologists may overlook salient features on CT and chest X-ray, even around regions with lung abnormalities55, 56.  
Since objective radiomic features are continuous, they may have advantage over subjective semantic features in 
identifying imaging phenotypes, which may fail to be perceived by the naked eye, for tumor characterization20, 57.

Thus far, our discussion has focused on unfiltered features, such as shape-based sphericity and GLCM-based 
energy, because filtered features are more difficult to interpret. A LoG filter involves applying the Gaussian filter 
to an image to remove random noise while a Laplacian filter is employed to enhance strong features on the image. 
A wavelet transformation decomposes the low (coarse feature) and high (fine feature) frequency regions of an 
image58, 59. Both Coroller et al.28 and Huynh et al.29 found that the Wavelet LLH stats range was significantly 
predictive of distant metastasis in lung cancer in both their datasets. Wavelet LLH stats range and Wavelet LLH 
stats max were highly correlated in our dataset (ρ = 0.95, results not shown). Wavelet LLH stats max may also be 
correlated to lung tumor metastatic potential. It is not surprising that Wavelet LLH stats max was significantly 

Figure 6. Tumors with different border definitions. (a) Tumor with a well-defined border (score = 1).  
(b) Tumor with neither a well- or poorly-defined border (score = 2). (c) Tumor with a poorly-defined border 
(score = 3). The arrow indicates the location of the tumor.

http://S1
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associated with spiculation and lobulation (Fig. 4) since tumors with coarse spiculation and lobulation are likely 
to be invasive.

In our study, all of the patients had non-contrast-enhanced CT images. A recent study by He et al.60 investi-
gated the impact of various CT acquisition parameters (i.e. contrast-enhancement, slice thickness, and convolu-
tion kernel) on the diagnostic performance of radiomic features in pulmonary nodules. Although contrast agents 
may obscure imaging features that reflect the underlying intra-tumoral heterogeneity, features computed with dif-
ferent types of CT images were both predictive of the nodule malignant status with <5% difference in the AUCs 
(i.e. AUCnon-contrast = 0.86 vs AUCcontrast = 0.82 in the training and AUCnon-contrast = 0.75 and AUCcontrast = 0.74 in 
the validation cohort). Therefore, the association between semantic and radiomic features based on the contrast 
enhanced CT should still range from weak to moderate as observed in our current study.

Conclusion
A number of radiomic features were significantly associated with semantic features. However, the associations 
only ranged from weak to moderate, suggesting that both types of feature can potentially provide information that 
captures tumor phenotypes differently. As both semantic and radiomic features have shown promise in identify-
ing aggressive tumors, their complementary roles in outcome prediction needs to be further investigated.

Materials and Methods
Patient and CT imaging. In this retrospective study, all experimental and imaging protocols were approved 
by an Institutional Review Board at the Tianjin Medical University Cancer Institute and Hospital (Tianjin, PR 
China) and informed consent was waived for all the participants. All methods were also performed in accordance 
with relevant guidelines and regulations. The cohort consisted of 258 Asian patients with pathological confirma-
tion of lung adenocarcinoma either by surgical specimens or biopsy sample between November 2012 and March 
2014. Table 1 shows the patient characteristics.

Chest CT images were acquired on one of the three multiple detector CT scanners: Somatom Senation 64 
(Siemens AG, Erlangen, Germany), Lightspeed 16, or Discovery CT750HD (GE Healthcare, Waukesha, WI) prior 
to any treatments. The CT images acquired on the 64-detector Siemens scanner were scanned with a tube voltage 
of 120 kVp, automatically adjusted current, pitch of 0.969, and were reconstructed with a 1.5 mm slice thickness. 
The image acquisition parameters for both GE scanners were 120 kVp and 150–200 mA with a pitch of 0.969. The 
reconstructed images acquired on the GE scanners had a slice thickness of 1.25 mm.

Semantic features. Three experienced thoracic radiologists (Y.L., F.Q., and S.L.) independently reviewed all 
CT images and assigned scores to each tumor for nine semantic imaging features. All radiologists were blinded 
to the scores assigned by the other radiologists. The score that was chosen by the majority of the radiologists was 
recorded for that semantic feature. If none of the radiologists had the same score, they reviewed the CT images 
together and any discrepancies were resolved by discussion until consensus was reached. Three semantic features 
(cavitation, air bronchogram, and calcification) were scored on a binary scale and rated as having the presence 
(score = 1) or absence (score = 0) of characteristic. The following semantic features were scored on categorical 
scales, ranging from 1 to 4: texture, border definition, contour, lobulation, spiculation, and concavity. The seman-
tic features that were scored on the binary or categorical scales are hereafter referred to as binary or categorical 
features, respectively. The definitions and scoring scale of each semantic feature is shown in Table 2. Visual exam-
ples of tumors with different semantic features are shown in the Supplementary Information (Supplementary 
Figures S1 and S2 in Supplemental).

Tumor volume segmentation and radiomic feature extraction. Tumor volume segmentation were 
performed on the Definiens Developer XD© (Munich, Germany) imaging platform. Tumor volumes were seg-
mented using the single-click ensemble segmentation (SCES) algorithm61 and a region growing algorithm62. 
Briefly, two radiologists (Y.L. and Q.L.) identified tumor regions for automatic seed point generation using SCES. 
A region growing algorithm was then performed on each seed point to create the tumor volume. The segmented 
tumor volumes were then reviewed slice-by-slice and manually adjusted by the radiologists (Y.L. and Q.L.). A 
detailed description of the tumor segmentation process can be found in our previous studies61, 63, 64. All tumor 
segmentations were performed on the chest CT images based on the lung window settings.

All radiomic features were computed using an in-house software based on MATLAB (The Mathworks Inc, 
Natick, MA, U.S.A.). Within the segmented tumor volumes, 13 shape features, 12 statistics features, and 23 tex-
tural features were extracted from the CT images. The textural features included 17 gray level co-occurrence 
matrix (GLCM), 1 gray level size zone matrix (GLSZM), and 5 run length gray level (RLGL) features.

Laplacian of Gaussian (LoG) and wavelet filters are often applied to medical images prior to textural feature 
extraction19, 28, 65. LoG and wavelet filters were applied to the CT images and an additional 247 radiomic features 
were extracted. In total, 294 radiomic features (47 unfiltered and 247 filtered features) were computed.

Radiomic feature selection. Spearman’s correlation coefficient (ρ) was used to assess the correlation 
between all radiomic features. Feature pairs with |ρ| ≥ 0.85 were considered to be strongly correlated and likely 
to provide redundant information about the tumor phenotype. In these strongly correlated pairs, feature with 
the highest average |ρ| was excluded. After the exclusion, 10 unfiltered radiomic features (two shape (volume and 
sphericity), three statistics (kurtosis, median, and skewness), four GLCM (cluster-shade, cluster-prominence, 
energy, and sum-entropy), and one GLSZM size-zone-variability), and 47 filtered radiomic features remained and 
were included in the analysis. A brief description of the unfiltered and filtered features is shown in Supplementary 
Table S1.

http://S1
http://S2
http://S1
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Data analysis. All analysis was performed using R software (version 3.2) with the “caret”66, Bioconductor 
“pROC” and “survcomp” packages67.

The association between radiomic features and binary semantic features was assessed using the area under 
the receiver operating curve (AUC). An AUC > 0.5 suggests direct proportionality between the radiomic and 
binary semantic features (i.e. a higher radiomic feature value corresponds to the presence of a binary semantic 
feature) and was defined as AUCprop. An AUC < 0.5 indicates inverse proportionality; that is, the presence of a 
binary semantic feature is associated with a low radiomic feature value. For AUC < 0.5, AUCinv-prop was defined 
as 1-AUC. Both AUCprop and AUCinv-prop ranged from 0.50 to 1.00. We adapted the interpretation of the AUC 
from previous studies with 0.50 < AUCs ≤ 0.70, 0.70 < AUCs ≤ 0.90, and 0.90 < AUCs ≤ 1.00 to indicate weak, 
moderate, and excellent association68, 69. Noether’s test was used to determine the significance of the AUC from a 
random relationship (AUC = 0.5).

For the semantic features that were scored on the categorical scale, the strength and direction of their asso-
ciation with radiomic features were evaluated using the Spearman’s correlation coefficient (ρ). The cutoffs of |ρ| 
for weak, moderate, high, and excellent correlations was ≤0.50, 0.50 < |ρ| ≤ 0.70, 0.70 < |ρ| ≤ 0.90, and |ρ| > 0.90, 
respectively70. The Kruskal-Wallis test was used to assess the significance of the association.

All p-values were corrected for multiple hypothesis testing by adjusting the false discovery rate according to 
the Benjamini and Hochberg procedure71, where a q-value < 0.05 suggested statistical significance.
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