
Designing an Agile Software
Portfolio Architecture: The Impact

of Coupling on Performance
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation MacCormack, Alan, Robert Lagerstrom, Martin Mocker, and Carliss
Y. Baldwin. "Designing an Agile Software Portfolio Architecture:
The Impact of Coupling on Performance." Harvard Business School
Working Paper, No. 17-105, May 2017.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33110111

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154881372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Designing%20an%20Agile%20Software%20Portfolio%20Architecture:%20The%20Impact%20of%20Coupling%20on%20Performance&community=1/3345929&collection=1/3345930&owningCollection1/3345930&harvardAuthors=2af31ba008223d724dd83018ab0760f0&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33110111
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Designing an Agile Software
Portfolio Architecture: The Impact of
Coupling on Performance

Alan MacCormack
Martin Mocker

Robert Lagerstrom
Carliss Y. Baldwin

Working Paper 17-105

Working Paper 17-105

Copyright © 2017 by Alan MacCormack, Robert Lagerstrom, Martin Mocker, and Carliss Y. Baldwin

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may
not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.

Designing an Agile Software Portfolio
Architecture: The Impact of Coupling on
Performance

Alan MacCormack
Harvard Business School

Martin Mocker
Reutlingen University

Robert Lagerstrom
KTH Royal Institute of Technology

Carliss Y. Baldwin
Harvard Business School

Designing an Agile Software Portfolio Architecture:

The Impact of Coupling on Performance

Alan MacCormack1
Robert Lagerstrom2

Martin Mocker3

Carliss Y. Baldwin1

1 Harvard Business School, Harvard University, Boston, USA
2 KTH Royal Institute of Technology, Stockholm, Sweden

3 ESB Business School, Reutlingen University, Reutlingen, Germany

Keywords: Information Systems, Software, Architecture, Modularity, Agility, Coupling.

Designing an Agile Software Portfolio Architecture

 1

Abstract

The modern industrial corporation encompasses a myriad of different software

applications, each of which must work in concert to deliver functionality to end-users. However,

the increasingly complex and dynamic nature of competition in today’s product-markets dictates

that this software portfolio be continually evolved and adapted, in order to meet new business

challenges. This ability – to rapidly update, improve, remove, replace, and reimagine the

software applications that underpin a firm’s competitive position – is at the heart of what has

been called IT agility. Unfortunately, little work has examined the antecedents of IT agility, with

respect to the choices a firm makes when designing its “Software Portfolio Architecture.”

We address this gap in the literature by exploring the relationship between software

portfolio architecture and IT agility at the level of the individual applications in the architecture.

In particular, we draw from modular systems theory to develop a series of hypotheses about how

different types of coupling impact the ability to update, remove or replace the software

applications in a firm’s portfolio. We test our hypotheses using longitudinal data from a large

financial services firm, comprising over 1,000 applications and over 3,000 dependencies between

them. Our methods allow us to disentangle the effects of different types and levels of coupling.

Our analysis reveals that applications with higher levels of coupling cost more to update,

are harder to remove, and are harder to replace, than those with lower coupling. The measures

of coupling that best explain differences in IT agility include all indirect dependencies between

software applications (i.e., they include coupling and dependency relationships that are not easily

visible to the system architect). Our results reveal the critical importance of software portfolio

design decisions, in developing a portfolio of applications that can evolve and adapt over time.

Designing an Agile Software Portfolio Architecture

 2

1. Introduction

As information has become more pervasive in the economy, information systems within

firms have become increasingly more complex. Today, even a moderately sized business

maintains information systems comprising hundreds of applications and databases, running on

geographically distributed hardware platforms, and serving multiple clients. These systems must

be reliable, efficient and secure enough to meet the needs of today’s business challenges.

However, they must also be flexible and adaptable, capable of evolving to meet new and

emerging challenges that will undoubtedly arrive tomorrow. How can a firm design its portfolio

of software applications in order to simultaneously confront these challenges?

 Early work on the design of information systems focused on the first of these challenges:

to design an architecture optimized for a given set of business conditions and strategic choices.

The resulting field of study, comprising conceptual frameworks, processes and tools that seek to

achieve this alignment, is known as Enterprise Architecture (EA) (Weill, 2007). The process of

developing EA is “top-down” in nature. For a given firm and strategy, the goal is to design the

optimal information systems architecture. Early work in this area therefore, paid little attention to

understanding how the rate of change in the environment, or in a firm’s own strategy, should

impact this architecture. As competitive landscapes have become more complex and dynamic

however, it is increasingly clear that this view of EA is no longer sufficient.

In response to calls for a greater focus on the “IT Artifact” a distinct stream of research

began to explore how a firm’s information systems could facilitate the development of new

capabilities (Orlikowski and Iacono, 2001; Tiwana and Konsynski, 2010). Hence modern

theories emphasize the need for IT architectures that facilitate agility, through the use of layered,

modular technologies (Yoo et al, 2010; Tanriverdi et al, 2010; Tiwana et al, 2010). Firms with

Designing an Agile Software Portfolio Architecture

 3

modular architectures can quickly reconfigure resources to respond to new challenges, ensuring a

continuous alignment of IT assets with changing business needs. In contrast to EA, this work

implies a “bottom-up” approach to system design. The aim is to design an architecture that can

sense and respond to new challenges, the nature of which cannot be predicted in advance

(Sambumurthy et al, 2003; Hanseth and Lyytinen, 2010).

Robust empirical work exploring the impact of information systems architecture on IT

agility has been scarce and yields mixed results (Schmidt and Buxmann, 2011; Kim et al, 2011;

Liu et al, 2013). Most studies adopt the firm as unit of analysis, capture broad holistic measures

of IT infrastructure flexibility and assess the impact of these constructs on measures of overall

firm performance (Duncan, 1995). For example, Tiwana and Konsynski (2010) show that firms

with more modular IT architectures (i.e., that make greater use of loosely-coupled, standardized

components) have higher perceived levels of IT agility. However, firms are not monolithic.

They comprise different organizational units that use different applications and require different

levels of flexibility (Lawrence and Lorsch, 1967). Research to better understand the roots of IT

agility must recognize this heterogeneity and adopt methods to assess its impact.

We address this gap in the literature by exploring the relationship between software

portfolio architecture and IT agility at the level of the individual applications in the architecture.

In particular, we draw from modular systems theory to develop and test a series of hypotheses

about how different types of coupling impact three specific dimensions of agility: the ability to

update, remove or replace software applications in the firm’s portfolio. Our methods, which are

based upon network analysis, allow us to disentangle the impact of different types of coupling.

We test our hypotheses with data from a financial services firm. In contrast to prior

work, which adopts holistic measures of IT architecture, we capture fine-grained data on the

Designing an Agile Software Portfolio Architecture

 4

dependencies between all software applications in the firm. The data encompasses over 1,000

different software applications and 3,000 dependencies between them. Critically, we capture

data at two distinct points in time, four years apart. This approach allows us to identify changes

in the portfolio, and to develop measures of IT agility. We supplement this data with figures on

the annual cost of maintenance for all applications in the portfolio at the start of the period.

We find that differences in the level of coupling for applications explain large variations

in IT agility. Specifically, applications with high levels of coupling cost more to update, are less

likely to be decommissioned, and are less likely to be added to the portfolio. The measures of

coupling that best predict IT agility capture all indirect connections between applications. In

sum, it is critical to account for all possible paths by which changes may propagate, when

assessing the ability to update, remove or replace applications. Our work deepens our

understanding of how firms can design software portfolio architectures to improve their agility.

The paper is organized as follows. In section 2, we review the literature that motivates

our work. In section 3, we develop theory and derive our research hypotheses. In section 4, we

describe our methods, which make use of a network-based methodology to identify and measure

the coupling between software applications. In section 5, we introduce our empirical setting and

describe our data. In section 6, we provide the results of our statistical tests. Finally, in section

7, we discuss the implications of our results for research and for practice.

2. Literature Review

2.1 IT Architecture Research

Research on IT Architecture was motivated by critiques of EA research which noted the

emphasis on processes and governance structures through which IT is managed, as opposed to

features of the technology itself (Orlikowski and Iacono, 2001; Tilson et al, 2010). Furthermore,

Designing an Agile Software Portfolio Architecture

 5

the rapid rise of the Internet, the World Wide Web and the use of digital technologies brought a

need to revisit prior conceptions for the role of IT, to reflect the new dynamics of a digital age

with its rapidly shifting competitive landscapes (Hansen and Lyytinen, 2010). As a

consequence, IT architecture research has focused more sharply on the “IT Artifact,” and in

particular, features of architecture that facilitate the development of new firm capabilities

(Tiwana and Konsynski, 2010; Sambamurthy and Zmud (2000).

Early work in the field focused on understanding desirable features of IT technologies,

and in particular, the antecedents of more flexible IT infrastructure. Duncan (1995) and Byrd and

Turner (2000) established constructs thought to underpin a more flexible IT infrastructure. They

emphasized the need for IT systems with greater compatibility and connectivity, through the use

of system-wide standards and interfaces. They also emphasized the need for greater levels of

modularity (i.e., loose coupling between applications, data and infrastructure) so that IT

components could be deployed, modified and updated with minimal impact on other elements.

Subsequent work sought to deepen our understanding of how these concepts could be

operationalized in firms competing in a dynamic, connected digital world. Sambamurthy and

Zmud (2000) suggest the new organizing logic for IT architecture is the platform, which

encompasses a “flexible combination of resources, routines and structures” that facilitate agility

by creating “digital options” and enhancing “entrepreneurial alertness” (Samburmathy at al,

2003). Adomavicius et al. (2008) introduce the concept of an IT “ecosystem,” highlighting the

different roles played by products, applications, component technologies and infrastructure

technologies, including those external to the firm. Finally, Yoo et al. (2010) describe how

pervasive digitization has given rise to a new “layered-modular” architecture, comprising

devices, network technologies, services and content.

Designing an Agile Software Portfolio Architecture

 6

In contrast to EA models, IT Architecture research implies a “bottom-up” approach to

design; the aim is to create an architecture that can sense and respond to new challenges, the

nature of which cannot be predicted ex-ante (Sambumurthy et al, 2003). Firms with layered,

modular IT architectures quickly reconfigure resources to respond to new challenges, creating a

continuous stream of new capabilities (Tanriverdi et al, 2010; Tiwana et al, 2010). Yet layered,

modular IT architectures are not easy to build, and not the norm in firms with complex

infrastructures (Baldwin et al 2014). Firms more often grapple with a mixture of systems of

different vintages designed using different frameworks, to meet different demands for different

decision makers (Ross 2003). To move from this status quo, towards a layered, modular

architecture, firms must embrace new frameworks for the role of IT, and design new structures

by which the included technologies will work together (Ross, 2003; Ross and Westerman, 2004).

2.2.1 Empirical Studies linking IT Architecture with IT agility

Empirical studies linking IT Architecture to agility have been scarce and limited in scope.

Most work to date has been case-based, or used firm-level survey measures of IT infrastructure

to demonstrate correlation with performance (Salmela, 2015). For example, Kim et al (2011)

show measures of IT infrastructure flexibility, as captured by the constructs of compatibility,

connectivity and modularity, are correlated with a firm’s ability to change existing business

processes. Conversely, Liu et al (2013) find IT infrastructure flexibility is not associated with

agility, but contributes to performance only via its association with increased levels of absorptive

capacity (Cohen and Levinthal, 1990). Schmidt and Buxmann (2011) show that higher quality

enterprise architecture planning processes are associated with more flexible IT infrastructures. In

this work however, IT infrastructure is conceived of as an output, whereas in studies of IT

Architecture, it is typically considered an input.

Designing an Agile Software Portfolio Architecture

 7

The most important study in this stream of work comes from Tiwana and Konsynski

(2010) who characterize IT Architecture on two dimensions: loose coupling and standardization.

They show that these measures are associated with an IT function that is perceived as agile,

adaptive, flexible and responsive. While this work informs our knowledge of the features of IT

architecture that contribute to IT agility, we still lack insight on the precise mechanisms through

which these effects are manifested. The first challenge relates to the fact that in this and other

studies, the firm is conceived of as a monolithic entity; hence measures of IT function and

architecture are homogenous. But firms are not monolithic; they comprise differentiated

organizational units, with different objectives and different levels of flexibility (Lawrence and

Lorsch, 1967). Similarly, the components of a firm’s IT architecture are diverse, play different

roles, are connected in different ways, and vary in the cost of adaptation (Orlikowski and Iacono,

2001; Sambumurthy and Zmud, 2000; Yoo et al, 2010). Research to better understand the roots

of agility must recognize this heterogeneity, and adopt methods to assess its impact.

The second challenge relates to the fact that prior studies lack a consistent definition of

agility, and fail to consider that this ability comprises multiple dimensions of performance,

associated with differing types and levels of IT change. For example, a firm’s software

applications must be maintained, improved, upgraded, ported to different platforms,

decommissioned and/or replaced on a periodic basis. These activities place different demands on

a firm’s infrastructure, require different skills and resources, and may be impacted differently by

properties of the software portfolio architecture. Research to better understand the roots of agility

must explore the impact of IT architecture decisions across multiple dimensions of IT change.

This study aims to address the limitations described above. In particular, we examine the

impact of a firm’s software portfolio architecture at the level of the individual applications in this

Designing an Agile Software Portfolio Architecture

 8

architecture. We define measures for the different types of coupling between applications, and

develop hypotheses for how these measures impact the ability to make changes to applications.

Our approach captures the heterogeneity that exists across the portfolio of applications in a

firm’s IT architecture, and explores the impact of this heterogeneity on multiple dimensions of

change: specifically, the ability to update, remove, and replace applications.

3. Theory Development

3.1 Modular Systems Theory

The scheme by which a system’s functions are allocated to components and the way that

these components interact is called its “architecture” (Ulrich, 1995; Whitney et al, 2004).

Modularity is a concept that helps us to characterize different architectures (Sanchez and

Mahoney, 1996; Schilling, 2000). It refers to the way that a system is “decomposed” into parts

or modules (Simon, 1962). Although there are different definitions of modularity, authors agree

on its fundamental features: the interdependence of decisions within modules, and the

independence of decisions between modules (Mead and Conway, 1980; Baldwin and Clark,

2000). The latter is referred to as “loose-coupling.” Modular systems are loosely coupled in that

changes to one module have little or no impact on others (MacCormack et al, 2012).

Modular systems theory is the name given to a body of theory that explores the design of

systems and the costs and benefits that arise from modular designs (Sanchez and Mahoney,

1996; Schilling, 2000; Baldwin and Clark, 2000). This theory has been broadly applied, to the

study of biological systems, technical systems and organizational systems (Kauffman, 1993;

Weick, 2001; Langlois 2002; Berente and Yoo, 2012). A central tenet of the theory is that

modular systems (i.e., systems with loosely-coupled modules or components) can be adapted

with lower costs and with greater speed, given changes are isolated within modules. Conversely,

Designing an Agile Software Portfolio Architecture

 9

in a system with tight coupling, adaptation is costly and takes longer, given the potential for

changes to propagate between different parts of the system.

In the field of IT Architecture, several studies support this theory, showing that firm-level

measures of IT modularity are associated with an IT function that is perceived as agile, adaptive

and flexible (Tiwana and Konsynski, 2010). However, studies that explore this dynamic at the

firm level do not provide sufficient granularity to understand the precise mechanisms through

which architecture impacts agility. In order to tackle such questions, we must examine the

relationship between architecture and agility at the level of the individual applications that form

the heart of a firm’s IT infrastructure. In the next section, we develop theory about the different

types of coupling that exist between applications in a firm’s software portfolio. We then define

three distinct measures of IT agility that might be impacted by these different types of coupling.

3.2 Different Types of Coupling that Impact Software Applications

The computer scientist David Parnas argued that, in technical systems, the most

important form of linkage between components is a directed relationship he calls “depends on”

or “uses” (Parnas, 1972). If B uses A, then A fulfills a need for B. If the design of A changes,

then B’s need may go unfulfilled. B’s behavior may then need to change to accommodate the

change in A. Hence change propagates in the opposite direction to use. Parnas stressed that use

is not symmetric. If B uses A, but A does not use B, then B might change with no impact on A.

Our first step in theory building is to relate Parnas’ concept of dependency to component

coupling. To capture the insight that a dependency may be asymmetric, we define coupling as

the property of being used (i.e., depended upon) by another component. Component A is

coupled with component B if B uses A. Hence if A changes, B may have to change as well.

Designing an Agile Software Portfolio Architecture

 10

Modular systems theory predicts the more coupled a component is, the more costly and

time consuming it will be to change (Simon, 1962; Sanchez and Mahoney, 1996). However, the

components of a system can be coupled in different ways (Baldwin and Clark, 2000). They can

be coupled directly or indirectly; and they can be coupled hierarchically or cyclically.

Furthermore, components that are hierarchically coupled may be located at the top or the bottom

of the design hierarchy (Clark, 1985); and components that are cyclically coupled may be

members of a large or small cyclic group of components (Sosa et al, 2013). For the purposes of

theory development, we consider a single application (labeled “A”) within a firm’s IT

architecture. The question we explore is how does the presence of coupling (or the lack thereof)

affect the cost of change for this application. To answer this question, we consider four

different patterns of coupling that exist between applications in the architecture (see Figure 1).

Figure 1: Coupling Relationships between Applications

Figure 1.1 represents the base case, in which component A is not coupled to any other. In

Figure 1.2, component A is directly coupled with components B and C. Modular systems theory

predicts that components with higher levels of direct coupling are more costly to change, given

the need to consider the potential impact of changing the coupled component on the dependent

components (Simon, 1962). Hence we predict that component A would be more costly to change

than a similar component with no coupling (e.g., as in Figure 1.1). Support for such a

relationship is found in empirical studies of software, in which the components are source files or

classes, and dependencies denote relationships between them (Chidamber and Kemerer, 1994).

1.2:%%Direct% 1.3:%%Indirect%

A%

B%

C%

A%

C%

D%

B%
A%

B%

C%

1.4:%%Cyclical%1.1:%%Uncoupled%

A%

B%

C%

Designing an Agile Software Portfolio Architecture

 11

Figure 1.3 depicts a more complex set of relationships between system components.

Component A is directly coupled to B but indirectly coupled to C and D. In this system, changes

may propagate between components that are not directly connected, via a “chain” of

dependencies. While indirect coupling relationships are likely to be weaker than direct coupling

relationships, the former are not as visible to a system architect, hence more likely to produce

unintended system behaviors. Empirical work has shown that changes to one component in an

IT system often create unexpected disruptions in distant parts of the system (Vakkuri, 2013).

Measures of indirect coupling have been shown to predict the number of defects and the ease

with which software can be adapted (MacCormack, 2010; MacCormack and Sturtevant, 2016).

Figure 1.4 illustrates a third pattern of coupling between applications, called cyclic

coupling (Whitney, et al, 2004; Sosa et al, 2013). In this system, A is coupled with B, B is

coupled with C, and C is coupled with A. These components form a cyclic group – a group of

components that are mutually interdependent. In contrast to figure 1.3, there is no “hierarchy”

or ordering of these components, such that one can be designed (or changed) before the others.

Rather, components in cyclic groups must often be designed (or changed) concurrently, to ensure

that they work together effectively. When cyclic groups are large, this presents a significant

challenge, increasing the cost of change for components (Baldwin et al, 2014).1

Importantly, the portfolio of software applications within a firm represents only one layer

in a firm’s IT architecture. Applications are the chief mechanism through which a firm’s IT

infrastructure supports the delivery of core business capabilities (MacCormack et al, 2016). But

other layers exist, including databases, database hosts, application servers, and business groups

that use the capabilities this infrastructure provides. In addition to coupling relationships

between applications, a firm’s agility may be impacted by coupling relationships between

1 Measures of different types of coupling are likely to be correlated. It will be important to be sensitive to this in empirical tests.

Designing an Agile Software Portfolio Architecture

 12

applications and other layers. In this study, we consider the layers immediately above and

below the application layer. In particular, business groups use applications and applications may

read from/write to databases2 (see Figure 2). Modular systems theory suggests that applications

with higher levels of coupling to these layers will be more costly and difficult to change.

Figure 2: Coupling Relationships between Layers

3.3 Measures of IT Agility in Technical Systems

Early work by Duncan (1995) and Byrd and Turner (2000) identified important

constructs believed to underpin IT infrastructure flexibility, focusing on connectivity,

compatibility and modularity. Subsequent studies often assumed these constructs to be proxies

for IT agility and sought to identify their antecedents. For example, Schmidt and Buxmann

(2011) find that higher-quality EA planning processes are associated with higher perceived levels

of connectivity, compatibility and modularity. Similarly, Joachim et al (2013) find that

governance mechanisms used in Service Oriented Architectures (SOA) are associated with IT

infrastructure flexibility, as measured by connectivity, compatibility and modularity.

In contrast to studies that view the constructs of connectivity, compatibility and

modularity as proxies for IT agility (i.e., measures of output) other work considers these to be

features of IT architecture (i.e., measures of input) and explores their impact on performance.

2 Applications may read from or write to a database; hence we denote this dependency as bi-directional in this figure.

A"

C"

D"

B"

E" F"

G" H"

Business"Group"Layer"

Applica7on"Layer"

Database"Layer"

Designing an Agile Software Portfolio Architecture

 13

For example, Kim et al (2011) show that measures of compatibility, connectivity and modularity

are correlated with perceptions of a firm’s ability to change existing business processes.

Similarly, Tiwana and Konsynski (2010) show that the use of loose coupling and standardization

are correlated with perceptions of the IT function as being agile, adaptive, flexible and

responsive. We share the view that concepts such as modularity and loose coupling capture

features of IT architecture, and are not proxies for IT agility. In our work therefore, we define

explicit measures of IT agility, to test the assertion that these constructs impact this ability.

Our theory explores the impact of the coupling on individual applications; hence we

define measures of IT agility at this level (i.e., and not the firm as a whole). In particular, we

focus on three types of change that applications experience, as a business evolves over time.

First, we capture the cost to maintain an application, encompassing changes to fix errors in

operation, and incremental updates to its functionality. Maintenance involves the smallest degree

of change to an application, hence represents (in theory) the lowest level of IT agility. Second,

we capture whether an application is decommissioned (i.e., retired) over a 4-year period.

Decommissioning applications that are obsolete or no longer needed is a critical task in the

modern firm, and growing in importance given a dynamic and competitive marketplace (IBM,

2009). Indeed, a recent study of firms’ software portfolios by Aier et al (2009) found that over

40% of applications were retired over a 4-year time period. Decommissioning is a major

undertaking, requiring not only the removal of functionality from the software portfolio, but also

the removal of linkages between the application to be retired and those that remain. As a result,

applications with high levels of coupling are likely to be more difficult and costly to retire.

Finally, we capture the addition of new applications to a firm’s portfolio. As firms replace

obsolete technologies, build new capabilities, and enter new markets, adding new applications is

Designing an Agile Software Portfolio Architecture

 14

an increasingly critical capability. This requires the development of new functionality, and the

integration of this functionality with existing applications and infrastructure. Integrating new

applications into a firm’s software portfolio is likely to be more costly and difficult to the extent

that they require high levels of coupling to existing applications and infrastructure.

3.4 The Relationship between Application Coupling and IT Agility

We have identified the different types of coupling that exist between applications in a

firm’s software portfolio, and defined three measures of IT agility, which can be captured for

these applications. Modular systems theory suggests that measures of coupling predict the

degree to which an application can be changed. Hence we state our hypotheses, as follows:

Hypothesis 1: Applications with higher levels of coupling will be more costly to

maintain, on average, than applications with lower levels of coupling.

Hypothesis 2: Applications with higher levels of coupling will be less likely to be

decommissioned, on average, than applications with lower levels of coupling.

Hypothesis 3: New applications added to the software portfolio will have lower levels of

coupling, on average, than the legacy applications that comprise this portfolio

For each of the hypotheses above, we conduct empirical tests for the impact of all types

of coupling defined in our theory. We have no ex-ante view as to the relative strength of effects

for the different types of coupling we define. Rather, we rely on our empirical tests to identify

which of them have more explanatory power in predicting different dimensions of IT agility.

4. Research Methods

To develop measures of the different types of coupling between applications, we use

Design Structure Matrices (DSMs) a popular network-based method for analyzing technical

systems (Steward, 1981; Eppinger et al., 1994; MacCormack et al., 2006; 2012; Sosa et al.,

Designing an Agile Software Portfolio Architecture

 15

2007). A DSM highlights the structure of a system using a square matrix, in which rows and

columns represent system elements, and dependencies between elements are captured in off-

diagonal cells. Importantly, DSMs allow us to capture the direction of dependencies between

elements, and hence to discriminate between incoming and outgoing dependency relationships.

Using a matrix to capture dependency relationships also facilitates the discovery of indirect

dependencies between elements, which can be identified via well-known matrix operations.

Baldwin et al. (2014) show that DSMs can be used to understand the “hidden structure”

of software systems, by capturing the level of direct, indirect and cyclic coupling between source

files, and classifying files into categories based upon the results. Lagerström et al. (2013) and

MacCormack et al (2016) show this approach can be extended to study a firm’s enterprise IT

architecture, in which a large number of interdependent software applications have relationships

with other types of components, such as business groups, schemas, servers, databases and

infrastructure. In this paper, we build upon and extend this approach, showing how measures

derived from the DSM of a firm’s software portfolio architecture predict measures of IT agility.

4.1 Measuring Direct Coupling and Dependency in a DSM

A DSM is a way of representing a network. Rows and columns of the matrix denote

nodes in the network; and off-diagonal entries indicate dependencies between nodes. In the

analysis of software portfolio architecture, the rows, columns, and main diagonal elements of the

DSM correspond to software applications. Linkages between applications are represented by off-

diagonal entries in the DSM (set to one) and indicate that a coupling relationship exists between

two applications. As a matter of convention, usage (i.e., dependency) proceeds from row to

column in our DSMs, hence coupling proceeds from column to row. That is, reading down the

Designing an Agile Software Portfolio Architecture

 16

column of an application reveals all applications that are coupled with it. As a matter of

definition, main diagonal elements are set to one (i.e., applications “depend on” themselves).

The levels of direct coupling and dependency for an application can be read directly from

the DSM. Specifically, for the ith application in a portfolio, the level of direct coupling is found

by summing entries in the ith column. The level of direct dependency is found by summing

entries in the ith row.3 In general, these measures will be different, unless all dependencies for a

focal application are symmetric. If usage is symmetric (i.e., A uses B and B uses A), then off-

diagonal entries in the DSM will be symmetric around the main diagonal.

4.2 Measuring Indirect Coupling and Dependency in a DSM

Using a DSM, we can also find the indirect dependencies between applications, which

reflect the potential for changes to propagate. To identify indirect relationships in a system, we

apply the procedure of transitive closure to the direct dependency DSM and set all positive

entries equal to one. The result is the “visibility” matrix (MacCormack et al., 2006; Baldwin et

al., 2014). The visibility matrix captures all of the indirect dependencies between applications.4

In a similar fashion to the direct dependency DSM, the level of indirect coupling for an

application is therefore captured in the column sums of the visibility matrix. The level of indirect

dependency for an application is captured in the row sums of the visibility matrix.5

The density of the visibility matrix, called propagation cost, measures the level of

indirect coupling for the software portfolio as a whole. Intuitively, the greater the density of this

matrix, the more ways there are for changes to propagate across applications, and thus the higher

the potential cost of change. Large differences in propagation cost have been observed across

3 In prior work, the term Direct Fan-In (DFI) has been used to denote the direct coupling of a component, and Direct Fan-Out (DFO)
has been used to denote the direct dependency of a component (Baldwin et al, 2014).
4 In our work, we define indirect coupling and dependency as also encompassing all direct relationships between elements.
5 In prior work, the term Visibility Fan-In (VFI) has been used to denote the indirect coupling for a component, and Visibility Fan-Out
(VFO) to denote the indirect dependency for a component (e.g., Baldwin et al, 2014).

Designing an Agile Software Portfolio Architecture

 17

software systems of similar size and function (Baldwin et al, 2014). These differences are

predicted, in part, by the structure of the developing organization (MacCormack et al, 2012).

However, empirical evidence also suggests that refactoring efforts aimed at making software

more modular can lower propagation cost substantially (MacCormack et al., 2006; Akakine,

2009). In combination, these findings suggest that in complex systems, design decisions are

impacted significantly by organizational constraints, as well as explicit design choices.

4.3 Measuring Cyclic Coupling in a Design Structure Matrix

The visibility matrix can be used to identify “cyclic groups” of applications, each of

which is directly or indirectly connected to all others. Mathematically, members of a cyclic

group all have the same indirect coupling and indirect dependency measures, given that they are

all connected directly or indirectly to each other. Thus we can identify cyclic groups in a system

by sorting applications by these two measures (Baldwin et al., 2014).

Prior work has shown that the majority of software systems exhibit a “core-periphery”

structure, characterized by a single dominant cyclic group of components (the “Core”) that is

large relative to the system as a whole as well as to other cyclic groups (Baldwin et al, 2014).

The components in such systems can be classified into four categories according to the levels of

indirect coupling and dependency that they exhibit, as compared to members of this cyclic group.

We apply the same classification process to applications in a firm’s software portfolio.

Cyclically coupled applications are members of the largest cyclic group, and have high

levels of both indirect coupling and dependency. Indirectly coupled applications have high

levels of indirect coupling (i.e., they are “used,” directly or indirectly, by many other

applications). Indirectly dependent applications have high levels of indirect dependency, (i.e.,

they “use,” directly or indirectly, many other applications). Peripheral applications have low

Designing an Agile Software Portfolio Architecture

 18

levels of both indirect coupling and dependency. In a software portfolio, indirectly coupled,

cyclically coupled and indirectly dependent applications are called “main flow” applications.

Peripheral applications lie outside the main flow, being loosely coupled to other applications.

4.4 Revealing Hierarchy using a Design Structure Matrix

When used as a planning tool in a design process, a DSM indicates a possible sequence

of design tasks, i.e., which components should be designed before which others (Steward, 1981;

Eppinger et al, 1994). In general, it is intuitive and desirable to place the first design tasks at the

top of a DSM, with later tasks below. In sum, the first components to be designed should be

those that other components depend upon. Reflecting this discussion, we place the “most used”

applications at the top of the DSM and “users” of other applications towards the bottom of the

DSM. Hence applications at the top have high levels of indirect coupling whereas applications

towards the bottom have high levels of indirect dependency. The resulting DSM possesses a

“lower diagonal form,” in which most dependencies are below the diagonal, with above diagonal

entries indicating the presence of cyclical coupling (Sosa et al, 2013). Critically, in cases where

the hierarchy of applications is not known a priori, the visibility matrix can be sorted using

measures of indirect coupling and dependency to reveal these relationships. In our work, we

carry out this procedure, to reveal the implicit hierarchy among applications.

5. Empirical Setting

We test our hypotheses using data on the software portfolio of a large European bank.

The data was a part of an initiative taken to develop a better understanding of the linkages

between software applications, and the performance of the portfolio. Each quarter, the bank asks

application owners to enter information in a database. For each application, data is collected on

the go-live-date of the application, if it is in-house or externally developed, if it is under

Designing an Agile Software Portfolio Architecture

 19

development or in production, the departments that use the application, the operating systems

that it supports, the databases that it uses, and the dependencies it has with other applications.

In order to test our hypotheses about IT agility, we captured data on active software

applications and their dependencies in both 2008 and 2012. We were also given data on

operating and maintenance costs for 2008. In 2008, the collection of data on the software

portfolio was fairly new and consequently, dependency data was not provided for all

applications. Further, data on operating and maintenance cost was only reported for a subset of

applications. Hence our sample for analysis does not consist of all active applications.

However, we were told, in general, that the data included the most important of them. Missing

data was more likely for applications that were smaller and less important.

Sample Data for 2008

The 2008 software portfolio consists of 1,558 active applications. Of these, 1,247

contained reliable data on application dependencies. Thus, our sample consists of 1,247

applications and 3,482 dependencies. Using the Design Structure Matrix methodology described

earlier, we identified all of the direct and indirect coupling and dependency relationships

between applications in the portfolio. We then classified applications using the methods

described earlier (Baldwin et al, 2014). We find the 2008 software portfolio architecture has a

large cyclically coupled group of 447 applications representing 36% of the system. These

applications are all mutually interdependent. We find 120 applications (10%) are indirectly

coupled (i.e., they have high indirect coupling but low indirect dependency). We find 175

applications (14%) are indirectly dependent (i.e., they have high indirect dependency, but low

indirect coupling). Finally, we find 505 applications (41%) are peripheral (i.e., they have low

levels of both indirect coupling and dependency). Figure 3 shows the firm’s software portfolio

Designing an Agile Software Portfolio Architecture

 20

architecture in DSM form, with applications grouped by category. Arrows indicate the “main

flow” of dependencies between groups. (Peripheral applications are not in the main flow).

Figure 3: Coupling and Dependency Relationships for the 2008 Software Portfolio

Sample Data for 2012

The 2012 software portfolio contains 1,251 applications and 3,969 dependencies. All

applications contained sufficient data for analysis in this time period, hence our sample

represents the entire population. The analysis of the 2012 portfolio reveals a large group of 441

cyclically coupled applications, representing 35% of the system. We find 80 applications (6%)

are indirectly coupled, 298 applications (28%) are indirectly dependent and 432 applications

(35%) are peripheral. Table 1 shows a comparison of the firm’s applications grouped by indirect

coupling category, in 2008 and 2012. While the number of applications in the two time periods

is consistent, and the number of applications in each category broadly similar, this analysis hides

a significant movement of applications into and out of the portfolio, as discussed below.

Designing an Agile Software Portfolio Architecture

 21

Table 1: Comparison of Applications by Category for 2008 and 2012
	 2008	 2012	
Category	 Number	 %	 Number	 %	
Indirectly	 Coupled	 120	 9.6%	 80	 6.4%	
Cyclically	 Coupled	 447	 35.9%	 441	 35.3%	
Indirectly	 Dependent	 174	 14.0%	 298	 23.8%	
Peripheral	 505	 40.5%	 432	 34.5%	
TOTAL	 1247	 100.0%	 1251	 100.0%	

5.1 Application changes between 2008 and 2012

Between 2008 and 2012 there was substantial change in the software portfolio at the

bank. In particular, the bank went through a merger with another bank, and as a result, underwent

a substantial rationalization of the application portfolio. As one manager remarked:

“There where massive changes in the IT landscape, resulting from the
decommissioning of redundant or outdated applications. Furthermore, a
number of applications from [the acquired bank] were taken over. Finally,
data had to be migrated between the two.” – Senior Enterprise Architect.

Thus, during the years between 2008 and 2012, many software applications were

decommissioned, new applications were added, existing applications were updated (and may

have switched categories), and data was collected for applications where none existed in 2008.

Table 2 shows the movement of software applications out of (retired), into (added), and across

(moved category) the software portfolio between 2008 and 2012. Furthermore, we show active

applications with missing data in 2008, for which data was available in 2012.

Table 2: Movement of Applications in the Software Portfolio between 2008-2012

	

2008	
Application	
Retired	

Application	
Added	

Net	 Moved	
Category	

New	 Data	
Available	 	 2012	

Indirectly	 Coupled	 120	 -‐53	 14	 -‐19	 18	 80	

Cyclically	 Coupled	 447	 -‐121	 72	 -‐8	 51	 441	
Indirectly	 Dependent	 175	 -‐87	 110	 28	 72	 298	

Peripheral	 505	 -‐469	 227	 -‐1	 170	 432	
Missing	 Data	 311	 N/A	 N/A	 N/A	 -‐311	 N/A	

TOTAL	 1,558	 -‐730	 423	 N/A	 N/A	 1251	

Designing an Agile Software Portfolio Architecture

 22

5.2 Data on Maintenance Cost for Applications

Data on annual maintenance costs was available for 376 of the 1,247 applications for

which we have data in 2008. For other applications, application owners either did not provide

the cost data, did not possess the cost data, or could not identify the unique costs attributable to

an application (e.g., because cost data were aggregated across multiple applications). The

applications for which maintenance cost data were available is not randomly distributed, but is

biased towards applications that are more important. Hence we must control for this bias.

We control for the non-random exclusion of maintenance cost data by rebalancing our

sample for hypothesis one, to ensure that the sample has the same characteristics as the

population. Table 4 presents data on how we achieve this. Consider, our sample of active

applications in 2008 for which we have data is 1,247, of which 505 (40.5%) are peripheral

applications. However, we only have cost data for 19 of these applications. Of the 376

applications for which we have cost data, only 5.1% are peripheral, a far lower proportion than

the 2008 population. In order to create a sample for testing hypothesis one, we therefore

oversample the observations in underrepresented categories, to match the proportions of the 2008

population.6 For example, we replicate the 19 observations from peripheral applications, to

produce a total of 266 applications in this category. After this procedure, our final sample

contains 660 observations with which to test hypothesis one, distributed as shown below.

Table 4: Constructing a Representative Sample for testing Hypothesis One

Category	
2008	

Applications	
%	 by	

Category	
Apps	 with	
Cost	 Data	 	

%	 by	
Category	

With	 Re-‐
Sampling	

%	 by	
Category	

Indirectly	 Coupled	 120	 9.6%	 37	 9.8%	 74	 11.2%	
Cyclically	 Coupled	 447	 35.9%	 249	 66.2%	 249	 37.7%	
Indirectly	 Dependent	 174	 14.0%	 71	 18.9%	 71	 10.8%	
Peripheral	 505	 40.5%	 19	 5.1%	 266	 40.3%	
TOTAL	 1247	 100.0%	 376	 100%	 660	 100%	

6 See http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/.

Designing an Agile Software Portfolio Architecture

 23

5.3 Empirical Measures

Table 5 below describes our measures of IT agility, control measures that may impact

measures of agility, and measures of both inter-layer and inter-application coupling.

Table 5: Measures used in the Study
Dependent	 Variables:	 	 Measures	 of	 IT	 Agility	

MaintCost	 –	 The	 maintenance	 cost	 for	 an	 application,	 defined	 as	 the	 “cost	 that	 an	 application	 produces	 for	 maintaining	 it,	 i.e.	
fixing	 errors	 and	 making	 minor	 changes	 needed	 to	 keep	 the	 current	 state	 of	 requirement-‐fulfillment.”	 (Mocker,	 2009).	

Decomm	 –	 We	 capture	 whether	 an	 application	 was	 decommissioned	 (1)	 or	 suvived	 (0)	 between	 2008	 and	 2012.	 	 	

New	 –	 We	 capture	 data	 on	 new	 applications	 added	 to	 the	 portfolio	 between	 2008	 and	 2012.	

Control	 variables	

Age	 –	 measures	 the	 age	 of	 an	 application	 (the	 number	 of	 years	 since	 the	 first	 go-‐live	 date).	 	

State	 –	 indicates	 if	 an	 application	 is	 in	 production	 (1)	 or	 still	 in	 development	 (0).	

#	 OS	 –	 indicates	 the	 number	 of	 operating	 systems	 supported	 by	 an	 application;	 two	 or	 more	 (1)	 or	 one	 (0).	

Vendor	 –	 indicates	 whether	 an	 application	 is	 from	 an	 external	 vendor	 (1)	 or	 was	 developed	 in-‐house	 (0).	

Inter-‐Layer	 Coupling	 –	 Inter-‐Layer	

#	 DBMS	 –	 number	 of	 database	 management	 systems	 application	 is	 linked	 to;	 one	 or	 more	 (1)	 or	 none	 (0).	

#	 Users	 –	 indicates	 the	 number	 of	 business	 departments	 that	 use	 an	 application.	

Inter-‐Application	 Coupling	 	

DirCop	 –	 measures	 the	 number	 of	 directly	 coupled	 applications	 for	 an	 application	

DirDep	 –	 measures	 the	 number	 of	 directly	 dependent	 applications	 for	 an	 application.	

IndCop	 –	 indicates	 whether	 an	 application	 is	 in	 the	 indirectly	 coupled	 category	 (1)	 or	 not	 (0).	

CycCop	 –	 indicates	 whether	 an	 application	 is	 in	 the	 cyclically	 coupled	 category	 (1)	 or	 not	 (0).	

IndDep	 –	 indicates	 if	 an	 application	 is	 in	 the	 indirectly	 dependent	 category	 (1)	 or	 not	 (0).	 	

MainFlow	 –	 Indirectly	 coupled,	 cyclically	 coupled,	 or	 indirectly	 dependent	 applications	 are	 main-‐flow	 applications.	

5.4 Descriptive statistics

In Table 6, we provide descriptive statistics for the samples used to test hypotheses 1-2.

The samples are different for each test, given maintenance cost is only available for a subset of

2008 applications, whereas decommissioning is an observable outcome for all applications that

exist in 2008. (The test for hypothesis three is a comparison of coupling and dependency levels

for new applications versus all applications that exist in 2008 – the sample for the latter is the

same as Hypothesis 2). Correlation tables for the samples are provided in the Appendices.

Designing an Agile Software Portfolio Architecture

 24

Table 6: Descriptive Statistics for Hypotheses 1 and 2
	 A:	 	 Sample	 for	 Hypothesis	 1	 	 B:	 	 Sample	 for	 Hypothesis	 2	 	

	
Min	 Max	 Mean	 St	 Dev	 Min	 Max	 Mean	 St.Dev	

MaintCost	 0	 5,776.50	 314.66	 569.60	 -‐ -‐ -‐ -‐
Decomm	 -‐ -‐ -‐ -‐ 0	 1	 0.56	 0.50	

Age	 1	 29	 7.13	 4.64	 0	 31	 8.73	 5.03	
State	 0	 1	 0.99	 0.09	 0	 1	 0.98	 0.15	

#	 OS	 0	 1	 0.08	 0.27	 0	 1	 0.06	 0.23	

Vendor	 0	 1	 0.40	 0.49	 0	 1	 0.52	 0.50	
#	 DBMS	 0	 1	 0.60	 0.49	 0	 1	 0.45	 0.50	

#	 Users	 1	 26	 4.33	 6.17	 1	 30	 4.68	 6.69	
DirCup	 0	 85	 3.43	 6.46	 0	 85	 3.17	 6.97	

DirDep	 0	 35	 3.62	 5.92	 0	 79	 3.25	 6.36	

MainFlow	 0	 1	 0.60	 0.49	 0	 1	 0.63	 0.48	
IndCup	 0	 1	 0.11	 0.32	 0	 1	 0.10	 0.30	

Cyclic	 0	 1	 0.38	 0.48	 0	 1	 0.40	 0.49	
IndDep	 0	 1	 0.11	 0.31	 0	 1	 0.14	 0.34	

	
n=660	 n=9577	

First, we note maintenance cost is skewed; hence we use a log transformation for this

variable in statistical tests. Second, the rate at which applications are decommissioned between

2008 and 2012 is 56%. This mirrors other empirical work in this area that demonstrates high

turnover in software portfolios (Aier et al, 2009). The average age of applications is 8.7 years.

Age is also skewed; hence we use a log transformation for this variable in statistical tests.

Almost all applications (98%) are in production and only 6% support more than one operating

system. Vendor provided applications constitute 52% of the population and 45% of applications

are linked to at least one database. Finally, there are 4.7 users (i.e., departments) on average per

application. This variable is also skewed; hence we use a log transformation in statistical tests.

6. Empirical Results

6.1 Hypothesis 1: The Relationship between Coupling and Maintenance Cost

7 Control variable data was not available for all 1257 applications. Hence our statistical models are based upon n=957.

Designing an Agile Software Portfolio Architecture

 25

Table 7 presents a series of models predicting the maintenance cost for each application,

using control variables, and predictor variables as described above. Note that we use a log

transformation for the dependent variable given maintenance cost is highly skewed.

Table 7: Models Predicting the Cost of Application Maintenance

Ln	 (MaintCost)	 Model1	 Model2	 Model	 3	 Model	 4	 Model	 5	 Model	 6	

Constant	 0.341	 -‐0.992	 -‐0.765	 -‐1.664	 -‐1.57	 -‐1.621	
Ln	 (Age)	 0.643***	 0.427*	 0.142	 0.186	 0.188	 0.386†	

State	 2.777*	 3.132**	 3.32**	 3.704**	 3.624**	 3.277**	

#	 OS	 1.059**	 0.702†	 0.685†	 0.57	 0.588	 0.755†	
Vendor	 -‐1.348***	 -‐0.656**	 -‐0.497*	 -‐0.537*	 -‐0.553*	 -‐0.212	

#	 DBMS	
	

1.452***	 1.122***	 0.87***	 0.854***	 0.707**	
Ln	 (#	 Users)	

	
0.266*	 0.212*	 0.268*	 0.264*	 0.219*	

Ln	 (DirCop)	
	 	

0.212†	 	 	
	 Ln	 (DirDep)	

	 	
0.289*	 	 	

	 MainFlow	 (MF)	
	 	

	 1.409***	 	 1.307***	

IndCop	
	 	

	 	 1.524***	
	 Cyclic	

	 	
	 	 1.417***	

	 IndDep	
	 	

	 	 1.265***	
	 MF	 x	 Ln	 DirCop	

	 	
	 	 	 0.162	

PER	 x	 Ln	 DirCop	
	 	

	 	 	 -‐0.233	

PER	 x	 Ln	 DirDep	
	 	

	 	 	 1.691***	
Adj.	 R-‐square	 0.085	 0.135	 0.153	 0.177	 0.175	 0.195	

F-‐statistic	 16.34***	 18.15***	 15.93***	 21.25***	 16.53***	 17.01***	
n=660;	 †	 p<0.1,	 *	 p<0.05,	 **	 p<0.01,	 and	 ***p<0.001	

Model 1 includes only control variables, all of which are significant. Older applications,

applications in production, applications that support multiple operating systems, and applications

developed in-house cost more to maintain. In total, these variables explain 8.5% of the variance

in maintenance cost. In model 2, we add inter-layer coupling variables, both of which are

significant. Applications that are used by more business departments and that are connected to a

database management system cost more to maintain. In total, these inter-layer coupling variables

increase the variation explained to 13.5%. Models 3-6 explore the predictive power of various

Designing an Agile Software Portfolio Architecture

 26

measures of inter-application coupling. Model 3 includes measures of direct coupling and

dependency. We use a log transformation for these variables given they are highly skewed.

Only one of the variables is significant hence the increase in R-squared for this model is limited

as compared to model 2 (from 13.5% to 15.3%).8 In model 4, we remove direct coupling and

dependency variables, and instead include main-flow – a variable that indicates whether an

application is indirectly coupled, cyclically coupled or indirectly dependent. This variable is

significant, and increases the model R-squared from 13.5% to 17.7%, as compared to model 2.

In model 5, we split main-flow applications into three component categories – indirectly

coupled, cyclically coupled and indirectly dependent. All three are significant. However, the

model fit does not improve over model 4, and the coefficients are not statistically different from

each other. We cannot include measures of direct coupling in models 4 and 5, given the high

correlations between direct and indirect coupling and dependency measures (see the

Appendices). We note however, that measures of indirect coupling and dependency have a

higher correlation with maintenance cost than measures of direct coupling and dependency, and a

greater level of statistical significance in our models. We conclude that indirect coupling and

dependency measures are more important than direct coupling and dependency measures in

explaining maintenance cost – the first dimension of IT agility.

In model 6, we use interaction terms to evaluate the impact of direct coupling and

dependency measures within different categories associated with indirect coupling and

dependency. In particular, we interact the main-flow and peripheral variables, with the level of

direct coupling and dependency for an application. For peripheral applications, we find the

measure of direct dependency adds significant explanatory power to our model. In total, our

8 We note that direct coupling and direct dependency are strongly correlated (see the Appendices); hence this model should be
considered a joint test of significance for these variables.

Designing an Agile Software Portfolio Architecture

 27

final model explains 19.5% of the variation in maintenance costs. Control variables explain 8.5%

of this variation, and coupling variables explain 11% of this variation. Among the coupling

variables, inter-layer coupling variables explain 5% of the variation, and inter-application

coupling variables explain 6% of the variation.

6.1.1 Exploring the Impact of Indirect Coupling on Application Maintenance Cost

To understand the dynamics of how indirect coupling and dependency impact

maintenance cost we further analyzed the relationship between the outcome and these categories.

Table 8 presents data on the mean, standard deviation, and skewness of maintenance cost by

category. (We present here the raw data, not the transformed data used in our statistical models).

We observe that cyclically coupled applications have the highest average maintenance cost,

followed by indirectly coupled, indirectly dependent, and lastly peripheral applications. They

also have a higher variation in maintenance costs than applications in other categories. The

implication is that cyclically coupled applications are harder to predict (and hence to budget)

with respect to maintenance costs and also more likely to be outliers on this dimension of agility.

Table 8: Differences in Maintenance Cost by Category
	 Maintenance	 Cost	
	 Mean	 St.	 Dev	 Skewness	

Indirectly	 Coupled	 344.86	 452.48	 2.21	
Cyclically	 Coupled	 	 497.54	 753.80	 3.55	
Indirectly	 Dependent	 	 255.37	 468.93	 3.86	
Peripheral	 	 143.41	 293.11	 3.11	

In sum, the evidence we present suggests that hypothesis one is supported. Applications

with greater amounts of coupling cost more to maintain. We find support for the predictive

power of inter-layer coupling variables (Users and Database Management systems) as well as

inter-application coupling variables. We find that indirect coupling and dependency are better

predictors of maintenance costs than direct coupling and dependency. While our statistical

Designing an Agile Software Portfolio Architecture

 28

models cannot differentiate between the impact of different types of indirect coupling and

dependency, cyclically coupled applications possess the highest maintenance costs, and

experience the highest variation in costs.

6.2 Hypothesis 2: The Relationship between Coupling and Decommissioning

Table 9 presents a series of logistic regression models predicting the probability of an

application being decommissioned between 2008 and 2012.

Table 9: Logistic Regression Models Predicting Application Decommissioning

Decomm	 (1-‐0)	 Model	 1	 Model	 2	 Model	 3	 Model	 4	 Model	 5	 Model	 6	 	

Constant	 -‐0.423	 0.930†	 0.141	 2.481***	 2.187***	 0.968	 	
Ln	 (Age)	 0.395***	 0.481***	 0.776***	 0.569***	 0.664***	 0.652***	 	

State	 -‐0.973†	 -‐1.237*	 -‐0.893	 -‐0.968	 -‐0.866	 -‐0.631	 	
#	 OS	 -‐0.938**	 -‐0.524	 -‐0.563	 -‐0.454	 -‐0.533	 -‐0.519	 	

Vendor	 1.812***	 1.137***	 0.625***	 0.497**	 0.438*	 0.322†	 	

#	 DBMS	
	

-‐1.679***	 -‐0.990***	 -‐1.178***	 -‐1.025***	 -‐0.913***	 	
Ln	 (#	 Users)	

	
-‐0.150†	 0.029	 -‐0.080	 -‐0.043	 0.021	 	

Ln	 (DirCop)	
	 	

-‐0.638***	 	 	
	

	
Ln	 (DirDep)	

	 	
-‐0.359***	 	 	

	
	

MainFlow	
	 	

	 -‐2.664***	 	 -‐1.491***	 	

IndCop	
	 	

	 	 -‐2.536***	
	

	
Cyclic	

	 	
	 	 -‐3.063***	

	
	

IndDep	
	 	

	 	 -‐2.157***	
	

	
MF	 x	 DirCop	

	 	
	 	 	 -‐0.437***	 	

PER	 x	 DirDep	
	 	

	 	 	 -‐1.94**	 	
Chi-‐square	 189.56***	 297.07***	 411.23***	 446.88***	 462.31***	 479.71***	 	

Cox&Snell	 R^2	 0.180	 0.267	 0.349	 0.373	 0.383	 0.394	 	

Nagelkerke	 R^2	 0.241	 0.358	 0.468	 0.500	 0.514	 0.528	 	
n=975;	 †	 p<0.1,	 *	 p<0.05,	 **	 p<0.01,	 and	 ***p<0.001	

Model 1 includes only control variables, three of which are significant. Older

applications and applications from vendors are more likely to be decommissioned. Applications

that support more operating systems are less likely to be decommissioned. In total, these

Designing an Agile Software Portfolio Architecture

 29

variables explain 24.1% more variation than the null model (i.e., a model with no predictors).9

In model 2, we add inter-layer coupling variables; one is strongly significant (p<0.1%), the other

marginally significant (p<10%). Applications that make use of more database management

systems are less likely to be decommissioned. Applications with more users may be less likely to

be decommissioned. In total, these variables increase the variation explained to 35.8%. Models

3-6 explore the predictive power of various measures of inter-application coupling. Model 3

includes measures of direct coupling and dependency. We use a log transformation for these

variables given they are highly skewed. Both variables are strongly significant, with the model

showing an increase in the variation explained over the null model to 46.8%. In model 4, we

remove direct coupling and dependency variables, and instead include main-flow. This variable

is strongly significant, and increases the model fit to 50.0%.

In model 5, we split main-flow applications into three component categories – indirectly

coupled, cyclically coupled and indirectly dependent. All three are significant. In addition, the

model fit improves over model 4, from 50.0% to 51.4%. We note that the coefficients on the

three variables are statistically different from each other. Specifically, cyclically coupled

applications are the least likely to be decommissioned, and indirectly dependent applications are

the most likely to be decommissioned (but still far less likely than peripheral applications). We

cannot include measures of direct coupling in models 4 and 5, given the high correlations

between direct and indirect coupling and dependency measures (see the Appendices). We note

however, that measures of indirect coupling and dependency have a higher correlation with

decommissioning than measures of direct coupling and dependency, and a greater level of

statistical significance in our models. We conclude that indirect coupling and dependency

9 We use Nagelkerke’s pseudo R-squared statistic to compare models. This mirrors the Cox & Snell statistic, but is adjusted so that
a perfectly fitted model would yield a 100% value (the Cox & Snell statistic cannot take a value of 100%).

Designing an Agile Software Portfolio Architecture

 30

measures are more important than direct coupling and dependency measures in explaining

decommissioning – the second dimension of IT agility.

In model 6, we use interaction terms to evaluate the impact of direct coupling and

dependency measures within different categories associated with indirect coupling and

dependency. In particular, we interact the main-flow and peripheral variables, with the level of

direct coupling and dependency for applications. For main-flow applications, we find the

measure of direct coupling adds significant explanatory power to our model. For peripheral

applications, we find the measure of direct dependency adds significant explanatory power to our

model. In both cases, higher levels of direct coupling or dependency within a category are

associated with a lower likelihood of being decommissioned. In total, our final model explains

52.8% more of the variation in application decommissioning than the null model. Control

variables account for 24.1% of the improvement in model fit, and coupling variables account for

28.7%. Among the coupling variables, inter-layer coupling variables account for 11.7% of the

improvement in model fit, whereas inter-application coupling variables account for 17%.

6.2.1 Exploring the Impact of Coupling on Application Decommissioning

To better understand the dynamics of how indirect coupling and dependency impact

decommissioning we further analyzed the relationship between the outcome and these categories.

Table 10 presents data on the number of applications in each category in 2008 and the number of

applications decommissioned between 2008 and 2012, expressed as an absolute figure, and as a

percentage of the applications in each category. We observe first, that peripheral applications

have a large probability of being decommissioned. Of 505 peripheral applications in 2008,

almost 93% are decommissioned by 2012 (compared to 58.5% for the sample overall). This

result highlights the huge turnover in applications with little or no indirect coupling or

Designing an Agile Software Portfolio Architecture

 31

dependency within the software portfolio. Second, by contrast, the percentage of cyclically

coupled applications that are decommissioned between 2008 and 2012 is only 27%. In sum,

peripheral applications are decommissioned at 3X the rate of cyclically coupled applications.

Finally, we note the rate at which indirectly coupled and indirectly dependent applications are

decommissioned over this time period is broadly similar, at 44.2% and 49.7% respectively.

Table 10: Differences in Application Decommissioning by Category

	

Applications	 	
in	 2008	

Decommissioned	
by	 2012	

Percentage	
Decommissioned	

Indirectly	 Coupled	 	 120	 53	 44.2%	

Cyclically	 Coupled	 447	 121	 27.1%	
Indirectly	 Dependent	 175	 87	 49.7%	

Peripheral	 505	 469	 92.9%	
TOTAL	 1247	 730	 58.5%	

In sum, the evidence we present suggests that hypothesis two is supported. Applications

with greater coupling are less likely to be decommissioned. We find support for the predictive

power of inter-layer coupling variables (Users and Database Management systems) and inter-

application coupling variables. We find that indirect coupling and dependency are better

predictors of decommissioning than direct coupling and dependency. And our statistical models

show that cyclically coupled applications are much less likely to be decommissioned than other

categories. The descriptive analysis highlights this result, and shows, by contrast, the huge rate

at which peripheral applications are decommissioned over the same period.

6.3 Hypothesis 3: The Relationship between Coupling and New Applications

Our third hypothesis asserts that new applications added to the software portfolio

between 2008 and 2012 have lower levels of coupling and dependency compared to the legacy

applications in the portfolio at the start of this period. To test this assertion, we compare the

Designing an Agile Software Portfolio Architecture

 32

distribution of applications by category for 2008, to that of new applications added to the

portfolio. All else being equal, one would predict that new applications should mirror the

distribution of legacy applications, in terms of coupling and dependency (the “null” hypothesis).

Table 11 shows the distribution of applications by indirect coupling category for the 2008

portfolio, as well as for all new applications added between 2008 and 2012.10 For example, in

2008, there were 120 applications that were indirectly coupled, representing 9.6% of the

portfolio. Of the 423 new applications added between 2008 and 2012 however, only 14 (i.e.,

3.3% of new additions) were indirectly coupled. If new applications were added in a way that

mirrors the coupling of legacy applications, we would expect 9.6% of the 423 new applications

(i.e., 40 applications) to be indirectly coupled. The actual outcome is significantly below what is

expected. The ratio of the actual to the expected outcome is 0.34. This reflects the degree to

which the number of new applications either falls short of (i.e., is less than one) or exceeds (i.e.,

is more than one) the expected number of applications in a category for the null hypothesis.

Table 11: Number of Applications by Category for 2008 and for New Applications

	

Applications	 in	 the	 2008	
Portfolio	

New	 Applications	
added	 2008-‐2012	

Ratio	 of	 Actual	
to	 Expected	 	

Indirectly	 Coupled	 120	 9.62%	 14	 3.30%	 0.34	
Cyclically	 Coupled	 447	 35.85%	 72	 17.02%	 0.47	
Indirectly	 Dependent	 175	 14.03%	 110	 26.00%	 1.85	
Peripheral	 505	 40.50%	 227	 53.66%	 1.32	
TOTAL	 1247	 100%	 423	 100.00%	 1.00	
Chi-‐Square	 (df=3)	 90.723***	

***	 p	 <	 0.001	

We find that new applications occur less frequently than expected in the indirectly

coupled and cyclically coupled categories. By contrast, new applications occur at a greater rate

than expected in the indirectly dependent and peripheral categories. These results make intuitive

10 Note in this analysis, we count only new applications added to the software portfolio between 2008 and 2012. We do not include
the 311 active applications that existed in 2008, but which were missing data and hence were not assigned a coupling category.

Designing an Agile Software Portfolio Architecture

 33

sense. Adding new applications that have little or no coupling or dependency relationships with

other applications (i.e., peripheral applications) should be relatively easy to do. Furthermore,

adding new applications that use or “depend upon” existing applications should be easier than

adding new applications that are used by or “depended upon” by existing applications. In

essence, new applications can take advantage of the existing functionality provided by legacy

applications (but not the reverse). Our results show this dynamic – adding new applications that

depend on existing applications – happens 85% more than expected (i.e., the ratio is 1.85).

To test whether the differences reported above are significant, we run a Chi-Square test

of independence between the distribution of applications across categories for 2008 and for new

applications added between 2008 and 2012. The test statistic shows a strong relationship

between the four categories and the addition of new applications, as compared to the 2008

distribution (i.e., the Chi-Square statistic exceeds a threshold value of 33.94). We conclude that

hypothesis three is supported. New applications have a significantly different level of coupling

and dependency than existing applications. In particular, new applications are more likely to be

peripheral or indirectly dependent, and less likely to be indirectly coupled or cyclically coupled.

7. Discussion

The main contribution of this paper is in developing theory about the relationship

between a firm’s software portfolio architecture and IT agility. Specifically, we find a strong

link between the level of coupling and dependency for individual applications in the software

portfolio, and the degree to which applications can be changed. Applications that possess greater

levels of coupling and dependency are more costly to maintain, and less likely to be

decommissioned. Furthermore, new applications added to the portfolio differ significantly from

Designing an Agile Software Portfolio Architecture

 34

the applications in the legacy portfolio. In particular, they are less likely to possess high levels

of coupling, and more likely to be peripheral, or depend only on applications that exist.

Our work explores coupling and dependency relationships both within the application

layer, and between this layer and others in the IT architecture. With respect to the former, we

show that indirect coupling and dependency relationships have a stronger association with IT

agility than direct coupling and dependency relationships. With respect to the latter, we show

that the number of users (i.e., business groups) for an application, and the number of database

management systems to which it is connected, are also strong predictors of IT agility. The best

models predicting maintenance costs and application decommissioning include measures of all

aspects of coupling and dependency: direct, indirect, inter-layer and inter-application.

In order to highlight the power of the various measures of coupling employed in this

study, we conduct a decomposition of variance for hypotheses one and two. Table 12 shows the

amount of explained variance in each outcome that is attributable to control variables, inter-layer

coupling variables, and inter-application coupling and dependency variables. We break the latter

into three; first showing the variation explained by direct coupling and dependency measures,

next showing the variation explained by indirect coupling and dependency measures, and finally

showing the variation explained by all of these measures combined (i.e., our best fit models).

First, while control variables explain a sizeable amount of the explained variance in our

models, measures of coupling explain more of the variance for each outcome. Second, measures

of indirect coupling and dependency have a significantly stronger impact than measures of direct

coupling and dependency in both cases. In models predicting maintenance cost, indirect

measures explain over twice the variance of direct measures. In models predicting

decommissioning, indirect measures explain 32.7% more of the variance than direct measures.

Designing an Agile Software Portfolio Architecture

 35

Third, despite the statistical dominance of indirect measures in our models, and the strong

correlation between direct and indirect measures, the best model in each case combines direct

and indirect measures. In essence, measures of direct coupling and dependency help to explain

variations in each outcome that remain within the indirect coupling and dependency categories.

Table 12: Decomposition of Variance Explained by Hypothesis

	
Maintenance	 Cost	 H1	 Decommissioning	 H2	

Control	 Variables	 8.5%	 8.5%	 8.5%	 24.1%	 24.1%	 24.1%	

External	 Coupling	 5.0%	 5.0%	 5.0%	 11.7%	 11.7%	 11.7%	
Internal-‐Direct	 1.8%	 	 	 11.0%	 	 	

Internal-‐Indirect	 	 4.2%11	 	 	 14.6%12	 	
Internal-‐Combined	 	 	 6.0%	 	 	 16.0%	

TOTAL	 EXPLAINED	 15.3%	 17.7%	 19.5%	 46.8%	 50.0%	 52.8%	

Furthermore, while both inter-layer and inter-application measures of coupling and

dependency are significant in our models, we find the latter have more power in predicting IT

agility. With respect to maintenance costs, inter-application measures account for 20% more of

the variation than inter-layer coupling measures (i.e., 6.0% versus 5.0%). With respect to

decommissioning, inter-application measures account for 36.8% more of the variation than inter-

layer coupling measures (16.0% versus 11.7%). These results reveal a paradox confronting IT

managers as they direct efforts to enhance IT agility. While their focus is often on better

structuring the relationship between applications and other layers in the IT architecture (e.g.,

databases and infrastructure), our results suggest their attention is better directed elsewhere. In

particular, they must pay greater attention to the application portfolio itself, and specifically, the

patterns of coupling and dependency that exist between the components of this portfolio.

11 The baseline for this data is model 4 in Table 7, which includes main-flow as the predictor variable. Breaking main-flow into its
three constituent components, as is done in model 5, yielded a decrease in the variance explained.
12 The baseline for this data is model 5 in Table 9, which includes the variables indirectly coupled, cyclically coupled and indirectly
dependent as predictors. This model explains more variance than a model that just includes main-flow as a predictor.

Designing an Agile Software Portfolio Architecture

 36

The finding that indirect measures of coupling and dependency have more power in

predicting IT agility than direct measures mirrors the results of similar studies looking at the

impact of design decisions within software systems (MacCormack and Sturtevant, 2016). Direct

relationships between components are more easily visible to a system architect, hence can be

explicitly managed. They may not be problematic if constrained to a small group of

components. Indirect relationships however, bring the potential for changes to propagate from

one component to another via chains of dependencies. These chains are not easily visible by

inspection of an application’s nearest neighbors in the portfolio, but represent “hidden structure”

that can only be revealed by an analysis of indirect pathways in a system (Baldwin et al, 2014).

Our work suggests that cyclically coupled applications present the toughest challenges to

a system architect. These applications have the highest average cost, and the highest variations

in cost. They are also far less likely to be decommissioned than other applications. Finally, new

applications of this type are added to the portfolio at a rate 50% lower than would be expected.

In the firm we studied, 35% of the applications were cyclically coupled in both 2008 and 2012.

Hence 440+ applications were mutually interdependent over this timeframe. Making changes to

a “core” set of applications of this size, would likely be a hugely complicated endeavor, given

each change to a single application could propagate to affect all others.

Our study has distinct implications for managers. In particular, our methodology

provides a way to measure the real software portfolio architecture that firm’s possess, as

opposed to the high level conceptual representations often found in documents depicting a firm’s

IT systems. The insights generated should prove useful in several ways, including i) helping to

plan the allocation of resources to different applications, based upon predictions of the relative

ease/difficulty of change; ii) monitoring the evolution of the software portfolio over time, as new

Designing an Agile Software Portfolio Architecture

 37

applications and/or dependencies are introduced, and; iii) identifying opportunities to improve

the portfolio, for example, by reducing coupling, and hence the cost of change for an application.

Ironically, in this era of big data, the lack of granular data may be the largest barrier to

the systematic investigation of software portfolio architecture. Firms need to capture data on the

coupling and dependency between applications in the portfolio, and the way that these evolve

over time. To use this data for prediction, they must also systematically capture data on the cost

of change. In most organizations with which we have worked, this type of data does not exist. In

some, efforts have been made to collect this data manually. However, there are many challenges

associated with this approach, including a lack of incentives to provide accurate and timely

information. In essence, many firms do not know their “real” software portfolio architecture.

Our work opens up the potential for further research to explore the relationship between

software portfolio architecture and IT agility. In this study, features of our dataset made it

difficult to disentangle the effects of different categories of indirect coupling and dependency.

However, in other settings, this will not always be true. We believe it important to study these

mechanisms more deeply, to fully understand the relationships that they have with IT change.

While we focused only on software applications in our analysis of IT agility, our methods could

be extended further, to look at the cost of change for other IT system components.

Our study is subject to a number of limitations that must be considered when assessing

the generalizability of results. In particular, while our unit of analysis is an application, the data

to test our theoretical propositions comes from a single firm. Hence additional work is needed to

validate that our results hold for other firms. We may find that different types of firm, or

different managerial processes within firms, influence the results. Indeed, studies across different

organizations might reveal how measures of IT architecture impact firm-level performance. This

Designing an Agile Software Portfolio Architecture

 38

area is promising, given prior literature argues there is a strong link between IT architecture and

firm-level agility. We hope that this paper and the methods it describes, will allow us to answer

these questions, with a robust approach that can be replicated across studies.

References

Adomavicius, G., Bockstedt, J. C., Gupta, A., and Kauffman, R. J. 2008. Making sense of technology trends in the
information technology landscape: A design science approach. MIS Quarterly 32, 4, 779-809.

Aier, S. Buckl, S. Franke, U. Gleichauf, B. Johnson, P. Narman, P. Schweda, C. Ullberg, J. A Survival Analysis of
Application Life Spans based on Enterprise Architecture Models, Proc. of the 3rd Intl. Wkshp on Enterprise
Modeling and Information Systems Architecture (EMISA).

Akaikine, A. 2010. The Impact of Software Design Structure on Product Maintenance Costs and Measurement of
Economic Benefits of Product Redesign. System Design and Management Program Thesis, Massachusetts
Institute of Technology.

Baldwin, C. and Clark, K. 2000. Design Rules, Volume 1: The Power of Modularity. MIT Press.
Baldwin, C., MacCormack, A., and Rusnack, J. 2014. Hidden structure: Using network methods to map system

architecture. Research Policy, Article in Press. Accepted May 19 2014.
Berente, N. and Yoo, Y., 2012. Institutional contradictions and loose coupling: Postimplementation of NASA's

enterprise information system. Information Systems Research, 23(2), pp.376-396.
Byrd, T.A., and Turner D.E. 2000. Measuring the flexibility of information technology infrastructure: Exploratory

analysis of a construct. Journal of Management Information Systems 17, 1, 167-208.
Chidamber, S. R., and Kemerer, C. F. 1994. A metrics suite for object oriented design. IEEE Transactions on

Software Engineering 20, 6, 476-493.
Clark, K.B. 1985. The interaction of design hierarchies and market concepts in technological evolution. Research

Policy 14, 5, 235–251.
Cohen, W. M., and D. A. Levinthal. “Absorptive Capacity: A New Perspective on Learning and Innovation.”

Administrative Science Quarterly, vol. 35, no. 1, 1990, pp. 128–152.
Duncan, N. 1995. Capturing Flexibility of Information Technology Infrastructure: A Study of Resource

Characteristics and Their Measure. Journal of Management Information Systems 12, 2, 37-57.
Eppinger, S. D., Whitney, D.E., Smith, R.P., and Gebala, D. A. 1994. A model-based method for organizing tasks in

product development. Research in Engineering Design 6, 1, 1-13.
Hanseth, O. and Lyytinen, K., 2010. Design theory for dynamic complexity in information infrastructures: the case

of building internet. Journal of Information Technology, 25(1), pp.1-19.
IBM. 2009. Application Ccnsolidation and retirement projects: Strategies that deliver ROI. IBM Software, White

Paper.
Joachim, N. Beimborn, D. and Weitzel, T. 2013. The influence of SOA governance mechanisms on IT flexibility

and service reuse, The Journal of Strategic Information Systems, 22 (1), 86-101.
Kauffman, S.A. 1993. The Origins of Order. Oxford University Press, New York.
Kim, G., Shin, B., Kim, K.K., and Lee, H.G. 2011. IT capabilities, process-oriented dynamic capabilities, and firm

financial performance. Journal of the Association for Information Systems 12, 7.
Lagerström, R., Baldwin, C., MacCormack, A., and Dreyfus, D. 2013. Visualizing and Measuring Enterprise

Architecture: An Exploratory BioPharma Case. In Proc. of the 6th IFIP WG 8.1 Working Conference on the
Practice of Enterprise Modeling (PoEM). Springer.

Langlois, R.N. 2002. Modularity in technology and organization. Journal of economic behavior & organization 49,
1, 19-37.

Lawrence, P.R., and Lorsch, J.W. 1967. Differentiation and integration in complex organizations. Administrative
science quarterly.

Liu, H.,Ke, W., Wei, K.K., and Hua, Z. 2013. The impact of IT capabilities on firm performance: The mediating
roles of absorptive capacity and supply chain agility. Decision Support Systems 54, 3, 1452-1462.

MacCormack, A., Rusnak, J., and Baldwin, C. 2006. Exploring the structure of complex software designs: an
empirical study of open source and proprietary code. Management Science 52, 7, 1015–1030.

Designing an Agile Software Portfolio Architecture

 39

MacCormack, A. 2010. The Architecture of Complex Systems: Do “Core-Periphery" Structures Dominate?. In Proc.
of Academy of Management.

MacCormack, A., Baldwin, C., and Rusnak, J. 2012. Exploring the duality between product and organizational
architectures: A test of the "mirroring" hypothesis. Research Policy 41, 8, 1309-1324.

MacCormack, A., and Sturtevant, D. 2016. Technical Debt and System Architecture: The Impact of Coupling on
Defect-Related Activity. Journal of Systems and Software, accepted for publication.

MacCormack, A. Lagerstrom, R. Baldwin, C., and Dreyfus, D 2016. Building the Agile Enterprise: IT Architecture,
Modularity and the Cost of IT Change. Harvard Business School Working Paper 15:060.

Mead, C. and Conway, L. 1980. Introduction to VLSI Systems. Addison-Wesley Publishing Co.
Mocker, M. 2009. What is Complex about 273 Applications? Untangling Application Architecture Complexity in a

case of European Investment Banking, Proc. of the 42nd Hawaii Intl. Conf. on System Sciences.
Orlikowski, W.J., and Iacono, C.S. 2001. Research commentary: Desperately seeking the “IT” in IT research - A

call to theorizing the IT artifact. Information systems research 12, 2, 121-134.
Parnas, D. L. 1972. On the criteria to be used in decomposing systems into modules. Communications of the ACM

15, 12, 1053-1058.
Ross, J.W. 2003. Creating a strategic IT architecture competency: Learning in stages. MIT Sloan School of

Management Working Paper No. 4314-03.
Ross, J.W., and Westerman, G. 2004. Preparing for utility computing: The role of IT architecture and relationship

management. IBM systems journal, 43, 1, 5-19.
Salmela, H., Tapanainen, T., Baiyere, A., Hallanoro, M., and Galliers, R. 2015. IS Agility Research: An Assessment

and Future Directions. ECIS 2015 Completed Research Papers. Paper 155.
Sambamurthy, W. and Zmud, R. 2000. The Organizing Logic for an Enterprise's IT Activities in the Digital Era: A

Prognosis of Practice and a Call for Research. Information Systems Research 11, 2, 105-114.
Sambamurthy, V., Bharadwaj, A., and Grover, V. 2003. Shaping Agility through Digital Options: Reconceptualizing

the Role of Information Technology in Contemporary Firms. MIS Quarterly 27, 2, 237-263.
Sanchez, R.A., Mahoney, J.T. 1996. Modularity, flexibility and knowledge management in product and

organizational design. Strategic Management Journal 17, 63–76.
Schilling, M.A. 2000. Toward a general systems theory and its application to interfirm product modularity.

Academy of Management Review 25 (2), 312–334.
Schmidt, C. and Buxmann, P. 2011. Outcomes and success factors of enterprise IT architecture management:

empirical insight from the international financial services industry. European Journal of Information Systems
20, 168–185.

Simon, H. A. 1962. The architecture of complexity. American Philosophical Society 106, 6, 467-482.
Sosa, M. E., Mihm, J., and Browning, T. R. 2013. Linking Cyclicality and Product Quality. Manufacturing &

Service Operations Management 15, 3, 473-491.
Sosa, M., Eppinger, S., and Rowles, C. 2007. A network approach to define modularity of components in complex

products. Transactions of the ASME 129, 1118-1129.
Steward, D. 1981. The design structure system: A method for managing the design of complex systems. IEEE

Transactions on Engineering Management 3, 71-74.
Tanriverdi, H. A. Rai and N Venkatraman. 2010. Reframing the dominant quests of information systems strategy

research for complex adaptive business systems, Information Systems Research, Vol 21 No 4, 2010.
Tilson, D., Lyytinen, K. and Sørensen, C., 2010. Research commentary-digital infrastructures: the missing IS

research agenda. Information systems research, 21(4), pp.748-759.
Tiwana, A. and B. Konsynski. 2010. Complementarities between organizational IT architecture and governance

structure. Information Systems Research, Vol 21, No 2, 2010.
Ulrich, K. 1995. The role of product architecture in the manufacturing firm. Research Policy 24, 419–440.
Vakkuri, E. T. 2013. Developing Enterprise Architecture with the Design Structure Matrix. Master Thesis. Tampere

University of Technology, Finland.
Weick, K. E. 2001. Making sense of the organization. Malden, MA: Blackwell Publishers.
Weill, P. 2007. Innovating with Information Systems: What do the most agile firms in the world do. In Proc. of the

6th e-Business Conference, Barcelona.
Whitney, D.E. (Chair) and the ESD Architecture Committee. 2004. The Influence of Architecture in engineering

Systems. Engineering Systems Monograph,
Yoo, Y., Henfridsson, O., and Lyytinen, K. 2010. Research Commentary—The New Organizing Logic of Digital

Innovation: An Agenda for Information Systems Research. Information Systems Research 21, 4, 724-735.
Zachman, J. A. 1987. A Framework for Information Systems Architecture. IBM Systems Journal 26, 3, 276-292.

Designing an Agile Software Portfolio Architecture

 40

Appendix A: Correlation Table for Data used to Predict Maintenance Cost (Hypothesis 1)

	

Mcost	 Age	 State	 OS	 Vendor	 DBMS	 Users	 MainF	 Cyclic	 IndCup	 IndDep	 DirCup	 DirDep	

Mcost	 1	

	 	 	 	 	 	 	 	 	 	 	 	 Age	 0.13*	 1	

	 	 	 	 	 	 	 	 	 	 	 State	 0.09*	 0.17*	 1	

	 	 	 	 	 	 	 	 	 	 OS	 0.08*	 -‐0.26*	 -‐0.10*	 1	

	 	 	 	 	 	 	 	 	 Vendor	 -‐0.24*	 0.03	 0.04	 -‐0.09*	 1	

	 	 	 	 	 	 	 	 DBMS	 0.32*	 0.09*	 -‐0.07	 0.17*	 -‐0.49*	 1	

	 	 	 	 	 	 	 Users	 0.10*	 0.18*	 0.08*	 -‐0.09*	 -‐0.01	 -‐0.03	 1	

	 	 	 	 	 	 MainF	 0.35*	 0.23**	 -‐0.07	 0.08*	 -‐0.29*	 0.49*	 0.02	 1	

	 	 	 	 	 Cyclic	 0.27*	 0.33*	 -‐0.04	 0.04	 -‐0.29*	 0.40*	 0.09*	 0.64*	 1	

	 	 	 	 IndCup	 0.09*	 -‐0.06	 0.03	 0.03	 0.06	 0.09*	 -‐0.01	 0.29*	 -‐0.28*	 1	

	 	 	 IndDep	 0.05	 -‐0.09*	 -‐0.14*	 0.12*	 -‐0.08*	 0.05	 -‐0.10*	 0.29*	 -‐0.27*	 -‐0.12*	 1	

	 	 DirCup	 0.27*	 0.47*	 0.05	 -‐0.07	 -‐0.18*	 0.37*	 0.17*	 0.58*	 0.70*	 0.09*	 -‐0.27*	 1	

	 DirDep	 0.29*	 0.26*	 -‐0.02	 0.02	 -‐0.36*	 0.40*	 0.12*	 0.52*	 0.71*	 -‐0.33*	 0.04	 0.61*	 1	

n=660,	 *	 p<0.05,	 italic=ln()	

Appendix B: Correlation Table for Data used to Predict Application Decommissioning (Hypothesis 2)

	

Decomm.	 Age	 State	 OS	 Vendor	 DBMS	 Users	 MFlow	 Cyclic	 IndCup	 IndDep	 DirCup	 DirDep	

Decomm.	 1	

	 	 	 	 	 	 	 	 	 	 	 	 Age	 0.09*	 1	

	 	 	 	 	 	 	 	 	 	 	 State	 -‐0.01	 0.34*	 1	

	 	 	 	 	 	 	 	 	 	 OS	 -‐0.12*	 -‐0.18*	 -‐0.08*	 1	

	 	 	 	 	 	 	 	 	 Vendor	 0.41*	 -‐0.01	 0.04	 -‐0.04	 1	

	 	 	 	 	 	 	 	 DBMS	 -‐0.48*	 -‐0.02	 -‐0.06	 0.14*	 -‐0.51*	 1	

	 	 	 	 	 	 	 Users	 -‐0.04	 0.08*	 0.04	 -‐0.06	 -‐0.03	 -‐0.02	 1	

	 	 	 	 	 	 MainF	 -‐0.58*	 -‐0.06	 0.02	 0.09*	 -‐0.53*	 0.51*	 0.09*	 1	

	 	 	 	 	 Cyclic	 -‐0.48*	 0.14*	 0.06	 0.01	 -‐0.45*	 0.49*	 0.12*	 0.62*	 1	

	 	 	 	 IndCup	 -‐0.08*	 -‐0.06	 0.03	 0.01	 -‐0.03	 -‐0.09	 0.09	 0.25*	 -‐0.26*	 1	

	 	 	 IndDep	 -‐0.06	 -‐0.15*	 -‐0.08*	 0.01*	 -‐0.08*	 0.03	 -‐0.06*	 0.30*	 -‐0.32*	 -‐0.13*	 1	

	 	 DirCup	 -‐0.51*	 0.19*	 0.09*	 0.07	 -‐0.46*	 0.51*	 0.20*	 0.62*	 0.76*	 0.09*	 -‐0.28*	 1	

	 DirDep	 -‐0.50*	 0.10*	 0.04	 0.06	 -‐0.49*	 0.53*	 0.14*	 0.66*	 0.74*	 -‐0.23*	 0.06	 0.74*	 1	

n=957,	 *	 p<0.05,	 italic=ln()	

Designing an Agile Software Portfolio Architecture

 41

