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Review

Culturing human intestinal stem cells for
regenerative applications in the treatment
of inflammatory bowel disease
Fredrik EO Holmberg1, Jakob B Seidelin1, Xiaolei Yin2,3,4,5,6, Benjamin E Mead2,3,4,5,6,7,

Zhixiang Tong2,3,4,5, Yuan Li1, Jeffrey M Karp2,3,4,5,6,7,* & Ole H Nielsen1,**

Abstract

Both the incidence and prevalence of inflammatory bowel disease
(IBD) is increasing globally; in the industrialized world up to 0.5%
of the population are affected and around 4.2 million individuals
suffer from IBD in Europe and North America combined. Successful
engraftment in experimental colitis models suggests that intestinal
stem cell transplantation could constitute a novel treatment strat-
egy to re-establish mucosal barrier function in patients with
severe disease. Intestinal stem cells can be grown in vitro in orga-
noid structures, though only a fraction of the cells contained are
stem cells with regenerative capabilities. Hence, techniques to
enrich stem cell populations are being pursued through the devel-
opment of multiple two-dimensional and three-dimensional
culture protocols, as well as co-culture techniques and multiple
growth medium compositions. Moreover, research in support
matrices allowing for efficient clinical application is in progress. In
vitro culture is accomplished by modulating the signaling path-
ways fundamental for the stem cell niche with a suitable culture
matrix to provide additional contact-dependent stimuli and struc-
tural support. The aim of this review was to discuss medium
compositions and support matrices for optimal intestinal stem cell
culture, as well as potential modifications to advance clinical use
in IBD.
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Introduction

Inflammatory bowel disease (IBD) of which Crohn’s disease (CD)

and ulcerative colitis (UC) are the two most prevalent entities,

constitute a chronic remitting disorder with increasing incidence

worldwide, reported in the range of up to 50 per 100,000 in the

Western population (Molodecky et al, 2012). IBD causes lifelong

morbidity, including extra-intestinal complications (Larsen et al,

2010), and can greatly impair quality of life of affected individuals.

It also constitutes a considerable economic burden for society in

terms of direct medical costs (Burisch et al, 2013), and indirect costs

arising from impaired work performance, including sick leave

(Hoivik et al, 2013).

Mucosal healing is associated with a more favorable prognosis

for patients with IBD, including lower relapse and hospitalization

rates, as well as a diminished risk for surgery (Peyrin-Biroulet et al,

2011; Shah et al, 2016).

Successful transplantation of intestinal stem cells (ISCs), which

are responsible for tissue homeostasis and injury response, has been

achieved in murine models of experimental colitis, demonstrating

that they adhere to and become an integrated part of the epithelium,

thereby improving mucosal healing (Yui et al, 2012; Fordham et al,

2013; Fukuda et al, 2014). Hence, ISC transplantation might consti-

tute an appealing therapeutic approach to re-establish the epithelial

barrier in IBD.

ISCs are located at the base of the intestinal crypts where they

renew the epithelium through differentiation to multiple epithelial

progenies (Bjerknes & Cheng, 2006), and drive mucosal regenera-

tion. Several genes mark the ISC population, including LGR5 (Barker

et al, 2007), olfactomedin 4 (OLFM4) (van der Flier et al, 2009a),

and ASCL2 (van der Flier et al, 2009b).

ISCs can be cultured in vitro, giving rise to three-dimensional

self-organizing structures called organoids (Sato et al, 2009).
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Organoids resemble the intestinal epithelium in vivo, possessing

crypt and villus domains that contain multiple epithelial cell types

derived from the ISCs (Sato et al, 2011b).

Since intestinal stemness is determined by extrinsic signals,

multiple culture protocols exist to emulate the in vivo ISC niche,

and to sustain them in vitro. Protocols for human cell culture are

based on a coordinated stimulation of wingless-type mouse

mammary tumor virus integration site (WNT) signaling, epider-

mal growth factor (EGF), as well as inhibition of bone morpho-

genic protein (BMP), transforming growth factor-b (TGF-b)
signaling, and p38 signaling (Jung et al, 2011; Sato et al, 2011a).

The primary distinguishing factors between protocols are the

growth medium constituents and the support matrices applied,

resulting in differences in cellular composition. Nevertheless, most

culture protocols for human intestinal organoids are unable to

efficiently increase the frequency of ISCs within organoid struc-

tures, as only a few percent of the cells contained are self-

renewing and multipotent stem cells (Jung et al, 2011). This

raises the need for devising improved culture techniques to yield

a purer population of ISCs, applicable for clinical transplantation

strategies.

This review provides an updated overview of current growth

protocols for human ISCs in vitro, seeking to pinpoint obstacles in

stem cell enrichment and matrix support, which should be

addressed to allow for regenerative application of ISCs in IBD.

Growth medium

The basal medium for culturing ISCs often contains Advanced

Dulbecco’s Modified Eagle Medium/F12, supplemented with Gluta-

max, B-27, N-2, HEPES, acetylcysteine, and penicillin/streptomycin,

though human colonic organoids can be sustained without N-2

supplement (Fujii et al, 2015). It is also possible to replace B-27,

N-2, and acetylcysteine with serum (Van Dussen et al, 2015), but

this approach may pose other challenges for clinical applications, as

discussed in the subsequent section. The basal medium prevents

bacterial contamination and provides buffering capacity, necessary

amino acids, vitamins, antioxidants, hormones as well as inorganic

compounds.

Apart from the basic components, the growth media applied may

vary according to the type or composition of growth factors and

small molecules, either in the form of conditioned media, or

high-purity recombinant proteins. Frequently used growth media

constituents, their working mechanisms and effects, as well as

applications are summarized in Table 1.

WNT/R-spondin signaling

WNT signaling plays a crucial role in tissue development and home-

ostasis, though over-activity is associated with tumorigenesis

(Krausova & Korinek, 2014).

Two primary branches of WNT signaling exist: canonical and

non-canonical. Non-canonical signaling is implicated in the estab-

lishment of cell polarity and migration, as well as inflammation and

cancer development (Kumawat & Gosens, 2016), and has been less

implicated in sustaining ISCs.

The canonical WNT pathway is b-catenin dependent, and it is

best studied owing to its essential role in preserving the undifferenti-

ated stem cell state and promoting proliferation (van de Wetering

et al, 2002). The canonical WNT pathway is activated by binding of

a WNT ligand to the Frizzled receptor and its co-receptor complex

low-density lipoprotein receptor-related protein 5/6 (LRP5/6). This

leads to stabilization of b-catenin that translocates to the nucleus

where it interacts with T-cell factor/lymphoid enhancer factor (TCF/

LEF), thereby activating downstream target genes such as c-MYC,

Cyclin D1, and Axin2 (Mah et al, 2016). In the absence of WNT

activation, b-catenin is subject to proteosomal degradation

promoted by the Axin/APC/GSK3b complex-mediated phosphoryla-

tion. WNT signaling can in turn be augmented by binding of

R-spondins (RSPOs) to the LGR5 receptor, which suppresses inter-

nalization and degradation of Frizzled by neutralizing transmem-

brane ligases RNF43/ZNRF3 (Li et al, 2012). Several other signaling

pathways, for example, BMP, Notch, EGF, and prostaglandin E2
(PGE2), have been suggested to interact with the canonical WNT

pathway as summarized in Fig 1.

To culture human intestinal organoids, the growth medium

needs to be supplemented with a WNT ligand, and conditioned

medium is often applied. The use of conditioned media is generally

more cost-effective than recombinant proteins, though conditioned

media contains serum for the purpose of protein stabilization,

and includes the inherent risk for xenogeneic and pathogenic

contamination, although presumably quite small (Tekkatte et al,

2011). Serum also contains undefined components and demonstrates

Glossary

Anoikis
Dissociation-induced apoptosis occurring when anchorage-dependent
cells, such as epithelial cells, detach from the underlying extracellular
basement membrane. Cell–cell contact can sometimes prevent anoikis
from occurring.

Inflammatory bowel disease (IBD)
A group of chronic remitting inflammatory conditions localized to the
intestine, often debuting in adolescence. The two major subtypes are
ulcerative colitis and Crohn’s disease, but it also includes microscopic
colitis and diversion colitis. Crohn’s disease can affect segments of the
entire gastrointestinal tract, while ulcerative colitis is restricted to the
colon. Symptoms include abdominal pain, diarrhea, anemia, rectal
bleeding, and weight loss. However, the condition is often
complicated by extra-intestinal symptoms, commonly affecting skin,
joints, or eyes. IBD is frequently treated with anti-inflammatory and
immunomodulatory drugs, although surgical bowel resection may be
required in severe disease.

Intestinal organoid
A three-dimensional organlike structure grown in vitro, consisting of
intestinal epithelial cells. The nomenclature varies and is also referred
to as a mini-gut. It has been suggested that the term organoid
should be reserved for structures containing both epithelial and
mesenchymal components. In turn, enteroids may be used for
structures consisting solely of epithelial components.

Intestinal stem cell niche
A specific microenvironment which dynamically regulates stem cell
renewal and differentiation. It consists of an intricate signaling
system of chemical mediators and mechanical cues derived from
epithelial and mesenchymal sources, as well as from the
extracellular matrix.
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batch-to-batch variability that hampers standardization. Nonethe-

less, mesenchymal stem cells cultured in serum have already been

used in human trials without issues (Panes et al, 2016). Neverthe-

less, serum substitutes have successfully been applied to circumvent

potential issues when culturing human mesenchymal stem cells

(Kim et al, 2013).

Human recombinant WNT3a is commercially available, but

substituting conditioned medium with recombinant WNT3a

reduces the growth efficiency of intestinal organoids (Fujii et al,

2015). WNT proteins are palmitoylated, which is crucial for inter-

actions with the Frizzled receptor, though this is difficult to

express and to purify (Willert et al, 2003). Impurities can activate

mediators of TGF-b and BMP signaling, which is undesirable

when culturing ISCs (Carthy et al, 2016). Even though human

high-purity recombinant WNT3a has become commercially avail-

able, it is unlikely to be a fitting substitute for WNT3a condi-

tioned medium, since purified WNT proteins rapidly lose their

biologic activity, presumably due to hydrophobic aggregation

(Dhamdhere et al, 2014). However, it was recently shown that

the serum glycoprotein afamin stabilizes WNT proteins by form-

ing water-soluble complexes, thereby preventing aggregation

while at the same time maintaining their biologic activity (Mihara

et al, 2016). This is reflected in the EC50 value that is estimated

to be 5–10 times lower for afamin/WNT3a versus purified

WNT3a. Hence, afamin/WNT3a complex might be a better means

to accomplish WNT activation in ISC-derived organoids for clini-

cal applications.

Small molecules such as the GSK3b inhibitor CHIR99021, which

prevents b-catenin degradation, can further activate the WNT path-

way (Yin et al, 2014).

Augmentation of WNT signaling with RSPO1 is most commonly

used, either in the form of conditioned media or as a recombinant

protein, with similar efficacy in human organoid growth (Fujii et al,

2015).

Table 1. Frequently used growth media constituents, their working mechanisms and effects, as well as applications.

Growth medium
constituents Working mechanism in ISCs Effect on ISCs and application

WNT3aa Activates canonical WNT signaling
(Clevers & Nusse, 2012)

Stimulates crypt cells proliferation and maintains the stem cell state
(Clevers & Nusse, 2012; Farin et al, 2012; Krausova & Korinek, 2014)

R-spondin 1a Augments WNT/b-catenin signaling
(de Lau et al, 2014)

Stimulates crypt cell proliferation and maintains stem cell state
(Farin et al, 2012; Krausova & Korinek, 2014; de Lau et al, 2014)

CHIR99021 Stimulates canonical WNT signaling
(Yin et al, 2014)

Stimulates stem cell proliferation and can be used in combination with
VPA, when growing single mouse ISCs in absence of Paneth cells (Yin et al, 2014)

Valproic acid Inhibits histone deacetylase and activates
Notch signaling (Yin et al, 2014)

Maintains proliferative crypts and blocks secretory differentiation (Sato
et al, 2011b). Can be used in combination with CHIR99021 when
growing single mouse ISCs in absence of Paneth cells (Yin et al, 2014)

Noggina Inhibits BMP signaling (Haramis et al, 2004) Stimulates crypt formation (Haramis et al, 2004)

Jagged-1 Activates Notch signaling (Sato et al, 2009) Maintains the stem cell state, and promotes proliferation, while blocking
secretory differentiation, thereby maintaining proliferative crypts
(Stanger et al, 2005; Van Dussen et al, 2012)
Used in the early phase of single-cell cultures in absence of Notch
signaling from adjacent supportive cells (Sato et al, 2009; Grabinger et al, 2014)

EGFa Activates RAS/RAF/MEK/ERK signaling pathway
(Suzuki et al, 2010; Date & Sato, 2015)

Stimulates stem cell migration, proliferation, and inhibits apoptosis
(Frey et al, 2004; Suzuki et al, 2010)

PGE2 Enhances canonical WNT signaling
(Buchanan & DuBois, 2006)

Prevents anoikis as well as promotes stem cell survival and proliferation,
thereby improving culture efficiency. Stimulates spheroid morphology
(Cohn et al, 1997; Joseph et al, 2005)

Nicotinamide Inhibits the activity of sirtuins (Denu, 2005) Improves ISC maintenance when cultured > 1 week (Sato et al, 2011a).
Often used for long-term human intestinal organoid cultures
(Sato et al, 2011a), but can be omitted (Fujii et al, 2015)

Gastrin-17 Not decisively concluded Marginally increases culture efficiency (Sato et al, 2011a)

A83-01 or SB431542a Inhibits TGF-b signaling (Sato et al, 2011a) Inhibits differentiation and allows human intestinal stem cell cultures to
be sustained in the long term (Sato et al, 2011a)

SB202190a Inhibits P38 MAPK (Sato et al, 2011a) Inhibits secretory differentiation, increases plating efficiency, and
decreases degradation of the EGF receptor
(Frey et al, 2006; Sato et al, 2011a; Date & Sato, 2015).
Allows human intestinal stem cell cultures to be sustained
in the long term (Sato et al, 2011a)

Y-27632 or thiazovivin Inhibition of caspase-3 (Wu et al, 2015) Prevents anoikis after single-cell dissociation (Watanabe et al, 2007).
Used in the early phase of single-cell cultures

IL-22 JAK/STAT signaling (Lindemans et al, 2015) ISC proliferation and organoid growth. Can potentially further increase
ISC expansion and make EGF redundant (Lindemans et al, 2015)

aMandatory growth medium components for long-term culturing human intestinal stem cells as organoids.
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BMP and TGF-b signaling

BMP signaling gradients promote spatially arranged differentiation

of ISCs, in part by suppressing WNT signaling, thereby regulating

the number of stem cells in vivo (He et al, 2007; Krausova &

Korinek, 2014).

BMP signaling is activated by ligand binding to a multi-compo-

nent receptor complex and incorporates several complex pathways,

for example, activation of the SMAD cascade (SMAD 1, 5, and 8),

and MAPK, as well as positive regulation of PTEN (He et al, 2007;

Katagiri & Watabe, 2016). In turn, PTEN negatively regulates the

phosphatidylinositol 3-kinase (PI3K)/phosphatidylinositol triphos-

phate (PIP3)/AKT cascade, which has several downstream

substrates, including GSK3b and b-catenin (He et al, 2007). Thus,

AKT interacts with the canonical WNT pathway by increasing

b-catenin levels in the nucleus due to phosphorylation and inactiva-

tion of GSK3b or phosphorylation of b-catenin itself (Fig 1). Hence,

active BMP signaling suppresses the b-catenin/WNT pathway,

thereby counteracting the proliferative effects of WNT activation.

Noggin is a BMP antagonist, and as such, the addition of recom-

binant Noggin or conditioned medium, combined with exogenous

WNT activation, leads to preservation and proliferation of ISCs.

Without Noggin, intestinal organoids cannot be maintained in

culture (Sato et al, 2009).

The TGF-b pathway activates the SMAD 2/3 cascade, but it

clearly demonstrates context dependency (Hata & Chen, 2016), and

is capable of activating several other pathways, including the

MAPK pathway. The exact mechanism of action in ISCs remains

obscure, but TGF-b appears not to affect ISC proliferation, although

it controls clone expansion and extinction, as well as modulates

the differentiation of secretory lineage precursors (Fischer et al,

2016).

TGF-b receptor inhibitors, like A83-01 or SB431542, increase

plating efficiency and are necessary for long-term culture of intesti-

nal organoids by maintaining the undifferentiated stem cell state

(Sato et al, 2011a).

EGF

EGF is an important regulator of intestinal epithelial cell migration

and proliferation (Suzuki et al, 2010). Binding of EGF to its receptor

results in induction of tyrosine kinase activity, with subsequent acti-

vation of the RAS/RAF/MEK/ERK signaling as well as the PI3K/

PIP3/AKT cascades, inducing organoid growth (Date & Sato, 2015).

The PI3K/PIP3/AKT pathway overlaps with the EGF and the BMP

pathways, and provides a link to the canonical WNT pathway, as

shown in Fig 1.
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Figure 1. Suggested downstream effects of growth medium components on canonical WNT signaling.
Activation of the WNT pathway inhibits phosphorylation-induced degradation of b-catenin mediated by Axin/APC/GSK3b, which precipitates nuclear translocation of
b-catenin and activation of target genes. BMP inhibition and EGF activation increase nuclear b-catenin levels, due to phosphorylation and inactivation of GSK3b or
phosphorylation of b-catenin itself. Similarly, CHIR99021 can increase WNT signaling by inactivation of GSK3b. PGE2 can promote b-catenin stability through suppression of
GSK3b, but perhaps also through interaction between PGE2-R subunits and Axin, activation of cAMP/PKA and PI3K/PIP3/AKT activity. SB202190 inhibits p38, thereby decreasing
ligand-driven degradation of the EGF receptor. Delta like canonical Notch ligand 1/4 (DLL1/4) can activate membrane-bound Notch, and the adaptor protein NUMB can
associate with unphosphorylated b-catenin, precipitating its lysosomal degradation, thereby dampening WNT activity.
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EGF in the form of recombinant protein is essential for culturing

human intestinal organoids, and lack of EGF or addition of an inhi-

bitor of the EGF receptor causes decreased organoid formation and

survival (Matano et al, 2015). Yet, human intestinal organoids have

been cultured without EGF when large amounts of serum were

used, in the form of conditioned medium containing WNT, RSPO3,

and Noggin (Van Dussen et al, 2015).

EGF signaling in vivo is partly regulated by a negative feed-

back system, constituted by the p38 MAPK pathway that affects

EGF receptor (Frey et al, 2006). This pathway regulates numerous

cell responses, including inflammation, apoptosis, cell cycle,

differentiation, proliferation, and tumorigenesis (Zarubin & Han,

2005). In the intestinal epithelium, p38 determines whether EGF

stimulation results in migration or in proliferation (Frey et al,

2004). Pharmacological inhibition of p38 decreases ligand-driven

degradation of the EGF receptor, without affecting its internaliza-

tion (Frey et al, 2006), resulting in increased proliferation. Simi-

larly, deletion of p38 in intestinal epithelial cells results in

increased proliferation, but also in a decreased goblet cell dif-

ferentiation (Otsuka et al, 2010). Hence, a p38 inhibitor, such as

SB202190, should be added to the growth medium of intestinal

organoids to stimulate proliferation and long-term maintenance

of human ISCs.

IGF-1 can, similarly to EGF, stimulate PI3K/PIP3/AKT and RAS/

RAF/MEK/ERK signaling, resulting in growth of intestinal orga-

noids. However, EGF tends to more efficiently induce budding,

corresponding to crypt formation and organoid expansion (Reynolds

et al, 2014).

Notch signaling

Notch is essential to maintain the ISC pool by controlling stem cell

self-renewal, as well as the balance between absorptive and secre-

tory cell lineage specification (Demitrack & Samuelson, 2016). Path-

way inhibition reduces ISCs proliferation and induces secretory

lineage differentiation, thereby diminishing the ISC population (van

Es et al, 2005; Van Dussen et al, 2012). Conversely, activation of

the Notch pathway maintains stem cell multipotency and promotes

stem cell proliferation, while directing progenitors toward an

absorptive, rather than a secretory fate (Stanger et al, 2005; Demi-

track & Samuelson, 2016).

When a Notch ligand binds to the receptor, the Notch intra-

cellular domain (NICD) is separated through proteolytic cleavage,

initiating nuclear translocation and activation of target genes

(Date & Sato, 2015). However, in some cases, ligand binding is

insufficient to cause cleavage and receptor activation. The

process requires both ligand stabilization and mechanical force,

inducing conformational changes of the receptor (Varnum-Finney

et al, 2000; Musse et al, 2012). Thus, direct activation of Notch

pathway using recombinant Notch ligand has shown limited

success.

Genetic activation of the Notch pathway in murine ISCs antag-

onizes and titrates canonical WNT signaling activity, thereby

maintaining the stem cell state and balancing the differentiation

process (Tian et al, 2015). Similarly, membrane-bound Notch and

its adaptor protein NUMB in human embryonic stem cells and

human colon cancer cells associate with unphosphorylated

b-catenin, precipitating its lysosomal degradation (Kwon et al,

2011). The process appears to be independent of NICD, as

depicted in Fig 1.

When culturing and mechanically passaging intestinal orga-

noids, Notch stimulation is supplied by adjacent supportive cells

(Sasaki et al, 2016), hence further stimulation is likely redundant.

However, when growing dissociated single ISCs attained through

enzymatic organoid dissociation, Notch signaling should be stimu-

lated. One common approach is to add Jagged-1 peptide to the

support matrix for the first couple of days (Sato et al, 2009; Yin

et al, 2014), although additional studies are required to demon-

strate an increased efficacy. When growing pure murine stem cell

cultures, Notch stimulation can be provided by exogenous supple-

mentation of the histone deacetylase inhibitor; valproic acid (VPA)

(Yin et al, 2014). In terms of clinical applications, VPA has the

benefit of already being approved by both EMA and FDA for treat-

ment of epilepsy and certain bipolar disorders, which might

simplify the approval process for its application in clinical stem

cell enrichment.

Prostaglandin E2

The physiologically active lipid PGE2 is produced from arachidonic

acid in cell membranes via the cyclooxygenase pathway and binds

to a number of G-coupled cell receptors. PGE2 promotes ISC expan-

sion and cell proliferation in vitro (Fan et al, 2014), inducing orga-

noid swelling and spheroid morphology rather than an organoid

crypt structure (Fordham et al, 2013). The swelling was recently

revealed to be caused by induction of anion and fluid secretion into

the organoid lumen (Fujii et al, 2016).

PGE2 upregulates several WNT target genes (Fan et al, 2014),

which presumably explains its association with the development of

colorectal cancer (Buchanan & DuBois, 2006). It also appears to

suppress enterocyte differentiation and to promote repair of the

intestinal epithelium (Miyoshi et al, 2017).

Studies of ISCs (Miyoshi et al, 2017) and vertebrate

hematopoietic stem cells (Goessling et al, 2009) have revealed

that PGE2 signaling affects b-catenin stability through suppression

of GSK3b. Several other pathways are suggested to be involved,

for example, interaction between PGE2 receptor-subunits and

Axin, activation of cAMP/PKA as well as PI3K/PIP3/AKT activity

(Fig 1) (Evans, 2009). Additionally, PGE2 upregulates LGR5

protein in human colorectal adenomas through a b-catenin inde-

pendent pathway, a central mechanism in colorectal tumorigene-

sis (Al-Kharusi et al, 2013). However, data attained from cancer

research cannot be extrapolated directly to normal ISCs, since

cancer cells might contain mutations of the WNT or PGE2 path-

ways.

PGE2 has the benefit of already being approved for clinical use

by both EMA and FDA for induction of labor.

Other small molecules and cytokines affecting intestinal
stem cell maintenance

To sustain human ISCs, the vitamin nicotinamide is often added to

the growth medium (Sato et al, 2011a). Nicotinamide impedes
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sirtuin activity involved in apoptosis, aging, differentiation, and

transcription regulation (Denu, 2005). However, nicotinamide can

be omitted without affecting long-term sustainability of human

colonic stem cells (Fujii et al, 2015).

When culturing dissociated single stem cells, the Rho-associated

protein kinase (ROCK) inhibitors, Y-27632 (Watanabe et al, 2007)

or thiazovivin (Wang et al, 2013), can be added to the growth

medium for the first few days to prevent anoikis. Research on

pluripotent stem cells has suggested that ROCK inhibitors suppress

caspase-dependent cell death (Wu et al, 2015).

Amidated gastrin-17 is regularly used when culturing intestinal

organoids, though it only marginally improves culture efficiency

and it may therefore be omitted (Sato et al, 2011a).

Addition of the cytokine interleukin 22 (IL-22) to the growth

medium has shown to increase the proliferation of ISCs and to

cause EGF redundancy when culturing human intestinal orga-

noids (Lindemans et al, 2015). It activates STAT3, which causes

growth of human intestinal organoids independent of Paneth

cells as well as both Notch and WNT signaling (Lindemans

et al, 2015).

Many of the small molecules used to culture ISCs are available in

high-purity formulations, though safety data are sparse, which could

provide translational limitations. However, very low concentrations

of the small molecules are used in culture and can presumably be

washed off prior to transplantation.

Culture matrices

Cell–matrix interactions are implicated in numerous cell functions,

including differentiation, anoikis, proliferation, and gene regulation

(Berrier & Yamada, 2007). This is accomplished through a set of

membrane receptors, several of which are integrins (e.g., a2b1),
that anchor the cells to the intestinal basement membrane (Lussier

et al, 2000). Attachment to the intracellular cytoskeleton and activa-

tion of signaling pathways are achieved through recruitment of

effector and adaptor proteins. This results in modification of anti-

apoptotic pathways, gene expression, cell differentiation, prolifera-

tion, and motility, as shown in Fig 2 (Lussier et al, 2000; Hofmann

et al, 2007). In the absence of cell–matrix anchorage or cell–cell

contact, epithelial cells undergo anoikis within hours (Hofmann

et al, 2007).

Substantial efforts have been made to identify and optimize

suitable matrices for stem cell cultures, particularly for culturing

human pluripotent stem cells (hPSCs), which include induced

pluripotent stem cells (iPSCs) and human embryonic stem cells

(hESCs). Different culture protocols and support matrices are

detailed in Fig 3.

Initial extracellular matrices (ECM) for culturing hPSCs were

produced by feeder layers of lethally irradiated fibroblasts in

enriched culture medium. Similarly, human colonic stem cells were

recently successfully cultured on feeder layers of irradiated mouse

embryonic fibroblasts over a Matrigel coating (Wang et al, 2015).

Variability when using feeder layers, along with the prospect of

denaturing or degrading peptides and proteins with sterilization

techniques, as well as the potential risk for pathogen and xeno-

geneic transmission has led to the establishment of feeder-free

culture systems (Villa-Diaz et al, 2013).

Corning� Matrigel� Matrix and BD MatrigelTM Basement

Membrane Matrix are the most extensively used three-dimensional

(3D) support matrices for culturing ISCs. The extensive usage of

Matrigel is attributed to its capacity to support long-term growth of

stem cells, while retaining the undifferentiated cell state (Hughes

et al, 2010). It is a xenogeneic and proteinaceous matrix derived

from mouse sarcoma cells, mainly composed of laminin, collagen

IV, and entactin (Hughes et al, 2010). Its disadvantages include

batch-to-batch variability, undefined composition, including varying

amounts of sarcoma-derived proteins, cytokines, and growth

factors, along with the potential risk for pathogen transmission

(Hughes et al, 2010). Such factors make Matrigel an ill-suited

culture platform for clinical application. Therefore, considerable

efforts have been made to identify well-defined matrices for both

in vitro ISC expansion and their in vivo transplantation.

Collagen is an easily attainable connective tissue constituent, and

common sources include fibroblasts cultured in vitro, as well as

tissue extracts, such as human placenta. Different collagen formula-

tions can be applied to sustain intestinal epithelial cell growth

in vitro (Ootani et al, 2009; Yui et al, 2012). However, reduced

budding has been reported when intestinal organoids are cultured

in support matrices rich in collagen (Pastula et al, 2016), potentially

due to increased mechanical rigidity. Recently, human ISCs isolated

from small intestine were cultured to confluence on two-dimen-

sional (2D) monolayers on thin layers of bovine type I collagen and

recombinant human laminin isotypes (Scott et al, 2016), although

maintenance of the undifferentiated stem cell state was unclear at

the protein level.

Another possible approach could be to utilize allogenic or xeno-

geneic tissues as ECM (e.g., small intestinal submucosa or urinary

bladder matrix), which already are being used to culture other cell

types in research and clinical settings. Tissues derived from natural

sources are, however, restricted in their amplitude for modification,

with inconsistencies related to the health and age of the donors

(Fitzpatrick & McDevitt, 2015).

Biologic matrices suffer the disadvantages of batch-to-batch vari-

ability, relatively high manufacturing costs, limited scalability, and

risk of pathogen contamination, motivating research on synthetic

supportive matrices to overcome such issues. Synthetic matrices are

chemically defined and malleable in terms of physiochemical and

mechanical properties (Tong et al, 2015). Multiple types of 2D

synthetic substrates have been used to culture hESCs. Further,

certain isoforms of laminin and vitronectin, fibronectin, as well as

other xeno-free synthetic cell support matrices have successfully

been used to support hPSC (Villa-Diaz et al, 2013). Nevertheless,

the conformation of vitronectin and laminin is sensitive to changes

in temperature and pH, which limits their potential for long-term

usage (Tong et al, 2015).

3D matrices, as opposed to 2D ones, provide more space for the

cells to grow, thereby reducing disadvantageous cell clustering (Lei

et al, 2014). Furthermore, they efficiently provide physical and

chemical gradients of importance for numerous cell functions,

including differentiation and proliferation (Sant et al, 2010; Tong

et al, 2015). Although simple collagen I 3D hydrogel matrices

support ISCs, they have the disadvantage of low stiffness, limited

long-term stability, and batch-to-batch variability (Caliari & Burdick,

2016). 3D gels with compositions closer to the supportive matrix

found in vivo or even mimicking axial gradients in connective tissue
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composition might be expected to provide improved viability and

function of the cultured ISCs. Interestingly, fundamental ECM

factors, such as mechanical properties and biochemical signals that

regulate ISC colony and organoid formation, have recently been

identified (Gjorevski et al, 2016). The efforts resulted in the forma-

tion of a mechanically dynamic polyethylene glycol (PEG) hydrogel,

functionalized with RGD (Arg-Gly-Asp) peptides and controlled

degradation kinetics, capable of expanding human small intestine

and colorectal cancer organoids (Gjorevski et al, 2016). Hence,

minimal PEG-based hydrogels constitute a well-defined alternative

that might be applied to overcome the limitations of Matrigel in

terms of clinical application of ISCs.

Regenerative applications in IBD

Introduction of biologics like monoclonal antibodies against tumor

necrosis alpha (TNF inhibitors) later followed by a4b7 anti-integrins

has revolutionized the management of IBD. However, despite these

therapeutic advances about one-third of patients with CD and one-

sixth of patients with UC still require surgical bowel resection within

5 years after diagnosis (Frolkis et al, 2013).

Much like the majority of other medical therapies for IBD, TNF

inhibitors and anti-integrins act through immunomodulation.

However, ISC transplantation constitutes a plausible alternative

approach to accelerate mucosal healing. In fact, EGF is an effective

treatment option for certain subtypes of IBD, possibly through its

regenerative capabilities (Sinha et al, 2003). A schematic of the

envisioned process, from harvesting of the ISCs to transplantation,

is depicted in Fig 4.

Autologous transplantation may be performed in order to avoid

the process of finding suitable cell donors, as well as circumventing

the risk for tissue rejection and the need for further immunomodula-

tory therapy due to the procedure itself. ISCs would be harvested

endoscopically from IBD patients with frequent and severe relapses

during periods with remission, and then expanded and kept frozen

until needed. An alternative approach could be to harvest ISCs from

non-inflamed areas during flares, or alternatively even from actively

inflamed areas. However, excessive epithelial cell death can be

observed in areas of active disease (Blander, 2016). Also, colonic

organoids derived from patients with flaring UC have in vitro been

shown to maintain an altered expression of genes associated with

antimicrobial defense, absorptive and secretory functions, compared

to healthy controls (Dotti et al, 2016). Additionally, lasting tran-

scriptional changes in the affected epithelium have been observed in

patients with UC despite remission (Planell et al, 2013). Although

the consequences of such changes are unknown, for the purpose of

transplantation it might be better to harvest ISCs from non-involved
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Figure 2. Cell–cell and cell–matrix interactions.
Physical interactions between the intestinal epithelium, adjacent cells, and the ECM provide pivotal signals for cell survival, proliferation, gene expression, differentiation, and
motility. Adhesion molecules, such as integrins (e.g., a2b1) and cadherins (e.g., E-cadherin) that attach to adjacent cells as well as to ECM proteins, mediate this. Adaptor and
effector proteins provide linkage to intracellular actin filaments and can activate several signaling pathways, including non-receptor tyrosine kinases.
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epithelium. Another argument for this approach is that patients with

IBD have ~1.5- to twofold increased risk of developing colorectal

cancer (Beaugerie & Itzkowitz, 2015), presumably due to prolonged

and remitting inflammation. When intestinal epithelial cells are

harvested endoscopically, relatively few clones are afterward

enriched in vitro. If these cells were to contain genetic mutations

that predispose to malignancy, then transplantation might lead to

risk of malignant transformation in a greater area of the intestine

after engraftment. This important issue could, however, be

addressed by screening for mutations known to be associated with

colorectal cancer.

More than 160 susceptibility genes predisposing to IBD so far

have been identified, including inflammatory bowel disease 5 (IBD5)

and cadherin 1 (CDH1) that are associated with epithelial barrier

function (Miner-Williams & Moughan, 2016). Genetic susceptibility

does not automatically lead to development of IBD, but transplanta-

tion of cells with a genetic susceptibility may potentially have impli-

cations on epithelial function even after a successful transplantation.

Clearly however, more research on this matter is warranted.

ISCs should be transplanted as complete organoids or as small cell

clusters with intact endogenous Notch stimulation to maintain stem-

ness and delay anoikis. Successful engraftment would most likely

require integrin activation to accomplish adherence to the ECM of the

damaged mucosa, which in turn depends on extracellular divalent

cations (Berrier & Yamada, 2007). In terms of delivery, endoscopic

transplantation would intuitively be the simplest method, but enema

could be an alternative route of administration—although the large

volume needed in the latter case would greatly increase the need for

cell expansion in vitro. Regardless of which method is chosen, a suit-

able delivery vehicle will be required to protect and sustain the cells in

transit. Ideally, this should be fully defined and biocompatible, while

allowing for in situ crosslinking and mucosal adhesion.

ISC transplantation may be able to spur the epithelial healing

process, but for a majority of patients, it is unlikely that this would

be successful as a monotherapy, as cells presumably will have diffi-

culties engrafting during ongoing inflammation. Hence, concomitant

immunomodulatory therapy will likely be needed to give the trans-

planted cells optimal conditions to re-establish barrier integrity.

A crucial aspect of all cell-based treatment strategies is to avoid

inducing chromosomal changes that could lead to malignant trans-

formation or other cell abnormalities. Epithelial stem cells grown

in vitro can acquire a specific single nucleotide variant (SNV) signa-

ture differing from the somatic SNV signature seen in vivo in mice

(Behjati et al, 2014). Long-term cultivation of human ISCs has

revealed a low level of genomic instability with a limited copy

number and SNV instability for the first 100 days of continuous

proliferation (Wang et al, 2015). Yet, a trend toward increasing SNV

was observed as a function of passage number, but not involving

reported driver genes in human cancer. However, a forthright chro-

mosomal trisomy was noted after 200 days. It is possible that genetic

changes acquired in vitro could increase the risk of introducing new

mutations to the recipient of transplanted cells and could potentially
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Figure 3. Culture protocols for ISCs.
Culture protocols for ISCs generally consist of two basic components: a support matrix and a growth medium. The support component can be in either 2D or 3D. 2D matrices
are usually derived from feeder cells such as mouse embryonic fibroblasts (MEF), synthetic substrates or from ECM-derived proteins, for example, collagen and laminin. 3D
support matrices are usually in the form of gelatinous matrices, for example, Matrigel, collagen I, or synthetic hydrogels. Another approach is to use 3D co-cultures, consisting
of a gelatinous matrix over a feeder-layer, for example, myofibroblasts. The growth medium often includes a conditioned medium, such as WNT3a, RSPO1, or intestinal
subepithelial myofibroblasts (ISEMF), as well as fully defined growth factors, small molecules, and cytokines, for example, Noggin, EGF, nicotinamide, A83-01, SB202190, PGE2,
CHIR99021, VPA, and IL-22.
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increase the risk of neoplasia. Propagation of a sufficient amount of

ISCs for regenerative application would, however, presumably

require reasonably short culture duration. Accordingly, the risk of

alterations in SNV signature and copy number could be minimized.

Future perspectives

Alternative growth media compositions and culture protocols to

increase the ISC yield are continuously being explored to allow

for successful regenerative applications. This includes growth

factors and small molecules that target the WNT pathway, such

as PGE2 and CHIR99021, along with newly identified pathway

targets such as IL-22 and STAT3. Advancing regenerative applica-

tions of ISCs requires additional investigation to identify compo-

nents affecting WNT, Notch, EGF, and BMP signaling that are apt

for use in humans, preferably constituents that are already

approved by FDA and EMA, or which demonstrate minimal or no

toxicity.

Cell–cell and cell–matrix interactions have profound effects on

cell phenotype and survival. The continuous development of alter-

native synthetic support matrices for ISCs is promising in terms of

creating a suitable and indispensable substitute for Matrigel.

The number of ISCs attained in vitro is commonly estimated by

determining LGR5 expression levels. Yet, gene expression does not

necessarily correlate to equivalent increases on protein level, and an

increase in gene expression may reflect gene upregulation rather

than increase in stem cell numbers. It would therefore be imperative

to standardize how stem cell amplification is quantified in vitro.

Modest quantities of LGR5 on the cell surface, along with the lack of

selective antibodies with high affinity for human LGR5, hinder the

effective quantification of ISC expansion. Still, the use of antibodies
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Figure 4. The course of human ISC harvesting to transplantation.
Human intestinal epithelium can be harvested endoscopically, and ISCs can subsequently be isolated and enriched in vitro as organoids. Organoids enriched in stem cells can
then be transplanted back to the patient (or as a suspension of purified stem cells), thereby hopefully promoting mucosal healing.
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relies on applying specific surface proteins as surrogate markers for

the intended cell population, although another approach is to use

organoid forming capacity following single-cell seeding as a func-

tional assessment of stem cell numbers. Alternatively, single-cell

mRNA sequencing may be applied.

High levels of protein tyrosine pseudokinase 7 (PTK7) were

recently reported to be a reliable surface marker for human colonic

ISCs (Jung et al, 2015). While PTK7 does not exclusively stain ISCs,

the cells with the highest PTK7 surface abundance are also the cells

that demonstrate the highest capacity for organoid formation follow-

ing single-cell seeding. Hence, fluorescence-activated cell sorting

using antibodies for PTK7 can be applied to attain a purified pool of

functional stem cells.

The establishment of culture techniques capable of guaranteeing

quality and consistency are required for clinical usage of ISCs. In

addition, improving cost-effectiveness of the culture protocols

would be favorable, as the sheer cost of the culture medium consist-

ing of recombinant proteins can be a limiting factor.

Apart from IBD, ISC transplantation might in addition have

implications in a wide range of other disorders of the gastrointesti-

nal tract characterized by an impaired mucosal barrier function,

including necrotizing enterocolitis, fistulas, NSAID-induced damage,

or gastroduodenal bleeding. In conclusion, the development of opti-

mized protocols for culturing human ISCs can have a decisive

impact on patient care in the future.
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