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Abstract 

The modern industrial corporation encompasses a myriad of different software 

applications, each of which must work in concert to deliver functionality to end-users.  However, 

the increasingly complex and dynamic nature of competition in today’s product-markets dictates 

that this software portfolio be continually evolved and adapted, in order to meet new business 

challenges.  This ability – to rapidly update, improve, remove, replace, and reimagine the 

software applications that underpin a firm’s competitive position – is at the heart of what has 

been called IT agility.  Unfortunately, little work has examined the antecedents of IT agility, with 

respect to the choices a firm makes when designing its “Software Portfolio Architecture.”   

We address this gap in the literature by exploring the relationship between software 

portfolio architecture and IT agility at the level of the individual applications in the architecture.  

In particular, we draw from modular systems theory to develop a series of hypotheses about how 

different types of coupling impact the ability to update, remove or replace the software 

applications in a firm’s portfolio.  We test our hypotheses using longitudinal data from a large 

financial services firm, comprising over 1,000 applications and over 3,000 dependencies between 

them.  Our methods allow us to disentangle the effects of different types and levels of coupling. 

Our analysis reveals that applications with higher levels of coupling cost more to update, 

are harder to remove, and are harder to replace, than those with lower coupling.   The measures 

of coupling that best explain differences in IT agility include all indirect dependencies between 

software applications (i.e., they include coupling and dependency relationships that are not easily 

visible to the system architect).  Our results reveal the critical importance of software portfolio 

design decisions, in developing a portfolio of applications that can evolve and adapt over time. 
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1.  Introduction 

As information has become more pervasive in the economy, information systems within 

firms have become increasingly more complex. Today, even a moderately sized business 

maintains information systems comprising hundreds of applications and databases, running on 

geographically distributed hardware platforms, and serving multiple clients. These systems must 

be reliable, efficient and secure enough to meet the needs of today’s business challenges.  

However, they must also be flexible and adaptable, capable of evolving to meet new and 

emerging challenges that will undoubtedly arrive tomorrow.  How can a firm design its portfolio 

of software applications in order to simultaneously confront these challenges? 

 Early work on the design of information systems focused on the first of these challenges: 

to design an architecture optimized for a given set of business conditions and strategic choices.  

The resulting field of study, comprising conceptual frameworks, processes and tools that seek to 

achieve this alignment, is known as Enterprise Architecture (EA) (Weill, 2007).  The process of 

developing EA is “top-down” in nature.  For a given firm and strategy, the goal is to design the 

optimal information systems architecture. Early work in this area therefore, paid little attention to 

understanding how the rate of change in the environment, or in a firm’s own strategy, should 

impact this architecture.  As competitive landscapes have become more complex and dynamic 

however, it is increasingly clear that this view of EA is no longer sufficient. 

In response to calls for a greater focus on the “IT Artifact” a distinct stream of research 

began to explore how a firm’s information systems could facilitate the development of new 

capabilities (Orlikowski and Iacono, 2001; Tiwana and Konsynski, 2010).  Hence modern 

theories emphasize the need for IT architectures that facilitate agility, through the use of layered, 

modular technologies (Yoo et al, 2010; Tanriverdi et al, 2010; Tiwana et al, 2010).  Firms with 
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modular architectures can quickly reconfigure resources to respond to new challenges, ensuring a 

continuous alignment of IT assets with changing business needs.  In contrast to EA, this work 

implies a “bottom-up” approach to system design.  The aim is to design an architecture that can 

sense and respond to new challenges, the nature of which cannot be predicted in advance 

(Sambumurthy et al, 2003; Hanseth and Lyytinen, 2010). 

Robust empirical work exploring the impact of information systems architecture on IT 

agility has been scarce and yields mixed results (Schmidt and Buxmann, 2011; Kim et al, 2011; 

Liu et al, 2013).  Most studies adopt the firm as unit of analysis, capture broad holistic measures 

of IT infrastructure flexibility and assess the impact of these constructs on measures of overall 

firm performance (Duncan, 1995).  For example, Tiwana and Konsynski (2010) show that firms 

with more modular IT architectures (i.e., that make greater use of loosely-coupled, standardized 

components) have higher perceived levels of IT agility.  However, firms are not monolithic.  

They comprise different organizational units that use different applications and require different 

levels of flexibility (Lawrence and Lorsch, 1967).  Research to better understand the roots of IT 

agility must recognize this heterogeneity and adopt methods to assess its impact. 

We address this gap in the literature by exploring the relationship between software 

portfolio architecture and IT agility at the level of the individual applications in the architecture.  

In particular, we draw from modular systems theory to develop and test a series of hypotheses 

about how different types of coupling impact three specific dimensions of agility: the ability to 

update, remove or replace software applications in the firm’s portfolio.  Our methods, which are 

based upon network analysis, allow us to disentangle the impact of different types of coupling. 

We test our hypotheses with data from a financial services firm.  In contrast to prior 

work, which adopts holistic measures of IT architecture, we capture fine-grained data on the 
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dependencies between all software applications in the firm.  The data encompasses over 1,000 

different software applications and 3,000 dependencies between them.  Critically, we capture 

data at two distinct points in time, four years apart.  This approach allows us to identify changes 

in the portfolio, and to develop measures of IT agility.  We supplement this data with figures on 

the annual cost of maintenance for all applications in the portfolio at the start of the period. 

We find that differences in the level of coupling for applications explain large variations 

in IT agility.  Specifically, applications with high levels of coupling cost more to update, are less 

likely to be decommissioned, and are less likely to be added to the portfolio.  The measures of 

coupling that best predict IT agility capture all indirect connections between applications.  In 

sum, it is critical to account for all possible paths by which changes may propagate, when 

assessing the ability to update, remove or replace applications.  Our work deepens our 

understanding of how firms can design software portfolio architectures to improve their agility. 

The paper is organized as follows. In section 2, we review the literature that motivates 

our work.  In section 3, we develop theory and derive our research hypotheses.  In section 4, we 

describe our methods, which make use of a network-based methodology to identify and measure 

the coupling between software applications.  In section 5, we introduce our empirical setting and 

describe our data.  In section 6, we provide the results of our statistical tests.  Finally, in section 

7, we discuss the implications of our results for research and for practice. 

2.  Literature Review 

2.1 IT Architecture Research 

Research on IT Architecture was motivated by critiques of EA research which noted the 

emphasis on processes and governance structures through which IT is managed, as opposed to 

features of the technology itself (Orlikowski and Iacono, 2001; Tilson et al, 2010).  Furthermore, 
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the rapid rise of the Internet, the World Wide Web and the use of digital technologies brought a 

need to revisit prior conceptions for the role of IT, to reflect the new dynamics of a digital age 

with its rapidly shifting competitive landscapes (Hansen and Lyytinen, 2010).  As a 

consequence, IT architecture research has focused more sharply on the “IT Artifact,” and in 

particular, features of architecture that facilitate the development of new firm capabilities 

(Tiwana and Konsynski, 2010; Sambamurthy and Zmud (2000). 

Early work in the field focused on understanding desirable features of IT technologies, 

and in particular, the antecedents of more flexible IT infrastructure. Duncan (1995) and Byrd and 

Turner (2000) established constructs thought to underpin a more flexible IT infrastructure.  They 

emphasized the need for IT systems with greater compatibility and connectivity, through the use 

of system-wide standards and interfaces. They also emphasized the need for greater levels of 

modularity (i.e., loose coupling between applications, data and infrastructure) so that IT 

components could be deployed, modified and updated with minimal impact on other elements. 

Subsequent work sought to deepen our understanding of how these concepts could be 

operationalized in firms competing in a dynamic, connected digital world.  Sambamurthy and 

Zmud (2000) suggest the new organizing logic for IT architecture is the platform, which 

encompasses a “flexible combination of resources, routines and structures” that facilitate agility 

by creating “digital options” and enhancing “entrepreneurial alertness” (Samburmathy at al, 

2003).  Adomavicius et al. (2008) introduce the concept of an IT “ecosystem,” highlighting the 

different roles played by products, applications, component technologies and infrastructure 

technologies, including those external to the firm.  Finally, Yoo et al. (2010) describe how 

pervasive digitization has given rise to a new “layered-modular” architecture, comprising 

devices, network technologies, services and content. 
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In contrast to EA models, IT Architecture research implies a “bottom-up” approach to 

design; the aim is to create an architecture that can sense and respond to new challenges, the 

nature of which cannot be predicted ex-ante (Sambumurthy et al, 2003).   Firms with layered, 

modular IT architectures quickly reconfigure resources to respond to new challenges, creating a 

continuous stream of new capabilities (Tanriverdi et al, 2010; Tiwana et al, 2010).  Yet layered, 

modular IT architectures are not easy to build, and not the norm in firms with complex 

infrastructures (Baldwin et al 2014). Firms more often grapple with a mixture of systems of 

different vintages designed using different frameworks, to meet different demands for different 

decision makers (Ross 2003).  To move from this status quo, towards a layered, modular 

architecture, firms must embrace new frameworks for the role of IT, and design new structures 

by which the included technologies will work together (Ross, 2003; Ross and Westerman, 2004). 

2.2.1 Empirical Studies linking IT Architecture with IT agility 

Empirical studies linking IT Architecture to agility have been scarce and limited in scope.  

Most work to date has been case-based, or used firm-level survey measures of IT infrastructure 

to demonstrate correlation with performance (Salmela, 2015).  For example, Kim et al (2011) 

show measures of IT infrastructure flexibility, as captured by the constructs of compatibility, 

connectivity and modularity, are correlated with a firm’s ability to change existing business 

processes.  Conversely, Liu et al (2013) find IT infrastructure flexibility is not associated with 

agility, but contributes to performance only via its association with increased levels of absorptive 

capacity (Cohen and Levinthal, 1990).  Schmidt and Buxmann (2011) show that higher quality 

enterprise architecture planning processes are associated with more flexible IT infrastructures. In 

this work however, IT infrastructure is conceived of as an output, whereas in studies of IT 

Architecture, it is typically considered an input. 
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The most important study in this stream of work comes from Tiwana and Konsynski 

(2010) who characterize IT Architecture on two dimensions: loose coupling and standardization.  

They show that these measures are associated with an IT function that is perceived as agile, 

adaptive, flexible and responsive.  While this work informs our knowledge of the features of IT 

architecture that contribute to IT agility, we still lack insight on the precise mechanisms through 

which these effects are manifested.  The first challenge relates to the fact that in this and other 

studies, the firm is conceived of as a monolithic entity; hence measures of IT function and 

architecture are homogenous.  But firms are not monolithic; they comprise differentiated 

organizational units, with different objectives and different levels of flexibility (Lawrence and 

Lorsch, 1967).  Similarly, the components of a firm’s IT architecture are diverse, play different 

roles, are connected in different ways, and vary in the cost of adaptation (Orlikowski and Iacono, 

2001; Sambumurthy and Zmud, 2000; Yoo et al, 2010).  Research to better understand the roots 

of agility must recognize this heterogeneity, and adopt methods to assess its impact.   

The second challenge relates to the fact that prior studies lack a consistent definition of 

agility, and fail to consider that this ability comprises multiple dimensions of performance, 

associated with differing types and levels of IT change.  For example, a firm’s software 

applications must be maintained, improved, upgraded, ported to different platforms, 

decommissioned and/or replaced on a periodic basis.  These activities place different demands on 

a firm’s infrastructure, require different skills and resources, and may be impacted differently by 

properties of the software portfolio architecture. Research to better understand the roots of agility 

must explore the impact of IT architecture decisions across multiple dimensions of IT change. 

This study aims to address the limitations described above. In particular, we examine the 

impact of a firm’s software portfolio architecture at the level of the individual applications in this 
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architecture.  We define measures for the different types of coupling between applications, and 

develop hypotheses for how these measures impact the ability to make changes to applications.  

Our approach captures the heterogeneity that exists across the portfolio of applications in a 

firm’s IT architecture, and explores the impact of this heterogeneity on multiple dimensions of 

change: specifically, the ability to update, remove, and replace applications. 

3.  Theory Development 

3.1 Modular Systems Theory 

The scheme by which a system’s functions are allocated to components and the way that 

these components interact is called its “architecture” (Ulrich, 1995; Whitney et al, 2004).  

Modularity is a concept that helps us to characterize different architectures (Sanchez and 

Mahoney, 1996; Schilling, 2000).  It refers to the way that a system is “decomposed” into parts 

or modules (Simon, 1962).  Although there are different definitions of modularity, authors agree 

on its fundamental features: the interdependence of decisions within modules, and the 

independence of decisions between modules (Mead and Conway, 1980; Baldwin and Clark, 

2000).  The latter is referred to as “loose-coupling.”  Modular systems are loosely coupled in that 

changes to one module have little or no impact on others (MacCormack et al, 2012). 

Modular systems theory is the name given to a body of theory that explores the design of 

systems and the costs and benefits that arise from modular designs (Sanchez and Mahoney, 

1996; Schilling, 2000; Baldwin and Clark, 2000).  This theory has been broadly applied, to the 

study of biological systems, technical systems and organizational systems (Kauffman, 1993; 

Weick, 2001; Langlois 2002; Berente and Yoo, 2012). A central tenet of the theory is that 

modular systems (i.e., systems with loosely-coupled modules or components) can be adapted 

with lower costs and with greater speed, given changes are isolated within modules.  Conversely, 
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in a system with tight coupling, adaptation is costly and takes longer, given the potential for 

changes to propagate between different parts of the system.   

In the field of IT Architecture, several studies support this theory, showing that firm-level 

measures of IT modularity are associated with an IT function that is perceived as agile, adaptive 

and flexible (Tiwana and Konsynski, 2010).  However, studies that explore this dynamic at the 

firm level do not provide sufficient granularity to understand the precise mechanisms through 

which architecture impacts agility. In order to tackle such questions, we must examine the 

relationship between architecture and agility at the level of the individual applications that form 

the heart of a firm’s IT infrastructure.  In the next section, we develop theory about the different 

types of coupling that exist between applications in a firm’s software portfolio.   We then define 

three distinct measures of IT agility that might be impacted by these different types of coupling. 

3.2 Different Types of Coupling that Impact Software Applications 

The computer scientist David Parnas argued that, in technical systems, the most 

important form of linkage between components is a directed relationship he calls “depends on” 

or “uses” (Parnas, 1972).  If B uses A, then A fulfills a need for B. If the design of A changes, 

then B’s need may go unfulfilled.  B’s behavior may then need to change to accommodate the 

change in A. Hence change propagates in the opposite direction to use.  Parnas stressed that use 

is not symmetric.  If B uses A, but A does not use B, then B might change with no impact on A.  

Our first step in theory building is to relate Parnas’ concept of dependency to component 

coupling.  To capture the insight that a dependency may be asymmetric, we define coupling as 

the property of being used (i.e., depended upon) by another component.  Component A is 

coupled with component B if B uses A.  Hence if A changes, B may have to change as well. 
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Modular systems theory predicts the more coupled a component is, the more costly and 

time consuming it will be to change (Simon, 1962; Sanchez and Mahoney, 1996).  However, the 

components of a system can be coupled in different ways (Baldwin and Clark, 2000).  They can 

be coupled directly or indirectly; and they can be coupled hierarchically or cyclically. 

Furthermore, components that are hierarchically coupled may be located at the top or the bottom 

of the design hierarchy (Clark, 1985); and components that are cyclically coupled may be 

members of a large or small cyclic group of components (Sosa et al, 2013).  For the purposes of 

theory development, we consider a single application (labeled “A”) within a firm’s IT 

architecture.  The question we explore is how does the presence of coupling (or the lack thereof) 

affect the cost of change for this application.   To answer this question, we consider four 

different patterns of coupling that exist between applications in the architecture (see Figure 1). 

Figure 1: Coupling Relationships between Applications 

 

Figure 1.1 represents the base case, in which component A is not coupled to any other.  In 

Figure 1.2, component A is directly coupled with components B and C.  Modular systems theory 

predicts that components with higher levels of direct coupling are more costly to change, given 

the need to consider the potential impact of changing the coupled component on the dependent 

components (Simon, 1962). Hence we predict that component A would be more costly to change 

than a similar component with no coupling (e.g., as in Figure 1.1).  Support for such a 

relationship is found in empirical studies of software, in which the components are source files or 

classes, and dependencies denote relationships between them (Chidamber and Kemerer, 1994). 
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Figure 1.3 depicts a more complex set of relationships between system components.  

Component A is directly coupled to B but indirectly coupled to C and D.  In this system, changes 

may propagate between components that are not directly connected, via a “chain” of 

dependencies.  While indirect coupling relationships are likely to be weaker than direct coupling 

relationships, the former are not as visible to a system architect, hence more likely to produce 

unintended system behaviors.  Empirical work has shown that changes to one component in an 

IT system often create unexpected disruptions in distant parts of the system (Vakkuri, 2013).  

Measures of indirect coupling have been shown to predict the number of defects and the ease 

with which software can be adapted (MacCormack, 2010; MacCormack and Sturtevant, 2016). 

Figure 1.4 illustrates a third pattern of coupling between applications, called cyclic 

coupling (Whitney, et al, 2004; Sosa et al, 2013). In this system, A is coupled with B, B is 

coupled with C, and C is coupled with A.  These components form a cyclic group – a group of 

components that are mutually interdependent.   In contrast to figure 1.3, there is no “hierarchy” 

or ordering of these components, such that one can be designed (or changed) before the others.  

Rather, components in cyclic groups must often be designed (or changed) concurrently, to ensure 

that they work together effectively.  When cyclic groups are large, this presents a significant 

challenge, increasing the cost of change for components (Baldwin et al, 2014).1 

Importantly, the portfolio of software applications within a firm represents only one layer 

in a firm’s IT architecture.  Applications are the chief mechanism through which a firm’s IT 

infrastructure supports the delivery of core business capabilities (MacCormack et al, 2016).  But 

other layers exist, including databases, database hosts, application servers, and business groups 

that use the capabilities this infrastructure provides.  In addition to coupling relationships 

between applications, a firm’s agility may be impacted by coupling relationships between 
                                                
1 Measures of different types of coupling are likely to be correlated. It will be important to be sensitive to this in empirical tests. 
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applications and other layers.  In this study, we consider the layers immediately above and 

below the application layer.  In particular, business groups use applications and applications may 

read from/write to databases2 (see Figure 2).  Modular systems theory suggests that applications 

with higher levels of coupling to these layers will be more costly and difficult to change. 

Figure 2: Coupling Relationships between Layers 

 

3.3 Measures of IT Agility in Technical Systems 

Early work by Duncan (1995) and Byrd and Turner (2000) identified important 

constructs believed to underpin IT infrastructure flexibility, focusing on connectivity, 

compatibility and modularity. Subsequent studies often assumed these constructs to be proxies 

for IT agility and sought to identify their antecedents.    For example, Schmidt and Buxmann 

(2011) find that higher-quality EA planning processes are associated with higher perceived levels 

of connectivity, compatibility and modularity.  Similarly, Joachim et al (2013) find that 

governance mechanisms used in Service Oriented Architectures (SOA) are associated with IT 

infrastructure flexibility, as measured by connectivity, compatibility and modularity. 

In contrast to studies that view the constructs of connectivity, compatibility and 

modularity as proxies for IT agility (i.e., measures of output) other work considers these to be 

features of IT architecture (i.e., measures of input) and explores their impact on performance.  

                                                
2 Applications may read from or write to a database; hence we denote this dependency as bi-directional in this figure.   
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For example, Kim et al (2011) show that measures of compatibility, connectivity and modularity 

are correlated with perceptions of a firm’s ability to change existing business processes.   

Similarly, Tiwana and Konsynski (2010) show that the use of loose coupling and standardization 

are correlated with perceptions of the IT function as being agile, adaptive, flexible and 

responsive.  We share the view that concepts such as modularity and loose coupling capture 

features of IT architecture, and are not proxies for IT agility.  In our work therefore, we define 

explicit measures of IT agility, to test the assertion that these constructs impact this ability. 

Our theory explores the impact of the coupling on individual applications; hence we 

define measures of IT agility at this level (i.e., and not the firm as a whole).  In particular, we 

focus on three types of change that applications experience, as a business evolves over time.  

First, we capture the cost to maintain an application, encompassing changes to fix errors in 

operation, and incremental updates to its functionality. Maintenance involves the smallest degree 

of change to an application, hence represents (in theory) the lowest level of IT agility.  Second, 

we capture whether an application is decommissioned (i.e., retired) over a 4-year period.  

Decommissioning applications that are obsolete or no longer needed is a critical task in the 

modern firm, and growing in importance given a dynamic and competitive marketplace (IBM, 

2009).  Indeed, a recent study of firms’ software portfolios by Aier et al (2009) found that over 

40% of applications were retired over a 4-year time period.  Decommissioning is a major 

undertaking, requiring not only the removal of functionality from the software portfolio, but also 

the removal of linkages between the application to be retired and those that remain. As a result, 

applications with high levels of coupling are likely to be more difficult and costly to retire.  

Finally, we capture the addition of new applications to a firm’s portfolio.  As firms replace 

obsolete technologies, build new capabilities, and enter new markets, adding new applications is 
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an increasingly critical capability.  This requires the development of new functionality, and the 

integration of this functionality with existing applications and infrastructure.  Integrating new 

applications into a firm’s software portfolio is likely to be more costly and difficult to the extent 

that they require high levels of coupling to existing applications and infrastructure. 

3.4 The Relationship between Application Coupling and IT Agility 

We have identified the different types of coupling that exist between applications in a 

firm’s software portfolio, and defined three measures of IT agility, which can be captured for 

these applications.  Modular systems theory suggests that measures of coupling predict the 

degree to which an application can be changed.  Hence we state our hypotheses, as follows: 

Hypothesis 1:  Applications with higher levels of coupling will be more costly to 

maintain, on average, than applications with lower levels of coupling. 

Hypothesis 2:  Applications with higher levels of coupling will be less likely to be 

decommissioned, on average, than applications with lower levels of coupling. 

Hypothesis 3:  New applications added to the software portfolio will have lower levels of 

coupling, on average, than the legacy applications that comprise this portfolio 

For each of the hypotheses above, we conduct empirical tests for the impact of all types 

of coupling defined in our theory. We have no ex-ante view as to the relative strength of effects 

for the different types of coupling we define.  Rather, we rely on our empirical tests to identify 

which of them have more explanatory power in predicting different dimensions of IT agility. 

4. Research Methods 

To develop measures of the different types of coupling between applications, we use 

Design Structure Matrices (DSMs) a popular network-based method for analyzing technical 

systems (Steward, 1981; Eppinger et al., 1994; MacCormack et al., 2006; 2012; Sosa et al., 
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2007). A DSM highlights the structure of a system using a square matrix, in which rows and 

columns represent system elements, and dependencies between elements are captured in off-

diagonal cells.   Importantly, DSMs allow us to capture the direction of dependencies between 

elements, and hence to discriminate between incoming and outgoing dependency relationships.  

Using a matrix to capture dependency relationships also facilitates the discovery of indirect 

dependencies between elements, which can be identified via well-known matrix operations.     

Baldwin et al. (2014) show that DSMs can be used to understand the “hidden structure” 

of software systems, by capturing the level of direct, indirect and cyclic coupling between source 

files, and classifying files into categories based upon the results.  Lagerström et al. (2013) and 

MacCormack et al (2016) show this approach can be extended to study a firm’s enterprise IT 

architecture, in which a large number of interdependent software applications have relationships 

with other types of components, such as business groups, schemas, servers, databases and 

infrastructure.  In this paper, we build upon and extend this approach, showing how measures 

derived from the DSM of a firm’s software portfolio architecture predict measures of IT agility. 

4.1 Measuring Direct Coupling and Dependency in a DSM 

A DSM is a way of representing a network.  Rows and columns of the matrix denote 

nodes in the network; and off-diagonal entries indicate dependencies between nodes.  In the 

analysis of software portfolio architecture, the rows, columns, and main diagonal elements of the 

DSM correspond to software applications. Linkages between applications are represented by off-

diagonal entries in the DSM (set to one) and indicate that a coupling relationship exists between 

two applications.  As a matter of convention, usage (i.e., dependency) proceeds from row to 

column in our DSMs, hence coupling proceeds from column to row.  That is, reading down the 
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column of an application reveals all applications that are coupled with it. As a matter of 

definition, main diagonal elements are set to one (i.e., applications “depend on” themselves).   

The levels of direct coupling and dependency for an application can be read directly from 

the DSM.   Specifically, for the ith application in a portfolio, the level of direct coupling is found 

by summing entries in the ith column.   The level of direct dependency is found by summing 

entries in the ith row.3  In general, these measures will be different, unless all dependencies for a 

focal application are symmetric. If usage is symmetric (i.e., A uses B and B uses A), then off-

diagonal entries in the DSM will be symmetric around the main diagonal. 

4.2 Measuring Indirect Coupling and Dependency in a DSM 

Using a DSM, we can also find the indirect dependencies between applications, which 

reflect the potential for changes to propagate.  To identify indirect relationships in a system, we 

apply the procedure of transitive closure to the direct dependency DSM and set all positive 

entries equal to one. The result is the “visibility” matrix (MacCormack et al., 2006; Baldwin et 

al., 2014).  The visibility matrix captures all of the indirect dependencies between applications.4  

In a similar fashion to the direct dependency DSM, the level of indirect coupling for an 

application is therefore captured in the column sums of the visibility matrix. The level of indirect 

dependency for an application is captured in the row sums of the visibility matrix.5 

The density of the visibility matrix, called propagation cost, measures the level of 

indirect coupling for the software portfolio as a whole.  Intuitively, the greater the density of this 

matrix, the more ways there are for changes to propagate across applications, and thus the higher 

the potential cost of change.  Large differences in propagation cost have been observed across 

                                                
3 In prior work, the term Direct Fan-In (DFI) has been used to denote the direct coupling of a component, and Direct Fan-Out (DFO) 
has been used to denote the direct dependency of a component (Baldwin et al, 2014). 
4 In our work, we define indirect coupling and dependency as also encompassing all direct relationships between elements. 
5 In prior work, the term Visibility Fan-In (VFI) has been used to denote the indirect coupling for a component, and Visibility Fan-Out 
(VFO) to denote the indirect dependency for a component (e.g., Baldwin et al, 2014). 
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software systems of similar size and function (Baldwin et al, 2014).  These differences are 

predicted, in part, by the structure of the developing organization (MacCormack et al, 2012). 

However, empirical evidence also suggests that refactoring efforts aimed at making software 

more modular can lower propagation cost substantially (MacCormack et al., 2006; Akakine, 

2009). In combination, these findings suggest that in complex systems, design decisions are 

impacted significantly by organizational constraints, as well as explicit design choices.   

4.3 Measuring Cyclic Coupling in a Design Structure Matrix 

The visibility matrix can be used to identify “cyclic groups” of applications, each of 

which is directly or indirectly connected to all others.  Mathematically, members of a cyclic 

group all have the same indirect coupling and indirect dependency measures, given that they are 

all connected directly or indirectly to each other.  Thus we can identify cyclic groups in a system 

by sorting applications by these two measures (Baldwin et al., 2014). 

Prior work has shown that the majority of software systems exhibit a “core-periphery” 

structure, characterized by a single dominant cyclic group of components (the “Core”) that is 

large relative to the system as a whole as well as to other cyclic groups (Baldwin et al, 2014).  

The components in such systems can be classified into four categories according to the levels of 

indirect coupling and dependency that they exhibit, as compared to members of this cyclic group.  

We apply the same classification process to applications in a firm’s software portfolio. 

Cyclically coupled applications are members of the largest cyclic group, and have high 

levels of both indirect coupling and dependency.   Indirectly coupled applications have high 

levels of indirect coupling (i.e., they are “used,” directly or indirectly, by many other 

applications). Indirectly dependent applications have high levels of indirect dependency, (i.e., 

they “use,” directly or indirectly, many other applications).  Peripheral applications have low 
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levels of both indirect coupling and dependency.  In a software portfolio, indirectly coupled, 

cyclically coupled and indirectly dependent applications are called “main flow” applications.  

Peripheral applications lie outside the main flow, being loosely coupled to other applications. 

4.4 Revealing Hierarchy using a Design Structure Matrix 

When used as a planning tool in a design process, a DSM indicates a possible sequence 

of design tasks, i.e., which components should be designed before which others (Steward, 1981; 

Eppinger et al, 1994). In general, it is intuitive and desirable to place the first design tasks at the 

top of a DSM, with later tasks below. In sum, the first components to be designed should be 

those that other components depend upon.  Reflecting this discussion, we place the “most used” 

applications at the top of the DSM and “users” of other applications towards the bottom of the 

DSM.  Hence applications at the top have high levels of indirect coupling whereas applications 

towards the bottom have high levels of indirect dependency.    The resulting DSM possesses a 

“lower diagonal form,” in which most dependencies are below the diagonal, with above diagonal 

entries indicating the presence of cyclical coupling (Sosa et al, 2013).  Critically, in cases where 

the hierarchy of applications is not known a priori, the visibility matrix can be sorted using 

measures of indirect coupling and dependency to reveal these relationships.  In our work, we 

carry out this procedure, to reveal the implicit hierarchy among applications. 

5. Empirical Setting 

We test our hypotheses using data on the software portfolio of a large European bank. 

The data was a part of an initiative taken to develop a better understanding of the linkages 

between software applications, and the performance of the portfolio.  Each quarter, the bank asks 

application owners to enter information in a database. For each application, data is collected on 

the go-live-date of the application, if it is in-house or externally developed, if it is under 
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development or in production, the departments that use the application, the operating systems 

that it supports, the databases that it uses, and the dependencies it has with other applications.  

In order to test our hypotheses about IT agility, we captured data on active software 

applications and their dependencies in both 2008 and 2012.  We were also given data on 

operating and maintenance costs for 2008.  In 2008, the collection of data on the software 

portfolio was fairly new and consequently, dependency data was not provided for all 

applications. Further, data on operating and maintenance cost was only reported for a subset of 

applications.  Hence our sample for analysis does not consist of all active applications.  

However, we were told, in general, that the data included the most important of them.   Missing 

data was more likely for applications that were smaller and less important. 

Sample Data for 2008 

The 2008 software portfolio consists of 1,558 active applications. Of these, 1,247 

contained reliable data on application dependencies. Thus, our sample consists of 1,247 

applications and 3,482 dependencies. Using the Design Structure Matrix methodology described 

earlier, we identified all of the direct and indirect coupling and dependency relationships 

between applications in the portfolio.  We then classified applications using the methods 

described earlier (Baldwin et al, 2014).   We find the 2008 software portfolio architecture has a 

large cyclically coupled group of 447 applications representing 36% of the system. These 

applications are all mutually interdependent. We find 120 applications (10%) are indirectly 

coupled (i.e., they have high indirect coupling but low indirect dependency). We find 175 

applications (14%) are indirectly dependent (i.e., they have high indirect dependency, but low 

indirect coupling). Finally, we find 505 applications (41%) are peripheral (i.e., they have low 

levels of both indirect coupling and dependency). Figure 3 shows the firm’s software portfolio 
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architecture in DSM form, with applications grouped by category.  Arrows indicate the “main 

flow” of dependencies between groups.  (Peripheral applications are not in the main flow). 

Figure 3: Coupling and Dependency Relationships for the 2008 Software Portfolio  

 

Sample Data for 2012 

The 2012 software portfolio contains 1,251 applications and 3,969 dependencies. All 

applications contained sufficient data for analysis in this time period, hence our sample 

represents the entire population.   The analysis of the 2012 portfolio reveals a large group of 441 

cyclically coupled applications, representing 35% of the system. We find 80 applications (6%) 

are indirectly coupled, 298 applications (28%) are indirectly dependent and 432 applications 

(35%) are peripheral.  Table 1 shows a comparison of the firm’s applications grouped by indirect 

coupling category, in 2008 and 2012.  While the number of applications in the two time periods 

is consistent, and the number of applications in each category broadly similar, this analysis hides 

a significant movement of applications into and out of the portfolio, as discussed below.  
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Table 1:  Comparison of Applications by Category for 2008 and 2012 
	   2008	   2012	  
Category	   Number	   %	   Number	   %	  
Indirectly	  Coupled	   120	   9.6%	   80	   6.4%	  
Cyclically	  Coupled	   447	   35.9%	   441	   35.3%	  
Indirectly	  Dependent	   174	   14.0%	   298	   23.8%	  
Peripheral	   505	   40.5%	   432	   34.5%	  
TOTAL	   1247	   100.0%	   1251	   100.0%	  
 

5.1 Application changes between 2008 and 2012 

Between 2008 and 2012 there was substantial change in the software portfolio at the 

bank. In particular, the bank went through a merger with another bank, and as a result, underwent 

a substantial rationalization of the application portfolio. As one manager remarked: 

“There where massive changes in the IT landscape, resulting from the 
decommissioning of redundant or outdated applications.  Furthermore, a 
number of applications from [the acquired bank] were taken over.  Finally, 
data had to be migrated between the two.”  – Senior Enterprise Architect. 

Thus, during the years between 2008 and 2012, many software applications were 

decommissioned, new applications were added, existing applications were updated (and may 

have switched categories), and data was collected for applications where none existed in 2008. 

Table 2 shows the movement of software applications out of (retired), into (added), and across 

(moved category) the software portfolio between 2008 and 2012. Furthermore, we show active 

applications with missing data in 2008, for which data was available in 2012. 

Table 2:  Movement of Applications in the Software Portfolio between 2008-2012 

	  

2008	  
Application	  
Retired	  

Application	  
Added	  

Net	  Moved	  
Category	  

New	  Data	  
Available	  	   2012	  

Indirectly	  Coupled	   120	   -‐53	   14	   -‐19	   18	   80	  

Cyclically	  Coupled	   447	   -‐121	   72	   -‐8	   51	   441	  
Indirectly	  Dependent	   175	   -‐87	   110	   28	   72	   298	  

Peripheral	   505	   -‐469	   227	   -‐1	   170	   432	  
Missing	  Data	   311	   N/A	   N/A	   N/A	   -‐311	   N/A	  

TOTAL	   1,558	   -‐730	   423	   N/A	   N/A	   1251	  
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5.2 Data on Maintenance Cost for Applications 

Data on annual maintenance costs was available for 376 of the 1,247 applications for 

which we have data in 2008.  For other applications, application owners either did not provide 

the cost data, did not possess the cost data, or could not identify the unique costs attributable to 

an application (e.g., because cost data were aggregated across multiple applications).  The 

applications for which maintenance cost data were available is not randomly distributed, but is 

biased towards applications that are more important.  Hence we must control for this bias. 

We control for the non-random exclusion of maintenance cost data by rebalancing our 

sample for hypothesis one, to ensure that the sample has the same characteristics as the 

population.   Table 4 presents data on how we achieve this.  Consider, our sample of active 

applications in 2008 for which we have data is 1,247, of which 505 (40.5%) are peripheral 

applications.  However, we only have cost data for 19 of these applications.  Of the 376 

applications for which we have cost data, only 5.1% are peripheral, a far lower proportion than 

the 2008 population. In order to create a sample for testing hypothesis one, we therefore 

oversample the observations in underrepresented categories, to match the proportions of the 2008 

population.6  For example, we replicate the 19 observations from peripheral applications, to 

produce a total of 266 applications in this category.  After this procedure, our final sample 

contains 660 observations with which to test hypothesis one, distributed as shown below.    

Table 4: Constructing a Representative Sample for testing Hypothesis One 

Category	  
2008	  

Applications	  
%	  by	  

Category	  
Apps	  with	  
Cost	  Data	  	  

%	  by	  
Category	  

With	  Re-‐
Sampling	  

%	  by	  
Category	  

Indirectly	  Coupled	   120	   9.6%	   37	   9.8%	   74	   11.2%	  
Cyclically	  Coupled	   447	   35.9%	   249	   66.2%	   249	   37.7%	  
Indirectly	  Dependent	   174	   14.0%	   71	   18.9%	   71	   10.8%	  
Peripheral	   505	   40.5%	   19	   5.1%	   266	   40.3%	  
TOTAL	   1247	   100.0%	   376	   100%	   660	   100%	  

                                                
6 See http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/. 
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5.3 Empirical Measures 

Table 5 below describes our measures of IT agility, control measures that may impact 

measures of agility, and measures of both inter-layer and inter-application coupling. 

Table 5: Measures used in the Study 
Dependent	  Variables:	  	  Measures	  of	  IT	  Agility	  

MaintCost	  –	  The	  maintenance	  cost	  for	  an	  application,	  defined	  as	  the	  “cost	  that	  an	  application	  produces	  for	  maintaining	  it,	  i.e.	  
fixing	  errors	  and	  making	  minor	  changes	  needed	  to	  keep	  the	  current	  state	  of	  requirement-‐fulfillment.”	  (Mocker,	  2009).	  

Decomm	  –	  We	  capture	  whether	  an	  application	  was	  decommissioned	  (1)	  or	  suvived	  (0)	  between	  2008	  and	  2012.	  	  	  

New	  –	  We	  capture	  data	  on	  new	  applications	  added	  to	  the	  portfolio	  between	  2008	  and	  2012.	  

Control	  variables	  

Age	  –	  measures	  the	  age	  of	  an	  application	  (the	  number	  of	  years	  since	  the	  first	  go-‐live	  date).	  	  

State	  –	  indicates	  if	  an	  application	  is	  in	  production	  (1)	  or	  still	  in	  development	  (0).	  

#	  OS	  –	  indicates	  the	  number	  of	  operating	  systems	  supported	  by	  an	  application;	  two	  or	  more	  (1)	  or	  one	  (0).	  

Vendor	  –	  indicates	  whether	  an	  application	  is	  from	  an	  external	  vendor	  (1)	  or	  was	  developed	  in-‐house	  (0).	  

Inter-‐Layer	  Coupling	  –	  Inter-‐Layer	  

#	  DBMS	  –	  number	  of	  database	  management	  systems	  application	  is	  linked	  to;	  one	  or	  more	  (1)	  or	  none	  (0).	  

#	  Users	  –	  indicates	  the	  number	  of	  business	  departments	  that	  use	  an	  application.	  

Inter-‐Application	  Coupling	  	  

DirCop	  –	  measures	  the	  number	  of	  directly	  coupled	  applications	  for	  an	  application	  

DirDep	  –	  measures	  the	  number	  of	  directly	  dependent	  applications	  for	  an	  application.	  

IndCop	  –	  indicates	  whether	  an	  application	  is	  in	  the	  indirectly	  coupled	  category	  (1)	  or	  not	  (0).	  

CycCop	  –	  indicates	  whether	  an	  application	  is	  in	  the	  cyclically	  coupled	  category	  (1)	  or	  not	  (0).	  

IndDep	  –	  indicates	  if	  an	  application	  is	  in	  the	  indirectly	  dependent	  category	  (1)	  or	  not	  (0).	  	  

MainFlow	  –	  Indirectly	  coupled,	  cyclically	  coupled,	  or	  indirectly	  dependent	  applications	  are	  main-‐flow	  applications.	  

 
5.4 Descriptive statistics 

In Table 6, we provide descriptive statistics for the samples used to test hypotheses 1-2.  

The samples are different for each test, given maintenance cost is only available for a subset of 

2008 applications, whereas decommissioning is an observable outcome for all applications that 

exist in 2008.  (The test for hypothesis three is a comparison of coupling and dependency levels 

for new applications versus all applications that exist in 2008 – the sample for the latter is the 

same as Hypothesis 2).  Correlation tables for the samples are provided in the Appendices. 
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Table 6:  Descriptive Statistics for Hypotheses 1 and 2 
	   A:	  	  Sample	  for	  Hypothesis	  1	  	   B:	  	  Sample	  for	  Hypothesis	  2	  	  

	  
Min	   Max	   Mean	   St	  Dev	   Min	   Max	   Mean	   St.Dev	  

MaintCost	   0	   5,776.50	   314.66	   569.60	   -‐ -‐ -‐ -‐ 
Decomm	   -‐ -‐ -‐ -‐ 0	   1	   0.56	   0.50	  

Age	   1	   29	   7.13	   4.64	   0	   31	   8.73	   5.03	  
State	   0	   1	   0.99	   0.09	   0	   1	   0.98	   0.15	  

#	  OS	   0	   1	   0.08	   0.27	   0	   1	   0.06	   0.23	  

Vendor	   0	   1	   0.40	   0.49	   0	   1	   0.52	   0.50	  
#	  DBMS	   0	   1	   0.60	   0.49	   0	   1	   0.45	   0.50	  

#	  Users	   1	   26	   4.33	   6.17	   1	   30	   4.68	   6.69	  
DirCup	   0	   85	   3.43	   6.46	   0	   85	   3.17	   6.97	  

DirDep	   0	   35	   3.62	   5.92	   0	   79	   3.25	   6.36	  

MainFlow	   0	   1	   0.60	   0.49	   0	   1	   0.63	   0.48	  
IndCup	   0	   1	   0.11	   0.32	   0	   1	   0.10	   0.30	  

Cyclic	   0	   1	   0.38	   0.48	   0	   1	   0.40	   0.49	  
IndDep	   0	   1	   0.11	   0.31	   0	   1	   0.14	   0.34	  

	  
n=660	   n=9577	  

 
First, we note maintenance cost is skewed; hence we use a log transformation for this 

variable in statistical tests.  Second, the rate at which applications are decommissioned between 

2008 and 2012 is 56%.  This mirrors other empirical work in this area that demonstrates high 

turnover in software portfolios (Aier et al, 2009).  The average age of applications is 8.7 years.  

Age is also skewed; hence we use a log transformation for this variable in statistical tests.  

Almost all applications (98%) are in production and only 6% support more than one operating 

system.  Vendor provided applications constitute 52% of the population and 45% of applications 

are linked to at least one database.  Finally, there are 4.7 users (i.e., departments) on average per 

application.  This variable is also skewed; hence we use a log transformation in statistical tests. 

6. Empirical Results 

6.1 Hypothesis 1: The Relationship between Coupling and Maintenance Cost 

                                                
7 Control variable data was not available for all 1257 applications.  Hence our statistical models are based upon n=957. 
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Table 7 presents a series of models predicting the maintenance cost for each application, 

using control variables, and predictor variables as described above.  Note that we use a log 

transformation for the dependent variable given maintenance cost is highly skewed. 

Table 7: Models Predicting the Cost of Application Maintenance 

Ln	  (MaintCost)	   Model1	   Model2	   Model	  3	   Model	  4	   Model	  5	   Model	  6	  

Constant	   0.341	   -‐0.992	   -‐0.765	   -‐1.664	   -‐1.57	   -‐1.621	  
Ln	  (Age)	   0.643***	   0.427*	   0.142	   0.186	   0.188	   0.386†	  

State	   2.777*	   3.132**	   3.32**	   3.704**	   3.624**	   3.277**	  

#	  OS	   1.059**	   0.702†	   0.685†	   0.57	   0.588	   0.755†	  
Vendor	   -‐1.348***	   -‐0.656**	   -‐0.497*	   -‐0.537*	   -‐0.553*	   -‐0.212	  

#	  DBMS	  
	  

1.452***	   1.122***	   0.87***	   0.854***	   0.707**	  
Ln	  (#	  Users)	  

	  
0.266*	   0.212*	   0.268*	   0.264*	   0.219*	  

Ln	  (DirCop)	  
	   	  

0.212†	   	   	  
	  Ln	  (DirDep)	  

	   	  
0.289*	   	   	  

	  MainFlow	  (MF)	  
	   	  

	   1.409***	   	   1.307***	  

IndCop	  
	   	  

	   	   1.524***	  
	  Cyclic	  

	   	  
	   	   1.417***	  

	  IndDep	  
	   	  

	   	   1.265***	  
	  MF	  x	  Ln	  DirCop	  

	   	  
	   	   	   0.162	  

PER	  x	  Ln	  DirCop	  
	   	  

	   	   	   -‐0.233	  

PER	  x	  Ln	  DirDep	  
	   	  

	   	   	   1.691***	  
Adj.	  R-‐square	   0.085	   0.135	   0.153	   0.177	   0.175	   0.195	  

F-‐statistic	   16.34***	   18.15***	   15.93***	   21.25***	   16.53***	   17.01***	  
n=660;	  †	  p<0.1,	  *	  p<0.05,	  **	  p<0.01,	  and	  ***p<0.001	  

 

Model 1 includes only control variables, all of which are significant.  Older applications, 

applications in production, applications that support multiple operating systems, and applications 

developed in-house cost more to maintain.  In total, these variables explain 8.5% of the variance 

in maintenance cost.  In model 2, we add inter-layer coupling variables, both of which are 

significant.  Applications that are used by more business departments and that are connected to a 

database management system cost more to maintain.  In total, these inter-layer coupling variables 

increase the variation explained to 13.5%.  Models 3-6 explore the predictive power of various 
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measures of inter-application coupling.  Model 3 includes measures of direct coupling and 

dependency.  We use a log transformation for these variables given they are highly skewed.  

Only one of the variables is significant hence the increase in R-squared for this model is limited 

as compared to model 2 (from 13.5% to 15.3%).8  In model 4, we remove direct coupling and 

dependency variables, and instead include main-flow – a variable that indicates whether an 

application is indirectly coupled, cyclically coupled or indirectly dependent.  This variable is 

significant, and increases the model R-squared from 13.5% to 17.7%, as compared to model 2. 

In model 5, we split main-flow applications into three component categories – indirectly 

coupled, cyclically coupled and indirectly dependent.  All three are significant.  However, the 

model fit does not improve over model 4, and the coefficients are not statistically different from 

each other.  We cannot include measures of direct coupling in models 4 and 5, given the high 

correlations between direct and indirect coupling and dependency measures (see the 

Appendices). We note however, that measures of indirect coupling and dependency have a 

higher correlation with maintenance cost than measures of direct coupling and dependency, and a 

greater level of statistical significance in our models.  We conclude that indirect coupling and 

dependency measures are more important than direct coupling and dependency measures in 

explaining maintenance cost – the first dimension of IT agility.   

In model 6, we use interaction terms to evaluate the impact of direct coupling and 

dependency measures within different categories associated with indirect coupling and 

dependency.  In particular, we interact the main-flow and peripheral variables, with the level of 

direct coupling and dependency for an application.  For peripheral applications, we find the 

measure of direct dependency adds significant explanatory power to our model.  In total, our 

                                                
8 We note that direct coupling and direct dependency are strongly correlated (see the Appendices); hence this model should be 
considered a joint test of significance for these variables. 
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final model explains 19.5% of the variation in maintenance costs. Control variables explain 8.5% 

of this variation, and coupling variables explain 11% of this variation.  Among the coupling 

variables, inter-layer coupling variables explain 5% of the variation, and inter-application 

coupling variables explain 6% of the variation. 

6.1.1 Exploring the Impact of Indirect Coupling on Application Maintenance Cost 

To understand the dynamics of how indirect coupling and dependency impact 

maintenance cost we further analyzed the relationship between the outcome and these categories.  

Table 8 presents data on the mean, standard deviation, and skewness of maintenance cost by 

category. (We present here the raw data, not the transformed data used in our statistical models).  

We observe that cyclically coupled applications have the highest average maintenance cost, 

followed by indirectly coupled, indirectly dependent, and lastly peripheral applications. They 

also have a higher variation in maintenance costs than applications in other categories.  The 

implication is that cyclically coupled applications are harder to predict (and hence to budget) 

with respect to maintenance costs and also more likely to be outliers on this dimension of agility. 

Table 8:  Differences in Maintenance Cost by Category 
	   Maintenance	  Cost	  
	   Mean	   St.	  Dev	   Skewness	  

Indirectly	  Coupled	   344.86	   452.48	   2.21	  
Cyclically	  Coupled	  	   497.54	   753.80	   3.55	  
Indirectly	  Dependent	  	   255.37	   468.93	   3.86	  
Peripheral	  	   143.41	   293.11	   3.11	  
 

In sum, the evidence we present suggests that hypothesis one is supported.  Applications 

with greater amounts of coupling cost more to maintain.  We find support for the predictive 

power of inter-layer coupling variables (Users and Database Management systems) as well as 

inter-application coupling variables.  We find that indirect coupling and dependency are better 

predictors of maintenance costs than direct coupling and dependency.  While our statistical 
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models cannot differentiate between the impact of different types of indirect coupling and 

dependency, cyclically coupled applications possess the highest maintenance costs, and 

experience the highest variation in costs. 

6.2 Hypothesis 2: The Relationship between Coupling and Decommissioning 
 

Table 9 presents a series of logistic regression models predicting the probability of an 

application being decommissioned between 2008 and 2012. 

Table 9: Logistic Regression Models Predicting Application Decommissioning 

Decomm	  (1-‐0)	   Model	  1	   Model	  2	   Model	  3	   Model	  4	   Model	  5	   Model	  6	   	  

Constant	   -‐0.423	   0.930†	   0.141	   2.481***	   2.187***	   0.968	   	  
Ln	  (Age)	   0.395***	   0.481***	   0.776***	   0.569***	   0.664***	   0.652***	   	  

State	   -‐0.973†	   -‐1.237*	   -‐0.893	   -‐0.968	   -‐0.866	   -‐0.631	   	  
#	  OS	   -‐0.938**	   -‐0.524	   -‐0.563	   -‐0.454	   -‐0.533	   -‐0.519	   	  

Vendor	   1.812***	   1.137***	   0.625***	   0.497**	   0.438*	   0.322†	   	  

#	  DBMS	  
	  

-‐1.679***	   -‐0.990***	   -‐1.178***	   -‐1.025***	   -‐0.913***	   	  
Ln	  (#	  Users)	  

	  
-‐0.150†	   0.029	   -‐0.080	   -‐0.043	   0.021	   	  

Ln	  (DirCop)	  
	   	  

-‐0.638***	   	   	  
	  

	  
Ln	  (DirDep)	  

	   	  
-‐0.359***	   	   	  

	  
	  

MainFlow	  
	   	  

	   -‐2.664***	   	   -‐1.491***	   	  

IndCop	  
	   	  

	   	   -‐2.536***	  
	  

	  
Cyclic	  

	   	  
	   	   -‐3.063***	  

	  
	  

IndDep	  
	   	  

	   	   -‐2.157***	  
	  

	  
MF	  x	  DirCop	  

	   	  
	   	   	   -‐0.437***	   	  

PER	  x	  DirDep	  
	   	  

	   	   	   -‐1.94**	   	  
Chi-‐square	   189.56***	   297.07***	   411.23***	   446.88***	   462.31***	   479.71***	   	  

Cox&Snell	  R^2	   0.180	   0.267	   0.349	   0.373	   0.383	   0.394	   	  

Nagelkerke	  R^2	   0.241	   0.358	   0.468	   0.500	   0.514	   0.528	   	  
n=975;	  †	  p<0.1,	  *	  p<0.05,	  **	  p<0.01,	  and	  ***p<0.001	  

 

Model 1 includes only control variables, three of which are significant.  Older 

applications and applications from vendors are more likely to be decommissioned.  Applications 

that support more operating systems are less likely to be decommissioned.  In total, these 
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variables explain 24.1% more variation than the null model (i.e., a model with no predictors).9  

In model 2, we add inter-layer coupling variables; one is strongly significant (p<0.1%), the other 

marginally significant (p<10%).  Applications that make use of more database management 

systems are less likely to be decommissioned. Applications with more users may be less likely to 

be decommissioned.  In total, these variables increase the variation explained to 35.8%.  Models 

3-6 explore the predictive power of various measures of inter-application coupling.  Model 3 

includes measures of direct coupling and dependency.  We use a log transformation for these 

variables given they are highly skewed.  Both variables are strongly significant, with the model 

showing an increase in the variation explained over the null model to 46.8%.  In model 4, we 

remove direct coupling and dependency variables, and instead include main-flow.  This variable 

is strongly significant, and increases the model fit to 50.0%. 

In model 5, we split main-flow applications into three component categories – indirectly 

coupled, cyclically coupled and indirectly dependent.  All three are significant.  In addition, the 

model fit improves over model 4, from 50.0% to 51.4%.  We note that the coefficients on the 

three variables are statistically different from each other.  Specifically, cyclically coupled 

applications are the least likely to be decommissioned, and indirectly dependent applications are 

the most likely to be decommissioned (but still far less likely than peripheral applications).  We 

cannot include measures of direct coupling in models 4 and 5, given the high correlations 

between direct and indirect coupling and dependency measures (see the Appendices).  We note 

however, that measures of indirect coupling and dependency have a higher correlation with 

decommissioning than measures of direct coupling and dependency, and a greater level of 

statistical significance in our models.  We conclude that indirect coupling and dependency 

                                                
9 We use Nagelkerke’s pseudo R-squared statistic to compare models.  This mirrors the Cox & Snell statistic, but is adjusted so that 
a perfectly fitted model would yield a 100% value (the Cox & Snell statistic cannot take a value of 100%). 
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measures are more important than direct coupling and dependency measures in explaining 

decommissioning – the second dimension of IT agility. 

In model 6, we use interaction terms to evaluate the impact of direct coupling and 

dependency measures within different categories associated with indirect coupling and 

dependency.  In particular, we interact the main-flow and peripheral variables, with the level of 

direct coupling and dependency for applications.  For main-flow applications, we find the 

measure of direct coupling adds significant explanatory power to our model. For peripheral 

applications, we find the measure of direct dependency adds significant explanatory power to our 

model.  In both cases, higher levels of direct coupling or dependency within a category are 

associated with a lower likelihood of being decommissioned.  In total, our final model explains 

52.8% more of the variation in application decommissioning than the null model.  Control 

variables account for 24.1% of the improvement in model fit, and coupling variables account for 

28.7%.  Among the coupling variables, inter-layer coupling variables account for 11.7% of the 

improvement in model fit, whereas inter-application coupling variables account for 17%. 

6.2.1 Exploring the Impact of Coupling on Application Decommissioning 

To better understand the dynamics of how indirect coupling and dependency impact 

decommissioning we further analyzed the relationship between the outcome and these categories.  

Table 10 presents data on the number of applications in each category in 2008 and the number of 

applications decommissioned between 2008 and 2012, expressed as an absolute figure, and as a 

percentage of the applications in each category.  We observe first, that peripheral applications 

have a large probability of being decommissioned.  Of 505 peripheral applications in 2008, 

almost 93% are decommissioned by 2012 (compared to 58.5% for the sample overall).  This 

result highlights the huge turnover in applications with little or no indirect coupling or 
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dependency within the software portfolio.   Second, by contrast, the percentage of cyclically 

coupled applications that are decommissioned between 2008 and 2012 is only 27%.  In sum, 

peripheral applications are decommissioned at 3X the rate of cyclically coupled applications.  

Finally, we note the rate at which indirectly coupled and indirectly dependent applications are 

decommissioned over this time period is broadly similar, at 44.2% and 49.7% respectively. 

Table 10:  Differences in Application Decommissioning by Category 

	  

Applications	  	  
in	  2008	  

Decommissioned	  
by	  2012	  

Percentage	  
Decommissioned	  

Indirectly	  Coupled	  	   120	   53	   44.2%	  

Cyclically	  Coupled	   447	   121	   27.1%	  
Indirectly	  Dependent	   175	   87	   49.7%	  

Peripheral	   505	   469	   92.9%	  
TOTAL	   1247	   730	   58.5%	  

 

In sum, the evidence we present suggests that hypothesis two is supported.  Applications 

with greater coupling are less likely to be decommissioned.  We find support for the predictive 

power of inter-layer coupling variables (Users and Database Management systems) and inter-

application coupling variables.  We find that indirect coupling and dependency are better 

predictors of decommissioning than direct coupling and dependency.  And our statistical models 

show that cyclically coupled applications are much less likely to be decommissioned than other 

categories.  The descriptive analysis highlights this result, and shows, by contrast, the huge rate 

at which peripheral applications are decommissioned over the same period. 

6.3 Hypothesis 3: The Relationship between Coupling and New Applications 
 

Our third hypothesis asserts that new applications added to the software portfolio 

between 2008 and 2012 have lower levels of coupling and dependency compared to the legacy 

applications in the portfolio at the start of this period.  To test this assertion, we compare the 
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distribution of applications by category for 2008, to that of new applications added to the 

portfolio.  All else being equal, one would predict that new applications should mirror the 

distribution of legacy applications, in terms of coupling and dependency (the “null” hypothesis). 

Table 11 shows the distribution of applications by indirect coupling category for the 2008 

portfolio, as well as for all new applications added between 2008 and 2012.10  For example, in 

2008, there were 120 applications that were indirectly coupled, representing 9.6% of the 

portfolio.   Of the 423 new applications added between 2008 and 2012 however, only 14 (i.e., 

3.3% of new additions) were indirectly coupled.  If new applications were added in a way that 

mirrors the coupling of legacy applications, we would expect 9.6% of the 423 new applications 

(i.e., 40 applications) to be indirectly coupled.  The actual outcome is significantly below what is 

expected. The ratio of the actual to the expected outcome is 0.34.  This reflects the degree to 

which the number of new applications either falls short of (i.e., is less than one) or exceeds (i.e., 

is more than one) the expected number of applications in a category for the null hypothesis. 

Table 11:  Number of Applications by Category for 2008 and for New Applications  

	  

Applications	  in	  the	  2008	  
Portfolio	  

New	  Applications	  
added	  2008-‐2012	  

Ratio	  of	  Actual	  
to	  Expected	  	  

Indirectly	  Coupled	   120	   9.62%	   14	   3.30%	   0.34	  
Cyclically	  Coupled	   447	   35.85%	   72	   17.02%	   0.47	  
Indirectly	  Dependent	   175	   14.03%	   110	   26.00%	   1.85	  
Peripheral	   505	   40.50%	   227	   53.66%	   1.32	  
TOTAL	   1247	   100%	   423	   100.00%	   1.00	  
Chi-‐Square	  (df=3)	   90.723***	  

***	  p	  <	  0.001	  

 

We find that new applications occur less frequently than expected in the indirectly 

coupled and cyclically coupled categories. By contrast, new applications occur at a greater rate 

than expected in the indirectly dependent and peripheral categories.  These results make intuitive 
                                                
10 Note in this analysis, we count only new applications added to the software portfolio between 2008 and 2012.  We do not include 
the 311 active applications that existed in 2008, but which were missing data and hence were not assigned a coupling category. 
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sense. Adding new applications that have little or no coupling or dependency relationships with 

other applications (i.e., peripheral applications) should be relatively easy to do.  Furthermore, 

adding new applications that use or “depend upon” existing applications should be easier than 

adding new applications that are used by or “depended upon” by existing applications.  In 

essence, new applications can take advantage of the existing functionality provided by legacy 

applications (but not the reverse).  Our results show this dynamic – adding new applications that 

depend on existing applications – happens 85% more than expected (i.e., the ratio is 1.85). 

To test whether the differences reported above are significant, we run a Chi-Square test 

of independence between the distribution of applications across categories for 2008 and for new 

applications added between 2008 and 2012.  The test statistic shows a strong relationship 

between the four categories and the addition of new applications, as compared to the 2008 

distribution (i.e., the Chi-Square statistic exceeds a threshold value of 33.94).  We conclude that 

hypothesis three is supported.  New applications have a significantly different level of coupling 

and dependency than existing applications.  In particular, new applications are more likely to be 

peripheral or indirectly dependent, and less likely to be indirectly coupled or cyclically coupled. 

7.  Discussion 

The main contribution of this paper is in developing theory about the relationship 

between a firm’s software portfolio architecture and IT agility.  Specifically, we find a strong 

link between the level of coupling and dependency for individual applications in the software 

portfolio, and the degree to which applications can be changed.  Applications that possess greater 

levels of coupling and dependency are more costly to maintain, and less likely to be 

decommissioned.  Furthermore, new applications added to the portfolio differ significantly from 
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the applications in the legacy portfolio.  In particular, they are less likely to possess high levels 

of coupling, and more likely to be peripheral, or depend only on applications that exist. 

Our work explores coupling and dependency relationships both within the application 

layer, and between this layer and others in the IT architecture.  With respect to the former, we 

show that indirect coupling and dependency relationships have a stronger association with IT 

agility than direct coupling and dependency relationships.  With respect to the latter, we show 

that the number of users (i.e., business groups) for an application, and the number of database 

management systems to which it is connected, are also strong predictors of IT agility.  The best 

models predicting maintenance costs and application decommissioning include measures of all 

aspects of coupling and dependency: direct, indirect, inter-layer and inter-application. 

In order to highlight the power of the various measures of coupling employed in this 

study, we conduct a decomposition of variance for hypotheses one and two.  Table 12 shows the 

amount of explained variance in each outcome that is attributable to control variables, inter-layer 

coupling variables, and inter-application coupling and dependency variables.  We break the latter 

into three; first showing the variation explained by direct coupling and dependency measures, 

next showing the variation explained by indirect coupling and dependency measures, and finally 

showing the variation explained by all of these measures combined (i.e., our best fit models). 

First, while control variables explain a sizeable amount of the explained variance in our 

models, measures of coupling explain more of the variance for each outcome.  Second, measures 

of indirect coupling and dependency have a significantly stronger impact than measures of direct 

coupling and dependency in both cases.  In models predicting maintenance cost, indirect 

measures explain over twice the variance of direct measures.  In models predicting 

decommissioning, indirect measures explain 32.7% more of the variance than direct measures.  



Designing an Agile Software Portfolio Architecture 
 

 35 

Third, despite the statistical dominance of indirect measures in our models, and the strong 

correlation between direct and indirect measures, the best model in each case combines direct 

and indirect measures.  In essence, measures of direct coupling and dependency help to explain 

variations in each outcome that remain within the indirect coupling and dependency categories. 

Table 12:  Decomposition of Variance Explained by Hypothesis 

	  
Maintenance	  Cost	  H1	   Decommissioning	  H2	  

Control	  Variables	   8.5%	   8.5%	   8.5%	   24.1%	   24.1%	   24.1%	  

External	  Coupling	   5.0%	   5.0%	   5.0%	   11.7%	   11.7%	   11.7%	  
Internal-‐Direct	   1.8%	   	   	   11.0%	   	   	  

Internal-‐Indirect	   	   4.2%11	   	   	   14.6%12	   	  
Internal-‐Combined	   	   	   6.0%	   	   	   16.0%	  

TOTAL	  EXPLAINED	   15.3%	   17.7%	   19.5%	   46.8%	   50.0%	   52.8%	  

 

Furthermore, while both inter-layer and inter-application measures of coupling and 

dependency are significant in our models, we find the latter have more power in predicting IT 

agility.  With respect to maintenance costs, inter-application measures account for 20% more of 

the variation than inter-layer coupling measures (i.e., 6.0% versus 5.0%).  With respect to 

decommissioning, inter-application measures account for 36.8% more of the variation than inter-

layer coupling measures (16.0% versus 11.7%). These results reveal a paradox confronting IT 

managers as they direct efforts to enhance IT agility.   While their focus is often on better 

structuring the relationship between applications and other layers in the IT architecture (e.g., 

databases and infrastructure), our results suggest their attention is better directed elsewhere. In 

particular, they must pay greater attention to the application portfolio itself, and specifically, the 

patterns of coupling and dependency that exist between the components of this portfolio. 

                                                
11 The baseline for this data is model 4 in Table 7, which includes main-flow as the predictor variable.  Breaking main-flow into its 
three constituent components, as is done in model 5, yielded a decrease in the variance explained. 
12 The baseline for this data is model 5 in Table 9, which includes the variables indirectly coupled, cyclically coupled and indirectly 
dependent as predictors.  This model explains more variance than a model that just includes main-flow as a predictor.   
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The finding that indirect measures of coupling and dependency have more power in 

predicting IT agility than direct measures mirrors the results of similar studies looking at the 

impact of design decisions within software systems (MacCormack and Sturtevant, 2016).  Direct 

relationships between components are more easily visible to a system architect, hence can be 

explicitly managed.  They may not be problematic if constrained to a small group of 

components.  Indirect relationships however, bring the potential for changes to propagate from 

one component to another via chains of dependencies.  These chains are not easily visible by 

inspection of an application’s nearest neighbors in the portfolio, but represent “hidden structure” 

that can only be revealed by an analysis of indirect pathways in a system (Baldwin et al, 2014). 

Our work suggests that cyclically coupled applications present the toughest challenges to 

a system architect.  These applications have the highest average cost, and the highest variations 

in cost.  They are also far less likely to be decommissioned than other applications.  Finally, new 

applications of this type are added to the portfolio at a rate 50% lower than would be expected.  

In the firm we studied, 35% of the applications were cyclically coupled in both 2008 and 2012. 

Hence 440+ applications were mutually interdependent over this timeframe.  Making changes to 

a “core” set of applications of this size, would likely be a hugely complicated endeavor, given 

each change to a single application could propagate to affect all others. 

Our study has distinct implications for managers.  In particular, our methodology 

provides a way to measure the real software portfolio architecture that firm’s possess, as 

opposed to the high level conceptual representations often found in documents depicting a firm’s 

IT systems.  The insights generated should prove useful in several ways, including i) helping to 

plan the allocation of resources to different applications, based upon predictions of the relative 

ease/difficulty of change; ii) monitoring the evolution of the software portfolio over time, as new 
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applications and/or dependencies are introduced, and; iii) identifying opportunities to improve 

the portfolio, for example, by reducing coupling, and hence the cost of change for an application. 

Ironically, in this era of big data, the lack of granular data may be the largest barrier to 

the systematic investigation of software portfolio architecture.  Firms need to capture data on the 

coupling and dependency between applications in the portfolio, and the way that these evolve 

over time. To use this data for prediction, they must also systematically capture data on the cost 

of change. In most organizations with which we have worked, this type of data does not exist. In 

some, efforts have been made to collect this data manually.  However, there are many challenges 

associated with this approach, including a lack of incentives to provide accurate and timely 

information. In essence, many firms do not know their “real” software portfolio architecture. 

Our work opens up the potential for further research to explore the relationship between 

software portfolio architecture and IT agility.  In this study, features of our dataset made it 

difficult to disentangle the effects of different categories of indirect coupling and dependency. 

However, in other settings, this will not always be true.  We believe it important to study these 

mechanisms more deeply, to fully understand the relationships that they have with IT change.  

While we focused only on software applications in our analysis of IT agility, our methods could 

be extended further, to look at the cost of change for other IT system components.  

Our study is subject to a number of limitations that must be considered when assessing 

the generalizability of results.  In particular, while our unit of analysis is an application, the data 

to test our theoretical propositions comes from a single firm.  Hence additional work is needed to 

validate that our results hold for other firms.  We may find that different types of firm, or 

different managerial processes within firms, influence the results. Indeed, studies across different 

organizations might reveal how measures of IT architecture impact firm-level performance.  This 
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area is promising, given prior literature argues there is a strong link between IT architecture and 

firm-level agility. We hope that this paper and the methods it describes, will allow us to answer 

these questions, with a robust approach that can be replicated across studies. 
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Appendix A:  Correlation Table for Data used to Predict Maintenance Cost (Hypothesis 1)  

	  

Mcost	   Age	   State	   OS	   Vendor	   DBMS	   Users	   MainF	   Cyclic	   IndCup	   IndDep	   DirCup	   DirDep	  

Mcost	   1	  

	   	   	   	   	   	   	   	   	   	   	   	  Age	   0.13*	   1	  

	   	   	   	   	   	   	   	   	   	   	  State	   0.09*	   0.17*	   1	  

	   	   	   	   	   	   	   	   	   	  OS	   0.08*	   -‐0.26*	   -‐0.10*	   1	  

	   	   	   	   	   	   	   	   	  Vendor	   -‐0.24*	   0.03	   0.04	   -‐0.09*	   1	  

	   	   	   	   	   	   	   	  DBMS	   0.32*	   0.09*	   -‐0.07	   0.17*	   -‐0.49*	   1	  

	   	   	   	   	   	   	  Users	   0.10*	   0.18*	   0.08*	   -‐0.09*	   -‐0.01	   -‐0.03	   1	  

	   	   	   	   	   	  MainF	   0.35*	   0.23**	   -‐0.07	   0.08*	   -‐0.29*	   0.49*	   0.02	   1	  

	   	   	   	   	  Cyclic	   0.27*	   0.33*	   -‐0.04	   0.04	   -‐0.29*	   0.40*	   0.09*	   0.64*	   1	  

	   	   	   	  IndCup	   0.09*	   -‐0.06	   0.03	   0.03	   0.06	   0.09*	   -‐0.01	   0.29*	   -‐0.28*	   1	  

	   	   	  IndDep	   0.05	   -‐0.09*	   -‐0.14*	   0.12*	   -‐0.08*	   0.05	   -‐0.10*	   0.29*	   -‐0.27*	   -‐0.12*	   1	  

	   	  DirCup	   0.27*	   0.47*	   0.05	   -‐0.07	   -‐0.18*	   0.37*	   0.17*	   0.58*	   0.70*	   0.09*	   -‐0.27*	   1	  

	  DirDep	   0.29*	   0.26*	   -‐0.02	   0.02	   -‐0.36*	   0.40*	   0.12*	   0.52*	   0.71*	   -‐0.33*	   0.04	   0.61*	   1	  

n=660,	  *	  p<0.05,	  italic=ln()	  

Appendix B:  Correlation Table for Data used to Predict Application Decommissioning (Hypothesis 2)  

	  

Decomm.	   Age	   State	   OS	   Vendor	   DBMS	   Users	   MFlow	   Cyclic	   IndCup	   IndDep	   DirCup	   DirDep	  

Decomm.	   1	  

	   	   	   	   	   	   	   	   	   	   	   	  Age	   0.09*	   1	  

	   	   	   	   	   	   	   	   	   	   	  State	   -‐0.01	   0.34*	   1	  

	   	   	   	   	   	   	   	   	   	  OS	   -‐0.12*	   -‐0.18*	   -‐0.08*	   1	  

	   	   	   	   	   	   	   	   	  Vendor	   0.41*	   -‐0.01	   0.04	   -‐0.04	   1	  

	   	   	   	   	   	   	   	  DBMS	   -‐0.48*	   -‐0.02	   -‐0.06	   0.14*	   -‐0.51*	   1	  

	   	   	   	   	   	   	  Users	   -‐0.04	   0.08*	   0.04	   -‐0.06	   -‐0.03	   -‐0.02	   1	  

	   	   	   	   	   	  MainF	   -‐0.58*	   -‐0.06	   0.02	   0.09*	   -‐0.53*	   0.51*	   0.09*	   1	  

	   	   	   	   	  Cyclic	   -‐0.48*	   0.14*	   0.06	   0.01	   -‐0.45*	   0.49*	   0.12*	   0.62*	   1	  

	   	   	   	  IndCup	   -‐0.08*	   -‐0.06	   0.03	   0.01	   -‐0.03	   -‐0.09	   0.09	   0.25*	   -‐0.26*	   1	  

	   	   	  IndDep	   -‐0.06	   -‐0.15*	   -‐0.08*	   0.01*	   -‐0.08*	   0.03	   -‐0.06*	   0.30*	   -‐0.32*	   -‐0.13*	   1	  

	   	  DirCup	   -‐0.51*	   0.19*	   0.09*	   0.07	   -‐0.46*	   0.51*	   0.20*	   0.62*	   0.76*	   0.09*	   -‐0.28*	   1	  

	  DirDep	   -‐0.50*	   0.10*	   0.04	   0.06	   -‐0.49*	   0.53*	   0.14*	   0.66*	   0.74*	   -‐0.23*	   0.06	   0.74*	   1	  

n=957,	  *	  p<0.05,	  italic=ln()	  
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