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Cornea

Inflammation and the Nervous System: The Connection
in the Cornea in Patients with Infectious Keratitis

Andrea Cruzat,"? Deborah Witkin," Neda Baniasadi,"” Lixin Zbeng,' Joseph B. Ciolino,”
Ula V. Jurkunas,” James Chodosh,> Deborah Pavan-Langston,” Reza Dana,’

and Pedram Hamrabh'?

Purposk. To study the density and morphologic characteristics
of epithelial dendritic cells, as correlated to subbasal corneal
nerve alterations in acute infectious keratitis (IK) by in vivo
confocal microscopy (IVCM).

MEerHODS. IVCM of the central cornea was performed prospec-
tively in 53 eyes with acute bacterial (n = 23), fungal (n = 13),
and Acanthamoeba (n = 17) keratitis, and in 20 normal eyes,
by using laser in vivo confocal microscopy. Density and mor-
phology of dendritic-shaped cells (DCs) of the central cornea,
corneal nerve density, nerve numbers, branching, and tortuos-
ity were assessed and correlated. It should be noted that due to
the “in vivo” nature of the study, the exact identity of these
DCs cannot be specified, as they could be monocytes or tissue
macrophages, but most likely dendritic cells.

ResuLts. IVCM revealed the presence of central corneal DCs in
all patients and controls. The mean DC density was signifi-
cantly higher in patients with bacterial (441.1 * 320.5 cells/
mm?; P < 0.0001), fungal (608.9 * 812.5 cells/mm?; P <
0.0001), and Acanthamoeba Kkeratitis (1000.2 *= 1090.3 cells/
mm?>; P < 0.0001) compared with controls (49.3 + 39.6 cells/
mm?). DCs had an increased size and dendrites in patients with
IK. Corneal nerves were significantly reduced in eyes with IK
compared with controls across all subgroups, including nerve
density (674.2 £ 976.1 vs. 3913.9 * 507.4 pum/frame), total
nerve numbers (2.7 = 3.9 vs. 20.2 = 3.3), main trunks
(15*22 vs. 6.9+ 1.1), and branching (1.2 = 2.0 vs.
13.5 = 3.1; P < 0.0001). A strong association between the
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diminishment of corneal nerves and the increase of DC density
was observed (r = —0.44; P < 0.0005).

ConcLusions. IVCM reveals an increased density and morpho-
logic changes of central epithelial DCs in infectious Kkeratitis.
There is a strong and significant correlation between the in-
crease in DC numbers and the decreased subbasal corneal
nerves, suggesting a potential interaction between the immune
and nervous system in the cornea. (Invest Ophthalmol Vis Sci.
2011;52:5136-5143) DOIL:10.1167/i0vs.10-7048

Corneal nerves are of great interest to clinicians and scien-
tists, because of their important roles in regulating corneal
sensation, epithelial integrity, proliferation, wound healing,
and for their protective functions." The cornea is a densely
innervated tissue supplied by the terminal branches of the
ophthalmic division of the trigeminal nerve as ciliary nerves.®
Corneal nerves penetrate the corneal periphery in a radial
distribution, parallel to the superficial corneal surface, be-
tween the Bowman’s layer and the basal epithelium, configur-
ing the subbasal nerve plexus that supplies the overlying cor-
neal epithelium.?

In vivo confocal microscopy (IVCM) is a noninvasive pro-
cedure that allows imaging the living cornea at the cellular
level, providing images comparable with histochemical meth-
ods. IVCM enables the study of corneal cells, nerves, and the
immune cells in different ocular and systemic diseases, and
after corneal surgery.®> The complex stromal and epithelial
branching of corneal nerves is not visible by conventional
slit-lamp biomicroscopy, but can be visualized by IVCM.

Our group has recently demonstrated the loss of corneal
sensation in patients with herpes simplex Kkeratitis (HSK),
which is strongly correlated with the profound diminishment
of the subbasal nerve plexus in these patients by IVCM with a
slit scanning confocal microscope (Confoscan 4; Nidek Inc.,
Gamagori, Japan).® Furthermore, IVCM revealed that the loss of
the subbasal nerve plexus started within days of acute HSK
onset. More recently, we also observed a profound diminish-
ment of the subbasal corneal nerve plexus in a pilot study of
patients with fungal and Acanthamoeba keratitis by laser
IVCM, where we observed the close proximity and apposition
of subbasal nerves with epithelial dendritic cells in the cornea
(Kurbanyan K, et al. IOVS 2009;50:ARVO E-Abstract 2402).

Dendritic cells, the most potent antigen-presenting cells
(APCs) of the body, are strategically positioned as immune
sentinels ready to respond to invading pathogens in peripheral
tissues.” Dendritic cells have been shown to be critical for the
initiation of adaptive immune responses and for maintenance
of peripheral tolerance. Dendritic cells also represent the prin-
cipal immune sentinels to the foreign world in the cornea and
ocular surface (reviewed in Refs. 8 and 9). While central cor-
neal dendritic cells were initially described in mice,'®~'? their
presence has now been confirmed in humans, both by ex vivo
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studies'®>™'® and more recently by IVCM at the level of the basal

epithelium and Bowman'’s layer in the central cornea.'®~'®

Previous studies in the skin and gut literature have demon-
strated the bidirectional interplay of the immune and nervous
system.'® ! Further, experimental studies have shown the
immunomodulatory function of nerves via neuropeptides in
mice.”° ?? In the present study, our aim was to evaluate the
density and morphologic characteristics of epithelial dendritic-
shaped cells (DCs) and to correlate them to the subbasal
corneal nerve alterations by laser IVCM in a prospective fash-
ion in patients with infectious keratitis (IK). Although tissue
macrophages or monocytes can have this morphology, we
attributed the dendritic-shaped cells to dendritic cells. Our data
demonstrates that diminishment of the subbasal nerve plexus
in IK significantly correlates with the increase of epithelial DC
density in these patients.

PATIENTS AND METHODS

We conducted a prospective, cross-sectional study, in a controlled,
single-blinded fashion. Fifty-three eyes of 53 patients with diagnosis of
acute infectious bacterial, fungal, and Acanthamoeba keratitis were
included in the study. Twenty eyes of 20 normal volunteers constituted
the control group. All subjects were recruited from the Cornea Service
of the Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, be-
tween 2009 and 2010. This study was Health Insurance Portability and
Accountability Act (HIPAA)-compliant, adhered to the tenets of the
Declaration of Helsinki, and was approved by the Institutional Review
Board (IRB)/Ethics Committee of our institution. Written informed
consent was obtained from all subjects after a detailed explanation of
the nature of the study. All patients and normal subjects underwent
slitlamp biomicroscopy. Patients were diagnosed with acute infectious
keratitis according to the clinical history and clinical examination. Only
patients with positive corneal cultures or positive confocal findings for
fungal or Acanthamoeba Keratitis were included. Duration of disease
was included from the time patients presented with clinical evidence
of infectious keratitis. The study excluded subjects with a history of
any prior episode of infectious keratitis, ocular inflammatory disease,
ocular trauma, previous eye surgery within 3 months, or diabetes.
Patients receiving local or systemic corticosteroid therapy at the time
of the examination were not included.

Laser scanning in vivo confocal microscopy (Heidelberg Retina
Tomograph 3 with the Rostock Cornea Module, Heidelberg Engineer-
ing GmbH, Dossenheim, Germany) of the central cornea was per-
formed in all subjects. This microscope uses a 670-nm red wavelength
diode laser source and it is equipped with a 63X objective immersion
lens with a numerical aperture of 0.9 (Olympus, Tokyo, Japan). The
laser confocal microscope provides images that represent a coronal

Epithelium
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section of the cornea of 400 X 400 wm, which is 160,000 wm?, at a
selectable corneal depth and is separated from adjacent images by
approximately 1 to 4 um, with a lateral resolution of 1 um/pixel.
Digital images were stored on a computer workstation at 30 frames per
second. A disposable sterile polymethylmethacrylate cap (Tomo-Cap;
Heidelberg Engineering GmbH, Dossenheim, Germany), filled with a
layer of hydroxypropyl methylcellulose 2.5% (GenTeal gel; Novartis
Ophthalmics, East Hanover, NJ) in the bottom, was mounted in front of
the cornea module optics for each examination. One drop of topical
anesthesia 0.5% proparacaine hydrochloride (Alcaine; Alcon, Fort
Worth, TX) was instilled in both eyes, followed by a drop of hydroxy-
propyl methylcellulose 2.5% (GenTeal gel, Novartis Ophthalmics) in
both eyes. One drop of hydroxypropyl methylcellulose 2.5% was also
placed on the outside tip of the cap to improve optical coupling, and
manually advanced until the gel contacted the central surface of the
cornea.

A total of six to eight volume and sequence scans were obtained
from the center of each cornea, at least three of which were sequence
scans with particular focus on the subepithelial area, the subbasal
nerve plexus, and epithelial dendritic cells, typically at a depth of 50 to
80 wm (Fig. 1). When a corneal ulcer was present with an epithelial
defect, both the ulcer and the surrounding area were scanned and
analyzed. A minimum of three representative images of the subbasal
nerve plexus and epithelial dendritic cells were selected for analysis for
each eye. The images were selected from the layer immediately at or
posterior to the basal epithelial layer and anterior to the Bowman’s
layer. The criteria to select the images were the best focused and
complete images, with the whole image in the same layer, without
motion, without folds, and good contrast.

Three masked observers evaluated the confocal images for central
corneal DC density, DC size, number of dendrites per cell, corneal
nerve morphology, and analyzed the subbasal nerve plexus as previ-
ously described.®? IVCM images at a depth of 50 to 70 um at the level
of basal epithelial layers, basal lamina, or subbasal nerve plexus were
chosen for analysis of DCs. It should be noted that due to the “in vivo”
nature of the study, the exact identity of these DC cannot specified, as
they could be monocytes or tissue macrophages, but most likely
dendritic cells. DCs were morphologically identified as bright individ-
ual dendritiform structures with cell bodies that allowed us to differ-
entiate these structures from the corneal nerves. Briefly, DCs were
counted using software (Cell Count, Heidelberg Engineering GmbH) in
the manual mode. The data were expressed as density (cells/
mm?) * SD. DC size and number of dendrites per DC were analyzed
using Image] software (developed by Wayne Rasband, National Insti-
tutes of Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/). DC size was measured as the area covered
by a single cell. The data were expressed as size (uwm? *+ SD and
dendrites per cell = SD. The nerve analysis was done using the semi-
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FIGURE 1.

° Dendritic Cells

Oblique section through corneal epithelium, basal membrane, and anterior stroma in bacterial keratitis. Epithelial dendritic cells (yellow

arrows) were visualized in the basal epithelial layer and subbasal nerve plexus.
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TaBLE 1. Demographic Data of Normal Controls and Patients with Infectious Keratitis

Bacterial Fungal Acanthamoeba
Controls Keratitis Keratitis Keratitis
Patients, » 20 23 13 17
Age,y 33.1+7.6 36.3 + 13.2 48.8 + 18.4 36.5 *+ 14.1
Sex, male/female 10/10 12/11 9/4 9/8
Days of infection — 8.9 + 6.9 16.1 = 18.3 155+ 124
Contact lens use, % 0 78.3 30.8 68.7

Values are mean * SD except where otherwise noted. Days of infection is time elapsed since
diagnosis of the infection until the in vivo confocal microscopy was performed.

automated tracing program Neuron),?* a plug-in for ImageJ (http://
www.imagescience.org/meijering/software/neuronj/; see Fig. 30).
Nerve density was assessed by measuring the total length of the nerve
fibers in micrometers per frame (160,000 umz). Main nerve trunks
were defined as the total number of main nerve trunks in one image
after analyzing the images anterior and posterior to the analyzed image
to confirm that these did not branch from other nerves. Nerve branch-
ing was defined as the total number of nerve branches in one image.
The number of total nerves measured was defined as the number of all
nerves, including main nerve trunks and branches in one image. The
grade of nerve tortuosity was classified in four grades according to a
tortuosity grading scale reported by Oliveira-Soto and Efron.> Statisti-
cal analysis was performed by Student’s #-test and ANOVA to compare
the different groups. The Pearson correlation coefficient was calcu-
lated to determine significant relationships between DC density, nerve
parameters, duration of infection, and patient age. Differences were
considered statistically significant for P values < 0.05. Analyses were
performed with statistical analysis software (SAS software version 9.2;
SAS Institute Inc., Cary, NC).

RESULTS

Fifty-three eyes of 53 patients with IK including bacterial (n =
23), fungal (n = 13) and Acanthamoeba (n = 17) (Figs. 3A-C)
infection were included for analysis and were compared with
20 eyes of 20 normal volunteers. Demographic data of the IK
subgroups and control group are presented in Table 1.

Corneal Subbasal Nerve Plexus by IVCM

Quantitative analysis of nerve parameters for IK subgroups and
normal control group are in Table 2. Patients with IK showed
a significant reduction in the subbasal nerve plexus parameters
when compared with controls (Fig. 2 and Figs. 3G, 3K, and
3L-N). In particular, the mean nerve density (674.2 = 976.1 vs.

3913.9 £ 507.4 wm/frame; P < 0.0001), the total number of
nerves (2.7 £ 3.9 vs. 20.2 = 3.3; P < 0.0001), the number of
main nerve trunks (1.5 = 2.2 vs. 6.9 = 1.1; P < 0.0001), and
the number of branches (1.2 = 2.0 vs. 13.5 £ 3.1; P < 0.0001)
were all found to be significantly lower. Nerve tortuosity was
increased in IK eyes when compared with controls, but did not
reach statistical significance (1.7 = 1.3 vs. 1.1 £ 0.5; P = 0.006).

Furthermore, subgroup analysis of patients with IK demon-
strated that patients with bacterial (Fig. 3L), fungal (Fig. 3M),
and Acanthamoeba (Fig. 3N) keratitis all had a significantly
reduced subbasal nerve plexus compared with controls, in-
cluding the mean nerve density (824.0 = 1050.7, 956.9 * 1093.0,
215.6 = 575.4, respectively, vs. 3913.9 = 507.4 wm/frame;
P < 0.0001), the total number of nerves (3.4 * 4.5, 3.9 + 4.0,
0.5 * 1.0, respectively, vs. 20.2 * 3.3; P < 0.0001), the num-
ber of main nerve trunks (1.9 = 2.5, 2.0 = 2.3, 0.5%1.1, re-
spectively, vs. 6.9 = 1.1; P < 0.0001), and the number of
branches (1.5 £ 2.3, 0.9 = 1.7, 0.3 £ 0.9, respectively, vs.
13.5 = 3.1; P < 0.0001; Fig. 2). Comparison between sub-
groups demonstrated that the Acanthamoeba keratitis group
showed a more profound decrease in nerve parameters when
compared with the bacterial and fungal subgroups, some of
which reached statistical significance (Table 2).

Dendritic Cells by IVCM

Dendritic-shaped cells (DCs) were located on the subbasal
layer in close proximity to the nerve plexus (Fig. 1, and Figs.
3G-K), with an average distance between DCs and nerves of
13.6 = 5.5 um and a range of 0 to 26 wm. Quantitative analysis
of the DC density, DC size, and number of dendrites per cell for
IK subgroups and the normal control group is shown in Table
2. We observed central epithelial DCs in 100% of normal
corneas, with a mean density of 49.3 = 39.6 cells/mm?* (Figs.

TABLE 2. Corneal Subbasal Nerve Plexus Parameters and Dendritic Cell Density in Infectious Keratitis

Infectious Keratitis Patients

Bacterial Fungal Acanthamoeba Controls

Eyes, n 23 13 17 20
Dendritic cell density, cells/mm? 441.1 + 320.5%t 608.9 + 812.5% 1000.2 *+ 1090.3* 493 + 396
Dendritic cell area, [.Lmz 195.3 + 98.5* 276.5 = 160.7* 170.1 * 54.4* 81.6 = 23.8
Number of dendrites, dendrites/cell 5.1+ 1.9* 45 *1.1* 4.2 *0.5*% 3.0*+04
Subbasal nerve density, wm/frame 824.0 + 1,050.7 956.9 + 1,093.0 215.6 = 575.4 3913.9 = 507.4

[m/mm?] [5,150 * 6,566]* [5,980 + 6,831]*t [1,347 + 3,596]* [24,461 *+ 3,171]
Total nerves, n 3.4 * 4.5% 3.9 + 4.6%F 0.5 = 1.0* 20.0 3.7
Main nerve trunks, 7 1.9 + 2.5%f 2.0 = 2.3% 0.5+ 1.1* 6.7+12
Total nerve branches, n 1.5+ 2.3* 09 *+ 1.7* 0.3 + 0.9* 13.4 =34
Grade of tortuosity 1.9 + 1.3* 1.1 +1.1 1.8+ 1.6 1.1+05

Values reported as mean * SD.
* Statistically significant (P < 0.05) compared with controls.

t Statistically significant (P < 0.05) compared with the Acanthamoeba subgroup.
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FIGURE 2. Corneal nerve parame-
ters in infectious Keratitis patients.
Bacterial, fungal, and Acantham-
oeba keratitis patients showed statis-
tical significant diminishment of cor-
neal nerve parameters compared
with controls. No significant differ-
ence was found between the differ-
ent etiologies of infection. (A) Nerve
density. (B) Total number of nerves.
(C) Main nerve trunks. (D) Nerve
branching. Error bars represent SD
from the mean. Statistical analysis by
ANOVA. *P < 0.0001 compared with
control group.
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3G-K). No statistically significant relationship between DC
density with age or sex was detected (P = 0.59; R = 0.00).
Patients with IK showed a significant increase in DC density
when compared with controls (672.9 = 791.5 vs. 49.3 = 39.6;
P < 0.0001), which was significantly more pronounced for
Acanthamoeba keratitis (1000.2 = 1090.3) (Figs. 3F and 3))
compared with bacterial (441.1 = 320.5, P < 0.02) (Figs. 3D
and 3H), but not fungal keratitis (608.9 * 812.5) (Figs. 3E and
3D) (Fig. 4). Further, IVCM revealed morphologic changes in
DCs in all IK subgroups. While small cells with few if any
dendrites (presumably immature) were present in normal cor-
neas, patients with IK demonstrated a clear increase in both
size of DCs (233 + 108.4 wm? vs. 81.6 + 23.8 um?, P <
0.001), and number of dendritic processes compared with
controls (4.6 = 0.9 vs. 3.0 = 0.4 dendrites per cell; P < 0.001),
presumably characteristics of a more mature phenotype.

Correlation of Dendritic Cell Density and
Subbasal Corneal Nerve Alterations

The increase in DC density was significantly correlated to the
substantial diminishment of subbasal corneal nerves in patients
with IK (R = —0.44; P < 0.0005) (Fig. 5A). Similarly, the
increase in DC density was significantly correlated with the
loss of main nerve trunks (R —0.41; P < 0.002), total
number of nerves (R = —0.39; P < 0.002), and nerve branches
R = —0.39; P < 0.003) (Figs. 5B-D). We neither found a
significant correlation between the IVCM findings and age (R =
0.06; P = 0.59), nor with the duration of infection (R = —0.21;
P = 0.19).

DISCUSSION

The assessment of corneal innervation and inflammation, until
recently, has only been possible through the measurement of
corneal sensation and slit-lamp biomicroscopy, respectively.
The use of rapid, noninvasive in vivo confocal microscopy now
allows systematic studies of corneal nerve morphology and
density, as well as the study of immune cells (including den-
dritic cells) in patients. Our study presented herein, is the
largest prospective IVCM study performed in patients with
bacterial, fungal, and Acanthamoeba keratitis. To our knowl-
edge, this is the first study to systematically analyze subbasal

Dendritic Cells and Corneal Nerves in Infectious Keratitis
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nerve changes, epithelial DC changes, and their potential cor-
relation in infectious keratitis.

In the present study, we demonstrate a significant decrease
of the subbasal nerve density in patients with IK (4213 = 6100
vs. 24,461 = 3171 um/mm?). Subbasal nerve density varies
depending on the type of confocal microscope used (reviewed
in Ref. 25). Subbasal corneal nerve density in normal eyes
range between 5534 wm/mm? and 10,658 wm/mm?> using the
tandem scanning confocal microscope (TSCM) and slit scan-
ning confocal microscope (SSCM), respectively.26 In contrast,
a study by Patel et al.”” demonstrated the subbasal nerve
density to be as high as 21,668 wm/mm? using the laser scan-
ning confocal microscope (LSCM), which is comparable with
our results in normal corneas.

Recently, we demonstrated a significant decrease in corneal
innervation by IVCM (Confoscan 4; Nidek Inc.) in patients with
HSK, which strongly correlated with the loss of corneal sensi-
tivity.® Although our current results are not directly compara-
ble with this report due to the use of different technologies,
the level of decrease in subbasal nerves seems to be more
profound than in HSK. Historically, clinicians measure corneal
sensation to differentiate HSK from other sources of IK. Our
current report, however, suggests that bacterial, fungal, and
Acanthamoeba keratitis all result, at least temporarily, in neu-
rotrophic keratopathy as well. Prospective longitudinal studies
are currently underway to demonstrate whether these changes
in the subbasal plexus are permanent or temporary.

Interestingly, although the diminishment of the subbasal
nerve plexus was noted in all subgroups, this was more severe
in the Acanthamoeba group. This trend could not entirely be
ascribed to the potentially longer duration of disease, which
was similar between the fungal and the Acanthamoeba
groups. In addition, perineuritis, a hallmark of Acanthamoeba
Kkeratitis,”® could have led to this observation. Further, a study
by Pettit et al.>® demonstrated that Acanthamoeba trophozo-
ites were able to destroy nerve cells in vitro both by cytolysis
and by ingestion. Alternatively, diminishment in corneal inner-
vation could be directly related to the level of inflammation,
which is typically more profound in patients with Acantbam-
oeba and fungal keratitis. Reduced subbasal nerve density in
noninfectious inflammatory diseases has previously been de-
scribed such as in dry eye syndrome,**~>® with a length per
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FIGURE 3. Corneal subbasal nerve plexus and dendritic cells. (A) Slit lamp photo of bacterial keratitis. (B) Slit lamp photo of fungal keratitis. (C)
Slit lamp photo of Acanthamoeba keratitis. (D-0O) In vivo confocal microscopy images. (D, H) Bacterial keratitis. (E, ) Fungal keratitis. (F, J)
Acantbamoeba Keratitis. (G, K) Normal control. (L, M, N) Decreased subbasal nerve plexus in bacterial, fungal, and Acanthamoeba keratitis,
respectively. Reduction of the subbasal nerve plexus with increased density of the dendritic cells is observed in the different groups of infectious

keratitis. (O) Neuron] tracings in normal control subbasal nerve plexus.

frame of 511 = 106 wm/frame by slit-scanning confocal micro-
scope, although not to the level observed in our present study.
Together, these findings suggest that any inflammatory process
could potentially lead to loss of corneal innervation and might
potentially result in neurotrophic keratopathy.

Laser IVCM reveals the presence of corneal epithelial den-
dritiform cells. Dendritiform cells observed in the corneal ep-
ithelium by IVCM cannot categorically be defined as DC based
on morphology alone, as macrophages, for example, can ob-
tain a dendritic morphology as well. However, previous studies

in mice and human corneas by our group and other laborato-
ries!012:13:15.3435 have clearly demonstrated that the bone
marrow-derived cells present in the normal corneal epithelium
are exclusively dendritic cells. A recent study by Guthoff et
al.*® has compared ex vivo and in vivo morphology of different
leukocytes. They have shown that while laser scanning confo-
cal microscope does not allow the clinician to distinguish cell
characteristics, such as the presence of nucleoli or granules,
the typical cell morphology, diameter of the cell body, and
location of the cell, all may aid the clinician in the correct
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FIGURE 4. Dendritic cell density in infectious keratitis patients. Pa-
tients with bacterial, fungal, and Acanthamoeba keratitis had signifi-
cantly higher epithelial dendritic cell density than control subjects.
Error bars represent SE from the mean. *P < 0.0001 compared with
control group. TP < 0.0001 bacterial compared with Acanthamoeba
group. Statistical analysis by ANOVA.

interpretation of the confocal data. This group demonstrated
that granular leukocytes such as neutrophils, basophils, and
eosinophils are <10 microns in size, while nongranular leuko-
cytes, such as lymphocytes and monocytes are up to 15 mi-
crons and 20 microns respectively. Thus, while the cells we
counted could in theory be other inflammatory cells, the mor-
phology (bean-shape), dendrites, lack of several nuclear lobes,
and larger size, suggest that these cells could be monocytes,
tissue macrophages, but most likely dendritic cells of the epi-
thelium.

We observed the presence of DCs in normal controls
(49.3 * 39.6 cellsymm?) in close proximity to nerves, which
has previously been noted ex vivo.>”~*° Previous IVCM studies
have shown the presence of epithelial DCs (24.1 cells/mm?
and 34.9 cellsymm?)'°~'® in the central cornea of 20.0%'7 to
31.3%'° healthy volunteers. In patients with IK, we found a
significant increase in DC density, regardless of etiology. Fur-
ther, while DCs in central normal corneas are smaller in size
with few if any dendrites (presumably immature), patients
with IK demonstrate a significant increase in both size of DCs,
as well as in the number of dendrites. The variable appearance
of DCs possibly indicates different stages of maturation or
activation of these cells. These findings are in agreement with
prior IVCM studies and numerous ex vivo studies in mice
demonstrating that while the corneal center is comprised al-
most entirely of immature and precursor DCs,®10:11:15:41.42
during inflammation there is an increase in mature DCs.>* The
relatively wide range in DC density (672.9 = 791.5 cells/mm?)
could also be explained by the variation in the level of corneal
inflammation and associated proinflammatory cytokines and
chemokines across the patients. Interestingly, the Acantham-
oeba Keratitis subgroup had a significantly higher DC density
than the bacterial keratitis group. While this could potentially
be related to the more profound loss of nerves in this group, it
could alternatively be attributable to more severe inflammation
observed in the amoeba group as well. Moreover, this difference

»

FIGURE 5. Correlation between dendritic cell density increase and
corneal nerve diminishment. Multivariate regression factor and P val-
ues are shown. Dendritic cell density is significantly correlated to nerve
density (A), main nerve trunks (B), total number of nerves (C), and
nerve branches (D). Three outlier patients with the highest dendritic
cell density and no nerves (4847.1; 3194.0; 2608.0) are not plotted in
the figures because they are outside the highest limit of the axis.
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could be due to the fact that patients with fungal and Acantham-
oeba keratitis were not treated with steroids, while some patients
with bacterial keratitis did receive steroid treatment.
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Increased density of corneal DCs by IVCM has previously
been described in patients with dry eye,'® in immune-mediated
inflammatory diseases,'” and in patients with pterygia. >4
While Lin et al.'® demonstrated an epithelial DC density of
89.8 = 10.8 and 127.9 *= 23.7 cells/mm” in 32 non-Sjogren’s
and 14 Sjogren’s patients respectively, Mastropasqua et al.'”
demonstrated a DC density of 194 + 76.2 cells/mm? in 45 eyes
with vernal keratoconjunctivitis, adenoviral keratitis, corneal
graft rejection, and recurrent stromal HSK. Further, Labbé et
al.** and Wang et al.** demonstrated increased DC density in
eyes with pterygia. Moreover, increased DC density has been
observed in 16 eyes with viral keratitis,*> three eyes with
Thygeson's keratitis,*® a patient with deep lamellar keratitis
after LASIK,*” and a patient with bacterial keratitis.*® While the
DC density in some patients in our IK groups are comparable
with the study by Mastropasqua et al.'” the overall DC density
is 2- to 5-fold higher.

We feel that several factors are important in obtaining
high-quality, artifact-free images with the confocal microscope
used in this study (Heidelberg Retina Tomograph 3 with the
Rostock Cornea Module, Heidelberg Engineering GmbH) partic-
ularly in patients with IK. These include well-trained personnel,
patient collaboration, improved optical coupling of the cap to the
corneal surface with additional drop of hydroxypropyl methylcel-
lulose 2.5% on the outside tip of the cap, and finally the use of
sequence scans for imaging the layers of interest. Further, in case
folds or artifacts are encountered, gentle retraction of the cap
reduces pressure on the cornea and may resolve artifacts. More-
over, sequential sequence scans performed in and around the
corneal ulcer or infiltrate, focusing on the same layer are crucial to
provide sufficient time for the machine to adjust the contrast
according to the reflectivity of the tissue and obtain sufficient
high-quality representative images.

The increase in central epithelial DCs herein was strongly
associated with the diminishment of the subbasal nerve density
and numbers, suggesting a potential interplay between the
immune and nervous system in the cornea. We acknowledge
the limitations of in vivo studies in patients to determine the
exact nature of the inverse relationship of DC density and
subbasal nerve number and density demonstrated here. While
theoretically these events could be partially or completely
independent, our preliminary preclinical animal studies sug-
gest that these events are, at least in part, directly related. This
communication is likely maintained through a biochemical
language, with cytokines produced by immune cells being
recognized by receptors on cells of the neuroendocrine sys-
tem, and vice versa, with cells of the immune system recog-
nizing neurotransmitters and neuropeptides produced by the
nerves.*” For example, Hosoi et al. have shown that calcitonin
gene-related peptide (CGRP) was able to directly inhibit antigen
presentation by epidermal Langerhans cells.” Interestingly, while
the cornea, an immune-privileged tissue, has the highest nerve
density in the whole body with a density 300 times higher than
the skin, the DC density in the central cornea is extremely low
under steady state conditions with 49.3 + 39.6/mm? in the cen-
tral cornea versus 378 + 20/mm? in the epidermis (a level similar
to the DC density in bacterial keratitis).>! Further, the low nerve
number and density in our patients with IK, is still several fold
higher than the nerve density of the skin. Thus, the concurrent
demonstration of higher DC density and decrease in nerve density
is not necessarily surprising.

Further, substance P (SP), expressed by enteric neurons,
has been shown to modulate colonic inflammation in the gut.>>
Moreover, the immunomodulatory and tolerogenic effect of
various neuropeptides have been suggested,>® which, in their
absence due to damage to nerves could lead to enhanced
immune response as seen in our study. In the cornea, Hazlett’s
group has recently demonstrated the role of substance P in
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IFN-g production of natural killer cells,>® and the immuno-

modulatory function of vasoactive intestinal peptide (VIP) in
the murine Pseudomonas aeruginosa keratitis model through
regulation of adhesion molecule expression.”>>® It has been
suggested that the immune system may act as a “sixth sense,”
informing the nervous system that a systemic immune/inflam-
matory response to infection or tissue injury is occurring.>”
Thus, it is tempting to speculate that in the setting of infectious
corneal diseases and the loss of immune privilege, the in-
creased presence of DC could serve to protect the cornea in
the absence of fully functional protection by corneal nerves.

A limitation of the present study is that the IVCM only provides
morphologic and morphometric data on cells and nerves. Due to
the “in vivo” nature of this study in patients, functional data
cannot be demonstrated. Animal studies are currently underway
to elucidate the mechanisms of our findings. In addition, by
evaluating only the center of the cornea for corneal nerves and
DC, we cannot necessarily extrapolate our findings to the periph-
eral cornea. Further, poor topographic reproducibility and the
difficulty to ensure the exact same locations are tested in all
patients are currently not optimal. However, as the differences
between the control and IK groups are dramatic, this will likely
not alter the conclusions of this study.

In conclusion, IVCM enables a direct and reproducible obser-
vation of increased corneal epithelial DC at the level of the
subbasal nerve plexus, and demonstrates strong correlation with
the profound loss of the subbasal nerve plexus. Additional studies
are needed to demonstrate if the loss of subbasal nerve plexus in
these patients will lead to loss of corneal sensation, in which case
the role of measuring corneal sensitivity to distinguish HSK from
other forms of IK would need to be reconsidered, as it could lead
to erroneous conclusions and management of these patients.
Further, the study of corneal innervation by IVCM demonstrates
an objective methodology for monitoring patients, potentially
predicting the risk of neurotrophic keratopathy. Quantification of
DC and other immune cells by IVCM could potentially allow
objective evaluation of antimicrobial and anti-inflammatory treat-
ment response in the cornea.
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