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Article

A covalently bound inhibitor triggers EZH2
degradation through CHIP-mediated ubiquitination
Xu Wang1,2, Wei Cao1,2, Jianjun Zhang1,2, Ming Yan1,2, Qin Xu1,2, Xiangbing Wu1,2, Lixin Wan3,

Zhiyuan Zhang1,2, Chenping Zhang1,2, Xing Qin1,2, Meng Xiao1,2, Dongxia Ye2, Yuyang Liu2,

Zeguang Han4, Shaomeng Wang5, Li Mao1,6, Wenyi Wei3,* & Wantao Chen1,2,**

Abstract

Enhancer of zeste homolog 2 (EZH2) has been characterized as a
critical oncogene and a promising drug target in human malig-
nant tumors. The current EZH2 inhibitors strongly suppress the
enhanced enzymatic function of mutant EZH2 in some
lymphomas. However, the recent identification of a PRC2- and
methyltransferase-independent role of EZH2 indicates that a
complete suppression of all oncogenic functions of EZH2 is
needed. Here, we report a unique EZH2-targeting strategy by
identifying a gambogenic acid (GNA) derivative as a novel agent
that specifically and covalently bound to Cys668 within the EZH2-
SET domain, triggering EZH2 degradation through COOH terminus
of Hsp70-interacting protein (CHIP)-mediated ubiquitination. This
class of inhibitors significantly suppressed H3K27Me3 and effec-
tively reactivated polycomb repressor complex 2 (PRC2)-silenced
tumor suppressor genes. Moreover, the novel inhibitors signifi-
cantly suppressed tumor growth in an EZH2-dependent manner,
and tumors bearing a non-GNA-interacting C668S-EZH2 mutation
exhibited resistance to the inhibitors. Together, our results
identify the inhibition of the signaling pathway that governs
GNA-mediated destruction of EZH2 as a promising anti-cancer
strategy.
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Introduction

In eukaryotes, post-translational modifications of histones, such as

methylation, acetylation, phosphorylation, and ubiquitination, are

critical for regulating chromatin structure and gene expression

(Cao et al, 2002; Plath et al, 2003). The methylation of lysine resi-

dues within the histone tails, a process that is promoted by

methyltransferases and antagonized by the histone demethylases,

has been characterized as a major regulatory step (Shangary et al,

2008). In this regard, the histone methyltransferase enhancer of

zeste homolog 2 (EZH2) and its binding partners SUZ12 polycomb

repressive complex 2 subunit (SUZ12) and embryonic ectoderm

development (EED) form the multi-subunit polycomb repressor

complex 2 (PRC2) to trimethylate histone H3 at the K27 (Bracken

& Helin, 2009; Ezhkova et al, 2009; Shih et al, 2012) residue.

Biologically, H3K27Me3 has been largely characterized to function

as a suppressive marker of gene transcription (Cao et al, 2002).

EZH2 has received increasing attention in recent years for its

oncogenic roles in driving aggressive human cancers (Cao et al,

2011; Chang et al, 2011). Consistent with this notion, aberrant

overexpression of EZH2 and gain-of-function EZH2 mutations has

been frequently observed in various human malignancies (Jones &

Baylin, 2007; Chang et al, 2011), and EZH2 overexpression could

drive normal cells to de-differentiate, subsequently acquiring stem

cell-like features (Sparmann & van Lohuizen, 2006; Jones &

Baylin, 2007; Kondo et al, 2008; Cao et al, 2011). Mechanistically,

previous studies have revealed that the oncogenic roles of EZH2

are largely due to its ability to suppress the expression of a cohort

of downstream tumor suppressor targets via H3K27 trimethyla-

tion-mediated epigenetic silencing (Bonasio et al, 2010). To this

end, most of the currently developed EZH2 inhibitors are designed

to suppress the H3K27-trimethyltransferase enzymatic activity of

EZH2 against lymphomas with mutant EZH2, which exhibits
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enhanced enzymatic function (Knutson et al, 2012; McCabe et al,

2012; Qi et al, 2012; Xu et al, 2015).

However, recent findings have begun to reveal that EZH2

can also exert its oncogenic roles independent of PRC2 by

switching from a polycomb repressor to a transcriptional co-

activator independent of its intrinsic histone methyltransferase

activity (Xu et al, 2012; Yan et al, 2013; Kim et al, 2015).

Moreover, acquired resistance to EZH2 enzymatic inhibitor may

arise in cancer patients in part through mutations in the EZH2

oncoprotein. Even though there is demonstrated potential for

active site-inhibitor-resistant EZH2 mutants that remains targe-

table by the second-generation EZH2 enzymatic inhibitors

(Baker et al, 2015; Gibaja et al, 2016), there is increasing needs

to expand the arsenal of EZH2 targeting drugs, potentially with

different functional mechanisms in further suppressing EZH2.

To this end, the discovery of a PRC2-independent as well as a

methyltransferase-independent mechanism for EZH2 in promot-

ing tumorigenesis suggests that simply inhibiting the enzymatic

activity of EZH2 methyltransferase cannot fully terminate its

oncogenic functions (Xu et al, 2012). Therefore, there is a need

for developing novel EZH2 inhibitors that are capable of

decreasing the abundance of the EZH2 oncoprotein and that

will serve as a novel anti-cancer therapy to reverse PRC2-

mediated epigenetic gene silencing.

To develop such inhibitors, triggering the degradation of the

EZH2 oncoprotein, rather than the simple inhibition of its

enzymatic activity (Miranda et al, 2009; Kim et al, 2013b), will be

a more effective strategy. To this end, given that the ubiquitin–

proteasome pathway is a major system in mammal cells for

controlling protein stability and fate, the stability of EZH2 is also

controlled by the E3 ligases Smurf2 (Yu et al, 2013) and b-TrCP
(Sahasrabuddhe et al, 2015). However, it remains largely undefined

whether these two E3 ligases are mutated or inactivated to allow

the aberrant elevation of EZH2 in human cancers, whether these

two E3 ligases play physiological roles in triggering EZH2 degrada-

tion upon environmental challenges and whether the misregulation

of this process contributes to the pathological role of EZH2 in

driving malignancy.

Gambogenic acid is natural compound derived from gamboge

and is reported as a potent anti-cancer agent for many types of

human cancers (Yan et al, 2011; Yu et al, 2012). Its chemical

structure contains active bond, which is able to bind with target

protein, but the detailed molecular mechanism underlying its anti-

cancer effects remains not fully understood. Here, we reported

that gambogenic acid (GNA) derivatives function as a novel class

of EZH2 inhibitor by direct and covalent binding of EZH2, a

process that is sufficient to disassociate the PRC2 complex, thus

inhibiting its methyltransferase activity. Moreover, we also

demonstrated that covalently GNA-modified EZH2 could be

targeted for ubiquitination-mediated degradation by the COOH

terminus of Hsp70-interacting protein (CHIP), a key player in the

protein quality control system that mediates the polyubiquitination

of misfolded or aggregated proteins for degradation (Whitesell &

Lindquist, 2005; Ferreira et al, 2013). Our studies therefore reveal

a novel class of EZH2 inhibitors that could achieve superior anti-

cancer effects by not only inhibiting EZH2 enzymatic activity but

also promoting its ubiquitination-mediated degradation to fully

inhibit its oncogenic functions.

Results

The Cys668 residue within the EZH2 SET domain covalently binds
to gambogenic acid

To search for a novel EZH2 inhibitory mechanism, we focused on

identifying agents that specifically decrease EZH2 expression. To

achieve this goal, we screened a chemical library of 1215 chemi-

cal compounds with a high-content screening Operetta platform

(PerkinElmer, Waltham, MA, USA) using human epithelial cancer

HN-6 cells. These cells firmly adhere to the cell culture plate, thus

allowing for clear imaging. After incubation with compounds for

24 h, the immunofluorescent signals of EZH2 were analyzed with

the Harmony 3 software. Notably, GNA was the most effective of

the 1215 compounds in reducing EZH2 immunofluorescent signals

(Appendix Fig S1A and B). Consistent with this finding, we

further found that GNA (Appendix Fig S1C) significantly reduced

EZH2 nuclear abundance (Fig 1A). More importantly, in support

of a direct interaction between GNA and EZH2 as a possible

mechanism to suppress EZH2, we detected a co-localization of

Bio-GNA with endogenous EZH2 in the nuclei of HN-6 cells using

immunofluorescence analysis following a short-term (2-h) incuba-

tion (Fig 1B).

Subsequently, to search for GNA-interacting cellular proteins as

possible direct-binding target(s), we performed affinity pull-down

assays using Bio-GNA (Appendix Fig S1F) conjugated to strepta-

vidin–agarose beads followed by high-performance liquid chro-

matography–tandem mass spectrometry (HPLC-MS/MS) analysis.

Our analysis identified HSP90, tubulin, and EZH2 as the top hits of

the GNA-interacting proteins (Appendix Table S1). Furthermore, the

GNA-interacting 95-kD band was validated as the EZH2 protein

(Appendix Fig S1G and H), indicating a possible direct binding

between EZH2 and GNA. Consistent with this finding, we further

demonstrated that GNA specifically interacted with EZH2 and other

known PRC2 complex components, such as SUZ12 and EED

(Fig 1C). On the other hand, unconjugated, free GNA could specifi-

cally compete with Bio-GNA to associate with endogenous EZH2

(Fig 1C). Strikingly, GNA did not interact with the EZH2 close

homolog EZH1, or other examined SET domain containing methyl-

transferases, such as SET8 and ESET. These results demonstrate that

the interaction between GNA and EZH2 was specific, at least in this

experimental setting (Fig 1C).

Notably, we observed a time-dependent increase in the associa-

tion between Bio-GNA and recombinant C-terminal EZH2 in dena-

tured sodium dodecyl sulfate–polyacrylamide gel electrophoresis

(SDS–PAGE) gels (Fig 1D), suggesting that a possible covalent bond-

ing was involved in the interaction that is resistant to SDS-mediated

denaturing experimental conditions (Zhou et al, 2009). A series of

deletion experiments allowed us to further pinpoint the C-terminal

SET domain within EZH2 as the major binding site for GNA

(Appendix Fig S2A–C). Given the critical role of cysteine residues in

mediating the characterized “Michael reaction” between a given

agent and its direct targets (Yun et al, 2008), the contribution of the

three cysteine residues within the EZH2-SET domain to its specific

association with GNA was further explored. Interestingly, only

mutating C668, but not the other two cysteine residues (C647 and

C699), specifically abolished the interaction between EZH2 and

GNA (Fig 2A and B). Interestingly, the GNA non-interacting EZH1
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has a serine residue (Ser664) in the EZH2-C668 corresponding posi-

tion, while the S664C-EZH1 acquired ability to interact with GNA, in

a similar fashion as EZH2 (Fig 2B). Given that EZH1 is highly

homologous to EZH2, these results support the notion that the pres-

ence of the C668 residue in EZH2 but not in EZH1 confers the speci-

ficity for GNA and GNA derivative GNA002 to directly interact with

EZH2 in a relatively specific fashion.

Similarly, computational modeling revealed a favorable covalent

C-S bond with the Michael acceptor on the C8 atom of GNA bridging

to the S atom of Cys668 within WT-EZH2 (Appendix Fig S2D–F). On

the other hand, the EZH1-like, C668S mutant form of EZH2 does not

contain an S atom as a receptor (Appendix Fig S2D–F) and thus

cannot form a direct association with GNA (Fig 2B). Consistent with

this model, matrix-assisted laser desorption ionization/time-of-flight

mass spectrometry (MALDI-TOF-MS) analysis further revealed that

the m/z ratio of the Cys668-containing peptide Biotin-DKYMCSFLFN

was 1,493.5 in the absence of GNA and 2,124.9 in the presence of

GNA. Thus, the calculated mass shift of 631.4 was consistent with

the covalent addition of one molecule of GNA to the Cys668 residue

of EZH2 (Fig 2C).
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Figure 1. Screening and identification of gambogenic acid (GNA) to directly interact with EZH2.

A Immunofluorescence analysis demonstrated that a 12-h treatment with 2 lM GNA decreased the abundance of endogenous EZH2 in the nuclei of HN-6 head and
neck cancer cells. Scale bar, 25 lm.

B Immunofluorescence analysis demonstrated that biotinylated GNA (Bio-GNA) co-localized with EZH2 in the nuclei of mouse embryonic fibroblasts (MEFs). Scale bar,
25 lm.

C In vitro binding assays coupled with immunoblot assays reveal that Bio-GNA bound to EZH2 in the whole-cell lysate derived from Cal-27 head and neck cancer cells,
whereas free, unconjugated GNA efficiently competed with Bio-GNA to bind endogenous EZH2. After the cells were lysed to generate whole-cell lysates, the indicated
concentration of Bio-GNA or free GNA was added to perform the in vitro binding assays.

D Bio-GNA (5 lM) binds to the recombinant C-terminal portion of EZH2 in a time-dependent manner.

Source data are available online for this figure.

ª 2017 The Authors The EMBO Journal Vol 36 | No 9 | 2017

Xu Wang et al Inhibiting EZH2 by induced ubiquitination The EMBO Journal

1245



The stability of PRC2 complex components as well as H3K27
trimethylation is decreased by GNA derivatives

To further increase the efficacy of GNA as a more effective

EZH2 inhibitor, we synthesized several GNA derivatives

(Appendix Table S2) and identified a small molecule, GNA002,

as a potentially stronger EZH2 inhibitor than GNA (Fig 2D and

E and Appendix Fig S1D). Further evidence from the experimen-

tal and computational modelings indicated that GNA002 binds to

EZH2 more strongly than GNA (Appendix Fig S2E and F).

Notably, GNA002 directly binds to the EZH2 SET domain, as

revealed by the liquid chromatography–mass spectrometry (LC-

MS) assay (Appendix Fig S2G). As GNA002 is a relatively more

potent EZH2 interacting agent than GNA (Fig 2E), we primarily

used GNA002 in the following mechanistic and functional

studies.

Importantly, we observed that both GNA002 and the previously

reported EZH2 inhibitor, GSK126 (McCabe et al, 2012), efficiently

reduced EZH2-mediated H3K27 trimethylation (Fig 3A). More

interestingly, unlike the enzymatic EZH2 inhibitor GSK126,

GNA002 led to a dose-dependent reduction in endogenous EZH2

protein abundance (Fig 3A). However, EZH2 mRNA levels were

not significantly reduced after GNA002 treatment in both HN-4

and Cal-27 cells, indicating a possible post-transcriptional regula-

tion of EZH2 by GNA002 (Fig 3B). Consistent with previous stud-

ies reporting that covalent binding of the small molecular

compound affects protein stability (Zhang et al, 2010; Titov et al,

2011; Zhen et al, 2012), we found that the GNA002-induced EZH2

decrease was inhibited by the 26S proteasome inhibitor, MG132

(Fig 3C). This effect was concurrent with an increase in ubiquiti-

nation of WT-EZH2, but not by the non-GNA002-interacting,

C668S mutant form of EZH2 (Fig 3D). Furthermore, we found that
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Figure 2. EZH2 covalently binds to GNA and its derivatives.

A Recombinant wild-type (WT) C-terminal EZH2 and its indicated mutants (C688S, C699S, and C647S) were incubated with 5 lM Bio-GNA in vitro for 1 h followed by
immunoblotting with antibodies against biotin and EZH2.

B Full-length WT and the C668S mutant form of EZH2 (bottom panel) as well as full-length and the S664C mutant form of EZH1 (upper panel) were incubated with
1 lM Bio-GNA in vitro for 1 h followed by immunoblotting with antibodies against biotin and EZH2.

C The MALDI-TOF-MS analysis illustrates the direct interaction between GNA and EZH2.
D Immunoblotting assays revealed that Bio-GNA binds to EZH2 in whole-cell lysates derived from Cal-27 and UMSCC12 head and neck cancer cells, whereas free GNA

and GNA002 competed with Bio-GNA to bind EZH2.
E The octet assay indicated that GNA and GNA002 could compete with Bio-GNA to bind the bacterially purified recombinant His-EZH2-SET domain. All experiments

were performed in triplicate. The data are presented as the mean � SD (n = 3).

Source data are available online for this figure.
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Figure 3. The protein stability of PRC2 complex components and H3K27Me3 are decreased by GNA derivatives.

A Immunoblotting analysis demonstrated that long-term (48 h) incubation of both GNA002 and GSK126 significantly reduced H3K27Me3 levels in Cal-27 head and neck
cancer cells. However, GNA002, but not GSK126, led to a significant reduction in EZH2 abundance.

B Treatment with GNA002 for 24 h did not reduce EZH2 mRNA levels in either Cal-27 or HN-4 head and neck cancer cells. The data are presented as the mean fold
change of expression � SEM (n = 3), *P < 0.05, **P < 0.01, ***P < 0.001. Statistical analysis was performed using one way ANOVA method.

C Treatment with the 26S proteasome inhibitor MG132 (5 lM) reversed GNA002 (2 lM)-induced reduction of EZH2 protein levels in Cal-27 cells.
D GNA002 increased the ubiquitination of ectopically expressed, Flag-tagged wild-type EZH2, but not the non-GNA-interacting C668S mutant form of EZH2, as detected

by the anti-ubiquitin antibody of the Flag immunoprecipitates recovered from HEK293 cells that were transfected with the indicated plasmids.
E GNA002 treatment for 24 h decreased the association between EZH2 and EED within the PRC2 complex in Cal-27 cells.
F Immunoblotting assays demonstrated that GNA002 treatment (24 h) reduced the abundance of PRC complex components and H3K27Me3 in Cal-27 cells in a dose-

dependent manner.
G Cal-27 cells were treated with 2 lM GNA002 for 24 h and subject to ChIP assays to determine the H3K27Me3 status within the promoter regions of characterized

EZH2 gene targets, such as CB1, miR-200C, and miR-200C. The experiments were performed in triplicate. The data are presented as the mean � SD (n = 3).

Source data are available online for this figure.
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GNA002 treatment decreased H3K27Me3 levels in UMSCC-12 head

and neck cancer cell expressing wild-type EZH2, but not in C668S

mutant-expressing UMSCC-12 cells (Appendix Fig S3A and B).

Intriguingly, other histone lysine methylation, ubiquitination, and

acetylation patterns were not significantly altered by GNA002 treat-

ment (Appendix Fig S3A and B). These data thus demonstrated

that GNA002 exerts its biological effect by specifically interacting

with and inhibiting EZH2 enzymatic activities.

We next examined the biological consequences of GNA002 on

the PRC2 complex and found that GNA002 incubation led to the

dissociation of the functional PRC2 complex (Fig 3E) that was

coupled to a reduction in the abundance of all of the PRC2 compo-

nents that we examined after prolonged GNA002 treatment (Fig 3F).

Interestingly, the C668S mutant form of EZH2, which is deficient in

interacting with GNA derivatives, exhibited resistance to GNA002-

induced dissociation of the PRC2 complex (Appendix Fig S3C).

Consistent with EZH2 being the catalytic subunit of PRC2, histone

H3K27Me3 but not H3K9Me3 levels were strongly reduced in

GNA002-treated cells (Fig 3F and Appendix Fig S3D). Notably,

GNA002 treatment did not result in an obvious reduction in the

abundance of BMI-1, a critical component of the multi-subunit poly-

comb repressor complex 1 (Fig 3F) that suppresses gene transcrip-

tion of a faculty of target genes largely by promoting H2A

ubiquitination (Cao et al, 2005). These results further illustrate the

specificity of the GNA derivatives in suppressing EZH2 and PRC2

enzymatic activities in cells, at least in this experimental condition.

Moreover, the levels of EZH2 and SUZ12 but not of other methyl-

transferases, including ESET or SET8, decreased upon the GNA002

treatment (Appendix Fig S3E), indicating that GNA derivatives

specifically decreased the abundance of PRC2 complex components

but not other methyltransferases. Similarly, using chromatin

immunoprecipitation analysis, we found that GNA002-treated

epithelial cancer cells (Cal-27) lost H3K27 trimethylation within the

core promoter region of many previously reported EZH2 down-

stream target genes (Cao et al, 2011; Fig 3G). As a result, the mRNA

levels of a cohort of characterized EZH2 target genes were signifi-

cantly reactivated in epithelial cancer cells, such as HN-12

(Appendix Fig S3F), Cal-27 (Appendix Fig S3G), and HN-4 cells

(Appendix Fig S3H) after 24 h of incubation with 2 lM GNA002.

EZH2 protein levels are reduced largely through the CHIP E3
ubiquitin ligase

To further pinpoint the molecular mechanism underlying GNA002-

induced EZH2 ubiquitination, we next screened for upstream E3

ligase(s) that may potentially mediate EZH2 ubiquitination. To this

end, EZH2 protein levels in Cal-27 cancer cells were assessed after

the depletion of a series of ubiquitin E3 ligases by siRNA. The

knockdown efficiency of the human homolog of Ariadne (HHARI),

c-Cbl, Parkin, E6-associated protein (E6AP), and CHIP was exam-

ined by real-time polymerase chain reaction (PCR) assays

(Appendix Fig S3I). Notably, the depletion of endogenous CHIP led

to an increase in endogenous EZH2, whereas EZH2 levels upon

depletion of other E3 ligases appeared to be relatively unchanged in

this experimental setting (Appendix Fig S3J). To further monitor

CHIP expression in clinical epithelial cancer samples, immunohisto-

chemical (IHC) assays were performed in cancer tissues versus

normal tissues. As presented in Appendix Fig S3K, CHIP expression

was relatively increased in cancer tissues compared with normal

tissues. Consistently, previously published results have also illus-

trated relatively increased expression of CHIP in human cancers,

such as leukemia (Bonvini et al, 2004) and glioma (Xu et al, 2011).

Hence, the broad expression status of CHIP in various human tumor

types supports the potential general utility of GNA derivatives in

clinical anti-cancer treatments.

In further support of CHIP as a physiological E3 ligase for EZH2,

we observed that CHIP appears to be present in both nucleus and

cytoplasm compartments, whereas EZH2 is mostly localized in the

nucleus (Fig 4A). Additionally, we found a physical interaction

between endogenous CHIP and endogenous EZH2 by co-immuno-

precipitation (IP) assays (Fig 4B). Moreover, depletion of endoge-

nous CHIP by multiple shRNAs significantly retarded GNA002-

induced degradation of endogenous EZH2 in the epithelial cancer

cell line UMSCC-12 (Fig 4C). Interestingly, ectopic expression of

CHIP required the presence of GNA002 to significantly promote the

ubiquitination of EZH2 (Fig 4D). On the other hand, CHIP failed to

promote the ubiquitination of the non-GNA-interacting C668S

mutant form of EZH2, even in the presence of GNA002 (Fig 4D),

further emphasizing the critical role of CHIP in mediating GNA-

induced EZH2 ubiquitination, a process that may require GNA cova-

lent bound to EZH2, presenting as a protein misfolding signal. In

support of this finding, in vitro GST-pull-down assays demonstrated

that the WT-EZH2 SET domain, but not the C668S mutant EZH2

SET domain interacts with CHIP only in the presence of GNA002

(Appendix Fig S4A).

Notably, CHIP is a key player of the protein quality control

system and mediates the polyubiquitination of misfolded or aggre-

gated proteins for targeted degradation (Whitesell & Lindquist,

2005; Ferreira et al, 2013). In further support of this hypothesis, we

found that ectopic expression of CHIP efficiently reduced the protein

abundance of endogenous EZH2 (Appendix Fig S4B). In addition,

consistent with a previous report (Yu et al, 2013), we found that

depletion of endogenous Smurf2, but not Smurf1, phenocopies CHIP

depletion by elevating the basal levels of endogenous EZH2

(Fig 4E). However, unlike CHIP depletion, the depletion of endoge-

nous Smurf2 could not retard GNA002-induced degradation of EZH2

(Fig 4F), further confirming CHIP, but not Smurf2, as the physiolog-

ical E3 ligase that is largely responsible for triggering EZH2 degrada-

tion under the experimental conditions of GNA002 treatment.

Next, we continued to explore the biological effects of inhibiting

the EZH2 oncoprotein with this novel class of EZH2 inhibitors.

Notably, we found that both GNA and GNA002 clearly inhibited the

proliferation of numerous cancer cell lines (Appendix Fig S4C and

Appendix Table S3), especially in cancer cells with relatively

increased expression levels of EZH2 mRNA and protein

(Appendix Fig S4D–G). The anti-cancer effects were mediated, in

part, through the induction of cellular apoptosis (Appendix Fig

S4H). Consistently, GNA002 demonstrated an elevated capacity to

induce cell death in human cancer cells compared with GNA,

whereas the inactive GNA derivative, GNA008 (Appendix Fig S1E),

was incapable of inducing apoptosis or inhibiting cellular growth

(Appendix Fig S4H and Appendix Table S4). These results suggest

that the GNA novel class of EZH2 inhibitors most likely exerts their

anti-cancer effects by inducing cellular apoptosis through direct

interactions with critical targets, such as EZH2, as a Michael accep-

tor (Appendix Fig S2D; Groll et al, 2008; Liu et al, 2012).
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In keeping with this notion, GNA002 is more potent than GNA at

decreasing the mitochondrial membrane potential (Appendix Fig

S4I) to trigger cancer cell death through induction of apoptotic path-

ways (Appendix Fig S4J). Importantly, consistent with a previous

report, we found that the GNA-mediated inactivation of EZH2 led to

the elevated expression of the pro-apoptotic protein, Bim

(Appendix Fig S4K), which is a well-characterized EZH2 down-

stream transcriptional target (Wu et al, 2010). Furthermore, the

depletion of endogenous Bim in UMSCC-12 partially inhibited

GNA002-induced apoptosis (Appendix Fig S4K), illustrating that

Bim is a critical downstream effector for GNA derivative-induced

apoptosis. Notably, although CDK1 was previously reported to

reduce EZH2 stability (Wei et al, 2011; Wu & Zhang, 2011),

GNA002 appears to not be involved in this signaling pathway given

that unlike EZH2, neither CDK1, Cyclin A nor Cyclin B levels were

significantly upregulated by GNA002 treatment (Appendix Fig S4K).

As a previous study reported that GNA treatment also inhibited

the AKT signaling pathway (Yu et al, 2012), we further examined

phosphorylation status of the AKT protein. As shown in Appendix Fig

S4L, both shEZH2 lentivirus and GNA002 treatment reduced AKT
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Figure 4. EZH2 protein levels are decreased largely through the E3 ubiquitin ligase CHIP.

A Immunofluorescence analysis indicated that EZH2 and CHIP proteins co-localized in the nuclei of HN-6 head and neck cancer cells. Scale bar, 75 lm.
B Detection of the endogenous interaction between EZH2 and CHIP by co-immunoprecipitation in Cal-27 head and neck cancer cells.
C Immunoblotting analysis demonstrated that the depletion of endogenous CHIP using two independent lentiviral shRNA constructs led to elevated basal EZH2 levels

and resistance to GNA002-induced EZH2 degradation in UMSCC-12 head and neck cancer cells.
D Ectopic expression of CHIP promoted the ubiquitination of WT-EZH2, but not the non-GNA-interacting C668S mutant EZH2, only when challenged with GNA002 in

HEK293 cells for 24 h.
E Immunoblotting analysis to monitor changes in endogenous EZH2 abundance following the lentiviral shRNA-mediated depletion of endogenous CHIP, Smurf1, or

Smurf2 in UMSCC-12 cells.
F Depletion of endogenous CHIP, but not endogenous Smurf2, conferred resistance to EZH2 degradation induced by a 48-h GNA002 treatment in UMSCC-12 cells.

Source data are available online for this figure.
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phosphorylation. Moreover, GNA002 incubation inhibited AKT phos-

phorylation only in WT-EZH2-expressing UMSCC-12 cells, but not in

C668S mutant-expressing cells (Appendix Fig S4M). On the other

hand, the EZH2 enzymatic inhibitor GSK126 did not significantly

impact AKT phosphorylation (Appendix Fig S4L and M). These data

indicate that EZH2 inactivation inhibits AKT oncogenic signaling, in

part contributing to the anti-cancer effects of GNA derivatives.

Moreover, in agreement with CHIP being the physiological E3

ligase governing GNA-induced EZH2 degradation, we observed that

CHIP increased the ubiquitination levels of only wild-type EZH2-SET,

but not those of the non-GNA-interacting C668S mutant EZH2-SET,

in an in vitro ubiquitination assay (Appendix Fig S4N). Furthermore,

as shown in the cellular IP assays, GNA002 treatment increased the

binding of CHIP to wild-type EZH2, but not C668S mutant form of

EZH2 (Appendix Fig S3C). We further found that depletion of

endogenous CHIP increased the GNA002 half-maximal inhibitory

concentration (IC50) value. In contrast, ectopic expression of CHIP,

conversely, decreased the GNA002 IC50 value (Appendix Fig S4O) in

Cal-27 cells. Moreover, in GNA002-treated Cal-27 cells, depletion of

endogenous CHIP (Appendix Fig S4P) inhibited GNA002-induced

EZH2-targeted gene expression (Appendix Fig S4Q), thereby restoring

cell proliferation (Appendix Fig S4R). On the other hand, ectopic

expression of CHIP elevated the suppression of cancer cell prolifera-

tion by GNA002, whereas this effect was largely abolished in cells

expressing the C668S mutant form of EZH2, which is deficient in

associating with GNA derivatives (Appendix Fig S4S). These results

together validate the critical physiological role of CHIP in GNA002-

mediated anti-cancer effects.

The EZH2 inhibitor significantly suppresses cancer growth in a
xenograft mouse model

We next examined the anti-cancer growth effect of GNA002 in vivo.

To this end, the in vivo pharmacokinetic profiling of plasma samples

collected for up to 24 h suggested that the oral administration of

GNA002 displayed noticeable anti-cancer effects (Appendix Fig

S5A–C) at concentrations exceeding IC50 values against EZH2

obtained with in vitro cell culture models (Appendix Fig S4C and

Appendix Table S3). Using a xenograft mouse model, we found that

the oral administration of 100 mg/kg GNA002 significantly

decreased the size (Fig 5A) and weight (Fig 5B) of tumors formed

by Cal-27 cells compared with the control group. On the other hand,

a clinical, front-line anti-cancer agent, cisplatin (Galluzzi et al,

2012), also exhibited similar anti-cancer effects (Fig 5A), but unfa-

vorably reduced the body weight of the treated nude mice (Fig 5C).

Critically, side effects have become a major hurdle in the clinical

application of chemotherapeutic agents, such as cisplatin, in human

patients with epithelial cancers (Arimidex et al, 2006). Notably, we

found that GNA002 treatment had no significant influence on mouse

body weight (Fig 5C), suggesting the potential for minimal side

effects for GNA002 given its specificity for EZH2. In support of this

notion, hematoxylin and eosin (H&E) analysis showed that the treat-

ment of nude mice with GNA002 did not induce major morphologi-

cal changes in the examined organ tissues, including the small

intestinal crypts and spleen (Appendix Fig S5D). In contrast,

cisplatin induced obvious crypt loss and villous atrophy, suggesting

that GNA002 is potentially a more specific and less toxic anti-cancer

agent than cisplatin.

Importantly, GNA002 treatment not only decreased the volumes

of Cal-27-derived tumors (Fig 5B) but also reduced H3K27Me3

levels in tumor tissues (Fig 5D). Mechanistically, IHC analysis

further demonstrated that the oral administration of GNA002, but

not cisplatin, strongly reduced EZH2 levels in Cal-27 xenograft

tumor tissues. The observed GNA-induced cessation of tumor cell

proliferation was further supported by reduced Ki-67-positive stain-

ing and increased TUNEL-positive staining in tumor tissues

(Appendix Fig S5F). Furthermore, GNA002 also significantly

suppressed the in vivo tumor growth derived from the xenografted

A549 lung cancer cells (Appendix Fig S5E).

Given that the lymphoma cells were more dependent on the

EZH2 oncoprotein and gain-of-function mutant-EZH2-expressing

lymphoma cells are a more suitable target for EZH2 inhibitors, we

also examined EZH2 expression in lymphoma cell lines harboring

either wild-type or mutant EZH2 (Appendix Fig S5G). Interest-

ingly, we found that GNA002 significantly reduced the abundance

of PRC2 components in both wild-type EZH2-expressing Daudi

cells (Fig 5E) and mutant EZH2-expressing Pfeiffer cells (Fig 5G),

regardless of EZH2 mutation status. Consistently, GNA002 suffi-

ciently suppressed the xenograft tumor growth of Daudi (Fig 5F)

and Pfeiffer (Fig 5H) cells. Moreover, we continued to examine

the cellular response of KE-37 cells, a cell line that have been

previously demonstrated to grow irregardless of EZH2 activity

status, as well as the Pfeiffer cells that are addicted to EZH2 enzy-

matic activity. Notably, we found that although in both cell lines,

GNA002 can reduce EZH2 protein abundance to comparable levels

(Appendix Fig S5H), the IC50 of KE-37 to GNA and GNA002 is

much higher than Pfeiffer cells (Appendix Table S3), indicating

that GNA and GNA002 might block cell growth in part by specifi-

cally suppressing EZH2 enzymatic activity(Bracken et al, 2003).

These results together confirm that the newly identified GNA002

is orally bioavailable and accumulates at levels that are sufficient

to inhibit the aberrant oncogenic functions of EZH2, thus inhibit-

ing tumor growth in vivo, at least in the xenograft experimental

model.

Next, given that drug resistance is an obstacle for successful clin-

ical anti-cancer practice (Tiedt et al, 2011), we also examined

potential mutations in EZH2 that could escape the inhibitory effects

of GNA derivatives. To this end, our biochemical analysis and

computational modeling (Appendix Fig S6A and B) revealed that

EZH2 has one cysteine residue (C668) that is directed outward to

provide an appropriate site for the Michael reaction to mediate the

covalent bond with GNA and GNA002, whereas other examined

methyltransferases do not contain this residue. Strikingly, the non-

GNA-interacting (Fig 2A and B) C668S mutation has been detected

in human clinical cancer samples (Network, 2012; Appendix Fig

S6C), indicating that an acquired C668S mutation in the EZH2 onco-

protein might provide a growth advantage for tumor cells in part by

escaping the inhibitory effects of the GNA class of inhibitors. In

support of this assumption, we found that the C668S mutant-

expressing UMSCC12 cancer cells displayed an elevated resistance

to the GNA002-mediated inhibition of anchorage-independent

growth (Fig 6A and B). The in vivo xenograft tumor model experi-

ments further indicated that cancer cells expressing the non-GNA-

interacting C668S mutant displayed significant resistance to

GNA002 treatment compared with WT-EZH2-expressing cells

(Fig 6E). These results together coherently indicate that GNA
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derivatives are specific EZH2 inhibitors by covalently binding to the

Cys668 residue within the SET domain.

More importantly, the C668S mutant displayed an enzymatic

activity similar to that of WT-EZH2 regarding the maintenance of

H3K27 trimethylation in vitro (Appendix Fig S6D), arguing that the

observed effect of the C668S mutation was largely due to its defi-

ciency in associating with GNA002 rather than directly affecting the

methyltransferase activity of EZH2. Given the critical role of CHIP in

promoting the destruction of the EZH2 oncoprotein when chal-

lenged with GNA002, we also reasoned that the reduced expression

of CHIP in human cancers might override the anti-cancer effects on

GNA derivatives. In support of this contention, we found that the

depletion of endogenous CHIP moderately desensitized UMSCC12

cells to GNA002 (Fig 6C and D), thereby leading to an acquired

resistance to GNA002 in vivo as assessed by a xenograft mouse

model (Fig 6F). This effect occurs in part through significantly

elevated EZH2 levels and a subsequent increase in H3K27Me3 levels

(Appendix Fig S6E).

Discussion

Covalent modifications of specific oncoproteins have recently gained

increasing attention as a novel anti-cancer strategy and for drug

development (Zhou et al, 2009; Kim et al, 2013a). To sufficiently

decrease the expression level and the oncogenic function of the

EZH2 protein in cancer cells, GNA and its derivatives represent a

unique category of inhibitor(s) that covalently binds to EZH2, but
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Figure 5. EZH2 degradation induced by GNA derivatives suppresses in vivo tumor growth.

A Nude mice bearing Cal-27 xenograft tumors were orally administered GNA002 (p.o., 100 mg/kg, once per day, n = 10), GSK126 (i.p., 50 mg/kg, once per day, n = 10),
cisplatin (i.p., 5 mg/kg, once per week, n = 10), or vehicle control (p.o., once per day, n = 10). Tumor sizes were measured daily, converted to tumor volume and
plotted against days of treatment. The data are presented as the mean percentage change of tumor volume � standard error of the mean (SEM). *P < 0.05,
**P < 0.01.

B Representative images of the xenografted tumors after vehicle or GNA002 treatments.
C Body weights of the treated mice from (A) were recorded daily after the indicated treatments. The data are presented as the mean � standard error of the mean

(SEM). *P < 0.05.
D Oral GNA002 treatment (100 mg/kg) for 4 weeks led to a decrease in H3K27Me3 levels in the collected Cal-27 xenografted tumors.
E Immunoblotting assays indicated that GNA002 incubation for 48 h not only reduced H3K27Me3 levels as GSK126 did, but also significantly reduced the EZH2 protein

abundance in the wild-type EZH2-expressing lymphoma Daudi cells.
F Nude mice bearing Daudi xenograft tumors were orally administered GNA002 (p.o., 100 mg/kg, once per day, n = 10) or vehicle control (p.o., once per day, n = 10).

Tumor sizes were measured every 3 days. The data are presented as the mean percentage change of tumor volume � SEM. *P < 0.05.
G Immunoblotting assays indicated that GNA002 incubation for 48 h not only reduced H3K27Me3 levels as GSK126 did, but also significantly reduced mutant EZH2

protein expression in Pfeiffer cells that harbor gain-of-function EZH2 mutation.
H Nude mice bearing Pfeiffer xenograft tumors were orally administered GNA002 (p.o., 100 mg/kg, once daily, n = 10) or vehicle control (p.o., once daily, n = 10). Tumor

sizes were measured every 3 days. The data are presented as the mean percentage change of tumor volume � SEM. *P < 0.05, ***P < 0.001.

Source data are available online for this figure.
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not to the other methyltransferases that we examined. We found

that this strategy is an effective method to terminate the oncogenic

functions of EZH2 both in vivo and in vitro. Notably, recent studies

have begun to reveal that the oncogenic functions of EZH2 are

dependent on its histone methyltransferase activity as well as its

role as a co-activator for critical transcription factors that promote

tumorigenesis (Sparmann & van Lohuizen, 2006; Shih et al, 2012).

We discovered that EZH2 degradation was induced by GNA
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Figure 6. The non-GNA-interacting EZH2-C668S mutant rescues GNA002-induced reduction of tumor growth.

A The anchorage-independent growth of WT-EZH2-expressing but not C668S-expressing UMSCC-12 head and neck cancer cells was retarded by 1 lM GNA002
treatment for up to 6 weeks.

B Quantification of the results that were obtained in (A). The experiments were performed in triplicate. Mean � SEM.
C Depletion of endogenous CHIP in UMSCC-12 cells partially conferred resistance to GNA002-mediated suppression of anchorage-independent growth at the end of 6 weeks.
D Quantification of the results that were obtained in (C). The experiments were performed in triplicate. Mean � SEM.
E Nude mice bearing WT-EZH2- or C668S-EZH2-expressing UMSCC-12 xenografted tumors were orally administered GNA002 (p.o., 100 mg/kg, once daily, n = 10) or

vehicle control (p.o., once daily, n = 10). The data are presented as the mean percentage change of tumor volume � SEM. One way ANOVA analysis was used to
assess the statistical significance. ***P < 0.001.

F Nude mice bearing shGFP- or shCHIP-expressing UMSCC-12 xenograft tumors were orally administered GNA002 (p.o., 100 mg/kg, once daily, n = 10) or vehicle
control (p.o., once daily, n = 10). The data are presented as the mean tumor volume � SEM, One way ANOVA analysis was used to assess the statistical significance.
***P < 0.001.

G A proposed model to illustrate the molecular mechanisms underlying GNA derivatives as a novel class of EZH2 inhibitors. GNA and GNA derivatives specifically
interact with EZH2 but not other methyltransferases by forming a covalent bond between the C8 equivalent atom of the GNA derivatives and the S atom of the
Cys668 residue in the SET domain of EZH2. Subsequently, GNA binding to EZH2 induces CHIP-dependent polyubiquitination and the subsequent degradation of EZH2,
thereby leading to a total termination of the EZH2 oncogenic functions in human cancer cells.
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derivatives in part by directly binding to EZH2. Biochemical analysis

allowed us to further identify Cys668 as the single residue located in

the SET domain of EZH2 to form a covalent bond with the C8 equiv-

alent atom of GNA and GNA derivatives. Although previously the

EZH2 inhibitor DZNep was also reported to induce the degradation

of the oncoprotein EZH2 (Tan et al, 2007), the underlying mecha-

nism of GNA002 is very different from that of DZNep. Specifically,

DZNep functions as an analog of methyl group donor, while

GNA002 could covalently bind with specific cysteine residue of

EZH2 to trigger its ubiquitination and subsequent degradation by

the protein quality control E3 ligase, CHIP.

Strikingly, the C668S mutation of EZH2 has been reported in

colon cancer clinical samples (Network, 2012). We also found that

the C668S mutant form of EZH2 failed to interact with GNA and

GNA derivatives. As indicated in Appendix Fig S3A, the levels of

H3K27Me3 of C668S-mutant UMSCC-12 cells are not obviously

changed compared to the wild type of UMSCC-12 cells. These data

suggest that the C668S mutation might function as a passenger

mutation, but patients harboring such a mutation may not benefit

from clinical treatment with GNA002. As a biological consequence,

cancer cells expressing the C668S-EZH2 mutant were more resistant

to GNA derivative-induced growth inhibition both in vitro and

in vivo. Hence, our study has clearly defined a target patient

sub-population bearing the C668S mutation in EZH2 who might not

be suitable for GNA derivative treatment, although patients carrying

the C668S EZH2 mutation only accounted for a very small

proportion.

However, our mechanistic studies indicate that the accurate

exclusion of these resistant patients against GNA002 treatment

could enhance the clinical efficacy, which is consistent with the

concept of precision medicine (Stadler et al, 2014). Furthermore, we

pinpointed the signaling pathway involved in the upstream E3 ubiq-

uitin ligase CHIP that governs GNA-mediated ubiquitination and

degradation of the EZH2 oncoprotein. Although previous studies

have reported that dissociated PRC2 components can be degraded

by the proteasome pathway (Yu et al, 2013), the identity of E3

ligase(s) remains largely elusive. We demonstrated that depletion of

either Smurf2 or CHIP led to increased endogenous EZH2 levels.

However, only the depletion of endogenous CHIP conferred cell

resistance to GNA-mediated degradation of EZH2.

Recently, lenalidomide-bound Cullin 4-Cereblon E3 ligase

acquired a “glue” ability to promote the ubiquitination of IKZF1 and

IKZF3 as novel downstream substrates to block myeloma cell

growth (Kronke et al, 2014; Lu et al, 2014). In our discovery, the

novel “glue” effects between CHIP-mediated degradation and

the EZH2 oncoprotein were triggered by GNA and its derivatives at

the substrate level. This special feature of the target ubiquitination

and degradation of EZH2 might be a promising alternative anti-

cancer strategy in treating patients with elevated EZH2 enzymatic

activity, especially those with aberrant EZH2 overexpression. The

covalent binding role and thorough suppression of its full oncogenic

function were validated by in vitro and in vivo experiments both in

wild-type EZH2 solid tumors and in the gain-of-function mutant

form of EZH2 in lymphomas. Moreover, this novel mechanism

distinguishes these potent agents from the currently available EZH2

enzymatic inhibitors.

Additionally, our study demonstrated that covalent binding to

the Cys668 residue of the EZH2 SET domain is a promising method

of modulating the EZH2 oncoprotein stability following ubiquitina-

tion and proteasome-mediated degradation. We also present GNA

and its derivatives as novel EZH2-modulating candidates. In this

study, we primarily used GNA and the more active GNA002 deriva-

tive to illustrate the novel anti-EZH2 strategy. GNA possesses some

toxic activity, such as the inhibition of Cdk4/Cyclin D1, AKT, and

p38 (Yan et al, 2011) and the induction of GSK3b-dependent G1

arrest (Yu et al, 2012). However, our current studies demonstrated

that under our experimental conditions, GNA and, to a greater

extent, its derivative GNA002 specifically inhibit EZH2 but not the

other methyltransferases that we examined through the covalent

inhibition of a specific cysteine of EZH2. These results indicate

that these potent agents against EZH2-C668 act uniquely and

independently of other potential anti-cancer mechanisms. Based on

our discovery, other chemical compounds can been designed and

developed as more specific EZH2 modulators.

In summary, we have uncovered the molecular mechanism

underlying the covalent binding of EZH2 to potent agents as well as

the signaling pathway(s) for the CHIP-mediated polyubiquitination

of the covalently bound EZH2 oncoprotein (Fig 6G). More impor-

tantly, we utilized a combination of in vitro and in vivo assays to

validate the novel mechanisms of EZH2 degradation, thereby uncov-

ering a novel method to develop new anti-EZH2 agents as promising

anti-cancer therapies.

Materials and Methods

Cell culture

The human head and neck cancer cell lines UMSCC-12 and SCC-25

as well as breast cancer cell lines MDA-MB-231, MDA-MB-468, and

MCF-7 and their drug-resistant variant MCF-7/ADM were obtained

from the American Type Culture Collection. The human head and

neck cell lines HN-4, HN-6, HN-12, HN-13, HN-30, Cal-27, KB, and

KB/VCR; the hepatocyte carcinoma cell line SMMC-7721; and the

cervical cancer cell line HeLa were obtained from NIH. These cells

were maintained in Dulbecco’s minimum essential medium (Invitro-

gen) that was supplemented with 10% fetal bovine serum,

100 units/ml penicillin, and 100 lg/ml streptomycin. MV4-11, RS4-

11, Reh, Daudi, Pfeiffer, and KE-37 were obtained from the Ameri-

can Type Culture Collection and cultured with RPMI-1640 medium

and 10% fetal bovine serum (Invitrogen). The indicated cell lines

were incubated in a humidified atmosphere with 5% CO2 at 37°C.

Computational modeling

The structural of the EZH2 CXC-SET domain (PDB: 4MI0) was used

for covalent binding. The covalent binding mechanism was deter-

mined using software Autodock 4.2 (Morris et al, 2009). The GNA

derivatives were manually docked into the coordinated center of

covalent binding site (x = 30, y = 30, z = 30).

Furthermore, protein residue conservation analysis was

performed with the ConSurf Web site (Ashkenazy et al, 2010),

which is publically available at http://consurf.tau.ac.il. The EZH2

mutation was identified in the Cosmic (catalog of somatic mutations

in cancer) Web site (Forbes et al, 2011), which is publically avail-

able at http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/.
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MALDI-TOF analysis

The biotinylated EZH2 peptide (Biotin-DKYMCSFLFN) was synthe-

sized by Shanghai Sangon Co. Ltd. Bacterially purified recombinant

GST-EZH2 proteins were incubated with GNA or GNA002 for 1 h at

37°C. The molecular weight (MW) of proteins and adducts was

recorded with the MALDI-TOF Mass Spectrum (Shanghai Applied

Protein Technology Co. Ltd.).

Cell growth and survival assays

Cell viability was assessed using the MTT assay (Sigma). Cells were

seeded in 96-well micro-culture plates for 12 h to allow for cell attach-

ment before being incubated for an additional 72 h with various

concentrations of the tested compounds. Afterward, the MTT reagent

was added to each well, and the cells were incubated for 4 h. Then,

the colored formazan products were quantified photometrically at

490 nm using a multi-well plate reader (Bio-Rad Laboratories).

Plasmids

The wild-type Myc-CHIP constructs were kindly provided by Dr.

Jing Yi (Yan et al, 2010; Shanghai Jiao Tong University, School of

Medicine, Shanghai, P.R. China). The His-EZH2 expression vector

was purchased from Neobio, China. The N-terminal GST- or His-

tagged EZH2 wild-type and deletion mutants were described previ-

ously (Kaneko et al, 2010). The mammalian expression constructs

for Flag-tagged wild type and various mutants of EZH2 were also

described previously (Cao et al, 2013). The EZH2 mutants wherein

residues C668, C699 or C647 were replaced by serine were gener-

ated with site-directed mutagenesis (Agilent) according to the manu-

facturer’s instructions. The shSmurf1, shCHIP, and shSmurf2

lentiviral constructs were purchased from Open Biosystems. The

shBim and shEZH2 lentiviral constructs were purchased from

Addgene. Synthesized siRNAs or mammalian expression vectors

were transfected into cells at 40–60% confluence using the Lipofec-

tamine 2000 reagent according to the manufacturer’s instructions.

Reverse-transcriptional–polymerase chain reaction and
quantitative PCR assays

HN-4 and Cal-27 cells were treated with GNA002 at 0, 0.2, and

0.5 lM for 24 h, and quantitative PCR was performed using the ABI

Prism 7300 system (Applied Biosystems, Foster City, CA, USA) and

SYBR Green (Roche, Mannheim, Germany). For PCR, up to 1 ll of
cDNA was used as a template. The thermal cycling conditions were

95°C for 10 min followed by 40 cycles of 95°C for 15 s and 60°C for

30 s. A primer efficiency of > 90% was confirmed with a standard

curve spanning four orders of magnitude. Following the reactions,

the raw data were exported using the 7300 System Software 4 v1.3.0

(Applied Biosystems) and analyzed.

The primers were as follows: b-actin, sense 50-ACC AAC TGG

GAC GAC ATG GAG AAA-30 and antisense 50-TAG CAC AGC CTG

GAT AGC AAC GTA-30; EZH2, sense 50-TGC AGT TGC TTC AGT

ACC CAT AAT-30 and antisense 50-ATC CCC GTG TAC TTT CCC

ATC ATA AT-30; miR-200b, sense 50-CAT CTT ACT GGG CAG CAT

TG-30 and antisense 50-GTC ATC ATT ACC AGG CAG TAT TAG-30;
miR-200c, sense 50-CTC GTC TTA CCC AGC AGT GT-30 and

antisense 50-GTC ATC ATT ACC AGG CAG TAT TAG-30; c-Cbl, sense
50-GGA CCA GTG AGT TGG GAG TTA TTA CT-30 and antisense 50-
GGC AAG ACT TCA CTG TGA AGT CA-30; CHIP, sense 50-TGT GCT

ACC TGA AGA TGC AG-30 and antisense 50-TGT TCC AGC GCT TCT

TCT TC-30; E6AP, sense 50-AGG AGC AAG CTC AGC TTA CCT-30

and antisense 50-CAG CAG CAG AAC ATG CAG C-30; HHARI, sense
50-GCT ACG AGG TGC TCA CG-30 and antisense 50-ATC CTG TGC

TGA TGA CCT TG-30; and Parkin, sense 50-CCA GAT TGC CAC CAT

GTT GT-30 and antisense 50-CAC TGT CAT CAT CAC ACT-30.

Antibodies

The antibodies that were used in this study were as follows: mouse

monoclonal antibody against EZH2 (612667, BD Science); rabbit

polyclonal antibody against SUZ-12 (20366-1-AP, Proteintech,

USA); mouse monoclonal antibody against b-actin (ab6276,

Abcam, USA); rabbit polyclonal antibody against H3K27Me3 (07-

449, Millipore, USA); rabbit polyclonal antibody against H3K9Me3

(05-1242, Millipore, USA); rabbit polyclonal antibody against H3

histone (AH433, Beyotime, China); rabbit polyclonal antibody

against EED (16818-1-AP, Proteintech); rabbit polyclonal antibody

against BMI-1 (10832-1-AP, Proteintech); rabbit polyclonal anti-

body against PARP (AP102, Beyotime, China); rabbit polyclonal

antibody against caspase-8 (13423-1-AP, Proteintech, USA); rabbit

polyclonal antibody against caspase-3 (19677-1-AP, Proteintech,

USA); rabbit polyclonal antibody against Bcl-2 (12789-1-AP,

Proteintech, USA); rabbit polyclonal antibody against Bax (50599-

2-Ig, Proteintech, USA); the rabbit polyclonal antibody against

ubiquitin (1646-1, Epitomics, USA); mouse monoclonal antibody

against Smurf1 (sc-100616, Santa Cruz, USA); rabbit polyclonal

antibody against Smurf2 (sc-25511, Santa Cruz, USA); rabbit

monoclonal antibody against Bim (2933, Cell Signal, USA); and

mouse monoclonal antibody against Flag (F1804, Sigma, USA);

Methyl-Histone H3 Antibody Sampler Kit (9847, Cell Signal, USA);

Tri-Methyl-Histone H3 Antibody Sampler Kit (9783, Cell Signal,

USA); Rabbit polyclonal antibodies against H4K20 methylation

(ab9051, ab9052, ab9053, Abcam, USA); Rabbit polyclonal antibod-

ies against EZH1(A5818, Abclonal, China).

Immunofluorescence and immunohistochemistry assays

To visualize the effects of GNA002 on the intracellular retention of

Rhodamine 123 (Rho123), 1 × 104 HN-4 cells were seeded on Lab-

Tek 8-well chamber slides the day prior to the assay. The cells were

then incubated with 0.25 lM Rho123 either alone or in the presence

of 2 lM GNA002 in DMEM for 12 h at 37°C. Afterward, the cells

were fixed with 4% paraformaldehyde. Nuclear staining was

achieved by incubating cells in DAPI for 5 min. The slides were then

washed and imaged using a laser-scanning confocal microscope

(TCS SP2, Leica, Germany; He et al, 2009).

Monolayers of HN-6 cells were fixed with 4% paraformaldehyde,

permeabilized with 0.2% Triton X-100, and blocked with 5% bovine

serum albumin (BSA) before incubating with antibodies against

EZH2, CHIP, or biotin for 2 h at 37°C. Subsequently, cells were

incubated with a fluorescein isothiocyanate (FITC)-conjugated

secondary antibody (ZYMED, S. San Francisco, CA, USA) for 2 h at

37°C. The cells were then examined by a laser confocal microscope

(TCS SP2, Leica, Germany).
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Chromatin immunoprecipitation (ChIP) assays

ChIP assays were performed as previously described (Chopra et al,

2011; Davalos-Salas et al, 2011). Cal-27 cells were treated with or

without GNA002 (2 lM) for 24 h. ChIP assays were performed

using EZ ChIP kit (Millipore). Briefly, Cal-27 cells (1 × 107 cells)

were fixed with 1% formaldehyde and then neutralized by adding

0.125 M glycine. Cells were collected and lysed in cell lysis buffer

containing SDS and a cocktail of protease inhibitors. The lysates

were sonicated to obtain soluble chromatin with an average length

of 1,000 bp. After a 1:10 dilution in dilution buffer, the chromatin

solutions were pre-cleared and incubated with IgG or anti-

H3K27Me3 antibodies. Next, the mixtures were incubated overnight

at 4°C on a rotating platform. The immunocomplexes were captured

by protein A/G-Sepharose beads. After extensive washing, the

bound DNA fragments were eluted, and the resulting DNA was

subjected to real-time qPCR analysis using the following ChIP

primer pairs: miR-200a,b, sense 50-CGT CTG GCC AGG ACA CTT-30

and antisense 50-AAT GCT GCC CAG TAA GAT GG-30; miR-200c,

sense 50-AGG GCT CAC CAG GAA GTG T-30 and antisense 50-CCA
TCA TTA CCC GGC AGT AT-30; CB1, sense 50-GCA GAG CTC TCC

GTA GTC AG-30 and antisense 50-AAC AGG CTG GGG CCA TAC AG-

30; and GAPDH, sense 50-TAC TAG CGG TTT TAC GGG CG-30 and
antisense 50-TCG AAC AGG AGG AGC AGA GAG CGA-30.

RNA interference and transfection

RNA interference oligonucleotides were transfected with Lipofec-

tamine 2000 as previously reported (Yan et al, 2010). siRNA

oligonucleotides were synthesized by Gene Pharma, China. The

siRNA sequences were as follows: negative control, sense 50-UUC
UUC GAA CGU GUC ACG UTT-30 and antisense 50-ACG UGA CAC

GUU CGG AGA ATT-30; EZH2, sense 50-GAA UGG AAA CAG CGA

AGG ATT-30 and antisense 50-UCC UUC GCU GUU UCC AUU CTT-30;
c-Cbl, sense 50-GGA GAC ACA UUU CGG AUU A dTdT-30 and anti-

sense 50-UAA UCC GAA AUG UGU CUC C dTdT-30; E6AP, sense

50-GUA GAG AAA GAG AGG AUU A dTdT-30 and antisense 50-UAA
UCC UCU CUU UCU CUA C dTdT-30; HHARI, sense, 50-CGA ACA

CGC CAG AUG AAU A dTdT-30 and antisense, 50-UAU UCA UCU

GGC GUG UUC G dTdT-30; CHIP, sense, 50-AGG CCA AGC ACG ACA

AGU A dTdT-30 and antisense 50-UAC UUG UCG UGC UUG GCC U

dTdT-30; Parkin, sense 50-GGA AGG AGC UGA GGA AUG A dTdT-30

and antisense 50-UCA UUC CUC AGC UCC UUC C dTdT-30; and CHIP

(30UTR), sense 50-GAC GUG CUG GUG UGU GAA A dTdT-30 and

antisense 50-UUU CAC ACA CCA GCA CGU C dTdT-30.

Cell cycle analysis

The cell cycle distribution of cancer cells was determined as

previously reported (Yan et al, 2010). HN-4 and Cal-27 cells were

seeded in 6-well plates at a density of 2.5 × 105 cells/well over-

night. On the following day, the cells were treated with vehicle

(DMSO) or 1 lM GNA002 for 24 h. The cells were then trypsi-

nized, and fixed cells were incubated with 0.5 ml of PI/RNase

staining buffer for 15 min at room temperature (RT). The DNA

content and cell cycle distribution were assessed by the FACScan

laser flow cytometry. The data were analyzed using MODFIT and

CELLQUEST software.

Flow cytometric analysis for detecting cellular apoptosis

Cancer cells were treated with 2 lM GNA or GNA002 for 24 h. The

cells were then harvested and re-suspended with 500 ll of binding
buffer. The cell suspension (100 ll) was incubated with 5 ll of

annexin V and propidium iodide at RT for 20 min. The stained cells

were analyzed with fluorescent-activated cell sorting using the BD

LSR II flow cytometry machine (Becton Dickinson, San Jose, CA,

USA).

Measurements of mitochondrial membrane potentials (Dwm)

As a previous study reported (Ferlini & Scambia, 2007), the cells

were harvested and re-suspended with 500 ll of binding buffer for

20 min after the cancer cells were treated with GNA or GNA002 for

24 h. The stained cells were then analyzed with fluorescent-

activated cell sorting using the BD LSR II flow cytometry machine

(Becton Dickinson, San Jose, CA, USA).

Immunoblotting analysis

The cells were lysed in lysate solution, and the proteins were sepa-

rated on 8, 10, or 12% SDS–PAGE gels and transferred to nitrocellu-

lose membranes. Next, 5% milk powder-containing buffer was used

to reduce the non-specific background. Bands were detected using

various antibodies as indicated. The membranes were incubated

with the primary antibodies at 4°C overnight and secondary anti-

bodies for 2 h at RT before using the Odyssey� Infrared Imaging

System (Bioscience) or exposure to X-ray film in the dark for band

detection.

Immunoprecipitation (IP) and denaturing IP analysis

Cells were harvested using IP buffer (1% Triton X-100, 150 mM

NaCl, 10 mM Tris, pH 7.4, 1 mM EDTA, 1 mM EGTA, pH 8.0,

0.2 mM sodium orthovanadate, 1 mM phenylmethanesulfonyl fluo-

ride (PMSF), 0.5% protease inhibitor cocktail, and 0.5% IGEPAL

CA-630). Cell lysates were centrifuged at 16,000 g for 30 min at 4°C,

and the supernatants were incubated with specific antibodies as

indicated overnight at 4°C followed by incubation with protein

A/protein G-coated agarose beads (Merck) for an additional 4 h at

4°C. After the samples were washed thrice with ice-cold IP buffer

and the supernatants were removed by centrifugation at 2,000 g for

1 min, the proteins were precipitated individually or co-precipitated.

The proteins were then separated from the beads using immunoblot-

ting loading buffer for 5 min at 95°C. The supernatants were

collected for subsequent immunoblotting analysis after SDS gel

separation.

Denaturing co-IP was performed to detect the ubiquitin conju-

gations of EZH2 in vivo. Cells were lysed in 100 ll of denaturing

buffer (100 mM Tris–HCl, 2% SDS, 10% glycerol) before being

harvested. After boiling for 10 min, cell lysates were centrifuged

for 5 min at RT. Supernatants were mixed with EBC buffer

[(50 mM Tris pH 7.5, 120 mM NaCl, 0.5% NP-40) buffer supple-

mented with protease inhibitors (Complete Mini, Roche) and

phosphatase inhibitors (phosphatase inhibitor cocktail set I and

II, Calbiochem)] and incubated with Flag-M2 beads (A2220,

Sigma). The proteins were separated from the beads using
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immunoblotting loading buffer specifically containing 50 mM

dithiothreitol (DTT) for 5 min at 95°C. The supernatants were

collected for subsequent immunoblotting analysis with the indi-

cated antibodies.

Pull-down of gambogenic acid-bound proteins for HPLC/MS/
MS analysis

Biotin- or biotin-gambogenic acid-conjugated agarose beads were

prepared as previously described (Shen et al, 2009). HN-12 cells

were harvested and lysed in RIPA buffer supplemented with various

protease and phosphatase inhibitors (Calbiochem, Darmstadt,

Germany) with brief sonication. After centrifugation at 12,000 g for

30 min, the supernatants (2 mg/ml) were collected and equally

divided into four parts, two of which were pre-incubated with unla-

beled GNA (10-fold or 20-fold of biotin-labeled GNA) and then incu-

bated with 100 ll of biotin, biotin-GNA-beads, or biotin-GNA-beads
in the presence of unlabeled GNA in RIPA buffer overnight at 4°C.

After incubation, the beads were washed five times with RIPA

buffer, the bead-bound proteins were eluted, the proteins were sepa-

rated by SDS–PAGE, and the bands were visualized by silver stain-

ing. The protein fragments were recorded with the HPLC/MS/MS

analysis (Shanghai Applied Protein Technology Co. Ltd.).

CHIP in vitro ubiquitination activity assays

CHIP activity was performed using a commercial kit following the

manufacturer’s instructions (Boston Biotechnology, USA). Glow-

FoldTM control protein is progressively ubiquitinated using the

reagents and protocol conditions that were supplied in this kit.

Ubiquitinated Glow-FoldTM products are visible via immunoblotting;

anti-ubiquitin antibodies may detect the targets in addition to polyu-

biquitinated substrate proteins.

Fortebio octet assay

The interaction between EZH2-SET and compounds was tested by

the ForteBio Octet System according to the manufacturer’s instruc-

tions (ForteBio, Inc., USA). The 10 lM Bio-GNA was immobilized

onto Super Streptavidin Biosensors for 30 min at 25°C. The 10 lM
recombinant protein of EZH2-SET was prepared in SD buffer

(1× phosphate-buffered saline (PBS), 0.02% Tween-20, 0.1% BSA)

in the presence of DMSO, GNA (10 lM) or GNA002 (10 lM). The

association and dissociation of the EZH2-SET were monitored in

parallel to minimize time. The competing binding of compounds to

EZH2-SET in the coated and uncoated reference sensors was

measured over 1,400 s. This analysis accounts for non-specific

binding, background, and signal drift and minimizes well-based and

sensor variability.

High-content screening assay

At 24 h after incubation with a library composing of different

compounds, the cells were fixed with formalin and washed thrice

with PBS. The library consists of natural compounds from previ-

ously reported Chinese traditional medicine. We selected these

compounds that are highly bio-active and most of them are used in

the ancient formula to treat cancer in China. After the cells were

incubated with a primary anti-EZH2 antibody (1:300) and a

secondary fluorescent antibody (1:200), DNA/nuclei were stained

with DAPI (5 lg/ml) that was diluted in blocking solution. The

plates were incubated for 1 h at room temperature in the dark.

According to previous studies reported (Adams et al, 2014;

Martin et al, 2014), the plates were imaged using a PerkinElmer

Operetta high-content wide-field fluorescence imaging system

coupled to Harmony software. The plates were barcoded with speci-

fic information, and the barcodes were read before loading onto the

Operetta. The wells were imaged using a 40× objective lens in a

single focal plane across each plate. The bottom of each well was

detected automatically by the Operetta focusing laser, and the focal

plane was calculated relative to this value. DAPI emission (455 nm)

was imaged for 50 ms. A total of 8 fields of view were imaged per

well, with an identical pattern of fields being used in every well.

This pattern was designed to avoid imaging cells in the area that

was targeted by the dispensers.

Modified Columbus (PerkinElmer) image analysis algorithms

were used throughout. Nuclei were detected using a modified “find

nuclei” algorithm as blue (DAPI) fluorescent regions > 100 lm2,

with a split factor of 7.0, an individual threshold of 0.40, and a

contrast > 0.10 (method B). The phenotypic nuclear spots that are

characteristic of EZH2 were detected using a modified “find spots”

algorithm as well as using fluorescent spots with a relative spot

intensity > 0.030 and a splitting coefficient of 1.0 (method A). Key

output parameters were the number of whole nuclei and the

percentage of nuclei with EZH2.

Statistical analyses were performed on a plate-by-plate basis

using the z-score calculation. The strictly standardized mean

difference (SSMD) was chosen as the quality control metric to

evaluate the variability of and the difference between the control

populations. The threshold was set at 0.38 relative to the original

EZH2 protein abundance to identify top-hit compounds, which will

be further validated by subsequent immunofluorescent and immu-

noblot assays.

Pharmacokinetic study

The protocol is based on the previous report (Cai et al, 2011). Adult

male ICR mice were fasted overnight prior to drug administration.

GNA002 was administered as a single dose of 12 mg/kg by tail vain

injection or oral gavage. At pre-dose and at 0.083, 0.25, 0.5, 1, 2, 4,

8, and 24 h post-dose, blood was collected from three male mice

and immediately processed for plasma by centrifugation for 10 min

at 3,000 g. The resulting plasma was frozen on dry ice, and the

samples were stored at �80°C until analysis. Proper measures were

taken to minimize pain and discomfort experienced by the mice.

The experimental procedures were in accordance with the National

Institutes of Health Guide for Care and Use of Laboratory Animals

(revised 1996). The experiments were performed in compliance with

ethical regulations, and the protocols were approved by the insti-

tute’s committee. For mouse plasma sample analysis for GNA002, a

0.1-ml aliquot of plasma sample was treated with 0.3 ml of

methanol containing 250 nM (internal standard, IS) for direct depro-

teinization. After vortex mixing for 1 min and centrifuging for

5 min at 10,000 g, 0.2 ml of supernatant was transferred to a

sample vial, and 5 ll of the sample was injected onto the LC/MS/

MS. The LC was performed on an Agilent 1200 HPLC system
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(Agilent Technologies, Inc., USA), and separation was performed at

30°C using an Xterra column (2.1 × 50 mm, 3.5 lm; Waters, USA).

The mobile phase consisted of 0.1% formic acid in water–

methanol (45:55, v/v), and the flow rate was 0.3 ml/min. The HPLC

system was interfaced to an Agilent 6410 triple-quadrupole mass

spectrometer (Agilent Technologies, Inc., USA) with an electrospray

interface (ESI). The ESI source parameters were as follows: high-

purity drying-gas (N2) flow rate, 8 l/min; temperature, 350°C; capil-

lary voltage, 4,000 V; and nebulizer pressure, 30 psi. Multiple reac-

tion monitoring (MRM) was used to quantify GNA002 (m/z 732.6,

[M+H]+à608.6 fragmentor 150 eV, collision energy �69 eV) and IS

(m/z 274.9, [M+H]+à201.8 fragmentor 150 eV, collision energy

�40 eV). Data analysis was performed using the MassHunter soft-

ware package (Agilent Technologies, Inc., USA) containing both

qualitative and quantitative software. Plasma standard curves

ranged from 2.5 to 1,000 ng/ml. The curves were fitted with a linear

regression equation. Concentrations of GNA002 < 2.5 ng/ml were

reported as BQL (below the quantification limit of the method). To

determine the pharmacokinetic parameters, plasma concentrations

versus time data for GNA002 were analyzed by standard noncom-

partmental methods using the WinNonlin Pro 6.1 software (Phar-

sight Corporation, Mountain View, CA, USA). Concentrations

reported as BQL were set equal to zero to calculate the pharmacoki-

netic parameters and summary statistics. The maximum plasma

concentration (Cmax) and time to maximum concentration (Tmax)

were determined directly from the concentration–time data. The

data in the terminal log-linear phase were analyzed by linear regres-

sion to estimate the terminal rate constant (k) and half-life (t1/

2 = 0.693/k). AUC0�inf was computed as the sum of AUC0�t through

the last measurable concentration (Clast) using the linear trapezoidal

rule and the terminal area.

Animal experiments

Male BALB/C nude mice, aged 30–35 days and weighing 18–22 g,

were used for the animal experiments. The mice were maintained in

autoclaved filter-top micro-isolator cages with autoclaved water and

sterile food ad libitum. The cages were kept in an isolator unit that

was provided with filtered air. To generate the results for Fig 5,

thirty mice were subcutaneously inoculated with injections of

1 × 106 cells/nude mice. After 5 days, the tumor sizes were deter-

mined using micrometer calipers, and the nude mice with similar

tumor volumes (eliminating mice with tumors that were too large or

too small) were then randomly divided into three groups (10 nude

mice per group): the saline tumor control group (negative control

group); the oral gavage group with the oral administration of

GNA002 100 mg/kg/day group; the intraperitoneal injection (i.p.)

group with cisplatin (5 mg/kg/week group) or GSK126 (50 mg/kg,

once per day). At the end of 4 weeks, the nude mice were sacrificed,

and the tumor xenografts were excised and measured. Tumor

volume (TV) was calculated using the following formula: TV

(mm3) = d2×D/2, where d and D are the shortest and the longest

diameters, respectively. The entire experimental procedure was

performed in accordance with the National Institutes of Health

Guide for Care and Use of Laboratory Animals (revised 1996). The

experiments were performed in compliance with ethical regulations,

and the protocols were approved by the institute’s committee. In

addition, the animals were weighed twice per week and monitored

for mortality throughout the experimental period to assess treatment

toxicity.

To examine tissue damage, H&E-stained tissue samples from

mice receiving vehicle control were compared with tissues from

mice receiving 100 mg/kg GNA002 once daily (Shangary et al,

2008). Histopathological analyses were performed by three indepen-

dent, experienced pathologists.

Statistical analyses

Statistical analyses were performed using two-way analysis of vari-

ance (ANOVA) and unpaired two-tailed t-test using Prism (version

5.0) from GraphPad. P < 0.05 was considered significant.

Chemical preparation

Synthesis of GNA002

To a solution of GNA (26 g, 41.27 mmol, 1.0 eq) in 3 l of DCM was

added HATU (14.9 g, 0.95 eq), the mixture was stirred at 0°C for

30 min, and then, a solution of 2-ethoxyethanamine (3.49 g,

0.95 eq) and TEA (4.17 g, 1.0 eq) in 500 ml of DCM was added

drop-wise to the mixture at 0°C. Next, the reaction mixture was

stirred at 30°C overnight. The solvent was then evaporated at 25°C

by rotavapor to generate the crude GNA002, and the crude product

was purified by the preparative HPLC to obtain the final GNA002

compound. Briefly, The HPLC fractions were evaporated at 25°C by

rotavapor to remove most acetonitrile and then lyophilized (freeze-

dried) to remove water to generate the dry power product.

Preparation of biotinylated GNA

The carboxyl group of GNA was modified by amidation with EZlink

(5-biotinamido) pentylamine (Pierce) (Palempalli et al, 2009).

Briefly, GNA (2 mg) and EZ-link (5-biotinamido) pentylamine

(5 mg) were dissolved in DMSO (300 ll) and allowed to react with

EDAC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) in 100 mM

MES (pH 5.5) at 37°C for 3 h. Next, the reactions were halted by

extracting the products with a buffer containing ethyl acetate and

MES (1:1, v/v). The extracted biotinylated GNA was then purified

using the reverse-phase HPLC with a linear gradient of acetonitrile

(10–100%).

Preparation for the inactive GNA008

To generate the inactive GNA derivative, GNA008, to a solution of

GNA (300 mg, 0.476 mmol, 1.0 eq) in THF, 30 ml GNA008 was

added an L-selectride solution in THF (0.23 ml, 0.23 mmol, 0.5 eq)

drop-wise at �90°C under dry ice-acetone-liquid nitrogen. After

10 min of stirring, the reaction was quenched with 20 ml of 2 N

HCl at �90°C. Then, the mixture was allowed to warm to RT and

was diluted with EtOAc (20 ml). Next, the mixture was extracted

with EtOAc (20 ml × 2), dried over Na2SO4, and evaporated by

rotavapor to generate the crude inactive GNA008. Finally, the crude

GNA008 product was purified by the preparative HPLC.

Expanded View for this article is available online.
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