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Abstract 

We estimate a sales response model to evaluate the short- and long-term value of pharmaceutical 
sales representatives’ detailing visits to physicians of different types. By understanding the 
dynamic effect of sales calls across heterogeneous doctors, we provide guidance on the design of 
optimal call patterns for route sales. Our analyses reveal that the long-term persistence effect of 
detailing is more pronounced for specialist physicians; the contemporaneous marginal effect is 
higher for generalists. Free samples have little effect on any type of physician. We also introduce a 
key methodological innovation to the marketing and economics literatures. We show that moment 
conditions—typically used in traditional dynamic panel data methods—are vulnerable to serial 
correlation in the error structure. However, traditional tests to detect serial correlation have weak 
power and can be misleading, resulting in misuse of moment conditions and incorrect inference. 
We present an appropriate set of moment conditions to properly address serially correlated errors 
in analyzing dynamic panel data. 

 

Key words: dynamic panel data, serial correlation, instrumental variables, sales call, detailing, 
pharmaceutical industry.   
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1.  Introduction 

The pharmaceutical industry plays a significant role in the world economy. According to 

QuintilesIMS (formerly IMS Health), the global market for prescription drugs is expected to grow 

from roughly $1.1 trillion in 2016 to $1.5 trillion by 2021. Despite the enormous size of this market, 

however, marketing to customers (that is, to physicians) largely consists of (and is typically 

restricted to) personal selling in the form of detailing and free samples provided during office 

visits. 1  Even in the United States, a nation that allows direct-to-consumer mass-media 

pharmaceutical advertising, personal selling remains the dominant marketing tool; some 90,000 

sales representatives (1 for every 6.3 doctors) market pharmaceutical products to 567,000 U.S. 

physicians  (Wall and Brown, 2007). 

Studies of the effectiveness of personal selling at generating physician prescriptions have 

produced strikingly mixed findings in the literature: reported sales elasticity measures range from -

14.8% (Parsons and Vanden Abeele, 1981) to 41% (Gönül et al., 2001). This extreme 

inconsistently appears to be attributable both to limited data on physicians’ prescribing behavior 

and to bias arising from naive treatment of data, specifically panel data. Thus we seek to gain 

insights on deriving an unbiased measure of the short- and long-term value of a firm’s detailing 

efforts. To do so, we use detailed data on both individual physicians’ prescriptions and on the 

marketing efforts of a major multinational pharmaceutical firm. We also employ innovative 

dynamic panel data methods to control for unobserved physician heterogeneity while accounting 

for endogeneity concerns. 

                                                            
1 As of 2016, direct-to-consumer advertising is allowed only in Brazil, New Zealand, and the United States, with varying 
restrictions on content. 
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To obtain a precise and unbiased value of detailing efforts turns out to be quite complicated. 

Physicians’ prescribing behavior appears to be highly habitual, and this underlying heterogeneity 

is unobserved by researchers. Physicians are known to exhibit high levels of inertia (Janakiraman 

et al., 2008); an individual physician’s past level of prescriptions is likely to persist, affecting 

current sales. To accommodate this dynamic process, studies in marketing have frequently 

adopted the advertising-as-investment framework of Nerlove and Arrow (1962), which 

conceptualizes a sales response model as a function of a stock of goodwill that grows in response to 

current marketing activities but decays over time. According to typical assumptions used in the 

literature, this stock of goodwill—represented by the geometric sum of marketing efforts—can be 

replaced by the lagged dependent variable, leading to a general dynamic panel data model 

specification (Balestra and Nerlove, 1966). 

Identifying the causal effect of a sales call becomes challenging when this lagged dependent 

variable coincides with unobserved heterogeneity. Because pharmaceutical companies are likely to 

allocate more resources (e.g., shorter call cycles and more free samples) to physicians with higher 

sales-volume or growth potential, it is necessary to control for possible correlation between sales 

effort and potential. Moreover, an endogeneity problem arises because, by construction, the lagged 

dependent variable is correlated with lagged error terms through unobserved heterogeneity. Past 

studies have responded to this challenge by disregarding the issue (Parsons and Vanden Abeele, 

1981; Manchanda et al., 2004), fixing the rate of decay (Gönül et al., 2001), or excluding dynamics 

(Manchanda and Chintagunta, 2004). 
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Dynamic panel data methods proposed by Arellano and Bond (1991), Arellano and Bover 

(1995), and Blundell and Bond (1998) provide a practical approach to tackling the endogeneity 

problem while simultaneously accounting for unobserved heterogeneity. The key advantage of 

these methods is that they allow us to control for potential bias without relying on strictly 

exogenous instrumental variables, which in many empirical settings are impossible to obtain. 

Because of their practicality, dynamic panel data methods have been used in numerous contexts, 

including advertising (Clark et al., 2009; Xiong and Bharadwaj, 2013), customer-relationship 

management (Tuli et al., 2010), social media and online reviews (Borah and Tellis, 2016; Ludwig 

et al., 2013), and sales-call effectiveness (e.g., Mizik and Jacobson, 2004). 

Nevertheless, under the Nerlove and Arrow (1962) advertising-as-investment framework, the 

use of dynamic panel data methods is afflicted by a troubling issue: namely, hinging on the 

geometric sum assumption, the linkage between the framework and the dynamic panel data 

structure, by construction, encompasses serially correlated errors. Yet the validity of traditional 

dynamic panel data methods relies on the assumption that the error structure does not exhibit 

serial correlation. If serial correlation is present, the moment conditions derived under these 

methods become invalid, resulting in unreliable inference.  

To test for the validity of the moment conditions, and thus the model specification, past 

studies have relied on the Arellano-Bond test for serial correlation (Arellano and Bond, 1991). 

When the AR(2) test statistic is not rejected, presumably indicating an absence of serial 

correlation in the error structure, researchers have proceeded with the estimation without further 

concern. We show that the Arellano-Bond specification test is prone to weak power in detecting 
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serial correlation: the test statistic may fail to detect serial correlation, justifying the use of invalid 

moment conditions that result in biased estimates. We discuss technical shortcomings of the 

Arellano-Bond specification test and specify conditions where the test may fail to reject the 

misspecified model. 

To obtain unbiased estimates for identifying the causal effect of detailing, we present an 

adequate set of moment conditions in analyzing dynamic panel data. We provide proof that test 

statistics used to detect serial correlation are biased when using invalid moment conditions, and 

that traditional dynamic panel data methods fail once the assumption on serial correlation is eased. 

We formulate valid moment conditions that are robust to serial correlation. To validate our claims, 

we conduct Monte Carlo simulations to show that traditional methods yield biased estimates 

under serially correlated errors. The simulation results also reveal the weak power of the Arellano-

Bond specification test using traditional moment conditions, when serial correlation is present. 

We apply our method to a comprehensive panel dataset from a multinational pharmaceutical 

company, which includes detailed data on individual doctors’ prescribing histories and on sales 

representatives’ personal selling efforts on behalf of the firm. We postulate that when serial 

correlation is present, traditional methods yield biased and counterintuitive estimates implying 

negative effectiveness of detailing. By correcting for the misuse of invalid moment conditions, we 

find, on aggregate, that detailing efforts have a significant impact on physicians’ prescription rates. 

Subsequently, we allow for heterogeneity in the slope parameters to account for differences in 

the effectiveness of detailing from one medical practice area to another. We find, in general, that 

specialist physicians (cardiologists, diabetologists, and endocrinologists) exhibit greater persistence 
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in prescribing patterns and thus a long-term effect; by contrast, generalists (consulting physicians, 

general practitioners, and general surgeons) are more responsive to short-term detailing efforts but 

exhibit less persistence. In terms of magnitude, the effectiveness of sales calls tends to be highly 

heterogeneous across medical practice areas, ranging from insignificant to a 25% increase in 

prescriptions. Our simple but methodologically robust approach can help firms design optimal call 

patterns and sales targets to increase the overall efficiency of the sales force. 

The remainder of the paper is organized as follows. Section 2 presents our methodology, which 

builds on traditional dynamic panel data methods and eases their assumptions on serial 

correlation. Section 3 addresses the conditions in which the test for serial correlation is prone to 

weak power; Section 4 conducts simulation tests to verify our claims. Section 5 presents our 

empirical application and results for inference, and Section 6 concludes. 

2.  Dynamic Panel Data Revisited 

Dynamic panel data models have played a pivotal role in analyzing marketing and economic 

phenomena of a dynamic nature. A typical linear dynamic panel data model follows the form: 

    , 1it i t it i ity y x z ul b g- ¢ ¢= + + +      (1) 

it i itu ea= +         (2) 

where i=1,2,…,N, indexes cross-sectional units and t=2,3,...,T, indexes time. The scalar yit is the 

dependent variable of interest, observed at the individual level, and the recursive nature of the 

lagged dependent variable yi,t-1  on the right-hand side is the source of dynamics in the model. The 

vector xit (kx×1 dimension) represents time-varying independent variables, and the vector zi (kz×1 
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dimension) represents time-invariant independent variables. The parameters l , b , and g  denote 

the carryover effect and marginal effects with regard to xit and zi respectively. The data consist of 

(yi1, yi2,..., yiT), (xi1, xi2,..., xiT), and zi for i=1, 2,..., N, implying a dimension of N×T observations. 

The focus in dynamic panel data analysis is mainly on the case where N is large and T is small—

typical data available in dynamic panel data settings.  

The unobservable term uit consists of two components, individual unobserved heterogeneity ai 

and an idiosyncratic error eit.  The structure of the unobservable term in Equation (2) raises an 

endogeneity problem as the time-invariant unobserved heterogeneity component ai is correlated 

with the lagged dependent variable yi,t-1. This issue can be dealt with in a relatively 

straightforward manner by taking the first difference of Equation (1) to subtract out ai. 

However, the endogeneity problem with regard to the idiosyncratic error term eit—that is, the 

lagged dependent variable yi,t-1 being correlated with the lagged unobservables eis for s<t—remains 

a concern. The dynamic panel data methods proposed by Anderson and Hsiao (1981, 1982), and 

further developed by Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and 

Bond (1998), utilize lagged levels and lagged differences as instruments to deal with this 

endogeneity issue, but their instruments are fully valid only under the assumption that the 

idiosyncratic errors eit are uncorrelated over time. 

We show that traditional tests to detect serial correlation have weak power and can be 

misleading, resulting in a misuse of moment conditions that leads to incorrect inference. The 

revised approach that we propose utilizes a set of moment conditions that is immune to serial 
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correlation in the error structure, highly likely in naturally occurring data. Before presenting our 

methodology, we will outline the key components of the traditional dynamic panel data models 

that serve as building blocks. We will then present our method and check its robustness using 

Monte Carlo simulations.  

2.1.  Traditional Dynamic Panel Data Methods 

For expository purposes, we assume for now that vectors xit and zi are absent. We denote eit as 

an idiosyncratic error term, which is assumed to be serially uncorrelated. The following model 

structure has been widely discussed in the economics literature (Anderson and Hsiao, 1981, 1982; 

Arellano and Bond, 1991; Arellano and Bover, 1995; and Blundell and Bond, 1998): 

     , 1it i t ity y ul -= +       (3) 

it i itu a e= +        (4) 

where all variables are independently and identically distributed across i, and 1l < . The 

idiosyncratic error component eit in Equation (4) satisfies the following standard assumptions: 

E[ ] 0ite =  for all t (mean zero), E[ ] 0it ise e =  for all t s¹  (no serial correlation), E[ ] 0i ita e =  for 

all t (orthogonal to individual effects), and 1E[ ] 0i ity e =  for all t (orthogonal to initial condition). 

Under these assumptions, the following linear moment conditions can be derived: 

     2E[ ] 0t
i ity u- D =       (5) 
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where 1 2( , , , )'t
i i i ity y y y=   and , 1it it i tu u u -D = - .2 As proposed by Arellano and Bond (1991), the 

estimator utilizing the moment conditions in Equation (5) is commonly referred to as the 

Difference GMM (DGMM) estimator. The key concept of DGMM is to use the lagged variables in 

levels as instruments for the first differenced equation. A potential downside of the DGMM 

estimator is that lagged levels become weak instruments for the first difference as 1l » , a case 

when the lagged levels take a random walk and convey limited information (Staiger and Stock, 

1997; Stock et al., 2002). 

As a remedy, the mean stationarity assumption, 2E[ ] 0i iya D = , can be imposed to yield the 

initial condition of the data. Provided the assumption holds, the first period observation of y is 

written as 1 1
i

i iy a
l

h
-

= + , where ih  has zero mean and is uncorrelated with ia . This implies that 

the deviation of the first observation from the stationarity level, 1
ia
l-
, is uncorrelated with the 

individual effects. Combining the initial condition with the orthogonality to individual effects 

assumption ( E[ ] 0i ita e =  for all t), we can derive 3 2E[ ] 0i iu yD = . Hence, by iteration, the 

following linear moment conditions become further available: 

     , 1E[ ] 0it i tu y -D = .     (6) 

As proposed by Arellano and Bover (1995) and Blundell and Bond (1998), the System GMM 

(SGMM) estimator creates a stacked dataset and utilizes both lagged levels to instrument for 

differences (Equation (5)) and lagged differences to instrument for levels (Equation (6)). Thus 

                                                            
2 For purposes of brevity, superscript t is used throughout the paper to denote a vector of all observations prior to time 
t. For example, yit=(yi1, yi2,..., yit)', and for the entire time horizon yiT=(yi1, yi2,..., yiT)'. Also, following the standard 
notation in the literature, the capital Greek letter delta D represents a first-difference operator. For example, Duit = 

uit-ui,t-1 and Dyit = yit-yi,t-1. 



9 
 

the SGMM estimator extracts more information from the data, and benefits from an increased 

number of moment conditions. Though the mean stationarity assumption is not necessary for 

identification, it contributes to the efficiency gain of the estimators by providing more linear 

moment conditions. In terms of the available number of moment conditions, there are ( 1)( 2)
2

T T- -  

conditions in Equation (5) for DGMM estimators, and additional (T-2) conditions in Equation 

(6) for SGMM estimators. 

2.2.  A Motivating Example: The Advertising-as-Investment Model 

Though traditional methods have played a significant role in the dynamic panel data literature, 

the key underlying assumption that ite  is serially uncorrelated remains questionable. As a 

motivating example, let us consider the advertising-as-investment model of Nerlove and Arrow 

(1962), which has been widely applied in the marketing literature: 

( ),
0

j
it i i t j i it

j
y x za l b g n

¥

-
=

¢= + + +å   

where yit denotes sales and xit denotes the advertisement expenditure of firm i at time t. The 

model captures the long-term effects of advertisement using an infinite lag distribution model. 

Because part of the infinite geometric sum can be replaced by , 1i tyl - , this model simplifies to: 

    , 1it i t it i ity y x z ul b g- ¢= + + +   

    , 1it i it i tu a n ln -= + -   

where ( )1g l g= -   and ( )1i ia l a= -  . Hence, the unobserved term uit is shown to exhibit serial 

correlation caused by the error component , 1i tn - . 
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2.3.  Correcting for Serial Correlation in the Error Component 

Next we will consider our serial correlation corrected (hereafter, SCC) approach, which 

accounts for serial correlation in the error structure. The idiosyncratic error term in Equation (2) 

is now modified to exhibit serial correlation, , 1it it i te n ln -= - : 

     , 1it i t ity y ul -= +       (7) 

, 1it i it i tu a n ln -= + -      (8) 

where, again, all variables are i.i.d. across i, and 1l < . Now the error term uit is decomposed into 

time-invariant individual effects ia  and the time-varying error component itn .3 Through the term 

itn , the model exhibits serial correlation that introduces additional dynamics into the model. The 

assumptions from Equation (4) are modified to accommodate the new error structure regarding 

itn  in Equation (8) as follows: E[ ] 0itn =  for all t (mean zero), E[ ] 0it isn n =  for all t s¹  (no 

serial correlation outside the error structure), E[ ] 0i ita n =  for all t (orthogonal to individual 

effects), and 1E[ ] 0i ity n =  for all  2t ³  (orthogonal to initial condition). 

Now let us consider the valid moment conditions under the serially correlated errors. For 

traditional DGMM estimators, the intuition behind the moment conditions 2E[ ] 0t
i ity u- D =  in 

Equation (5) is that , 1it it i tu e e -D = -  is uncorrelated with ise  for any 2s t< - , and thus is 

orthogonal to isy  for 2s t< - . However, due to serial correlation, , 1it i tn ln -- , in Equation (8), 

we have , 1 , 2(1 )it it i t i tu n l n ln- -D = - + + , which contains an error from t-2. Thus in this case

                                                            
3 We also investigated the specification , 1it it i t ite n ln e-= - + , which disentangles the serially uncorrelated shocks. 
The resulting proof and moment conditions are largely analogous; we omit them for brevity.  
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, 2E[ ] 0i t ity u- D ¹  as both terms share the common , 2i tn - . However, the moment conditions for t-3 

and earlier remain valid. Hence, the moment conditions in Equation (5) are modified by the 

following ( 2)( 3)
2

T T- -  set of conditions for the DGMM estimator under the serially correlated error 

structure assumption: 

     3E[ ] 0t
i ity u- D =       (9) 

for t=4,5,...,T. 

The loss of moment conditions reduces the efficiency of the estimator. The problem may be 

particularly significant under two circumstances often encountered in practice. The first occurs 

when the length of the observed time periods T is short: the shorter the observed length, the 

larger the proportion of invalid moment conditions becomes. The second case takes place when the 

weak-instrument problem is present. Blundell and Bond (1998) show that the instruments become 

weak when l  is close to 1. That is, ,Cov( , )i t r ity y- D  for 2r ³  leans to zero as l  tends to unity. 

Since the covariance decreases as r increases, yi,t-2 is a stronger (or, more precisely, less weak) 

instrument for ityD  than yi,t-r for 3r ³ . Thus, the instruments that become invalid under the new 

assumptions happen to be the strongest among the weak, exacerbating the weak-instrument 

problem. 

Analogous to the traditional approach, the mean stationarity assumption can be induced to 

alleviate the above issue. The initial condition for the SCC approach can be derived analogously 

given the mean stationarity assumption 2E[ ] 0i iya D = . However, the expression for yi1 is modified 

to incorporate 1in  by 1 11
i

i i iy a

l
n h

-
= + + , where 1E[ ] E[ ] E[ ] 0i i i i ih a h n h= = = . Unlike the 
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traditional approach in Equation (6), however, in the SCC approach 3 2E[ ] 0i iu yD ¹  due to the 

presence of 2in  in both ui3 and 2iyD . Instead, we have 4 2E[ ] 0i iu yD = . The lagged differences 

should also be at least two periods to avoid the common error component. Hence, the T-2 number 

of moment conditions from the traditional approach in Equation (6) is replaced in the SCC 

approach by the following T-3 conditions: 

     , 2E 0it i tu y -
é ùD =ê úë û      (10) 

for t=4,5,...,T, to yield a SGMM estimator under serially correlated errors.  

2.4.  General Framework 

We now return to the general form of the dynamic panel data model in Equation (1), and 

discuss the moment conditions pertinent to the explanatory variables xit and zi. The error term in 

Equation (2) is altered on the basis of the SCC method to , 1it it i te n ln -= - : 

    , 1it i t it i ity y x z ul b g-
¢ ¢= + + +   

, 1it i it i tu a n ln -= + -  

for i=1,2,...,N and t=2,3,...,T. To define moment conditions with regard to regressors, one needs 

to comprehend their potential correlation with the individual effects. Following Hausman and 

Taylor (1981), we partition the vector of the independent variables as 1 2( , )it it itx x x=  and 

1 2( , )it i iz z z= . x1it and z1i are vectors orthogonal to the individual effects, whereas x2it and z2i are 

not—that is, the latter are correlated with the individual effects. In addition to the assumptions 

specified in Section 2.3, the following standard assumptions with regard to the regressors hold: 
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E[ ] 0it isx n =  for all t<s (xit is predetermined with respect to itn ), E[ ] 0i itz n =  for all t (zi is 

orthogonal to idiosyncratic errors), 1 1E[ ] E[ ] 0it i i ix za a= =  for all t (x1it and z1i are orthogonal to 

individual effects), and 2E[ ]it i xx aa = S  for all t (correlation between x2it and individual effects is 

constant over time). 

Predetermined variables, as the term implies, are variables whose values are determined by 

observations prior to the current period. Thus current-period errors are uncorrelated with current 

and lagged values, but not necessarily with future values, of predetermined variables. Utilizing 

predetermined variables in panel data models has been discussed in Hausman and Taylor (1981), 

Amemiya and MaCurdy (1986), and Breusch et al. (1989). Under the above assumptions, and 

accounting for serial correlation in the error structure, the following moment conditions are 

available for estimation: 

    1E[ ] 0  for 1it isx u t s= £ -  

    2E[ ] 0  for 2it isx u t sD = £ -  

    2 , 2E[ ] 0  for 4,5,...,i t itx u t T-D = =     (11) 

    1E[ ] 0  for 1,2,...,i itz u t T= =  

    2E[ ] 0  for 1,2,...,i itz u t TD = = . 

3.  Failure of Tests for Serial Correlation 

It is crucial to check for the presence of serially correlated errors, which determines the 

construction of the moment conditions used for estimation. The Arellano and Bond (1991) 
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specification test—specifically, the AR(2) test—has been widely employed in empirical 

applications to check for serial correlation in idiosyncratic errors. 

However, the AR(2) test may generate unreliable results when test statistics are constructed 

using biased estimators obtained from invalid moment conditions (Bowsher (2002), for example, 

finds that AR tests have extremely low power in finite samples). For expository purposes, let us 

suppose that there exists serial correlation in the errors. The previous section showed that 

estimators from traditional methods can be biased because they are obtained using invalid 

moment conditions. Nevertheless, in the test procedure these biased estimators are recursively 

utilized to calculate the error components in the model—which are also likely to become biased. 

As the basis of the test statistic becomes biased, the AR(2) test exhibits weak power and may fail 

to reject the null hypothesis of no serial correlation.  

We now elaborate on this argument. Let us suppose that the true model is represented by 

Equations (7) and (8), where the error structure is serially correlated. However, without 

knowing whether serial correlation is present, suppose we estimate l  in Equation (3) using the 

traditional moment conditions given by Equation (5). Here we are particularly interested in 

testing the null hypothesis of no serial correlation , 1E[ ] 0it i te e - =  against its negation. Because 

there exists first-order serial correlation in levels, we have 2
, 1 , 1E[ ] E( ) 0it i t i te e l n- -=- ¹  for all t. 

Thus, the moment conditions in Equation (5) become invalid because 

2
, 2 , 2E[ ] E( ) 0i t it i ty u l n- -D = ¹ . In this case the GMM estimator l̂  is expected to be downward-
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biased because the sign of the correlation between , 1i ty -D  and ituD  is negative (assuming 0l > ); 

thus the misspecification bias would also be negative. For brevity, let ˆ( )B E l l= -  be the bias. 

To check for first-order serial correlation in levels, the Arellano-Bond AR(2) test looks at the 

second-order correlation in differences. In other words, , 2E[ ] 0it i tu u -D D =  only when the null 

hypothesis is true. Let  , 1
ˆ

it it i tu y yl -D = D - D  be the sample estimate of ituD . Due to the bias in 

l̂ , the estimate  , 1it it i tu u B y -D » D - D  is also contaminated. By replacing this expectation with 

the sample counterparts, we have: 

 2
, 2 , 2 , 1 , 2 , 3 , 1 , 3E[ ] E[ ] E[ ] E[ ] E[ ]it i t it i t i t i t i t it i t i tu u u u B y u B y u B y y- - - - - - -D D » D D - D D - D D + D D . 

For illustrative purposes, let us further assume homoskedasticity in differences (i.e., 2 2( )itE nn s=  

for all t). Substituting the components in Equations (7) and (8) causes the above terms to 

become: 

    2
, 2E[ ] 0it i tu u nls-D D = >   

    2
, 1 , 2E[ ]i t i ty u ns- -D D =-  

    , 3 , 1 , 3E[ ] E[ ] 0i t it i t i ty u y y- - -D D = D D =  

Note that, under absence of bias (B=0), 
, 2E[ ]it i tu u -D D  would converge to 2

nls , and the degree 

of serial correlation captured by l  and 2
ns  would jointly determine the test statistic. However, 

when l̂  becomes biased, 
, 2E[ ]it i tu u -D D  would converge to 2( )B nl s+ , and, because B is likely 

negative, 
, 2E[ ]it i tu u -D D  would become downward-biased. Thus, depending on the degree of bias in 
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l̂ , the test statistic based on 
, 2E[ ]it i tu u -D D  may falsely infer that 

, 2E[ ] 0it i tu u -D D =  and fail to 

reject the null hypothesis, conferring validity on incorrect inference.  

The essence of this problem is a trade-off between efficiency and robustness. Although the test 

statistic utilizing all moment conditions in Equation (5) is expected to be more efficient, this 

efficiency gain does not materialize due to some invalid moment conditions. Rather, in this case, 

the cost of the misspecification bias dominates the benefit of using more moment conditions, 

particularly in finite samples. In Section 4, we verify these assertions using simulation studies, and 

demonstrate the poor performance of the test statistic under traditional methods when serial 

correlation is present. 

4.  Simulation Study 

To compare and evaluate the performance of different estimators and of the Arellano-Bond 

specification test, we run Monte Carlo experiments using simulated data. We set the data-

generating process to follow a simple form of the model with one predetermined variable (kx=1): 

     , 1it i t it ity y x ul b-= + +  

where uit does not exhibit serial correlation ( it i itu a e= + ) in Case 1 and does so 

( , 1it i it i tu a n ln -= + - ) in Case 2. Utilizing the typical structure of dynamic panel data in a real-

world setting, where N is large and T is small, we simulate data for N=1,000 and T=10. For each 

setting, we run 200 Monte Carlo iterations and report the mean values of the estimates. In 

interpreting the results, the terms traditional approach and SCC approach are used to designate 

the estimators utilizing the moment conditions derived in Sections 2.1 and 2.3 respectively. 
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4.1.  Case 1: Without serial correlation 

For Case 1, we set the error structure in the data-generating process to follow Equation (4), 

which does not exhibit serial correlation: 

it i itu a e= + . 

As discussed in Section 2.1, the corresponding initial condition of the data generating process is 

0 1
i

i iy a
l

h
-

= + , where . . . (0,1)i i d
i Ua   and . . . (0,1)i i d

i Nh  . We allow for heteroskedasticity in the 

error term, namely 2(0, )it N ee s , where 2 2
, 0 1it itxes q q= + ⋅ . We set 0 0.8q =  and 1 0.2q =  for the 

remainder of the experiment. 

The simulation results appear in Table 1. The upper portion of the table presents mean 

estimates across iterations; the lower portion reports the rejection frequency of the Arellano-Bond 

specification test. As the mean estimates demonstrate, all four methods perform well at recovering 

the model primitives. A slight exception occurs for DGMM estimators, for both traditional and 

SCC methods, as l  approaches 1, where the carryover-rate estimates become slightly downward-

biased. As discussed, this phenomenon embodies the weak-instruments problem, where lagged 

levels lose information as 1l »  and become poor instruments for the first differences. 

As for the test statistics, the null hypotheses for the Arellano-Bond AR(1) and AR(2) tests are 

that there exists no first- and second-order serial correlation, respectively, in the differenced error 

structure. The results show that AR(1) tests are rejected 100% of the time across all models, 

implying that a first-order serial correlation exists among the differences; this is to be expected, as 

ituD  and , 1i tu -D  are correlated through the shared , 1i te -  term by construction. By contrast, the 
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AR(2) tests are not rejected; rejection frequency hovers around 5%, outside of the confidence 

interval. Therefore, the power of the test is shown to be reliable in the absence of serial correlation. 

4.2.  Case 2: With serial correlation 

Next we impose serial correlation on the error structure for data generation. We set the error 

structure according to Equation (8): 

, 1it i it i tu a n ln -= + - . 

The corresponding initial condition for y is replaced by 0 01
i

i i iy a
l

n h
-

= + + , where . . . (0,1)i i d
i Ua   

and . . . (0,1)i i d
i Nh  . As in Case 1, we allow for heteroskedasticity in the serially correlated error 

term, 2(0, )it N nn s , where 2 2
, 0 1it itxns q q= + ⋅ . 

The simulation results are reported in Table 2. As the mean estimates show, traditional 

methods’ estimates exhibit a strong bias. Most of the l  estimates in DGMM and SGMM fail to 

recover their true values; as a result, b  estimates also tend to become downward-biased. By 

contrast, the SCC method remains robust. A slight exception appears in the DGMM estimates in 

cases where the true value of l  approaches unity, indicating the weak-instrument problem 

discussed earlier. The SGMM estimates remain robust within the true parameter values across all 

values of l . 

With regard to the power of tests, the AR(1) test precisely detects first-order serial correlation 

in differences across all methods except DGMM when 0.9l = . For AR(2) tests, however, some 

noteworthy patterns are evident. First, regardless of approach (traditional or SCC), the power of 

tests based on DGMM decreases significantly as 1l   due to bias in the estimates arising from 
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the weak-instrument problem. In contrast, the tests based on SGMM remain robust to the weak-

instrument problem, where rejection frequency remains steady over different values of l . Second, 

the tests based on the SCC approach correctly reject the null because the estimates are unbiased; 

by contrast, the power of the test using traditional methods decreases due to bias in the estimates, 

as discussed in Section 3. In the current setting, the SGMM under the traditional approach rejects 

the null on average in only 70% of cases, implying that for the remaining 30% the underlying 

serial correlation could go undetected.4 Third, the low power of the test across both approaches for 

l =0.1 to 0.2 reflects the actual decrease in the degree of serial correlation. 

Overall, the simulation results reveal that, with the existence of serial correlation in the 

idiosyncratic shocks, applying traditional methods can inadvertently yield a severe downward bias 

in the estimates. In practice, this bias may lead to misinterpreting or undermining of the marginal 

effects of the covariates. In contrast, the revised SCC approach is robust in detecting plausible 

serial correlation and recovering the model primitives.  

5.  Empirical Analysis 

This section applies our proposed method to real-world data to properly examine the short- 

and long-term effects of detailing visits in the pharmaceutical industry. Following an institutional 

description of, and data on, the focal firm, we develop our empirical model and discuss our 

findings. Finally, we present a representative case in which traditional methods may fail to detect 

                                                            
4 The power of the test under traditional SGMM decreases monotonically as the variance of serially correlated error 
increases, whereas that of SCC SGMM remain robust. Simulation results for different values of 0q  and 1q  are available 
from the authors on request. 
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underlying serial correlation and thus falsely justify the use of biased outcomes, leading to 

improper inference. 

5.1.  Data and Institutional Details 

Our focal firm is a highly regarded Fortune 500 company that operates in over 150 countries. 

It offers a broad range of branded generic pharmaceuticals, medical devices, diagnostics, and 

nutritional products. Our empirical analysis utilizes data from the chronic-care sales division of 

the firm’s business operations in India. The data consist of a detailed record of prescriptions 

written by 45,025 physicians over the six-month period from January through June 2016. For each 

physician, we observe the number of prescriptions written, the number of visits by a sales 

representative, and the number of free samples provided to the physician. 

The firm organizes its sales activity by route call sales: each sales representative is assigned a 

series of scheduled visits, within a given time period, to physicians along a set route. Our data are 

unique in that they include the full range of the firm’s brands. Previous studies of detailing 

effectiveness (Parsons and Vanden Abeele, 1981; Manchanda et al., 2004; Mizik and Jacobson, 

2004) have been limited to data on a single brand or a few brands; their results neglect possible 

spillover effects among brands, and are thus apt to underestimate the overall effectiveness of 

detailing. Because firms and managers are likely to be most interested in the impact of sales calls 

(and free samples) on overall performance, we believe that our dataset provides a better measure 

for evaluating the true effect of detailing efforts.5 

                                                            
5 Because the firm does not track the specific brands detailed during each call, we aggregate prescription quantities 
across the firm’s brands to obtain the total number of prescriptions written per month. Though the effectiveness of 
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To fully exploit the nature of a dynamic panel data model, we restrict our attention to 

physicians whose interactions with the sales force are ongoing, and for whom the data include no 

intermissions in prescription history. To explore differences in the effectiveness of sales calls across 

physician specialties, we focus exclusively on the six medical practice areas that account for 

approximately 90% of the active physicians in our data: cardiologists, diabetologists, 

endocrinologists, consulting physicians, general practitioners, and general surgeons. For expository 

purposes, we will refer to the first three groups as specialists and the latter three as generalists. 

These restrictions lead us to focus our attention on N=9,595 physicians over T=6 month horizon.  

Figure 1 depicts the empirical distribution of prescriptions and detailing calls. Figure 1a 

shows the number of prescriptions per month to be highly heterogeneous and right-skewed across 

doctors, implying significant unobserved physician heterogeneity. The number of calls per month, 

illustrated in Figure 1b, shows heterogeneity similar in shape to Figure 1b but also discreteness: 

the majority of observations fall between 1 and 7 visits, in keeping with the firm’s route sales 

procedure (and monthly quotas). 

Tables 3–5 report descriptive statistics by medical practice area for numbers of prescriptions, 

detailing calls, and free samples respectively. Most striking is the magnitude of between-group 

difference: both sales-force efforts and outcomes are, on average, greater for the specialists. 

Heterogeneity in both prescriptions and sales calls within specialists is also noteworthy: although 

the diabetologists write the most prescriptions, sales-force efforts are more intensively targeted at 

the endocrinologists. Among generalists, however, within-group heterogeneity is only modest: 
                                                                                                                                                                                                
detailing may vary from brand to brand, analysis at the aggregate level offers generalizable insights: the firm’s 81 
brands represent a comprehensive cross-section of drugs in the marketplace. 



22 
 

consulting physicians generate slightly more attention and sales. The preceding section accounts 

for heterogeneity while addressing the endogeneity issues inherent in using lagged variables to 

represent the dynamics of detailing efforts. 

5.2.  The Empirical Model 

We model doctor i’s prescriptions of the focal firm’s pharmaceutical drugs at time t, Sit, as a 

function of an unobserved doctor-specific effect ia  constant over time, a stock of goodwill Git 

(created by the firm’s sales force), a time-specific effect (reflecting seasonality) td
  common to all 

physicians, and an idiosyncratic unobserved component nit such that: 

( )expit i it t itS Ga d n= + + + . 

We use the multiplicative form to prevent overweighting of high-volume prescribers. The stock of 

goodwill Git is assumed to increase with current-period sales efforts xit, but to decay over time, 

taking the geometric decay form of  

2
, 1 , 2 ...it it i t i tG x x xb lb l b- -

¢ ¢ ¢= + + +  

where l is the carryover rate (1-l would be the decay rate).6  

Our empirical application uses the total number of detailing calls and free samples provided to 

physician i during month t to create the detailing-effort vector xit. As shown in Section 2.2 and 

typically assumed in the marketing literature as the data-generating process of advertising (Lilien 

et al., 1992: 290), the geometric sum can be replaced by the lagged dependent variable si,t-1. Hence 

our model specification simplifies to  

                                                            
6 Because our model is multiplicative, the parameter l  represents elasticity in the current setting.  
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, 1it i t it t its s x ul b d-
¢= + + +     (12) 

 , 1it i it i tu a n ln -= + -   

where log( )it its S= , (1 )i ia l a= -  , and 1t t td d ld -= -  . 7  Notice that by the geometric sum 

assumption of the stock of goodwill, the error structure, by construction, posits serial correlation. 

For our empirical estimation, we construct moment conditions for Equation (12) by two 

different assumptions with regard to serial correlation, as discussed in Section 2. First, in the 

traditional approach, we utilize levels of time lags t-2 and earlier to instrument for the first 

difference of the lagged dependent variables as in Equation (5)—DGMM, and, in addition, the 

differences of time lags t-1 to instrument for the levels as in Equations (5) and (6)—SGMM. In 

our modified SCC approach, we restrict the use of time lags to t-3 and earlier in DGMM, as in 

Equation (9), and to t-2 in SGMM as in Equations (9) and (10).  

In addition to the endogeneity issue associated with using lagged dependent variables, 

detailing efforts may possess an endogeneity problem because the error component in Equation 

(12) encapsulates any other unobservable factors that affect physicians’ prescriptions. By using an 

extensive set of physician fixed effects, we mitigate this concern. Furthermore, because sales visits 

are scheduled in advance, and as a matter of company policy rarely rescheduled, we believe that 

by treating detailing efforts as predetermined we avoid this endogeneity issue. We limit the total 

number of moment conditions for our predetermined variables, detailing calls and free samples, by 

using only the most recent lag available for the differenced equation to prevent a potential 

                                                            
7 We tested for diminishing returns to detailing efforts by including quadratic terms, as in Manchanda and Chintagunta 
(2004). However, all coefficients for the quadratic terms are found to be insignificant. Thus we exclude them from the 
analysis. 
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overfitting problem.8 Thus, in our SCC approach we utilize 2 , 2E[ ] 0i t itx u- D =  for DGMM, and 

both 2 , 2E[ ] 0i t itx u- D =  and 2 , 2E[ ] 0i t itx u-D =  for SGMM, among the conditions given in Equation 

(11); in the traditional approach, we use lags of t-1 in an analogous manner. 

5.2.1.  Results: A Homogeneous Model 

Table 6 reports parameter estimates of the model given in Equation (12). We first turn our 

attention to the specification test results. The Arellano-Bond test for serial correlation shows that 

both AR(1) and AR(2) are rejected across all specifications. This result implies the existence of 

both first- and second-order serial correlation in the differenced error structure, providing a strong 

rationale for restricted use of the instruments as in our proposed methodology. 

Because serial correlation exists in the unobserved components of the data, the key assumption 

under the traditional methods is not satisfied. Hence the estimates obtained using the improper 

moment conditions of traditional methods, in the first and second columns of Table 6, are biased. 

This is evident in the counterintuitive results, which attribute negative effectiveness to detailing. 

Also, the carryover elasticity estimates become downward-biased, as shown in Section 4.2.  

In the third column of Table 6, the DGMM estimates under the SCC approach, which 

imposes restricted moment conditions, show recovered carryover elasticity measures. However, the 

model suffers from the weak-instruments problem associated with the sole use of levels as 

instruments for differences, and the slope parameters representing the effectiveness of sales efforts 

remain insignificant. Thus, for model inference, we turn our attention to the SGMM estimates 

                                                            
8 We also tested exploiting the full set of moment conditions for the predetermined variables (all available lags of levels, 
given by the second row of Equation (11)); the results were qualitatively similar. 
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under the SCC approach, which impose proper moment conditions while extracting more 

information from the data to correct for the weak-instrument problem. In the rightmost column of 

Table 6 we find that, on aggregate, the long-term effect—specifically, the carryover effect—is 

0.545, and that in the short term a unit increase in detailing calls elicits a 10.1% increase in 

prescriptions by the physician.9 

5.2.2.  Heterogeneity in Detailing Effectiveness across Specialties 

The preceding section accounts only for permanent heterogeneity via physician fixed effects. In 

reality, firms care about the effectiveness of detailing across different medical specialties. To 

investigate differences in the value of sales efforts across specialties, we allow for different slope 

parameters for each specialty such that 

( ) , 1( )
dit i S d i t d it t it

d
s I s x ul b dÎ -

¢= + + +å    (13) 

where 
( )di SI Î

 is an indicator function that equals one if doctor i is a member of specialty d, Sd. The 

model incorporates heterogeneity by allowing different carryover ( dl ) and detailing effectiveness 

( db ) in different specialties. The estimates for Equation (13) using various moment conditions 

are reported in Table 7. The general observable pattern with regard to different estimation 

methods is analogous to the homogenous model discussed in the previous subsection: presence of 

serial correlation, biased traditional estimators, and inefficiency of DGMM due to weak 

instruments. Thus, for model inference, we again turn our attention to the results from the SGMM 

                                                            
9 We calculated the magnitude of percentage increase using exp(0.096)-1=0.1008 due to the log-transformed dependent 
variable.  
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estimator based on the SCC approach. Three observations are worth noting in Table 7: (1) a 

stronger long-term effect (greater inertia) for specialist physicians, (2) a greater short-term 

marginal effect of detailing for generalist physicians, and (3) a limited effect of free samples. 

The parameter estimates of the lagged dependent variable (carryover effect) are larger for 

specialists, whose elasticity measures range from 0.591 to 0.706. In contrast, those of generalists 

range from 0.388 to 0.566; general surgeons exhibit the lowest inertia. These results imply that the 

long-term effect of sales efforts is more pronounced for specialists: because specialists tend to 

prescribe a narrower range of products, focused on specific symptoms and likely to have few if any 

substitutes, specialists commonly exhibit greater stickiness to a particular product (from a specific 

firm). In contrast, the short-term marginal effect of detailing is larger for generalists, indicating 

willingness to try and then to prescribe new drugs. Generalists typically prescribe a wide range of 

generic drugs, many of which have substitutes from competing firms.   

Thus we observe a general trend: specialists exhibit high inertia and low sensitivity to 

detailing; generalist are less persistent in their prescribing behavior and more responsive to short-

term detailing efforts. We also find that free samples dispensed during detailing calls have trivial 

effects on physicians’ prescribing behavior.   

5.2.3.  Empirical Evidence: Failure of Tests for Serial Correlation  

The analyses reported in the preceding subsections were conducted conditional on the 

Arellano-Bond AR(2) tests being rejected, i.e., on second-order serial correlation sufficiently strong 

to be detected across all methods. Hence, the researcher in those cases would have been cautious 

about applying the traditional dynamic panel data methods, and would have utilized restricted 
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moment conditions (lags t-3 and below) as in our proposed method. This subsection presents a 

case in which the traditional methods fail to reject the model despite the presence of serial 

correlation, leading to biased estimates and incorrect inference. 

For this analysis, we run the model in Equation (12) separately for each physician specialty. 

The results for diabetologists appear in Table 8. We find that the AR(2) test is rejected only 

when the SGMM estimator under the SCC approach is used. As is evident in Table 2, the AR(2) 

test statistic using moment conditions of the traditional approach exhibits weak power and fails to 

reject the null hypothesis of no second-order serial correlation. Also, the AR(2) test statistic for 

DGMM under the SCC approach suffers from both the weak-instruments problem and from the 

moderate effectiveness of explanatory variables, similar to the conditions reported in the rightmost 

columns of the table. 

In this case, the AR(2) test statistic may falsely justifies the misspecified model using the 

unrestricted moment conditions provided by the traditional methods. Thus, by using estimates 

derived from the traditional methods, researchers can mistakenly infer that sales efforts have no 

significant effect (SGMM) or could even yield a negative outcome (DGMM).  

6.  Conclusion 

Personal selling in the form of detailing to physicians is the prevailing go-to-market practice in 

the pharmaceutical industry. Nevertheless, findings on the impact of sales calls have varied widely, 

and controversially, from study to study. Inappropriate methods and imprecise data are the main 

causes of this variation. This paper develops and estimates a generalized model to accurately 
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derive the short- and long-term effects of detailing on physicians’ prescribing behavior. To 

encompass the intertemporal nature of detailing and to control for physician heterogeneity, we 

utilize a dynamic panel data method as the basis of our empirical analysis. 

We introduce a key methodological innovation to the marketing and economics literatures. We 

challenge the widely used serial correlation assumption (or the lack of such an assumption) about 

the error structure in traditional dynamic-panel-data settings and derive a more appropriate set of 

moment conditions that can properly address serial correlation. Such correlation is apt to be 

present in the empirical context of sum of marketing efforts characterized by geometric decay—for 

example, in the advertisement-as-investment model of Nerlove and Arrow (1962), which has been 

extensively utilized in the literature. Using the general structure of a dynamic panel data model, 

we review the validity of instruments with respect to assumptions about serial correlation and 

discuss corresponding plausible moment conditions for estimation.  

We also review the Arellano-Bond specification test for serial correlation, routinely used in 

traditional dynamic panel data settings. We provide proof that, in the presence of serial 

correlation, the test statistic becomes weak and imprecise at detecting it. This shortcoming leads 

to a misuse of moment conditions that results in biased parameter estimates and incorrect 

inference. To validate our claim, we run simulation studies and verify the failure of test statistics 

under traditional methods. We provide a revised set of moment conditions appropriate for 

unbiased identification of model primitives in a dynamic panel data setting. 

For our empirical analyses, we apply our proposed method to comprehensive data on detailing. 

We first show the existence of serial correlation in the data, and the corresponding failure of 
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traditional methods. Inadequate assumptions on serial correlation result in downward bias of 

parameter estimates. By analyzing differences in the effectiveness of detailing across medical 

practice areas, we find a substantial amount of heterogeneity in both persistence and short-term 

responsiveness to detailing efforts. Our results reveal that specialist physicians exhibit a greater 

long-term effect but only modest short-term responsiveness to detailing. In contrast, generalist 

physicians tend to be more responsive to sales calls in the short term, although the effect may not 

be long-lasting. Across all specialties, free samples are minimally effective at generating additional 

prescriptions.  

In summary, this paper provides a simple and practical but rigorous framework to precisely 

analyze the effectiveness of personal selling efforts. We believe that our method and empirical 

insights can help firms allocate sales-force resources more efficiently and devise optimal routes and 

call-pattern designs. Although our empirical application is in the personal-selling domain, our 

model can be extended to other contexts, such as advertising. We believe that doing so will help 

both academics and practitioners to better understand economic phenomena of a dynamic nature. 
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Table 1: Simulation Results without Serial Correlation (Case 1) 

Mean Estimates 

True Value 
l   0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
b   0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000

Traditional 
DGMM 

l   0.0989 0.1977 0.2968 0.3981 0.4940 0.5919 0.6883 0.7794 0.8402
b   0.8982 0.7997 0.6989 0.5987 0.4984 0.3998 0.2975 0.1973 0.0944

SGMM 
l   0.1007 0.2008 0.3012 0.4017 0.5019 0.6026 0.7032 0.8053 0.9078
b   0.8989 0.8005 0.7003 0.5995 0.5006 0.4020 0.3001 0.2007 0.0999

SCC 
DGMM 

l   0.0978 0.1959 0.2938 0.3966 0.4878 0.5844 0.6766 0.7635 0.8113
b   0.9021 0.7910 0.6932 0.6013 0.5105 0.4032 0.2959 0.1908 0.0927

SGMM 
l   0.1013 0.2002 0.3013 0.4044 0.5030 0.6031 0.7051 0.8055 0.9087
b   0.9007 0.7878 0.7034 0.6027 0.5099 0.4001 0.2908 0.1954 0.1007

Testing for Serial Correlation (Rejection Frequency in %) 

Traditional 
DGMM 

AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AR(2) 7.5 6.0 4.0 6.0 5.0 7.0 2.0 4.5 5.5

SGMM 
AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AR(2) 7.0 5.5 4.0 5.0 5.0 6.0 2.5 4.5 3.5

SCC 
DGMM 

AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AR(2) 5.0 5.0 5.5 5.5 6.0 6.5 3.5 4.0 5.5

SGMM 
AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AR(2) 5.0 6.0 5.0 5.5 4.5 5.0 2.5 4.0 3.0
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Table 2: Simulation Results with Serial Correlation (Case 2) 

Mean Estimates 

True Value 
l   0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
b   0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000

Traditional 
DGMM 

l   0.0481 0.0847 0.1092 0.1177 0.1094 0.0861 0.0440 0.0063 -0.0158
b   0.8876 0.7792 0.6652 0.5487 0.4253 0.3030 0.1825 0.0877 0.0224

SGMM 
l   0.0442 0.0749 0.0959 0.1047 0.1034 0.0938 0.0793 0.0743 0.1349
b   0.8898 0.7828 0.6711 0.5567 0.4360 0.3165 0.2000 0.1080 0.0403

SCC 
DGMM 

l   0.0960 0.1955 0.2926 0.3855 0.4816 0.5612 0.6294 0.5778 0.0301
b   0.9003 0.7998 0.6962 0.6143 0.5058 0.4132 0.2988 0.1813 0.0636

SGMM 
l   0.0994 0.2001 0.2988 0.3952 0.4977 0.5915 0.7075 0.8503 0.9637
b   0.9040 0.8045 0.7008 0.6161 0.5019 0.4175 0.2943 0.1978 0.1067

Testing for Serial Correlation (Rejection Frequency in %) 

Traditional 
DGMM 

AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AR(2) 32.5 67.0 85.5 87.5 76.5 58.0 25.5 6.5 8.0

SGMM 
AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AR(2) 28.5 58.0 70.0 80.5 71.0 66.0 61.0 58.0 72.0

SCC 
DGMM 

AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 82.5
AR(2) 68.0 99.5 100.0 100.0 100.0 100.0 100.0 99.0 7.5

SGMM 
AR(1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AR(2) 71.5 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 3: Descriptive Statistics: Physician Prescriptions 

 Overall 
Cardio-
logist 

Diabeto-
logist 

Endocrino-
logist 

Consulting
Physician 

General 
Practitioner 

General
Surgeon

Mean 19.96 17.64 40.42 32.63 19.87 17.10 17.77

Standard 
Deviation 

32.53 15.08 106.97 40.61 26.80 17.71 14.74

Maximum 1590.00 220.00 1590.00 377.00 1300.00 760.00 108.00

Minimum 1.00 1.00 1.00 1.00 1.00 1.00 1.00

N 9595 628 422 206 4988 3069 282

 

 

Table 4: Descriptive Statistics: Detailing Calls 

 Overall 
Cardio-
logist 

Diabeto-
logist 

Endocrino-
logist 

Consulting
Physician 

General 
Practitioner 

General
Surgeon

Mean 2.55 2.70 3.23 4.69 2.68 2.10 2.18

Standard 
Deviation 

1.56 1.67 2.05 2.94 1.55 1.14 1.02

Maximum 24.00 16.00 23.00 24.00 23.00 17.00 7.00

Minimum 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 

 

Table 5: Descriptive Statistics: Free Samples 

 Overall 
Cardio-
logist 

Diabeto-
logist 

Endocrino-
logist 

Consulting
Physician 

General 
Practitioner 

General
Surgeon

Mean 3.39 2.50 3.90 4.28 3.69 2.97 3.17

Standard 
Deviation 

17.99 10.48 14.07 32.62 18.27 18.04 15.46

Maximum 1100.00 225.00 340.00 1100.00 1100.00 1050.00 540.00

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 6: Estimation Results: Homogenous Model 

 
Traditional  SCC 

DGMM SGMM  DGMM SGMM 

Lagged log(prescription) 0.215 (0.019) 0.254 (0.014) 0.492 (0.038) 0.545 (0.035) 

Detailing Calls -0.016 (0.004) -0.003 (0.004) 0.084 (0.047) 0.096 (0.015) 

Free Samples (×10) 0.005 (0.001) 0.005 (0.001) 0.020 (0.027) -0.001 (0.014) 

Specification Tests  

   Arellano-Bond AR(1) Reject Reject Reject Reject

   Arellano-Bond AR(2) Reject Reject Reject Reject

Number of Instruments 22 35 18 28

Number of Observations 38380 47975 38380 47975

Dependent variable: logarithm of prescriptions per month. Standard errors are reported in 
parentheses. Significance (at the 0.05 level) appears in boldface.  
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Table 7: Estimation Results: Heterogeneous Model 

 
Traditional  SCC 

DGMM SGMM  DGMM SGMM 

Lagged log(prescription)       

 

Cardiologist 0.115 (0.078) 0.238 (0.031)  0.109 (0.213) 0.699 (0.061) 

Diabetologist 0.069 (0.075) 0.394 (0.031)  0.079 (0.399) 0.591 (0.059) 

Endocrinologist 0.018 (0.143) 0.328 (0.030)  0.207 (0.299) 0.706 (0.079) 

Consulting Physician 0.202 (0.029) 0.265 (0.016)  1.176 (0.173) 0.566 (0.040) 

General Practitioner 0.251 (0.041) 0.215 (0.018)  -0.286 (0.132) 0.530 (0.042) 

General Surgeon 0.208 (0.125) 0.232 (0.037)  -0.119 (0.276) 0.388 (0.109) 

Detailing Calls       

 

Cardiologist 0.002 (0.015) 0.015 (0.013)  -0.011 (0.018) -0.015 (0.042) 

Diabetologist -0.036 (0.015) 0.006 (0.013)  -0.029 (0.023) 0.100 (0.036) 

Endocrinologist 0.006 (0.013) 0.032 (0.011)  0.013 (0.017) -0.002 (0.047) 

Consulting Physician -0.022 (0.005) -0.009 (0.005)  0.028 (0.012) 0.092 (0.022) 

General Practitioner -0.005 (0.008) 0.000 (0.007)  -0.040 (0.012) 0.109 (0.034) 

General Surgeon 0.013 (0.031) -0.004 (0.025)  -0.028 (0.042) 0.251 (0.092) 

Free Samples (×10)       

 

Cardiologist 0.002 (0.011) 0.010 (0.010)  0.002 (0.012) 0.057 (0.038) 

Diabetologist 0.012 (0.007) 0.007 (0.005)  0.011 (0.007) 0.023 (0.048) 

Endocrinologist 0.000 (0.002) 0.004 (0.003)  0.001 (0.002) 0.004 (0.012) 

Consulting Physician 0.005 (0.001) 0.005 (0.001)  0.009 (0.002) -0.016 (0.013) 

General Practitioner 0.004 (0.002) 0.004 (0.002)  0.002 (0.001) 0.032 (0.022) 

General Surgeon 0.015 (0.003) 0.010 (0.006)  0.009 (0.005) 0.171 (0.099) 

Specification Tests  

   Arellano-Bond AR(1) Reject Reject Reject Reject

   Arellano-Bond AR(2) Reject Reject Reject Reject

Number of Instruments 112 185 88 143

Number of Observations 38380 47975 38380 47975

Dependent variable: logarithm of prescriptions per month. Standard errors are reported in 
parentheses. Significance (at the 0.05 level) appears in boldface. 
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Table 8: Estimation Results: Diabetologists 

 
Traditional  SCC 

DGMM SGMM  DGMM SGMM 

Lagged log(prescription) 0.118 (0.075) 0.459 (0.063) 0.471 (0.263) 0.639 (0.113) 

Detailing Calls -0.034 (0.016) 0.027 (0.015) 0.105 (0.057) 0.097 (0.037) 

Free Sample (×10) 0.014 (0.006) 0.009 (0.008) 0.098 (0.053) 0.080 (0.054) 

Specification Tests  

   Arellano-Bond AR(1) Reject Reject Reject Reject

   Arellano-Bond AR(2) Not Reject Not Reject Not Reject Reject

Number of Instruments 22 35 18 28

Number of Observations 1688 2110 1688 2110

Dependent variable: logarithm of prescriptions per month. Standard errors are reported in 
parentheses. Significance (at the 0.05 level) appears in boldfce. 
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Figure 1: Distribution of Prescriptions / Calls 

a)  Number of Prescriptions b)  Number of Calls 

 

 


