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Cornea

Gamma-Irradiation Reduces the Allogenicity of Donor
Corneas

William Stevenson, Sheng-Fu Cheng, Parisa Emami-Naeini, Jing Hua, Eleftherios I. Paschalis,

Reza Dana, and Daniel R. Saban*

PURPOSE. To evaluate the utility and allogenicity of gamma-
irradiated corneal allografts.

METHODS. Corneal buttons were harvested from C57BL/6 mice
and decellularized with gamma irradiation. Cell viability was
assessed using TUNEL and viability/cytotoxicity assays. Ortho-
topic penetrating keratoplasty was performed using irradiated
or nonirradiated (freshly excised) C57BL/6 donor grafts and
BALB/c or C57BL/6 recipients. Graft opacity was assessed over
an 8-week period and graft survival was evaluated using
Kaplan-Meier survival curves. Mixed-lymphocyte reactions and
delayed-type hypersensitivity assays were performed to
evaluate T-cell alloreactivity. Real-time PCR was used to
investigate the corneal expression of potentially pathogenic
T-helper 1, 2, and 17 cell-associated cytokines.

RESULTS. Corneal cells were devitalized by gamma irradiation
as evidenced by widespread cellular apoptosis and plasma
membrane disruption. Nonirradiated allograft and isograft
rates of survival were superior to irradiated allograft and
isograft rates of survival (P < 0.001). Mixed lymphocyte
reactions demonstrated that T-cells from irradiated allograft
recipients did not exhibit a secondary alloimmune response
(P < 0.001). Delayed-type hypersensitivity assays demonstrat-
ed that irradiated allografts did not elicit an alloreactive
delayed-type hypersensitivity response in graft recipients (P
� 0.01). The corneal expression of T-helper 1, 2, and 17
cell-associated cytokines was significantly lower in failed
irradiated allografts than rejected nonirradiated allografts (P �
0.001).

CONCLUSIONS. Gamma-irradiated corneas failed to remain
optically clear following murine penetrating keratoplasty;
however, gamma irradiation reduced the allogenicity of these
corneas, potentially supporting their use in procedures such as
anterior lamellar keratoplasty or keratoprosthesis implantation.
(Invest Ophthalmol Vis Sci. 2012;53:7151–7158) DOI:
10.1167/iovs.12-9609

Corneal transplantation, also known as corneal grafting, is
one of the oldest, most common, and most successful

forms of solid tissue transplantation. In 2010, over 42,000
corneal transplantations were performed in the United States
alone.1 Despite advances in recognition and treatment,
immune rejection remains the leading cause of corneal
transplantation failure.2 Corneal allografts placed in first-time,
noninflamed, avascular graft beds enjoy a 2-year survival rate
approaching 90%; however, previously sensitized, inflamed, or
vascularized graft beds afford a much lower rate of graft
acceptance.3,4 Although corneal allograft rejection can be
mediated by redundant immunologic processes, currently
available evidence indicates that T-cells, particularly CD4þ T-
cells, have a critical role in the immunopathogenesis of corneal
allograft rejection.5,6 Treatment modalities that downregulate
CD4þ T-cell alloreactivity promise to enhance the long-term
survival of corneal allografts.

According to the World Health Organization, corneal
blindness accounts for nearly 8 million of the 39 million cases
of blindness worldwide.7,8 Corneal transplantation is a sight-
saving procedure with the potential to benefit many of those
who suffer from corneal blindness; unfortunately, it has been
estimated that only 100,000 corneal transplantations are
performed per year worldwide.9 The availability of corneal
transplantation is limited in part by the shortage of donated
corneas, exclusion of corneas not fit for transplantation, and
relatively short shelf-life of transplantation-suitable corneas.10

Novel corneal processing methods, such as gamma irradiation,
could help address the worldwide shortage of corneal tissue by
increasing the supply and extending the shelf-life of corneas
available for transplantation.

Gamma irradiation is commonly used by tissue banks for the
sterilization of grafts against bacterial, viral, fungal, and even
prional contaminants.11–13 TBI/Tissue Banks International
(Baltimore, MD) uses specialized procedures for the procure-
ment, screening, gamma irradiation, and preservation of donor
corneas to produce VisionGraft Sterile Cornea.14 Gamma-
irradiated corneas have been used in a variety of clinical proce-
dures, including anterior lamellar keratoplasty, tectonic kerato-
plasty, glaucoma patch grafting, and keratoprosthesis
implantation.15,16 Thus far, irradiated corneas have only been
used for procedures that do not require viable graft endothelium.
We evaluated the utility of gamma-irradiated corneal grafts using
a murine model of orthotopic penetrating keratoplasty. Further-
more, since gamma irradiation has been shown to reduce
immunogenicity in some experimental models, we investigated
the allogenicity of gamma-irradiated corneas.

MATERIALS AND METHODS

Animals and Anesthesia

Male C57BL/6 and BALB/c mice (Charles River Laboratories, Wilming-

ton, MA) aged 8 to 10 weeks were used for this study. Mice were
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housed in a secure, pathogen-free environment at the Schepens Eye

Research Institute Animal Care Facility. All procedures and protocols

were approved by the Schepens Eye Research Institute Animal Care

and Use Committee, and all animals were treated in accordance with

the Association for Research in Vision and Ophthalmology (ARVO)

Statement for the Use of Animals in Ophthalmic and Visual Research.

Anesthesia and analgesia were induced with intraperitoneal injections

of ketamine/xylazine at doses of 120 and 20 mg/kg, respectively.

Tissue Harvesting and Gamma Irradiation

The center of each donor cornea (C57BL/6) was marked with a 2 mm

diameter trephine and excised using Vannas scissors (Storz Instruments

Co., Madison, NJ). Following excision, corneas were placed in chilled

Optisol-GS (Bausch & Lomb, Irvine, CA) and shipped to TBI/Tissue

Banks International for gamma irradiation.11 Nonirradiated (freshly

excised) corneal grafts (C57BL/6) were harvested, placed in chilled

PBS, and used immediately for corneal transplantation.

For the TUNEL assay, freshly enucleated eyes were placed in chilled

Optisol-GS (Bausch & Lomb). Gamma irradiation was performed using

a synthetic radioactive isotope of Cobalt-60 at the Massachusetts

Institute of Technology Radiation Lab. The dose of gamma irradiation

administered was calculated using the standard decay curve of Co-60.

Näıve and gamma-irradiated eyes were stored at þ48C until further

processing.

TUNEL Assay

TUNEL was performed using a commercially available kit as described

previously (in situ cell death detection kit; Roche Diagnostics Corp.,

Indianapolis, IN).17 In brief, näıve and gamma-irradiated eyes were

embedded in optimal cutting temperature (OCT) compound and

frozen. Cryosection was performed and 13 lm sections were placed on

positively charged glass slides (Menzel Gläser, Braunschweig, Ger-

many). The sections were fixed in 4% paraformaldehyde for 20 minutes

and washed in PBS for 30 minutes at room temperature. Samples were

permeabilized on ice for 2 minutes in a solution containing 0.1% Triton

X-100 and 0.1% sodium citrate. Four groups were examined: gamma-

irradiated eyes (experimental group), nonirradiated eyes (control

negative), nonirradiated eyes treated with DNase (control positive),

and gamma-irradiated eyes stained with label solution alone (control

false positive). TUNEL and label solutions were prepared as recom-

mended, and the treated samples were incubated in a humidified

chamber at 378C for 60 minutes in the dark. Samples were washed

thoroughly in PBS and mounted using mounting media with 40,6-

diamidino-2-phenylindole (DAPI). The stained corneal sections were

examined using a confocal microscope (Leica TCS–SP5; Leica Micro-

systems, Buffalo Grove, IL) at 403 magnification.

Cell Viability/Cytotoxicity Assay

Cell viability was assessed with a commercially available kit as

described previously with minor modifications (LIVE/DEAD viability/

cytotoxicity kit for mammalian cells; Invitrogen, Carlsbad, CA).18

Freshly excised näıve corneas and gamma-irradiated corneas were

washed 3 times in sterile PBS for 10 minutes. Immediately before

staining, a solution containing 2.5 lL calcein AM (4 mM in dimethyl

sulfoxide [DMSO]) and 10 lL ethidium homodimer-1 (2 mM in 1:4

DMSO/H2O) in 5 mL PBS was prepared. Corneal buttons were

incubated in this solution for 40 minutes in the dark at room

temperature. Corneas subsequently were washed one time in PBS for

5 minutes and mounted using mounting media with DAPI. Samples

were examined using a confocal microscope (Leica TCS – SP5; Leica

Microsystems) at 403 magnification.

Corneal Transplantation

Murine orthotopic penetrating keratoplasty was performed as

described previously using irradiated corneas and nonirradiated

corneas as donor grafts.19 Briefly, the center of each recipient’s right

eye was marked with a 1.5 mm diameter trephine and excised. The

donor corneal graft was centered on the graft bed and secured using 8

interrupted 11–0 nylon sutures (Surgical Specialties Co., Reading, PA).

Tarsorrhaphies were placed for the first 2 days post-transplantation and

corneal sutures were removed on postoperative day 7. Corneal

transplantations that experienced complications (e.g., cataract, infec-

tion, anterior synechiae, or intraoperative hemorrhage) were excluded

from analysis.

Immunosuppressive Regimen

Dexamethasone was prepared by dissolving powdered dexamethasone

(Sigma-Aldrich, St. Louis, MO) in a mixture of PBS and DMSO

(Calbiochem, Darmstadt, Germany) at a concentration of 1.0%.

Immunosuppressed mice received either topical or combined topical

and systemic dexamethasone using previously established doses.20

Dexamethasone 0.1% eye drops were administered to transplanted

eyes twice per day from days 0 to 14. Intraperitoneal dexamethasone

(2 mg/kg) was administered once per day from preoperative day 1 to

postoperative day 5.

Evaluation of Graft Opacity and Survival

Slit-lamp biomicroscopy was performed to evaluate graft opacity over

an 8-week period. A standard opacity-grading system was used to score

opacity in a semiquantitative manner, with each graft receiving a score

from 0 to 5þ based on the presence and extent of opacity as described

previously.19 Graft failure was defined as two consecutive time points

with a score of 3þ, denoting obscuration of the iris details. Kaplan-

Meier survival curves were used to analyze graft survival.

Mixed Lymphocyte Reaction (MLR)

The MLR protocol used has been described previously.21 Briefly,

transplant recipient’s ipsilateral submandibular and cervical lymph

nodes were harvested and pooled during the peak of allosensitization

that occurs around post-transplantation week 3. T-cells were sorted

magnetically using anti-CD90.2 magnetic microbeads (Miltenyi Biotec,

Auburn, CA) according to the manufacturer’s recommendations. The

spleens of näıve C57BL/6 mice were harvested and erythrocytes were

lysed to obtain unfractionated stimulator cells that subsequently were

incubated for 20 minutes at 378C in the presence of 50 lg/mL

mitomycin-C (Sigma-Aldrich). T-cells and stimulator cells were co-

cultured at a 1:1 ratio in a 96-well round bottom plate for 72 hours at

5.0% CO2. Mixed lymphocyte reaction co-cultures were pulsed with

BrdU (Sigma-Aldrich) 16 hours before the measurement of T-cell

proliferation with a BrdU incorporation assay kit (Millipore, Billerica,

MA) according to the manufacturer’s recommendations.

Delayed-Type Hypersensitivity (DTH) Assay

The DTH assay used has been described previously.22 In brief, näıve

C57BL/6 spleens were harvested, erythrocytes were lysed, and

unfractionated splenocytes were diluted to a concentration of 1.5 3

106 cells per 10 ll. The ipsilateral ear pinna of each transplant recipient

was injected with 10 lL of the stimulator cell suspension. Ear thickness

was measured using an engineer’s micrometer (Mitutoyo, Aurora, IL) at

3 time-points: pre-injection, and 24 and 48 hours post-injection. At

each time point, three measurements were taken and averaged.

Specific ear swelling (D ear thickness) was calculated by subtracting

average baseline measurements from the peak average maximal ear

thickness measured at either 24 or 48 hours post-injection.

Real-Time PCR

Recipient corneas from mice sacrificed for the MLR were harvested and

pooled randomly within their respective groups. Total RNA was
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extracted using Trizol Reagent (Invitrogen) and the commercially

available RNeasy Microkit (Qiagen, Valencia, CA). The first strand of

complementary DNA was synthesized using random hexamers

(SuperScript III; Invitrogen) according to the manufacturer’s recom-

mendations. Real-time PCR was performed using TaqMan Universal

PCR Mastermix and dye-labeled, predesigned primers (Applied

Biosystems, Carlsbad, CA) for IFN-c (Mm01168134_m1), IL-17A

(Mm00439618_m1), IL-4 (Mm00445259_m1), and GAPDH

(Mm99999915_g1), and all assays were performed in triplicate. Results

were derived by the comparative threshold cycle method and

normalized to GAPDH as the internal control (copy number/106

GAPDH).

Statistical Analysis

Data were analyzed using ANOVA and Dunnett’s multiple comparison

test or Student’s t-test. Kaplan-Meier survival curves were analyzed

using the log-rank (Mantel-Cox) test. Results are presented as the mean

6 95% confidence interval (CI), and error bars represent the 95% CI. P

values � 0.05 were considered statistically significant.

RESULTS

Corneal Cells Were Devitalized by Gamma
Irradiation

To evaluate corneal cell viability, gamma-irradiated corneas
were compared to nonirradiated (normal) corneas using
TUNEL and cell viability/cytotoxicity assays. Corneal sections
underwent TUNEL to identify DNA strand breaks generated
by apoptosis. Apoptosis is a relatively rare occurrence in
normal corneas as evidenced by the dearth of TUNELþ cells in
näıve corneal tissue (Fig. 1A). However, the TUNEL assay
revealed widespread apoptosis in gamma-irradiated corneas,
consistent with previous studies demonstrating that gamma
irradiation can induce cellular apoptosis.23 These findings
were confirmed with a cell viability/cytotoxicity assay that
allowed for the detection of live and dead cells. Live cells
with intracellular esterase activity were stained with calcein
AM, while dead cells with disrupted cell membranes were
stained with ethidium homodimer-1. We found that most of
the cells in the nonirradiated corneas were viable (data not
shown). However, in gamma-irradiated corneas, viable cells
were absent universally and all cells were positive for
ethidium homodimer-1, indicating widespread cell death
(Fig. 1B).

Full-Thickness Irradiated Corneal Allografts
Opacified Rapidly

Penetrating keratoplasty was performed using irradiated
C57BL/6 allografts, nonirradiated C57BL/6 allografts, and
BALB/c recipients (n¼ 6 mice/group). Irradiated corneas were
remarkably clear in the immediate postoperative period (Figs.
2A, 2B). However, irradiated allograft opacity rose between
postoperative days 2 and 14, and average opacity exceeded 4þ
by day 10. These findings differed significantly from nonirra-
diated allografts, which peaked in opacity on day 5 and cleared
between days 5 and 14. Irradiated allograft opacity was
significantly elevated by day 10 compared to nonirradiated
allograft opacity (P < 0.001). All irradiated allografts (100%)
failed by day 10, yielding a median survival time (MST) of 10
days (Fig. 3A). In contrast, 66.7% of nonirradiated allografts
survived beyond day 21, and 50% survived beyond day 56 for
an MST of 42 days. The survival of nonirradiated allografts was
superior to the survival of irradiated allografts (P < 0.001).

Full-Thickness Irradiated Corneal Allografts
Opacified Despite Immunosuppression

The most common cause of corneal allograft failure is immune
rejection. Therefore, we evaluated the effect of immunosup-
pression on irradiated allograft survival. Irradiated allograft
recipients received topical or topical plus systemic dexameth-
asone to determine the effect of immunosuppression on
irradiated allograft survival (n ¼ 6 mice/group). Immunosup-
pression did not improve irradiated allograft survival, as all
immunosuppressed irradiated allografts (100%) failed by day
10, yielding an MST of 10 days (Fig. 3B).

Full-Thickness Irradiated Corneal Isografts Also
Opacified Rapidly

Syngeneic corneal transplantation was performed to investi-
gate further the possibility of immune rejection being the
cause of irradiated graft failure. Syngeneic corneal transplan-
tation was performed using irradiated C57BL/6 isografts,
nonirradiated C57BL/6 isografts, and C57BL/6 recipients (n ¼
6 mice/group). The survival of irradiated isografts closely
mirrored the survival of irradiated allografts, with all irradiated
isografts (100%) failing by day 10 for an MST of 10 days (Fig.
3C). All nonirradiated isografts (100%) survived beyond
postoperative day 56. The difference between nonirradiated
isograft survival and irradiated isograft survival was statistically
significant (P < 0.001).

T-Cells from Irradiated Allograft Recipients Did
Not Exhibit a Secondary Alloimmune Response

MLR was used to provide an in vitro assessment of T-cell
proliferation in response to the presentation of donor
alloantigens (n ¼ 3 mice/group per trial). T-cells from näıve
BALB/c mice with no previous exposure to donor alloantigens
were used as the negative control, while T-cells from BALB/c
mice with actively rejecting nonirradiated corneal allografts
were used as the positive control. BALB/c mice that received
irradiated allografts were either left untreated or treated with a
combination of topical and systemic dexamethasone. T-cell
proliferation in response to alloantigen presentation was
minimal for the näıve, irradiated allograft, and dexametha-
sone-treated irradiated allograft groups (Fig. 4A). In contrast, T-
cell proliferation was robust for the actively rejecting corneal
allograft group, indicating alloantigen exposure and sensitiza-
tion. The difference in T-cell proliferation was significant when
comparing the näıve, irradiated allograft, and immunosup-
pressed irradiated allograft groups with the actively rejecting
corneal allograft group (P < 0.001).

Gamma-Irradiated Allografts Did Not Elicit an
Alloreactive DTH Response

The DTH assay was used to provide an in vivo assessment of
the immune response to donor alloantigens (n ¼ 4–6 mice/
group). Näıve BALB/c mice with no previous exposure to
donor alloantigens were used as a negative control, while
BALB/c mice with actively rejecting nonirradiated corneal
allografts were used as a positive control. Specific ear swelling
was 3.42 6 1.32 lm for the näıve group, 9.83 6 3.40 lm for
the actively rejecting nonirradiated allograft group, 3.08 6
1.00 lm for the irradiated allograft group, and 3.33 6 0.92 lm
for the dexamethasone-treated irradiated allograft group (Fig.
4B). Differences in specific ear swelling were significant when
comparing the näıve, irradiated allograft, and immunosup-
pressed irradiated allograft groups to the actively rejecting
allograft group (P � 0.01).

IOVS, October 2012, Vol. 53, No. 11 Irradiated Graft Immunogenicity 7153



FIGURE 1. Gamma irradiation devitalized the donor corneal cells. (A) Representative TUNEL staining of nonirradiated and irradiated corneal
sections indicating widespread cellular apoptosis in irradiated corneas (DAPI ¼ blue, TUNEL ¼ red). (B) Representative cell viability/cytotoxicity
staining of irradiated corneal epithelium, stroma, and endothelium. All of the irradiated corneal cells were positive for ethidium homodimer-1 (EthD-
1), indicating widespread plasma membrane disruption and cell death (DAPI ¼ blue, EthD-1¼ red).
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T-Helper (Th) Cell Infiltration of Irradiated
Allografts Was Negligible

Th cell infiltration of corneal grafts has been described in
corneal allograft rejection.24 Real-time PCR was used to
determine the corneal mRNA expression of Th1-associated
interferon (IFN)-c, Th17-associated interleukin (IL)-17A, and
Th2-associated IL-4 (n¼ 3 corneas/group per trial). The mRNA
levels of IFN-c, IL-17A, and IL-4 were elevated significantly in
rejected allografts compared to näıve corneas, irradiated
allografts, and immunosuppressed irradiated allografts (*P �
0.001, Fig. 5). The expression of IFN-c and IL-17A was minimal,
and IL-4 was undetectable in the corneas of irradiated allograft
recipients.

DISCUSSION

T-cells are required for the rejection of corneal allografts.5,6

Rejected corneal allografts contain a mixed cellular infiltrate

that includes CD4þ (helper) and CD8þ (cytotoxic) T-cells.24

Donor-specific CD4þ T-cells are thought to damage corneal
allografts by secreting inflammatory mediators, activating
ancillary effector cells, and inducing cellular apoptosis.25

Abrogating the CD4þ T-cell response dramatically increases
the rate of corneal allograft survival.26–29 Several CD4þ T-cell
subsets have been implicated in the immunopathogenesis of
corneal allograft rejection including Th1, Th2, and Th17 cells.
Th1 cells mediate corneal allograft rejection under normal
conditions by secreting proinflammatory cytokines (e.g., IFN-
c) and activating auxiliary effector cells (e.g., macrophag-
es).25,30,31 IL-4, IL-5, and IL-13–secreting Th2 cells contribute to
corneal allograft rejection in cases of allergic disease, such as
airway hyperreactivity or allergic conjunctivitis.32,33 The role
of Th17 cells in corneal allograft rejection remains unclear as
IL-17 has been implicated in early transplant rejection and
ocular immune privilege.34,35 In the absence of CD4þ T-cells,
CD8þ T-cells can mediate corneal allograft rejection indepen-
dently.36 Regardless of the exact role of each T-cell subset, Th

FIGURE 2. Gamma-irradiated corneal allograft opacity. (A) Nonirradiated allograft opacity peaked at day 5 before trending downwards, whereas
irradiated allograft opacity rose between postoperative days 2 and 14 (*P < 0.001). (B) Representative irradiated allograft opacity. Day 0: minimal-to-
moderate corneal opacity was evident throughout the penetrating keratoplasty procedure. Day 2: epithelial opacity (1þ) was present following
tarsorrhaphy removal. Day 5: stromal opacity (1–2þ) began to develop. Day 7: stromal opacity (2–3þ) became increasingly evident. Day 10:
significant opacity (5þ) and graft protrusion evident following corneal suture removal. Day 21: significant opacity (4þ) remained throughout the
observation period.

IOVS, October 2012, Vol. 53, No. 11 Irradiated Graft Immunogenicity 7155



cells are central to the immunopathogenesis of corneal
allograft rejection.

Normal corneal architecture and viable corneal cells are
necessary for the maintenance of corneal clarity.37 Following
gamma irradiation, human corneas have been shown to exhibit
altered cellular architecture consistent with devitalized epithe-
lial cells and keratocytes.38 TUNEL and cell viability/cytotox-
icity assays were performed to further characterize the
devitalization of corneal cells induced by gamma irradiation.
The TUNEL assay demonstrated widespread corneal cell

apoptosis, while the cell viability/cytotoxicity assay demon-
strated widespread corneal cell death. Despite the devitaliza-
tion of donor corneal cells, irradiated allografts were
remarkably clear in the immediate postoperative period;
however, all irradiated allografts failed by postoperative day
10. Corticosteroids are the mainstay of treatment for corneal
allorejection, but neither topical nor combined topical and
systemic corticosteroid treatment improved irradiated allograft
survival. Furthermore, syngeneic corneal transplantation dem-
onstrated that irradiated isografts failed at the same rate as
irradiated allografts. In contrast, nonirradiated allografts
enjoyed a 50% survival rate, and nonirradiated isografts enjoyed
a 100% survival rate. Although immune rejection is the leading
cause of corneal transplantation failure, grafts can fail for a
variety of reasons, including endothelial cell failure.39 These
findings suggest that the inability of irradiated corneal grafts to
remain optically clear was not immune-mediated.

Cell preservation techniques that devitalize cells (e.g.,
cryopreservation) have demonstrated immunosuppressive

FIGURE 3. Gamma-irradiated corneal graft survival. (A) Survival curve
demonstrating that no irradiated allografts survived beyond day 10,
whereas 50% of nonirradiated allografts (n¼ 6 mice/group) survived to
day 56 (P < 0.001). (B) Survival curve demonstrating that neither
topical dexamethasone treated nor combined topical and systemic
dexamethasone treated irradiated allografts (n ¼ 4–6 mice/group)
survived beyond postoperative day 10. Dexa: dexamethasone treated.
(C) Survival curve demonstrating that no irradiated isografts survived
beyond day 10, whereas 100% of nonirradiated isografts (n ¼ 6 mice/
group) survived to day 56 (P < 0.001).

FIGURE 4. Gamma irradiation reduced corneal allogenicity. (A) Mixed
lymphocyte reaction results demonstrating that T-cells from irradiated
allograft recipients (n ¼ 3 mice/group) do not exhibit a secondary
alloimmune response (representative results from two independent
trials, *P < 0.001). (B) Delayed-type hypersensitivity reaction
demonstrating that irradiated corneas (n ¼ 4–6 mice/group) do not
elicit an alloreactive response in vivo (*P � 0.01). Dexa: topical and
systemic dexamethasone treated.
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effects in a variety of experimental models.40,41 High-dose
gamma irradiation has been shown to reduce the risk of
immune rejection in experimental models of tracheal and islet
cell transplantation.42,43 Because T-cells are required for the
rejection of corneal allografts, MLR and DTH assays were
performed to evaluate T-cell alloreactivity. The MLR assay
demonstrated that T-cells isolated from irradiated allograft
recipients did not exhibit a secondary alloimmune response.
The DTH assay demonstrated that irradiated allografts did not
elicit an alloreactive DTH response. Furthermore, the reduced
or absent corneal expression of Th1-associated IFN-c, Th17-
associated IL-17A, and Th2-associated IL-4 strongly suggests
that gamma irradiation decreased or eliminated the corneal
infiltration of potentially pathogenic Th cells. The low-level
infiltration of IFN-c and IL-17A mRNA-expressing cells may
have been the result of non-specific inflammation. The reduced
allogenicity of gamma-irradiated corneas is likely related to the
devitalization of potentially antigenic corneal cells, including
resident antigen-presenting cells. Although extending the
duration of corneal allograft storage has been shown to
decrease the number of passenger leukocytes, this does not
necessarily increase corneal allograft survival.44 Given that the
alloantigens that stimulate alloreactivity are primarily cell-
associated, devitalizing the donor corneal cells could dramat-
ically decrease the graft’s alloantigen load. These findings also
may apply to other biocompatible acellular corneal grafts, for
example decellularized corneal tissue or acellular collagen
scaffolds. In fact, a prospective, randomized clinical trial
investigating the use of glycerol-cryopreserved corneal tissue
in anterior lamellar keratoplasty reported no cases of
allorejection.45 Although isolated anterior grafts do not elicit
endothelial immune reactions, epithelial rejection and stromal
rejection remain tangible concerns.45

VisionGraft Sterile Corneas have been used in a variety of
clinical procedures, including anterior lamellar keratoplasty,
tectonic keratoplasty, glaucoma patch grafting, and keratopros-
thesis implantation.15,16 To be chosen for gamma irradiation, a
cornea must exhibit healthy, clear stroma and comply with the
Eye Bank Association of America’s standards for screening and
procurement.46 The adaptation of VisionGraft Sterile Corneas
promises to increase the supply and extend the shelf-life of
donated corneas. Taken together, our results indicate that
gamma-irradiated corneas do not elicit T-cell-mediated alloim-
munity. This is significant given the importance of T-cells in the
rejection of nonirradiated corneal allografts. Although our
experimental results suggest that gamma-irradiated corneas may
not be suitable for use in penetrating keratoplasty, their reduced
allogenicity potentially supports their use in procedures such as
anterior lamellar keratoplasty or keratoprosthesis implantation.
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