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Abstract: Use of pesticides by households in rural Ghana is common for residential pest control,
agricultural use, and for the reduction of vectors carrying disease. However, few data are available
about exposure to pesticides among this population. Our objective was to quantify urinary
concentrations of metabolites of organophosphate (OP), pyrethroid, and select herbicides during
pregnancy, and to explore exposure determinants. In 2014, 17 pregnant women from rural Ghana were
surveyed about household pesticide use and provided weekly first morning urine voids during three
visits (n = 51 samples). A total of 90.1% (46/51) of samples had detectable OP metabolites [geometric
mean, GM (95% CI): 3,5,6-trichloro-2-pyridinol 0.54 µg/L (0.36–0.81), para-nitrophenol 0.71 µg/L
(0.51–1.00)], 75.5% (37/49) had detectable pyrethroid metabolites [GM: 3-phenoxybenzoic acid 0.23
µg/L (0.17, 0.32)], and 70.5% (36/51) had detectable 2,4-dichlorophenoxyacetic acid levels, a herbicide
[GM: 0.46 µg/L (0.29–0.73)]. Concentrations of para-nitrophenol and 2,4-dichlorophenoxyacetic acid
in Ghanaian pregnant women appear higher when compared to nonpregnant reproductive-aged
women in a reference U.S. population. Larger studies are necessary to more fully explore predictors
of exposure in this population.

Keywords: insecticides; herbicides; pregnancy; organophosphates; pyrethroids

1. Introduction

Prenatal exposure to nonpersistent pesticides has been linked to adverse impacts on
neurodevelopment, particularly for organophosphates, but also for pyrethroids [1–5]. Little is known
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about the exposure to these nonpersistent pesticides among African populations [6]. It is particularly
important to fill this knowledge gap for pregnant women, because of fetuses’ vulnerability to
environmental toxins given their rapid development and the immaturity of their metabolic pathways [7].

A variety of pesticides are readily available for purchase in Ghana [8,9]. The promotion of pesticide
benefits by chemical companies, an inadequate regulatory environment, and a limited understanding
of the potential dangers among users, may contribute to the misuse of these chemicals by African
households and farms. These factors, in turn, may increase human exposure to these chemicals [10,11].
Pesticide exposure among Ghanaians may also occur through the use of insecticides for vector control
against malaria and other insect-borne diseases [12]. For malaria control, insecticide-treated bednets
are now standard and pyrethroids are the most common insecticide used for the treatment of nets.
Additionally, the Ghanaian government performs indoor residual spraying with insecticides in some
communities, to reduce malaria [13]. Many households also purchase insecticides to minimize the
nuisance of pests in and around the home.

In the Brong Ahafo Region of Ghana, we have previously reported that 71.5% of the households
surveyed used pesticides (1040/1455) [14]. This included herbicides (68.9% of households), insecticides
(61.0% of households), and rodenticides (44.5% of households). Hazardous practices identified in
the area included self-reported storage in the home in close proximity to food, the re-use of empty
insecticide containers for food storage, and inappropriate application just before harvest. Furthermore,
only a minority of people reported the use of protective clothing such as gloves or masks during
pesticide applications (301/1040, 28.9%) [14]. Reports describing frequent pesticide use among
households and a lack of personal protection have been published from other African regions [15,16].
Whether these hazardous practices result in higher levels of exposure remains unknown.

The primary objective of this study was to assess the exposure to insecticides and herbicides
among pregnant women in rural Ghana. Secondarily, we aimed to explore whether exposures were
associated with farming practices, housing conditions, or the use of insecticide-treated bednets, in order
to identify potential predictors for confirmation in larger studies.

2. Material and Methods

2.1. Study Area

The study was conducted in the Brong Ahafo Region of Ghana. The study area is predominantly
rural, and subsistence farming is the main economic activity [17]. Malaria remains the primary reason
for outpatient visits to health facilities in the region. A variety of shops sell pesticides for household
and agricultural pest control.

2.2. Participant Selection

We utilized the Ghana Randomized Air Pollution and Health Study (GRAPHS; Trial Registration
NCT01335490) to recruit pregnant women for this pilot study on prenatal pesticide exposure. GRAPHS
was undertaken in 35 community clusters by the Kintampo Health Research Centre (KHRC) in
Brong Ahafo, to understand whether the use of improved cook stoves or fuels during pregnancy
can improve birth weight and reduce pneumonia during the first year of life [18]. A simple random
sampling method was used to select women from a list of the 1090 GRAPHS participants under active
surveillance as of September 2014. Selected women were approached for participation in this pesticide
exposure study and were provided with information about the additional study procedures required,
including the answering of a structured questionnaire on household pesticide use and the provision of
three urine sample collections.

2.3. Ethical Considerations

Written informed consent was obtained for all who agreed to participate in the study. Women
unable to provide consent by signature provided their thumb print. The thumb print was accompanied
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by the signature of a witness who was also present for the consenting process and was not part of the
research team. Ethical approval was obtained from Partners Healthcare (overseeing Massachusetts
General Hospital, Protocol #2015P001067), the KHRC Scientific Review Committee and Institutional
Ethics Committee (Protocol #2014-17). The involvement of the Centers for Disease Control and
Prevention (CDC) laboratory did not constitute engagement in human subjects’ research.

2.4. Data Sources

2.4.1. Questionnaire Interview

A questionnaire was administered to participants about the household use of pesticides, personal
and family agricultural activities, bednet use, and other antimalarial prevention strategies. Permission
was obtained to access information from GRAPHS regarding demographics, socioeconomic factors,
and other relevant household characteristics.

2.4.2. Urine Sample Collection and Analysis

A total of three first morning urine voids were collected from participants in polypropylene
specimen containers over three consecutive weekly home visits during pregnancy, following the study
staff’s instructions. Samples were transported in coolers with ice packs on the same day of collection
by GRAPHS Field Supervisors from the participants’ home to the KHRC Clinical Laboratory facility,
and were stored at −80 ◦C in 10 mL polypropylene cryovials. Frozen samples were then shipped from
Ghana in containers with dry ice to the CDC in Atlanta, Georgia, and stored at −80 ◦C until analysis.

Urine samples were analyzed at the CDC for three specific metabolites of organophosphate
insecticides: 3,5,6-trichloro-2-pyridinol (TCPy, a metabolite of chlorpyrifos and chlorpyrifos methyl),
2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPY, metabolite of diazinon), and para-nitrophenol
(PNP, metabolite of methyl and ethyl parathion), and five nonspecific metabolites of organophosphate
insecticides: diethyldithiophosphate (DEDTP), diethylphosphate (DEP), dimethyldithiophosphate
(DMDTP), dimethylthiophosphate (DMTP), and diethylthiophophate (DETP). Samples were
also analyzed for specific and non-specific metabolites of synthetic pyrethroid insecticides:
4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA, metabolite of cyfluthrin), 3-phenoxybenzoic acid
(3-PBA, metabolite of cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, permethrin, and
tralomethrin), and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA,
metabolite of permethrin, cypermethrin, cyfluthrin), as well as for two herbicide biomarkers:
2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). We chose
not to measure dichloro-diphenyl-trichloroethane (DDT) as this would require blood sampling and
exposure has been previously documented among pregnant and lactating women in Africa [19–22].
Analyses were conducted using a modification of the solid phase extraction high performance liquid
chromatography-isotope dilution tandem mass spectrometry approaches previously described [23,24].
Quality control was established by the repeat analysis of two in-house pools, whose target values and
confidence limits were previously defined. Urine pesticide metabolite concentrations were determined
both before and after the adjustment for urine dilution. Unadjusted concentrations were reported in
µg analyte per L urine. Adjusted concentrations were reported in µg analyte per gram creatinine by
multiplying the metabolite concentration (in µg/L) by [(1/creatinine in mg/dL) × (1000 mg/g) ×
(1 L/10 dL)] [25]. We calculated the percentage of pesticide biomarker concentrations above the limit
of detection (LOD) and the range of detectable concentrations. Concentrations below the LOD were
assigned the limit of detection divided by the square root of two [26].

2.5. Statistical Analyses

The metabolite concentrations were natural log-transformed to normalize the distribution and
were used to estimate the geometric mean of the three urine samples per participant. Additional
descriptive statistics, including the interquartile range and the 95th percentile, were then generated for
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each metabolite, both before and after the adjustment for creatinine. Descriptive statistics were
generated for both creatinine-adjusted and unadjusted concentrations. A mixed-effects model
with a random intercept was used to calculate the intraclass correlation coefficient (ICC) and
determine the proportion of variance in metabolite concentrations attributable to within-person
vs. between-person variability.

We then explored potential predictors of herbicide, pyrethroid, and organophosphate biomarker
concentrations, by presenting geometric mean metabolite concentrations stratified by the predictor of
interest (e.g., agricultural occupation, yes vs. no). For herbicides, pyrethroids, and organophosphate
biomarkers, we considered agricultural practices and sources of household water as potential
predictors. For pyrethroid metabolites, we additionally explored the the use of malaria prevention
measures as potential exposure predictors. Given the small sample size, formal statistical testing was
not performed.

Statistical analyses were conducted using SAS 9.4 (Research Triangle Institute, Cary, NC, USA).

3. Results

Between September and October of 2014, of the 17 women selected by simple random sampling of
active GRAPHS participants, all (100%) agreed to participate and provided written informed consent.
All were currently in their second or third trimester of pregnancy at enrollment. Demographics of the
participants are presented in Table 1. The mean (SD) age of the participants was 26.2 years (±7.8) and
most had been pregnant at least once before (14/17, 82.4%; mean gravidity 3.4 ± 2.8). Approximately
half of the women (9/17, 52.9%) worked outside the home as a farmer, domestic worker, or in a salaried
occupation (seamstress, hairdresser).

There was a range of pesticide use, both in the home and in the farm or garden (Table 1).
The majority of women (14/17, 82.4%) used pesticides in their farm or garden. All women reported
using herbicides in their household and approximately one third applied chemicals inside or around the
home to kill insects or rodents (8/17, 35.2%). The most common locations for application of pesticide
chemicals in the home were the sleeping areas (8/8, 100%), followed by the sitting room and kitchen
(2/8, 25.0% for both). Among households using pesticide chemicals, women frequently participated in
the spraying of pesticides (13/14, 92.9%), although this task declined during pregnancy (4/13, 30.8%).
About half of the women reported carrying their children with them during spraying (6/13, 46.2%).
Personal protective gear was rarely used during pesticide applications. Gloves were utilized by three
women, masks by two, and protective clothing worn during spraying was employed by six women.
Pesticides were typically purchased in the open market and only rarely from an accredited vendor.

Thirteen of the seventeen households (76.5%) owned bednets, and 64.7% of participants (11/17)
reported sleeping under a bednet most nights. No participating households had been sprayed recently
as part of the government’s antimalarial campaigns.

The 17 participants provided three first morning void urine samples each, producing a total of
51 samples. The samples were collected from each participant on a weekly basis, over 14 days.

Table 1. Cohort characteristics.

Demographics n = 17

Age (years) 26.2 (±7.8)

Gravidity 3.4 (±2.8)
Education completed
Primary school or less 10 (58.8%)
More than primary school 7 (41.2%)

Religion
Catholic/Christian 10 (58.8%)
Muslim 3 (17.7%)
Atheist/Other 4 (23.5%)
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Table 1. Cont.

Demographics n = 17

Occupation
Salaried (e.g., seamstress/hairdresser) 3 (17.6%)
Farmer/laborer/domestic worker 6 (35.3%)
None 8 (47.1%)

Use of pesticides and bednets

Use on farm or garden
Uses chemical(s) on farm/garden 14 (82.4%)
Type of chemical used on farm/garden *

Insecticide 2 (14.3%)
Rodenticide 1 (7.1%)
Herbicide 14 (100%)

Use in home
Type of chemical used in home

Insecticide 6 (35.2%)
Rodenticide 7 (41.8%)

Location of pesticide use in home (if uses) **
Bedroom 8 (100%)
Sitting room 2 (25.0%)
Kitchen 2 (25.0%)
Toilet/outhouse 0 (0%)

Owns bednet 13 (76.5%)

Sleeps under bednet most nights 11 (64.7%)

* Denominator = 14 for those reporting use of chemicals on farm or garden; ** Denominator = 8 for those reporting
use of pesticides in and around the home.

3.1. Pesticide Exposure

Summary results of insecticide and herbicide metabolite concentrations are presented in Table 2.
The variability of metabolite concentrations over time within a single participant and between
participants is visualized in Figure 1. We chose to present unadjusted metabolite concentrations
after reviewing the distribution of creatinine concentrations and noting that urinary creatinine
was <20 mg/dL in 11 of 51 samples (21.5%), which could lead to falsely elevated adjusted
pesticide concentrations. Creatinine-adjusted values are presented for comparison in the supplement
(See Supplementary Materials, Table S1).

3.1.1. Organophosphate Insecticide Exposure

Specific organophosphate insecticide metabolites were frequently detected in our study
population. Over 75% of the 51 samples had detectable TCPy (40/51, 78.4%) (Table 2). PNP was
detected even more frequently (46/51, 90.1%). IMPY was the least frequently detected specific
organophosphate biomarker (19/49, 38.8%). The nonspecific dialkyl phosphate (DAP) metabolites of
organophosphate insecticides were infrequently detected (less than 25% of samples, Table 2). We then
compared the samples with nondetectable DAP metabolites with concentrations of the two frequently
detected specific OP metabolites, TCPy and PNP, and the following pattern emerged. The probability
of a sample having undetectable DAPs was higher among samples with TCPy and PNP concentrations
in the lower two quartiles, compared with those in the upper quartiles, although formal statistical
testing was not performed secondary to sample size (data not shown).
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Table 2. Urinary concentrations of biomarkers of organophosphate and pyrethroid insecticides, and select herbicides, among 17 pregnant women in rural Ghana
(n = 51 samples).

Biomarker † Number >
LOD (%)

LOD
(µg/L)

Range of
Detectable (µg/L)

GM in µg/L,
(95% CI)

IQR
(µg/L)

95th Centile
(µg/L)

NHANES28 GM
(µg/L) for Females

2009–2010 ‡

NHANES28 95th
Centile (µg/L) for

Females 2009–2010 ‡
ICC

OPs

Specific
TCPy 40/51 (78.4%) 0.1 0.11–11.8 0.54 (0.36–0.81) 1.47 6.22 0.71 (0.63–0.79) 4.40 (4.09–4.73) 0.33
IMPY 19/49 (38.8%) 0.1 0.10–5.14 * * 1.98 * 0.44 (0.31–0.60) *
PNP 46/51 (90.1%) 0.1 0.19–8.26 0.71 (0.51–1.00) 1.34 4.65 0.40 (0.35–0.45) 3.07 (2.62–3.55) 0.07

Nonspecific
DEDTP 2/51 (3.9%) 0.5 0.51–0.56 * * * * * *
DEP 7/51 (13.7%) 0.1 0.58–14.90 * * * * 14.5 (10.7–18.8) *
DMDTP 9/51 (17.6%) 0.1 0.11–5.16 * * * * 5.54 (4.06–6.69) *
DMTP 14/51 (27.4%) 0.1 0.15–8.50 * * 2.15 2.24 (1.88–2.66) 37.7 (27.0–50.1) *
DETP 6/51 (11.8%) 1 1.05–3.06 * * * * 4.01 (2.41–6.59) *

Pyrethroids

4-F-3-PBA 2/51 (3.9%) 0.1 0.16–0.67 * * * * * *
3-PBA 37/49 (75.5%) 0.1 0.11–9.70 0.23 (0.17–0.32) 0.27 1.38 0.42 (0.37–0.47) 6.5 (4.89–8.50) 0.31
Trans-DCCA 2/51 (3.9%) 0.6 1.99–3.15 * * * * 5.51 (2.87–9.82) *

Herbicides

2,4-D 36/51 (70.6%) 0.15 0.15–166.0 0.46 (0.29–0.73) 0.89 17.4 0.28 (0.25–0.30) 1.1 (0.97–1.39) 0.06
2,4,5-T 0/51 (0%) 0.1 * * * * * * *

CI = confidence interval; Cr = creatinine; GM = geometric mean; ICC = intraclass correlation coefficient; IQR = interquartile range; LOD = limit of detection; NHANES = National Health
and Nutrition Examination Survey; OPs = organophosphates. † Parent chemicals of the measured analytes: 3,5,6-Trichloro-2-pyridinol (TCPy) = chlorpyrifos, chlorpyrifos-methyl;
2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPY) = diazinon; para-Nitrophenol (PNP) = parathion, methyl parathion; 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA) = cyfluthrin;
3-phenoxybenzoic acid (3-PBA) = cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, permethrin, tralomethrin; trans-3-2,2-Dichlorovinyl-2,2-dimethylcyclopropane carboxylic acid
(trans-DCCA) = permethrin, cypermethrin; cyfluthrin; 2,4-Dichlorophenoxyacetic acid (2,4-D) = 2,4-Dichlorophenoxyacetic acid and its esters; 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)
= 2,4,5-Trichlorophenoxyacetic acid; * Not calculated: proportion of results below limit of detection was too high to provide a valid result; ‡ Most recent data from NHANES for the
nonspecific organophosphates (dialkyl phosphate metabolites) is from years 2007–2008.
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successive sampling visits plotted per individual. (A) 3,5,6-Trichloro-2-pyridinol (TCPy) in µg/L, 
intraclass correlation coefficient (ICC) = 0.33; (B) para-Nitrophenol (PNP) in µg/L, ICC = 0.0; (C) 
3-phenoxybenzoic acid (3-PBA) in µg/L, ICC = 0.31; and (D) 2,4-Dichlorophenoxyacetic acid (2,4-D) 
in µg/L, ICC = 0.06. 
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detectable measurements ranging from 0.11 to 11.8 µg/L (Table 2). The 95th percentile was 6.22 µg/L. 
For PNP, the GM concentration was 0.71 µg/L (95% CI: 0.51, 1.00), with detectable measurements 
ranging from 0.19 to 8.26 µg/L. The 95th percentile for PNP was 4.65 µg/L (Table 2). Geometric mean 
concentrations were not calculated for IMPY as the detection frequency was <50%. Most of the 
variance in the measurements was accounted for by within-subject variability for both TCPy and 
PNP (ICCs of 0.33 and 0.07, respectively) (Table 2 and Figure 1A,B). 
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The non-specific pyrethroid metabolite 3-PBA was the pyrethroid biomarker most commonly 
detected (37/49, 75.5%) (Table 2). 4-F-3-PBA was detected in less than 5% of samples (2/51, 3.9%). 
Similarly, trans-DCCA was detected in <5% of samples (2/51, 3.9%). The geometric mean 3-PBA 
concentration was 0.23 µg/L (95% CI: 0.17, 0.32), with a range of detectable measurements from 0.11 
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variability accounted for most of the variance in 3-PBA concentrations (ICC of 0.31) (Table 2 and 
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3.1.3. Herbicide Exposure 

2,4,5-T was not detected in any of the samples. In contrast, 2,4-D was frequently detected (36/51 
samples, 70.6%) (Table 2). The geometric mean 2,4-D concentration was 0.46 µg/L (95% CI of 0.29, 
0.73) and the 95th percentile was 17.4 µg/L. Detectable concentrations ranged from 0.15 to 166.0 

Figure 1. Variability of insecticide and herbicide metabolite concentrations at three sampling visits
among 17 pregnant women in rural Ghana. Each line (different shades of gray) represents an individual
pregnant woman. Legend: Creatinine-corrected metabolite concentrations at three successive sampling
visits plotted per individual. (A) 3,5,6-Trichloro-2-pyridinol (TCPy) in µg/L, intraclass correlation
coefficient (ICC) = 0.33; (B) para-Nitrophenol (PNP) in µg/L, ICC = 0.0; (C) 3-phenoxybenzoic acid
(3-PBA) in µg/L, ICC = 0.31; and (D) 2,4-Dichlorophenoxyacetic acid (2,4-D) in µg/L, ICC = 0.06.

The geometric mean (GM) concentration of TCPy was 0.54 µg/L (95% CI: 0.36, 0.81),
with detectable measurements ranging from 0.11 to 11.8 µg/L (Table 2). The 95th percentile was
6.22 µg/L. For PNP, the GM concentration was 0.71 µg/L (95% CI: 0.51, 1.00), with detectable
measurements ranging from 0.19 to 8.26 µg/L. The 95th percentile for PNP was 4.65 µg/L (Table 2).
Geometric mean concentrations were not calculated for IMPY as the detection frequency was <50%.
Most of the variance in the measurements was accounted for by within-subject variability for both
TCPy and PNP (ICCs of 0.33 and 0.07, respectively) (Table 2 and Figure 1A,B).

3.1.2. Pyrethroid Insecticide Exposure

The non-specific pyrethroid metabolite 3-PBA was the pyrethroid biomarker most commonly
detected (37/49, 75.5%) (Table 2). 4-F-3-PBA was detected in less than 5% of samples (2/51, 3.9%).
Similarly, trans-DCCA was detected in <5% of samples (2/51, 3.9%). The geometric mean 3-PBA
concentration was 0.23 µg/L (95% CI: 0.17, 0.32), with a range of detectable measurements from 0.11
to 9.70 µg/L. The 95th percentile was 1.38 µg/L (Table 2). As with TCPy and PNP, within-subject
variability accounted for most of the variance in 3-PBA concentrations (ICC of 0.31) (Table 2 and
Figure 1C).

3.1.3. Herbicide Exposure

2,4,5-T was not detected in any of the samples. In contrast, 2,4-D was frequently detected (36/51
samples, 70.6%) (Table 2). The geometric mean 2,4-D concentration was 0.46 µg/L (95% CI of 0.29,
0.73) and the 95th percentile was 17.4 µg/L. Detectable concentrations ranged from 0.15 to 166.0 µg/L.
Within-subject variability accounted for 94% of the variance in 2,4-D concentrations (ICC of 0.06)
(Table 2 and Figure 1D).
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3.2. Exploring Associations of Insecticide and Herbicide Exposure with Farming Practices, Water Source,
and Use of Bednets

We present the geometric mean metabolite concentration for TCPy, PNP, 3-PBA, or 2,4-D by the
exposure category considered (e.g., ownership of bednet vs. not), but did not conduct formal statistical
testing given the small sample size. However, a few suggestive patterns emerged. The source of water
may be a predictor of higher urinary concentrations of 2,4-D, PNP and 3-PBA. Geometric mean 2,4-D
concentrations were higher among women whose water was obtained from natural sources such as
streams, rivers, or lakes, compared to women whose water was pumped, piped, or obtained from
a public tap (1.57 µg/L vs. 0.31 µg/L) (Supplemental material, Table S2). Participants from households
that relied on natural sources of water compared to women who used pumped, piped, or tap water,
also appeared to have higher geometric mean PNP (0.96 µg/L vs. 0.65 µg/L) and 3-PBA (0.53 µg/L vs.
0.18 µg/L) concentrations. 2,4-D urinary concentrations also appeared higher among women who
farmed as an occupation (0.95 µg/L vs. 0.31 µg/L) (Supplementary Materials, Table S2).

As only pyrethroid insecticides are approved for use to treat bednets in Ghana, we explored
whether 3-PBA concentrations, a pyrethroid metabolite detected in many of our participants, varied by
ownership and utilization of bednets. The mean 3-PBA concentrations appeared similar among those
whose households owned a bednet, those who slept under a bednet most nights, or those who slept
under a bednet the night prior to sampling, compared to those who did not.

4. Discussion

In this study, we demonstrated widespread pesticide exposure from the frequent detection of
urinary concentrations of metabolites of organophosphate and pyrethroid insecticides, as well as select
herbicides, in a sample of 17 pregnant women residing in an agricultural setting in Ghana, West Africa.
Over 90% of urine samples had detectable organophosphate metabolites, over 75% had detectable
pyrethroid metabolites, and over 70% had detectable 2,4-D levels, a herbicide.

4.1. Exposure Assessment

We present our pesticide exposure distributions from this Ghanaian population alongside the
most recently published geometric means (in µg/L) and 95th percentiles among reproductive-aged
females from the United States National Health and Nutrition Examination Survey (NHANES) for
2007–2008. NHANES was chosen as a reference as we utilized the same laboratory (CDC) to measure
concentrations. An equivalent African reference or global standard does not currently exist [27].
Urinary concentrations during pregnancy may underestimate exposure secondary to the increased
volume of distribution, as has been demonstrated for organophosphate pesticide exposure among an
agricultural population in the U.S. [28]. That said, pregnancy specific references are not reported in
NHANES and data from individual studies of pregnant women are difficult to compare with ours
on account of differences in exposure measurements (e.g., air sampling). For organophosphates in
particular, studies among pregnant U.S. females have typically reported nonspecific DAP metabolite
concentrations [29–32]. As outlined in Section 4.2, DAP concentrations were unusually low among our
participants in comparison to specific organophosphate metabolites, which we suspect may be related
to field conditions precluding a direct comparison with a pregnant counterpart.

For PNP, the most frequently detected organophosphate metabolite in our samples, the geometric
mean was higher for Ghanaian pregnant women than for reproductive-aged women in NHANES
(0.71 µg/L vs. 0.40 µg/L), as was the 95th percentile (4.65 µg/L vs. 3.07 µg/L). In contrast, for the
organophosphate TCPy, the geometric mean from our sample was lower than the geometric mean of
the NHANES reproductive-aged females (0.54 µg/L vs. 0.71 µg/L), but the 95th percentile was higher
(6.22 µg/L vs. 4.40 µg/L). For 3-PBA, the most frequently detected pyrethroid biomarker among the
study samples, the geometric mean was lower than NHANES (0.23 µg/L vs. 0.42 µg/L), as was the
95th percentile (1.38 µg/L vs. 6.50 µg/L). For the herbicide 2,4-D, the geometric mean for our samples
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was 0.46 µg/L vs. 0.28 µg/L in NHANES, but the 95th percentile for participants was over 15 times
higher, presenting a figure of 17.4 µg/L compared to 1.91 µg/L for NHANES.

In summary, in this study of pregnant women from a rural area of Ghana, urinary concentrations of
biomarkers of select organophosphate insecticides (PNP) and of herbicides (2,4-D) appear higher than
a nonpregnant female reference population in the US. Given the increased volume of distribution in
pregnancy [28], the differences we observed for our Ghanaian participants compared to a nonpregnant
reference group may have been even greater, if data were available from a pregnant referent group.
We hypothesize that pyrethroid exposure may be lower among this group of Ghanaian pregnant
women than in the U.S. general population, secondary to a ban in the early 2000s in the United States
of the residential use of organophosphates and the consequent increase in pyrethroid use [33].

We identified one publication from an African setting that reported urinary concentrations
of pesticides other than serum concentrations of DDT and other organochlorines [34]. This was
a cross-sectional study that recruited 121 nonpregnant women working on farms during the pesticide
spraying season in South Africa and a control group of 90 women living in nearby towns, and reported
urinary concentrations of organophosphate and pyrethroid metabolites. Geometric means among
both the farm workers and the townspeople in South Africa were higher for TCPy (farm: 6.15 µg/g;
town: 4.14 µg/g) and 3-PBA (farm: 3.61 µg/g; town: 3.34 µg/g) than for our study participants,
when comparing our creatinine-adjusted results. Differences in urinary concentrations may be related,
at least in part, to pregnancy status, the sensitivity of the analytical methods used for the quantification
of the pesticide biomarkers, or to the treatment of non-detectable concentrations in summary statistics.

4.2. Lessons Learned about the Conduct of Field Based Pesticide Research

There were two unexpected findings from our work. The lessons learned may benefit the design
of future field-based research on pesticide exposure. First, in approximately one third of samples
(16/51. 31.3%), creatinine concentrations were quite low (<27.2 mg/dL) for an adult population,
despite being first morning voids. The lower values may be attributable, in part, to physiological
changes in pregnancy, including an increased plasma volume, renal plasma flow, glomerular filtration
rate, and filtration fraction, without any increase in the production of creatinine [35]. In this rural
African population, it is also possible that these low urinary creatinine values reflect undernutrition
and lower muscle mass, rather than hydration status. Therefore, in future studies in similar settings
with pregnant women, we would suggest adjusting metabolite concentrations for specific gravity,
rather than for creatinine.

Secondly, the frequent detection of specific organophosphate metabolites and parallel infrequent
detection of nonspecific DAP metabolites was surprising. We speculate that these findings may be
related to the stability of the compounds in urine; the specific organophosphate metabolites (PNP,
TCPy, and IMPY) are eliminated as conjugates in urine, while DAPs are not. It is possible that storage
conditions in an African field-based research setting had a higher impact on the integrity of urine
for measuring DAPs compared to the other metabolites, if DAPs are more sensitive to temperature
than the specific metabolites. Samples in our study were collected from participants’ homes in the
community early in the morning on the day of collection and kept out of direct sunlight awaiting
pickup. Samples were transported by motorbike in coolers with ice packs to the research center, before
being frozen at −80 ◦C. Transportation time varied, ranging from 30 to 120 min, depending on the
proximity of the community and the other research activities being performed by the research staff.
As described above, the concentrations of the specific OP metabolites, TCPy and PNP, were more likely
to be in the lower two quartiles for samples with undetectable concentrations of DAP metabolites.
It seems plausible that the relatively low DAP metabolite concentrations may have decreased during
transport to non-detectable concentrations by our method sensitivity. We must be careful not to draw
strong conclusions given the limitations of the sample size. Nonetheless, it may be important to include
specific OP metabolites, and not only rely on nonspecific DAPs, in future field-based research in Ghana
or similar remote rural communities. Furthermore, direct comparisons with studies conducted in
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settings where samples are immediately frozen may be misleading, underestimating the exposure in
certain field conditions.

4.3. Possible Sources of Pesticide Exposure

The sources of pesticide exposure in this primarily rural area of Ghana likely differ as compared
with individuals in high resource settings. We acknowledge that our sample size is insufficient to
establish exposure determinants and therefore only considered several factors for the purpose of
a hypothesis-generating exploratory analysis.

The source of household water may affect pesticide exposure, as urinary concentrations of the
organophosphate PNP, the pyrethroid 3-PBA, and the herbicide 2,4-D appear higher among women
whose households used natural sources of water such as streams, lakes, or rivers, compared with
households that sourced their water from pumps, pipes, or public taps. Occupational farming may be
a predictor of high urinary 2,4-D concentrations, but did not appear predictive of organophosphate
or pyrethroid insecticide biomarkers. It is possible that much of the food supply in the area is
contaminated by pesticides, as suggested by a study of pesticide residues in the nearby city of Kumasi,
which demonstrated that organophosphates were the major contributor, driving a combined consumer
risk index above a threshold for concern [36]. Our questionnaire did not include information about the
types of food eaten or the source of food supply; however, the food supply is predominantly locally
grown in the study area, regardless of whether it is grown by the family or a neighbor. Exposure may
not differ by personal or family farming practices, as essentially all of the individuals in our study
catchment are eating locally produced foods. That said, the intake of fruits and vegetables may be
different than in higher resource settings, impacting the overall exposure.

The ownership or utilization of bednets did not appear to correlate with urinary concentrations of
the pyrethroid biomarker 3-PBA.

Our suggested predictors of exposure will need confirmation from larger studies. Of particular
interest, we demonstrated rather low ICCs for the repeated samples for all of the analytes considered,
with none above 0.35, such that approximately two-thirds or more of the variance was within-subject
variability between samples. For PNP and 2,4-D, the ICC was <0.10 and, correspondingly, almost all of
the variability was within a given study participant. This suggests that individual-level interventions
have the potential for reducing exposure. Additionally, this emphasizes the need for repeated measures
in epidemiological research in these settings.

4.4. Limitations and Future Directions

This pilot study recruited a relatively small number of women and obtained samples over
a two-week period for each participant. In future work, measurements throughout the entire year
would help inform whether seasonal agricultural spraying impacts exposure. A comparison to
nonpregnant individuals would also be of value. We asked general questions about the residential and
occupational use of pesticides, but did not review specific chemicals handled by the women in the
day(s) prior to urine collection. In the parent cook stove trial, GRAPHS [18], from which we recruited
for this pilot, a biobank of repeated urine collections was obtained over the course of pregnancy for
our participants. We aim to leverage these resources in the future to more fully characterize exposure,
routes of exposure, and connect exposure with the potential impact on pregnancy outcome and health
in the first year of life. This is particularly important, as many of these chemical classes, such as
organophosphates and potentially pyrethroids, have been associated with adverse neurodevelopment
in children [1,2,37]. Assessing the health impacts of the herbicide 2,4 D during pregnancy may also be
of interest, as it is being increasingly marketed in combination with glyphosate, both in resource poor
and resource intensive environments.
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5. Conclusions

This is one of the first studies conducted in a rural African population to document urinary
concentrations of pesticide biomarkers. We recognize that the findings will need confirmation from
larger studies, but our pilot work has demonstrated widespread exposure to select organophosphate
insecticides and herbicides among pregnant women in this rural area of Ghana. For PNP and 2,4-D,
concentrations were higher than those reported from a U.S. reference population of reproductive-aged
women. In contrast, pyrethroid biomarker concentrations were lower than the U.S. reference and may
reflect a lack of access to this class of compounds by rural Ghanaian households. Insecticide-treated
bednet ownership and utilization did not appear to impact the exposure to pyrethroids. In an
exploratory analysis, we identified the source of household water (natural vs. piped/pumped/tap) as
a potential predictor of exposure to PNP and 2,4-D, or their precursors. Low ICCs for both of these
biomarkers (0.07 and 0.06, respectively) suggest a high degree of within-person variability and the
potential for individual level behavioral interventions to reduce exposure.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/4/354/s1,
Table S1: Creatinine-adjusted urinary concentrations of biomarkers of organophosphate and pyrethroid
insecticides, and select herbicides among 17 pregnant women in rural Ghana (n = 51 samples); Table S2: Potential
determinants of pesticide and herbicide urinary concentrations among study participants.
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