Search for New Phenomena in Dijet Mass and Angular Distributions from pp Collisions at sV $=13$ TeV with the ATLAS Detector

> The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	ATLAS Collaboration．2016．＂Search for New Phenomena in Dijet Mass and Angular Distributions from pp Collisions at sV $=13 \mathrm{TeV}$ with the ATLAS Detector．＂Physics Letters B 754（March）：302－322． doi：10．1016／j．physletb．2016．01．032．
Published Version	doi：10．1016／j．physletb．2016．01．032
Citable link	http：／／nrs．harvard．edu／urn－3：HUL．InstRepos：34487707
Terms of Use	This article was downloaded from Harvard University＇s DASH repository，and is made available under the terms and conditions applicable to Open Access Policy Articles，as set forth at http：／／ nrs．harvard．edu／urn－3：HUL．InstRepos：dash．current．terms－of－ use\＃OAP

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Lett. B

CERN-PH-EP-2015-311
4th March 2016

Search for new phenomena in dijet mass and angular distributions from $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter describes a model-agnostic search for pairs of jets (dijets) produced by resonant and non-resonant phenomena beyond the Standard Model in $3.6 \mathrm{fb}^{-1}$ of proton-proton collisions with a centre-of-mass energy of $\sqrt{s}=13 \mathrm{TeV}$ recorded by the ATLAS detector at the Large Hadron Collider. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the smoothly falling prediction of the Standard Model. The data are also compared to a Monte Carlo simulation of Standard Model angular distributions derived from the rapidity of the two jets. No evidence of anomalous phenomena is observed in the data, which are used to exclude, at 95% CL, quantum black holes with threshold masses below $8.3 \mathrm{TeV}, 8.1 \mathrm{TeV}$, or 5.1 TeV in three different benchmark scenarios; resonance masses below 5.2 TeV for excited quarks, 2.6 TeV in a W^{\prime} model, a range of masses starting from $m_{Z^{\prime}}=1.5 \mathrm{TeV}$ and couplings from $g_{q}=0.2$ in a Z^{\prime} model; and contact interactions with a compositeness scale below 12.0 TeV and 17.5 TeV respectively for destructive and constructive interference between the new interaction and QCD processes. These results significantly extend the ATLAS limits obtained from 8 TeV data. Gaussian-shaped contributions to the mass distribution are also excluded if the effective cross-section exceeds values ranging from approximately $50-300 \mathrm{fb}$ for masses below 2 TeV to $2-20 \mathrm{fb}$ for masses above 4 TeV .

1 Introduction

The centre-of-mass energy of proton-proton ($p p$) collisions at the Large Hadron Collider (LHC) at CERN has been increased from $\sqrt{s}=8 \mathrm{TeV}$ to $\sqrt{s}=13 \mathrm{TeV}$, opening a new energy regime to observation.

New particles produced in LHC collisions must interact with the constituent partons of the proton. Consequently, the new particles can also produce partons in the final state. Final states including partons often dominate in models of new phenomena beyond the Standard Model (BSM). The partons shower and hadronize, creating collimated jets of particles carrying approximately the four-momenta of the partons. The total production rates for two-jet (dijet) BSM signals can be large, allowing searches for anomalous dijet production to test for such signals with a relatively small data sample, even at masses that constitute significant fractions of the total hadron collision energy.

In the Standard Model (SM), hadron collisions produce jet pairs primarily via $2 \rightarrow 2$ parton scattering processes governed by quantum chromodynamics (QCD). Far above the confinement scale of QCD (\approx 1 GeV), jets emerge from collisions with large transverse momenta, p_{T}, perpendicular to the direction of the incident partons. For the data analysed here, QCD predicts a smoothly falling dijet invariant mass distribution, $m_{j j}$. New states decaying to two jets may introduce localized excesses in this distribution. In QCD, due to t-channel poles in the cross-sections for the dominant scattering processes, most dijet production occurs at small angles θ^{*}, defined as the polar angle in the dijet centre-of-mass frame. ${ }^{1}$ Many theories of BSM physics predict additional dijet production with a significant population of jets produced at large angles with respect to the beam; for reviews see Refs. [1, 2]. The search reported in this Letter exploits these generic features of BSM signals in an analysis of the $m_{j j}$ and angular distributions.

As is common, a rapidity $y=\ln \left(E+p_{z}\right) /\left(E-p_{z}\right) / 2$ is defined for each of the outgoing partons, where E is its energy and p_{z} is the component of its momentum along the beam line. ${ }^{2}$ Each incoming parton carries a fraction (Bjorken x) of the momentum of the proton. A momentum imbalance between the two partons boosts the centre-of-mass frame of the collision relative to the laboratory frame along the z direction by $y_{\mathrm{B}}=\ln \left(x_{1} / x_{2}\right) / 2=\left(y_{3}+y_{4}\right) / 2$, where y_{B} is the rapidity of the boosted centre-of-mass frame, x_{1} and x_{2} are the fractions of the proton momentum carried by each parton and y_{3} and y_{4} are the rapidities of the outgoing partons in the detector frame. Differences between two rapidities are invariant under such Lorentz boosts, hence the following function of the rapidity difference $y^{*}=\left(y_{3}-y_{4}\right) / 2$ between the two jets,

$$
\chi=\mathrm{e}^{2\left|y^{*}\right|} \sim \frac{1+\cos \theta^{*}}{1-\cos \theta^{*}},
$$

is the same in the detector frame as in the partonic centre-of-mass frame. In the centre-of-mass frame, the two partons have rapidity $\pm y^{*}$.

[^0]The variable χ is constructed such that in the limit of massless parton scattering, and when only t-channel scattering contributes to the partonic cross-section, the angular distribution $\mathrm{d} N / \mathrm{d} \chi$ is approximately independent of χ. The measured shapes of the observed $d N / d \chi$ distributions differ from the parton-level distributions because the observed distributions convolve the parton-level distributions with non-uniform parton momentum distributions in x_{1} and x_{2}. Restricting the range of two-parton invariant mass and placing an upper cut on y_{B} reduces these differences.

Prior searches of dijet distributions with lower-energy hadron collisions at the $\mathrm{S} \overline{\mathrm{p}} \mathrm{pS}$ [3-5], the Tevatron [6, 7], and the LHC at $\sqrt{s}=7-8 \mathrm{TeV}$ [8-19] and recently at 13 TeV [20], did not find BSM phenomena. This Letter presents an analysis of $3.6 \mathrm{fb}^{-1}$ of proton-proton collision LHC data at $\sqrt{s}=13 \mathrm{TeV}$ recorded by the ATLAS detector, focusing on the distributions of $m_{j j}$ and χ with methods based on those used by Refs. [17, 19].

2 The ATLAS detector

The ATLAS experiment [21] at the LHC is a multi-purpose particle detector with a forward-backward symmetric cylindrical geometry with layers of tracking, calorimeter, and muon detectors over nearly the entire solid angle around the $p p$ collision point. The directions and energies of high- p_{T} hadronic jets are measured using silicon tracking detectors and straw tubes detecting transition radiation, finely segmented hadronic and electromagnetic calorimeters, and a muon spectrometer. A steel/scintillator-tile calorimeter provides hadronic energy measurements for the pseudorapidity range $|\eta|<1.7$. A lead/liquid-argon (LAr) calorimeter provides electromagnetic (EM) energy measurements with higher granularity within the region $|\eta|<3.2$. The end-cap and forward regions are instrumented with LAr calorimeters for EM and hadronic energy measurements up to $|\eta|=4.9$. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the accepted rate to 100 kHz . This is followed by a software-based trigger that reduces the rate of events recorded to 1 kHz .

3 Data selection

Collision events are recorded using a trigger requiring the presence of at least one jet reconstructed in the software-based trigger with a p_{T} of at least 360 GeV . Groups of contiguous calorimeter cells (topological clusters) are formed based on the significance of the energy deposit over calorimeter noise [22]. Topological clusters are grouped into jets using the anti- k_{t} algorithm [23,24] with radius parameter $R=0.4$. Jet four-momenta are computed by summing over the topological clusters that constitute each jet, treating the energy of each cluster as a four-momentum with zero mass. The reconstruction efficiency for jets with p_{T} above 20 GeV is 100%. Jet calibrations derived from $\sqrt{s}=13 \mathrm{TeV}$ simulation, and collision data taken at $\sqrt{s}=8 \mathrm{TeV}$ and $\sqrt{s}=13 \mathrm{TeV}$, are used to correct the jet energies and directions to those of the particles from the hard-scatter interaction. This calibration procedure, described in Refs. [25-27], is improved by a data-derived correction to the relative calibration of jets in the central and the forward regions. The dijet mass resolution is 2.4% and 2%, for dijet masses of 2 and 5 TeV respectively. The jet energy scale uncertainty from 8 TeV data is complemented by systematic uncertainties covering the differences between 8 TeV and 13 TeV data. The total jet energy scale uncertainty is 1% for central jets with p_{T} of 500 GeV , and 3% for jets of 2 TeV . Analysis of jet data at 13 TeV using the in situ techniques described in Ref. [28] confirms the jet calibration and uncertainty estimates. Beyond the p_{T} range of the
in situ techniques, for the quantities used to calibrate jets as well as other kinematic quantities, the data agree with simulation within quoted uncertainties.

Events containing at least two jets are selected for offline analysis if the p_{T} of the leading and subleading jets is greater than 440 GeV and $50 \mathrm{GeVrespectively}$. least 99.5% for collisions with $\left|y^{*}\right|<1.7$ and removes a negligible number of events from unbalanced dijet events originating from additional interactions within the same bunch crossing or jet resolution tails. Events are discarded from the search if any of the three leading jets with $p_{\mathrm{T}}>50 \mathrm{GeV}$ is compatible with non-collision background or calorimeter noise [29].

4 Simulated collisions

For this search, events from QCD processes are simulated with Pythia 8 [30] using the A14 [31] set of tuned parameters for the underlying event and the leading-order NNPDF2.3 [32] parton distribution functions (PDFs). The renormalization and factorization scales are set to the average p_{T} of the two leading jets. Detector effects are simulated using Geant4 [33] within the ATLAS software infrastructure [34]. The same software used to reconstruct data was also used to reconstruct simulated events. The simulated events are used to predict the angular distribution from QCD processes and for qualitative comparisons to kinematic distributions in data.

Pythia 8 calculations use matrix elements that are at leading order in the QCD coupling constant with simulation of higher-order contributions partially covered by the parton shower (PS) modelling. They also include modelling of hadronization effects. The distributions of events predicted by Pythia 8 are reweighted to the next-to-leading-order (NLO) predictions of NLOJET ++ [35-37] using mass- and χ dependent correction factors defined as in Ref. [19]. The correction factors modify the shape of the angular distributions at the level of 15% at low values of χ and high values of $m_{j j}$. The correction is 5% or less at the highest values of χ. The Pythia 8 predictions also omit electroweak effects. These are included as additional mass- and χ-dependent correction factors [38] that are unity at low $m_{j j}$ and differ from unity by up to 3% in the $m_{j j}>3.4 \mathrm{TeV}$ region.

BSM signal samples of excited quarks [39, 40], new heavy vector bosons [41-43], quantum black holes [4446] and contact interactions [47-49] are simulated and reconstructed using the same procedure as for QCD processes. The models and the parameters chosen for generation are described in Section 7.

5 Selection for the mass distribution analysis

The $m_{j j}$ distribution of events with $\left|y^{*}\right|<0.6(\chi<3.3)$ is analysed for evidence of contributions from resonant BSM phenomena. The requirement on $\left|y^{*}\right|$ reduces the background from QCD processes. To avoid kinematic bias from the y^{*} and p_{T} selections described above, the analysis is confined to $m_{j j}>$ 1.1 TeV .

Fig. 1 shows the observed $m_{j j}$ distribution for the resonance selection, overlaid with examples of the signals described in Section 7. The bin widths are chosen to approximate the $m_{j j}$ resolution as derived from the simulation of QCD processes, and therefore widen as the mass increases. The largest value of $m_{j j}$ measured is 6.9 TeV .

To estimate the SM background, the ansatz,

$$
\begin{equation*}
f(z)=p_{1}(1-z)^{p_{2}} z^{p_{3}}, \tag{1}
\end{equation*}
$$

where $z \equiv m_{j j} / \sqrt{s}$, is fit to the $m_{j j}$ distribution in Fig. 1 to obtain the parameters p_{i}. The fit range is $1.1-7.1 \mathrm{TeV}$. CDF, CMS, and ATLAS dijet searches such as those described in Refs. [6, 8, 13, 14, 17] have found that expressions similar to Eq. (1) describe dijet mass distributions observed at lower collision energies. The ansatz also describes leading-order and next-to-leading order simulations of QCD dijet production at $\sqrt{s}=13 \mathrm{TeV}$. A log-likelihood-ratio statistic employing Wilks's theorem [50] was used to determine if the background estimation would be significantly improved by an additional degree of freedom. With the current dataset, Eq. (1) was found to be sufficient.

Fig. 1 also shows the result of the fit. The fit describes the observed data with a p-value of 0.87 , using a Poisson likelihood test statistic. The middle panel of the figure shows the significances of bin-by-bin differences between the data and the fit. These Gaussian significances are calculated from the Poisson probability, considering only statistical uncertainties. The lower panel compares the data to the prediction of Pythia 8 simulation of QCD processes, corrected for NLO and electroweak effects. Even though it is not used in the analysis of the $m_{j j}$ distribution, the simulation is shown to be in good agreement with the data.

The uncertainty in values of the parameters in Eq. (1) is evaluated by fitting them to pseudo-data drawn via Poisson fluctuations around the fitted background model. The uncertainty in the prediction in each $m_{j j}$ bin is taken to be the root mean square of the function value for all pseudo-experiments in that bin. To estimate an uncertainty due to the choice of the background parameterization, a parameterization with one additional degree of freedom, $z^{p_{4} \log z}$, is compared to the nominal ansatz, and the difference is taken as an uncertainty. The prediction of the $m_{j j}$ distribution does not involve simulated collisions and thus is not affected by theoretical or experimental uncertainties.

The statistical significance of any localized excess in the $m_{j j}$ distribution is quantified using the BumpHunter algorithm [51,52]. The algorithm compares the binned $m_{j j}$ distribution of the data to the fitted background estimate, considering contiguous mass intervals in all possible locations, from a width of two bins to a width of half of the distribution. For each interval in the scan, it computes the significance of any excess found. The algorithm identifies the interval $1.53-1.61 \mathrm{TeV}$, indicated by the two vertical lines in Fig. 1, as the most discrepant interval. The statistical significance of this outcome is evaluated using the ensemble of possible outcomes across all intervals scanned, by applying the algorithm to many pseudo-data samples drawn randomly from the background fit. Without including systematic uncertainties, the probability that fluctuations of the background model would produce an excess at least as significant as the one observed in the data, anywhere in the distribution, is 0.67 . Thus, there is no evidence of a localized contribution to the mass distribution from BSM phenomena.

6 Selection for the angular distributions analysis

The $\mathrm{d} N / \mathrm{d} \chi$ (angular) distributions of events with $\left|y^{*}\right|<1.7$ (i.e. $\chi<30.0$) and $\left|y_{\mathrm{B}}\right|<1.1$ are also analysed for contributions from BSM signals. Fig. 2 shows the angular distributions of the data in different $m_{j j}$ ranges, the SM prediction for the shape of the angular distributions, and examples of the signals described in Section 7. The data with $m_{j j}<2.5 \mathrm{TeV}$ are discarded to remove bias from the kinematic selections described earlier. The highest $m_{j j}$ measured is 7.9 TeV . The SM prediction is obtained from simulation,
as described in Section 4. In the analysis, the prediction in each $m_{j j}$ range is normalized to match the integral of the data in that range.

Theoretical uncertainties in simulations of the angular distributions from QCD processes are estimated as described in Ref. [19]. The effect on the QCD prediction of varying the PDFs is estimated using NLOJET++ with three different PDF sets: CT10 [53], MSTW2008 [54] and NNPDF23 [32]. As the choice of PDF largely affects the total cross-section rather than the shape of the χ distributions, these uncertainties are negligible ($<1 \%$). The uncertainty due to the choice of renormalization and factorization scales was estimated using NLOJET++ by varying each independently up and down by a factor two, excluding opposite variations. The resulting uncertainty, taken as the envelope of the variations in the normalized χ distributions, depends on both $m_{j j}$ and χ, rising to 20% at the smallest χ values at high $m_{j j}$ values. The statistical uncertainty of the simulated NLO corrections is less than 1%. The dominant experimental uncertainty in the predictions of the χ distributions is the jet energy scale uncertainty, with an impact of at most 25% at high $m_{j j}$ values. The uncertainty in the jet energy resolution has negligible impact. The theoretical uncertainties and the total uncertainties are displayed as shaded bands around the prediction.

The $C L_{s}$ technique $[55,56]$ is used to test the compatibility of the χ distribution with the SM prediction and with the BSM signals discussed in Section 7, using a combined fit in four coarse $m_{j j}$ bins covering $m_{j j}>3.4 \mathrm{TeV}$. No significant deviation of the data from the background-only hypothesis is observed, with a $C L_{b}$ of 0.35 .

7 Signal models

The data are used to constrain several of the many BSM models that predict dijet excesses. Quantum black holes, excited quarks, and W^{\prime} and Z^{\prime} bosons would produce peaks in the $m_{j j}$ distribution. Contact interactions would introduce smooth changes in the high-mass tail of the $m_{j j}$ distribution that could be detected in the analysis of the χ distributions. The signal models are simulated using the partonlevel generators indicated below, in an identical manner to QCD processes, using the same PDFs and parameters for non-perturbative effects, except where noted otherwise.

The LHC could produce black holes with masses at or above the fundamental scale of gravity, M_{D}, if that scale is lowered to a few TeV by the existence of extra spatial dimensions [2, 44, 45, 57-60]. High-multiplicity final states from thermalizing black holes are explored at $\sqrt{s}=13 \mathrm{TeV}$ by ATLAS in Ref. [61]. This analysis explores quantum black holes (QBHs), which would be produced near M_{D} and decay into a few particles rather than high-multiplicity final states [44-46, 62], appearing in the $m_{j j}$ distribution as an excess localized at the threshold mass for the quantum black hole production, M_{th}. Here, production and decay to two jets is simulated using the QBH generator [63] or the BlackMAx generator [46], ${ }^{3}$ assuming an Arkani-Hamed-Dimopoulous-Dvali (ADD) scenario [64, 65] with $M_{\mathrm{D}}=$ M_{th} and a number of extra dimensions $n=6$, as in Ref. [17], and a Randall-Sundrum scenario (RS1) [66] with $n=1$ using the QBH generator. In these models, the branching ratio to dijets is greater than 96%. The acceptance times efficiency of the resonance (angular) selection for a quantum black hole with a threshold mass of 6.5 TeV is $53 \%(92 \%)$ for both generators. The PDFs used are CTEQ6L1 [67].

[^1]Excited quarks $\left(q^{*}\right)[39,40]$ are predicted in models of compositeness and are a benchmark for quarkgluon resonances [8, 9, 14, 15]. The q^{*} model is simulated with Pythia 8, assuming spin- $1 / 2$ excited quarks with coupling constants the same as for SM quarks. As in Ref. [40], the compositeness scale is set equal to the excited quark mass, $m_{q^{*}}$, and the $\operatorname{SU}(3), \mathrm{SU}(2)$, and $\mathrm{U}(1)$ coupling multipliers $f_{\mathrm{s}}=f=f^{\prime}=$ 1. The renormalization and factorization scales are set to the average p_{T} of the two leading jets. In the simulation, only the decay of the excited quark to a gluon and an up- or down-type quark is modelled; this corresponds to a branching ratio of 85%. Before parton shower effects are taken into account, the intrinsic width of the q^{*} signals is comparable to the detector resolution. The resonance selection acceptance times efficiency for a q^{*} with a mass of 4 TeV is 58%.
Additional spin-1 W^{\prime} and Z^{\prime} bosons often arise in the symmetry breaking of extended gauge theories. A W^{\prime} model [41] with $V-A$ SM couplings and a corresponding branching ratio to dijets of 75% is considered. In this analysis, events are simulated in Pythia 8 and decays are restricted to quark-antiquark pairs with all six quark flavours included. Events including top decays were not removed from the analysis, resulting in conservative limits. A leptophobic Z^{\prime} model [42] is also simulated, with matrix elements calculated in MadGraph 5 [68] and parton showering performed in Pythia 8. The Z^{\prime} model assumes axial-vector couplings to all SM quarks and to a Dirac fermion dark matter candidate. No interference with the SM is simulated for either the W^{\prime} or the Z^{\prime} model and decays involving top quarks are included. The Z^{\prime} model considered follows a scenario [43] where its decays to dark matter are negligible, hence the dijet production rate and resonance width depend only on the coupling to quarks, g_{q}, and the mass of the resonance $m_{Z^{\prime}}$. Before parton shower effects are considered, the intrinsic width of the W^{\prime} and Z^{\prime} signals range from 0.05% for a Z^{\prime} with a mass of 1.5 TeV and $g_{q}=0.1$ to 10% for a Z^{\prime} with a mass of 3.5 TeV and $g_{q}=0.5$. The resonance selection acceptance times efficiency for a mass of 3 TeV is 40% for the W^{\prime} model and 47% for the Z^{\prime} model with $g_{q}=0.2$.
Results are also provided as limits on the cross-section times acceptance times branching ratio to two jets, $\sigma \times A \times \mathrm{BR}$, of a hypothetical signal that produces a Gaussian contribution to the observed $m_{j j}$ distribution. For sufficiently narrow resonances, these results may be used to set limits in BSM models beyond those considered explicitly in this Letter. These limits should be used when PDF and non-perturbative effects can be safely truncated or neglected and, after applying the resonance selection, the reconstructed $m_{j j}$ distribution predicted by the model approaches a Gaussian distribution. Predicted BSM signals with an intrinsic width much smaller than 5% should be compared to the limit curve for width equal to the experimental resolution. Predicted signals with larger widths should be compared with the limit that corresponds most closely to the width of the Gaussian contribution predicted by the model. More instructions can be found in Appendix A of Ref. [17].

For all signals described above, the following systematic uncertainties are included in the limit setting: jet energy scale, PDF and uncertainties due to higher-order corrections, luminosity, and statistical uncertainties of the simulated events. The jet energy uncertainty is up to 10%. On average, the PDF uncertainty affects the angular distributions by 1%. The uncertainty in the integrated luminosity is $\pm 9 \%$. It is derived, following a method similar to that detailed in Ref. [69], from a preliminary calibration of the luminosity scale using a pair of $x-y$ beam-separation scans performed in June 2015.
The dijet distributions can also be modified by new mediating particles with a mass much higher than can be probed directly. A four-fermion effective field theory (contact interaction) [47-49] characterized by a
single energy scale Λ can then be used to describe these effects:

$$
\begin{align*}
& L_{q q}=\frac{2 \pi}{\Lambda^{2}}\left[\quad \eta_{\mathrm{LL}}\left(\bar{q}_{\mathrm{L}} \gamma^{\mu} q_{\mathrm{L}}\right)\left(\bar{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}}\right)\right. \\
& +\eta_{\mathrm{RR}}\left(\bar{q}_{\mathrm{R}} \gamma^{\mu} q_{\mathrm{R}}\right)\left(\bar{q}_{\mathrm{R}} \gamma_{\mu} q_{\mathrm{R}}\right) \\
& \left.+2 \eta_{\mathrm{RL}}\left(\bar{q}_{\mathrm{R}} \gamma^{\mu} q_{\mathrm{R}}\right)\left(\bar{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}}\right)\right], \tag{2}
\end{align*}
$$

where the quark fields have L and R chiral projections and the coefficients $\eta_{\mathrm{LL}}, \eta_{\mathrm{RR}}$, and η_{RL} turn on and off various interactions. Contact interactions with a non-zero left-chiral colour-singlet coupling ($\eta_{\mathrm{LL}}=$ $\pm 1, \eta_{\mathrm{RL}}=\eta_{\mathrm{RR}}=0$) are simulated using Pythia 8 . This type of coupling is chosen because its angular distributions are representative of those of other BSM models. Interference of the signal model with the SM process $q \bar{q} \rightarrow q \bar{q}$ is included. Events are simulated for both constructive and destructive interference with $\Lambda=7 \mathrm{TeV}$. From this sample, the angular distributions for other values of Λ are obtained using the fact that the interference term is proportional to $1 / \Lambda^{2}$ and the pure contact-interaction cross-section is proportional to $1 / \Lambda^{4}$. The Pythia 8 signal prediction is reweighted to the NLO cross-sections provided by CIJET [70]. Uncertainties in the prediction of the angular distributions for contact-interaction signals are obtained in the same manner as for QCD processes.

8 Limits

Starting from the $m_{j j}$ distribution obtained with the resonance selection, a Bayesian method [14] is applied to the data and simulation of signals at a series of discrete masses to set 95% credibility-level upper limits on the cross-section times acceptance for the signals described above. The method uses a constant prior for signal cross-section and Gaussian priors for nuisance parameters corresponding to systematic uncertainties. The expected limits are calculated using pseudo-experiments generated from the maximum-likelihood values for parameters of the background-only model in Eq. (1) using the full systematic uncertainties in both the signal and background models. The limit is interpolated logarithmically between the discrete masses to create curves continuous in signal mass. The mass limits for each of those models are shown in Figs. 3 and 4 and Table 1. No uncertainty is included for the cross-section of the signals considered.

Fig. 5 shows limits on the Gaussian contributions to the observed $m_{j j}$ distribution obtained for a mean mass m_{G} and four different widths, from a width equal to the detector mass resolution to a width of 15% of the mean of the Gaussian mass distribution. Limits are set only when m_{G} is within $1.1 \mathrm{TeV}-6.9 \mathrm{TeV}$ and separated by at least twice the width of the Gaussian from the endpoints of this range. Intrinsically narrow resonances with effective cross-sections exceeding values ranging from approximately $50-300 \mathrm{fb}$ for masses below 2 TeV to $2-20 \mathrm{fb}$ for masses above 4 TeV are excluded. As the width increases, the expected signal contribution is distributed across more bins. Therefore wider signals are affected less than narrower signals by statistical fluctuations of the data in a single bin.
Starting from the χ distribution obtained with the angular selection, the $C L_{s}$ is calculated for signal contributions from contact interactions and quantum black holes, using the background predicted by the SM simulations as the null hypothesis. The asymptotic approximation [71] of a profile likelihood ratio is used to set 95% confidence-level limits in the contact interaction and quantum black hole models. A combined fit is performed on the four highest $-m_{j j}$ regions of Fig. 2. The correlation of the systematic uncertainties between the regions is taken into account and the maximum likelihood values of the nuisance parameters do not differ significantly from the expectation. The validity of the asymptotic approximation

Model	95% CL Exclusion limit		
	Run 1 Observed	Observed 13 TeV	Expected 13 TeV
Quantum black holes, ADD (BLAckMAx generator)	5.6 TeV	8.1 TeV	8.1 TeV
Quantum black holes, ADD (QBH generator)	5.7 TeV	8.3 TeV	8.3 TeV
Quantum black holes, RS (QBH generator)	-	5.3 TeV	5.1 TeV
Excited quark	4.1 TeV	5.2 TeV	4.9 TeV
W^{\prime}	2.5 TeV	2.6 TeV	2.6 TeV
Contact interactions $\left(\eta_{L L}=+1\right)$ Contact interactions $\left(\eta_{L L}=-1\right)$	8.1 TeV	12.0 TeV	17.5 TeV

Table 1: The 95% credibility-level lower limit on the mass of quantum black holes, W^{\prime} models and excited quarks from the resonance selection, and the 95% confidence-level lower limit on the scale of contact interactions for constructive $\left(\eta_{L L}=-1\right)$ and destructive $\left(\eta_{L L}=+1\right)$ from the angular selection. Limits on the Z^{\prime} model are provided in Fig. 4. For comparison between the results from the two selections, the corresponding limit on quantum black holes for the angular selection is 8.1 TeV for the $\mathrm{QBH} n=6$ model. The Run 1 limits shown above were obtained in Refs. [17, 19].
was confirmed using toy simulations. The bounds on contact interactions are shown in Fig. 6 and in Table 1. Limits obtained from the angular distributions on quantum black hole signals are similar to the limits obtained from the $m_{j j}$ distribution.

9 Conclusion

No evidence of phenomena beyond the Standard Model was uncovered in this search using dijet events in $3.6 \mathrm{fb}^{-1}$ of proton-proton collisions with a centre-of-mass energy of $\sqrt{s}=13 \mathrm{TeV}$ recorded by the ATLAS detector at the Large Hadron Collider. The dijet invariant mass distribution exhibits no significant local excesses above a data-derived estimate of the smoothly falling distribution predicted by the Standard Model. The dijet angular distributions also agree with a Monte Carlo simulation of the SM. With the resonance selection, the analysis excludes at 95% credibility level several types of signals, as predicted by models of quantum black holes, excited quarks, W^{\prime} and Z^{\prime} bosons. It also sets 95% credibility-level upper limits on the cross-section for new processes that would produce a Gaussian contribution to the dijet mass distribution. It excludes Gaussian contributions if the effective cross-section exceeds values ranging from approximately $50-300 \mathrm{fb}$ for masses below 2 TeV to $2-20 \mathrm{fb}$ for masses above 4 TeV . With the angular selection, 95% confidence-level lower limits are set on the compositeness scale of contact interactions at $12.0 \mathrm{TeV}(17.5 \mathrm{TeV})$ for destructive (constructive) interference between the new interaction and QCD processes. These results significantly extend the ATLAS limits obtained from 8 TeV data.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Figure 1: The reconstructed dijet mass distribution (filled points) for events with $\left|y^{*}\right|<0.6$ and $p_{\mathrm{T}}>440$ (50) GeV for the leading (subleading) jets. The solid line depicts the fit to Eq. (1), as discussed in the text. Predictions for an excited quark and a quantum black hole signal predicted by the BLackMax generator (QBH BM) are shown above the fit, normalized to the predicted cross-section. The vertical lines indicate the most discrepant interval identified by the BumpHunter algorithm, for which the p-value is stated in the figure. The middle panel shows the bin-bybin significances of the data-fit differences, considering only statistical uncertainties. The lower panel shows the relative differences between the data and the prediction of Pythia 8 simulation of QCD processes, corrected for NLO and electroweak effects, and is shown purely for comparison. The shaded band denotes the experimental uncertainty in the jet energy scale calibration.

Figure 2: Reconstructed distributions of the dijet angular variable χ in different regions of the dijet invariant mass $m_{j j}$ for events with $\left|y^{*}\right|<1.7,\left|y_{\mathrm{B}}\right|<1.1$ and $p_{\mathrm{T}}>440(50) \mathrm{GeV}$ for the leading (subleading) jets. Shown are the data (points), corrected NLO predictions (solid lines), and examples of the contact interaction (CI) and quantum black hole (QBH) signals discussed in the text. The theoretical uncertainties and the total theoretical and experimental uncertainties in the predictions are displayed as shaded bands around the SM prediction.

Figure 3: The 95% credibility-level upper limits obtained from the $m_{j j}$ distribution on cross-section, σ, times acceptance, A, for the models described in the text. Clockwise from top left: Quantum black holes with $n=6$ generated with BlackMax (QBH (BM)), and with $n=6$ and $n=1$ with QBH (denoted by QBH (QBH) and $\mathrm{QBH}(\mathrm{RS})$, respectively), Z^{\prime} with $g_{q}=0.3, W^{\prime}$, and q^{\star}.

Figure 4: The ratio of 95% credibility-level upper limits to predicted cross-sections with respect to the Z^{\prime} model predictions described in the text, as a function of the coupling to quarks, g_{q}, and the mass, $M_{Z^{\prime}}$, obtained from the $m_{j j}$ distribution. Since for a given mass higher couplings have higher cross sections and would therefore be excluded if lower couplings are excluded, the limits are not calculated in the white area.

Figure 5: The 95% credibility-level upper limits obtained from the $m_{j j}$ distribution on cross-section times acceptance times branching ratio to two jets, $\sigma \times A \times \mathrm{BR}$, for a hypothetical signal with a cross-section σ_{G} that produces a Gaussian contribution to the observed $m_{j j}$ distribution, as a function of the mean mass of the Gaussian distribution, m_{G}. Limits are obtained for four different widths, from a width equal to the detector mass resolution ("Res."), $3 \%-2 \%$ depending on $m_{j j}$ probed, to 15% of the mean of the Gaussian mass distribution.

Figure 6: Ratio of the observed and expected 95% confidence-level upper limits on the cross-section in the contact interaction model to the predicted cross-section $\sigma / \sigma_{\text {th }}$ as a function of compositeness scale Λ, for (top) destructive and (bottom) constructive interference with QCD processes. The crossing of the observed and expected 95% confidence-level lines with the line at signal strength of one indicates observed and expected lower limits on Λ, respectively.

References

[1] R. M. Harris and K. Kousouris, Searches for dijet resonances at hadron colliders, Int. J. Mod. Phys. A 26 (2011) 5005-5055, arXiv:1110. 5302 [hep-ex].
[2] N. Boelaert and T. Åkesson, Dijet angular distributions at $\sqrt{s}=14 \mathrm{TeV}$, Eur. Phys. J. C 66 (2010) 343-357, arXiv:0905. 3961 [hep-ph].
[3] UA1 Collaboration, G. Arnison et al., Angular distributions and structure functions from two jet events at the CERN SPS p anti-p collider, Phys. Lett. B 136 (1984) 294.
[4] UA1 Collaboration, C. Albajar et al., Two jet mass distributions at the CERN Proton-Anti-Proton Collider, Phys. Lett. B 209 (1988) 127-134.
[5] UA2 Collaboration, P. Bagnaia et al., Measurement of jet production properties at the CERN Collider, Phys. Lett. B 144 (1984) 283-290.
[6] CDF Collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at $\sqrt{s}=1.96 \mathrm{TeV}$, Phys. Rev. D 79 (2009) 112002, arXiv:0812.4036 [hep-ex].
[7] D0 Collaboration, V. M. Abazov et al., Measurement of dijet angular distributions at $\sqrt{s}=$ 1.96 TeV and searches for quark compositeness and extra spatial dimensions, Phys. Rev. Lett. 103 (2009) 191803, arXiv:0906. 4819 [hep-ex].
[8] ATLAS Collaboration, Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 161801, arXiv:1008. 2461 [hep-ex].
[9] ATLAS Collaboration, Search for quark contact interactions in dijet angular distributions in pp collisions at $\sqrt{s}=7$ TeV measured with the ATLAS detector, Phys. Lett. B 694 (2011) 327, arXiv:1009. 5069 [hep-ex].
[10] CMS Collaboration, Search for dijet resonances in 7 TeV pp collisions at CMS, Phys. Rev. Lett. 105 (2010) 211801, arXiv:1010. 0203 [hep-ex].
[11] CMS Collaboration,
Search for quark compositeness with the dijet centrality ratio in 7 TeV pp collisions, Phys. Rev. Lett. 105 (2010) 262001, arXiv:1010. 4439 [hep-ex].
[12] CMS Collaboration, Measurement of dijet angular distributions and search for quark compositiveness in pp Collisions at $\sqrt{s}=7$ TeV, Phys. Rev. Lett. 106 (2011) 201804, arXiv:1102.2020 [hep-ex].
[13] CMS Collaboration, Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123, arXiv:1107. 4771 [hep-ex].
[14] ATLAS Collaboration, Search for new physics in dijet mass and angular distributions in pp collisions at $\sqrt{s}=7$ TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044, arXiv:1103. 3864 [hep-ex].
[15] ATLAS Collaboration, Search for new physics in the dijet mass distribution using $1 \mathrm{fb}^{-1}$ of $p p$ collision data at $\sqrt{s}=7$ TeV collected by the ATLAS detector, Phys. Lett. B 708 (2012) 37-54, arXiv:1108.6311 [hep-ex].
[16] ATLAS Collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at $\sqrt{s}=7$ TeV, JHEP 1301 (2013) 029, arXiv:1210. 1718 [hep-ex].
[17] ATLAS Collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at $\sqrt{s}=8$ TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007, arXiv:1407. 1376 [hep-ex].
[18] CMS Collaboration,
Search for narrow resonances using the dijet mass spectrum in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$, Phys. Rev. D 87 (2013) 114015, arXiv:1302. 4794 [hep-ex].
[19] ATLAS Collaboration, Search for new phenomena in dijet angular distributions in proton-proton collisions at $\sqrt{s}=8$ TeV measured with the ATLAS detector, Phys. Rev. Lett. 114 (2015) 221802, arXiv:1504.00357 [hep-ex].
[20] CMS Collaboration,
Search for narrow resonances decaying to dijets in proton-proton collisions at sqrt(s)=13 TeV (2015), arXiv:1512.01224 [hep-ex].
[21] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.
[22] W. Lampl et al., Calorimeter clustering algorithms: description and performance, ATLAS-LARG-PUB-2008-002, 2008, urL: http://cds.cern.ch/record/1099735.
[23] M. Cacciari, G. Salam and G. Soyez, The anti- k_{T} jet clustering algorithm, JHEP 0804 (2008) 063, arXiv:0802. 1189 [hep-ph].
[24] M. Cacciari and G. Salam, Dispelling the N^{3} myth for the k_{t} jet-finder, Phys. Lett. B 641 (2006) 57, arXiv:hep-ph/0512210.
[25] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s}=8$ TeV using the ATLAS detector (2015), arXiv:1510. 03823 [hep-ex].
[26] ATLAS Collaboration, Data-driven determination of the energy scale and resolution of jets reconstructed in the ATLAS calorimeters using dijet and multijet events at $\sqrt{s}=8 \mathrm{TeV}$, ATLAS-CONF-2015-017, 2015, urL: http://cds.cern.ch/record/2008678.
[27] ATLAS Collaboration, Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at $\sqrt{s}=13 \mathrm{TeV}$, ATL-PHYS-PUB-2015-015, 2015, url: http://cds.cern.ch/record/2037613.
[28] ATLAS Collaboration, Jet global sequential corrections with the ATLAS detector in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$, ATLAS-CONF-2015-002, 2015, url: http://cds.cern.ch/record/2001682.
[29] ATLAS Collaboration, Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector, ATLAS-CONF-2015-029, 2015, urL: https://cds.cern.ch/record/2037702.
[30] T. Sjöstrand, S. Mrenna and P. Skands, A brief introduction to Pythia 8.1, Comput. Phys. Commun. 178 (2008) 852-867, arXiv:0710. 3820 [hep-ph].
[31] ATLAS Collaboration, ATLAS Run 1 Pythia 8 tunes, ATLAS-PHYS-PUB-2014-021, 2014, url: http://cds.cern.ch/record/1966419.
[32] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244-289, arXiv:1207.1303 [hep-ph].
[33] S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250-303.
[34] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823-874, arXiv:1005.4568 [physics.ins-det].
[35] Z. Nagy, Three-jet cross sections in hadron-hadron collisions at next-to-leading-order, Phys. Rev. Lett. 88 (2002) 122003, arXiv:hep-ph/0110315 [hep-ph].
[36] Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron-hadron collision, Phys. Rev. D 68 (2003) 094002, arXiv:hep-ph/0307268 [hep-ph].
[37] S. Catani and M. H. Seymour,
A general algorithm for calculating jet cross-sections in NLO QCD,
Nucl. Phys. B 485 (1997) 291-419, arXiv:hep-ph/9605323 [hep-ph].
[38] S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP 1211 (2012) 095, arXiv:1210.0438 [hep-ph],
We thank the authors for providing weak radiative correction factors.
[39] U. Baur, I. Hinchliffe and D. Zeppenfeld, Excited quark production at hadron colliders, Int. J. Mod. Phys. A 2 (1987) 1285.
[40] U. Baur, M. Spira and P. M. Zerwas, Excited quark and lepton production at hadron colliders, Phys. Rev. D 42 (1990) 815-825.
[41] G. Altarelli, B. Mele and M. Ruiz-Altaba, Searching for new heavy vector bosons in p \bar{p} colliders, Z. Phys. C 45 (1989) 109, [Erratum: Z. Phys.C47, 676(1990)].
[42] D. Abercrombie et al., Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS Dark Matter Forum (2015), arXiv:1507.00966 [hep-ex].
[43] M. Chala et al., Constraining dark sectors with monojets and dijets, JHEP 1507 (2015) 089, arXiv:1503.05916 [hep-ph].
[44] D. M. Gingrich, Quantum black holes with charge, colour, and spin at the LHC, J. Phys. G 37 (2010) 105008, arXiv:0912.0826 [hep-ph].
[45] X. Calmet, W. Gong and S. D. H. Hsu, Colorful quantum black holes at the LHC, Phys. Lett. B 668 (2008) 20-23, arXiv:0806. 4605 [hep-ph].
[46] D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes, and brane tension, Phys. Rev. D 77 (2008) 076007, arXiv:0711. 3012 [hep-ph].
[47] E. Eichten et al., Supercollider physics, Rev. Mod. Phys. 56 (1984) 579-707.
[48] E. Eichten et al., Erratum: supercollider physics, Rev. Mod. Phys. 58 (1986) 1065.
[49] P. Chiapetta and M. Perrottet, Possible bounds on compositeness from inclusive one jet production in large hadron colliders, Phys. Lett. B 253 (1991) 489-493.
[50] S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60-62.
[51] CDF Collaboration, T. Aaltonen et al., Global search for new physics with $2.0 \mathrm{fb}^{-1}$ at $C D F$, Phys. Rev. D 79 (2009) 011101, arXiv:0809. 3781 [hep-ex].
[52] G. Choudalakis, On hypothesis testing, trials factor, hypertests and the BumpHunter (2011), arXiv:1101.0390 [physics.data-an].
[53] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv:1007. 2241 [hep-ph].
[54] A. D. Martin et al., Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189-285, arXiv:0901.0002 [hep-ph].
[55] A. L. Read, Presentation of search results: the $C L(s)$ technique, J. Phys. G 28 (2002) 2693-2704.
[56] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435-443, arXiv:hep-ex/9902006 [hep-ex].
[57] S. B. Giddings and S. D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev. D 65 (2002) 056010, arXiv:hep-ph/0106219 [hep-ph].
[58] S. Dimopoulos and G. L. Landsberg, Black holes at the Large Hadron Collider, Phys. Rev. Lett. 87 (2001) 161602, arXiv:hep-ph/0106295 [hep-ph].
[59] P. Meade and L. Randall, Black holes and quantum gravity at the LHC, JHEP 0805 (2008) 003, arXiv:0708. 3017 [hep-ph].
[60] L. A. Anchordoqui et al., Inelastic black hole production and large extra dimensions, Phys. Lett. B 594 (2004) 363-367, arXiv:hep-ph/0311365 [hep-ph].
[61] ATLAS Collaboration, Search for evidence for strong gravity in jet final states produced in pp collisions at $\sqrt{s}=13$ TeV using the ATLAS detector at the LHC (2015), eprint: CERN-PH-EP-2015-312.
[62] J. A. Frost et al., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP 0910 (2009) 014, arXiv:0904. 0979 [hep-ph].
[63] D. M. Gingrich, Monte Carlo event generator for black hole production and decay in proton-proton collisions, Comput. Phys. Commun. 181 (2010) 1917-1924, arXiv:0911. 5370 [hep-ph].
[64] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263-272, arXiv:hep-ph/9803315 [hep-ph].
[65] I. Antoniadis et al., New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257-263, arXiv:hep-ph/9804398 [hep-ph].
[66] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370-3373, arXiv:hep-ph/9905221 [hep-ph].
[67] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 0207 (2002) 012, arXiv:hep-ph/0201195 [hep-ph].
[68] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 1407 (2014) 079, arXiv:1405.0301 [hep-ph].
[69] ATLAS Collaboration, Improved luminosity determination in pp collisions at $\sqrt{s}=7$ TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2518, arXiv:1302. 4393 [hep-ex].
[70] J. Gao, CIJET: a program for computation of jet cross sections induced by quark contact interactions at hadron colliders, Comput. Phys. Commun. 184 (2013) 2362-2366, arXiv:1301.7263 [hep-ph].
[71] G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554, [Erratum: Eur. Phys. J. C, 73(2013)], arXiv:1007. 1727 [physics.data-an].

The ATLAS Collaboration

G. Aad ${ }^{87}$, B. Abbott ${ }^{114}$, J. Abdallah ${ }^{152}$, O. Abdinov ${ }^{11}$, B. Abeloos ${ }^{118}$, R. Aben ${ }^{108}$, M. Abolins ${ }^{92}$, O.S. AbouZeid ${ }^{159}$, H. Abramowicz ${ }^{154}$, H. Abreu ${ }^{153}$, R. Abreu ${ }^{117}$, Y. Abulaiti ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, B.S. Acharya ${ }^{163 \mathrm{a}, 163 \mathrm{~b}, a}$, L. Adamczyk ${ }^{39 \mathrm{a}}$, D.L. Adams ${ }^{26}$, J. Adelman ${ }^{109}$, S. Adomeit ${ }^{101}$, T. Adye ${ }^{132}$, A.A. Affolder ${ }^{76}$, T. Agatonovic-Jovin ${ }^{13}$, J. Agricola ${ }^{55}$, J.A. Aguilar-Saavedra ${ }^{\text {127a, 127f }}$, S.P. Ahlen ${ }^{23}$, F. Ahmadov ${ }^{67, b}$, G. Aielli ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, H. Akerstedt ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T.P.A. Åkesson ${ }^{83}$, A.V. Akimov ${ }^{97}$, G.L. Alberghi ${ }^{21 a, 21 b}$, J. Albert ${ }^{168}$, S. Albrand ${ }^{56}$, M.J. Alconada Verzini ${ }^{73}$, M. Aleksa ${ }^{31}$, I.N. Aleksandrov ${ }^{67}$, C. Alexa ${ }^{27 \mathrm{~b}}$, G. Alexander ${ }^{154}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{114}$, G. Alimonti ${ }^{93 \mathrm{a}}$, L. Alio ${ }^{87}$, J. Alison ${ }^{32}$, S.P. Alkire ${ }^{36}$, B.M.M. Allbrooke ${ }^{150}$, B.W. Allen ${ }^{117}$, P.P. Allport ${ }^{18}$, A. Aloisio ${ }^{105 \mathrm{a}, 105 \mathrm{~b}}$, A. Alonso ${ }^{37}$, F. Alonso ${ }^{73}$, C. Alpigiani ${ }^{139}$, B. Alvarez Gonzalez ${ }^{31}$, D. Álvarez Piqueras ${ }^{166}$, M.G. Alviggi ${ }^{105 a, 105 b}$, B.T. Amadio ${ }^{15}$, K. Amako ${ }^{68}$, Y. Amaral Coutinho ${ }^{25 a}$, C. Amelung ${ }^{24}$, D. Amidei ${ }^{91}$, S.P. Amor Dos Santos ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, A. Amorim ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, S. Amoroso ${ }^{31}$, N. Amram ${ }^{154}$, G. Amundsen ${ }^{24}$, C. Anastopoulos ${ }^{140}$, L.S. Ancu ${ }^{50}$, N. Andari ${ }^{109}$, T. Andeen ${ }^{32}$, C.F. Anders ${ }^{59 b}$, G. Anders ${ }^{31}$, J.K. Anders ${ }^{76}$, K.J. Anderson ${ }^{32}$, A. Andreazza ${ }^{93 a}$, 93 b , V. Andrei ${ }^{59 a}$, S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{108}$, P. Anger ${ }^{45}$, A. Angerami ${ }^{36}$, F. Anghinolfi ${ }^{31}$, A.V. Anisenkov ${ }^{110, c}$, N. Anjos ${ }^{12}$, A. Annovi ${ }^{125 a, 125 b}$, M. Antonelli ${ }^{48}$, A. Antonov ${ }^{99}$, J. Antos ${ }^{145 b}$, F. Anulli ${ }^{133 a}$, M. Aoki ${ }^{68}$, L. Aperio Bella ${ }^{18}$, G. Arabidze ${ }^{92}$, Y. Arai ${ }^{68}$, J.P. Araque ${ }^{127 a}$, A.T.H. Arce ${ }^{46}$, F.A. Arduh ${ }^{73}$, J-F. Arguin ${ }^{96}$, S. Argyropoulos ${ }^{64}$, M. Arik ${ }^{19 a}$, A.J. Armbruster ${ }^{31}$, L.J. Armitage ${ }^{78}$, O. Arnaez ${ }^{31}$, H. Arnold ${ }^{49}$, M. Arratia ${ }^{29}$, O. Arslan ${ }^{22}$, A. Artamonov ${ }^{98}$, G. Artoni ${ }^{121}$, S. Artz ${ }^{85}$, S. Asai ${ }^{156}$, N. Asbah ${ }^{43}$, A. Ashkenazi ${ }^{154}$, B. Åsman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Asquith ${ }^{150}$, K. Assamagan ${ }^{26}$, R. Astalos ${ }^{145 \mathrm{a}}$, M. Atkinson ${ }^{165}$, N.B. Atlay ${ }^{142}$, K. Augsten ${ }^{129}$, G. Avolio ${ }^{31}$, B. Axen ${ }^{15}$, M.K. Ayoub ${ }^{118}$, G. Azuelos ${ }^{96, d}$, M.A. Baak ${ }^{31}$, A.E. Baas ${ }^{59 \mathrm{a}}$, M.J. Baca ${ }^{18}$, H. Bachacou ${ }^{137}$, K. Bachas ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, M. Backes ${ }^{31}$, M. Backhaus ${ }^{31}$, P. Bagiacchi ${ }^{133 a, 133 b}$, P. Bagnaia ${ }^{133 a, 133 b}$, Y. Bai ${ }^{34 a}$, J.T. Baines ${ }^{132}$, O.K. Baker ${ }^{175}$, E.M. Baldin ${ }^{110, c}$, P. Balek ${ }^{130}$, T. Balestri ${ }^{149}$, F. Balli ${ }^{86}$, W.K. Balunas ${ }^{123}$, E. Banas ${ }^{40}$, Sw. Banerjee ${ }^{172, e}$, A.A.E. Bannoura ${ }^{174}$, L. Barak 31, E.L. Barberio ${ }^{90}$, D. Barberis ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, M. Barbero ${ }^{87}$, T. Barillari ${ }^{102}$, M. Barisonzi ${ }^{163 a, 163 b}$, T. Barklow ${ }^{144}$, N. Barlow ${ }^{29}$, S.L. Barnes ${ }^{86}$, B.M. Barnett ${ }^{132}$, R.M. Barnett ${ }^{15}$, Z. Barnovska ${ }^{5}$, A. Baroncelli ${ }^{135 a}$, G. Barone ${ }^{24}$, A.J. Barr ${ }^{121}$, L. Barranco Navarro ${ }^{166}$, F. Barreiro ${ }^{84}$, J. Barreiro Guimarães da Costa ${ }^{34 \mathrm{a}}$, R. Bartoldus ${ }^{144}$, A.E. Barton ${ }^{74}$, P. Bartos ${ }^{145 \mathrm{a}}$, A. Basalaev ${ }^{124}$, A. Bassalat ${ }^{118}$, A. Basye ${ }^{165}$, R.L. Bates ${ }^{54}$, S.J. Batista ${ }^{159}$, J.R. Batley ${ }^{29}$, M. Battaglia ${ }^{138}$, M. Bauce ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, F. Bauer ${ }^{137}$, H.S. Bawa ${ }^{144, f}$, J.B. Beacham ${ }^{112}$, M.D. Beattie ${ }^{74}$, T. Beau ${ }^{82}$, P.H. Beauchemin ${ }^{162}$, R. Beccherle ${ }^{125 a, 125 b}$, P. Bechtle ${ }^{22}$, H.P. Beck ${ }^{17, g}$, K. Becker ${ }^{121}$, M. Becker ${ }^{85}$, M. Beckingham ${ }^{169}$, C. Becot 111, A.J. Beddall ${ }^{19 \mathrm{e}}$, A. Beddall ${ }^{19 \mathrm{~b}}$, V.A. Bednyakov ${ }^{67}$, M. Bedognetti ${ }^{108}$, C.P. Bee ${ }^{149}$, L.J. Beemster ${ }^{108}$, T.A. Beermann ${ }^{31}$, M. Begel ${ }^{26}$, J.K. Behr ${ }^{121}$, C. Belanger-Champagne ${ }^{89}$, A.S. Bell ${ }^{80}$, W.H. Bell ${ }^{50}$, G. Bella ${ }^{154}$, L. Bellagamba ${ }^{21 \mathrm{a}}$, A. Bellerive ${ }^{30}$, M. Bellomo ${ }^{88}$, K. Belotskiy ${ }^{99}$, O. Beltramello ${ }^{31}$, O. Benary ${ }^{154}$, D. Benchekroun ${ }^{136 \mathrm{a}}$, M. Bender ${ }^{101}$, K. Bendtz ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{154}$, E. Benhar Noccioli ${ }^{175}$, J. Benitez ${ }^{64}$, J.A. Benitez Garcia ${ }^{160 \mathrm{~b}}$, D.P. Benjamin ${ }^{46}$, J.R. Bensinger ${ }^{24}$, S. Bentvelsen ${ }^{108}$, L. Beresford ${ }^{121}$, M. Beretta ${ }^{48}$, D. Berge ${ }^{108}$,
E. Bergeaas Kuutmann ${ }^{164}$, N. Berger ${ }^{5}$, F. Berghaus ${ }^{168}$, J. Beringer ${ }^{15}$, C. Bernard ${ }^{23}$, N.R. Bernard ${ }^{88}$, C. Bernius ${ }^{111}$, F.U. Bernlochner ${ }^{22}$, T. Berry ${ }^{79}$, P. Berta ${ }^{130}$, C. Bertella ${ }^{85}$, G. Bertoli ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Bertolucci ${ }^{125 a, 125 b}$, C. Bertsche ${ }^{114}$, D. Bertsche ${ }^{114}$, G.J. Besjes ${ }^{37}$, O. Bessidskaia Bylund ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Bessner ${ }^{43}$, N. Besson ${ }^{137}$, C. Betancourt ${ }^{49}$, S. Bethke ${ }^{102}$, A.J. Bevan ${ }^{78}$, W. Bhimji ${ }^{15}$, R.M. Bianchi ${ }^{126}$, L. Bianchini ${ }^{24}$, M. Bianco ${ }^{31}$, O. Biebel ${ }^{101}$, D. Biedermann ${ }^{16}$, R. Bielski ${ }^{86}$, N.V. Biesuz ${ }^{125 a, 125 b}$, M. Biglietti ${ }^{135 \mathrm{a}}$, J. Bilbao De Mendizabal ${ }^{50}$, H. Bilokon ${ }^{48}$, M. Bindi ${ }^{55}$, S. Binet 118, A. Bingul ${ }^{19 \mathrm{~b}}$, C. Bini ${ }^{133 a, 133 b}$, S. Biondi ${ }^{21 a, 21 b}$, D.M. Bjergaard ${ }^{46}$, C.W. Black ${ }^{151}$, J.E. Black ${ }^{144}$, K.M. Black ${ }^{23}$, D. Blackburn ${ }^{139}$, R.E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{137}$, J.E. Blanco ${ }^{79}$, T. Blazek ${ }^{145 \text { a }}$, I. Bloch ${ }^{43}$, C. Blocker ${ }^{24}$,
W. Blum ${ }^{85, *}$, U. Blumenschein ${ }^{55}$, S. Blunier ${ }^{33 a}$, G.J. Bobbink ${ }^{108}$, V.S. Bobrovnikov ${ }^{110, c}$, S.S. Bocchetta ${ }^{83}$, A. Bocci ${ }^{46}$, C. Bock ${ }^{101}$, M. Boehler ${ }^{49}$, D. Boerner ${ }^{174}$, J.A. Bogaerts ${ }^{31}$, D. Bogavac ${ }^{13}$, A.G. Bogdanchikov ${ }^{110}$, C. Bohm ${ }^{147 \mathrm{a}}$, V. Boisvert ${ }^{79}$, T. Bold ${ }^{39 \mathrm{a}}$, V. Boldea ${ }^{27 \mathrm{~b}}$, A.S. Boldyrev ${ }^{163 \mathrm{a}, 163 \mathrm{c}}$, M. Bomben ${ }^{82}$, M. Bona ${ }^{78}$, M. Boonekamp ${ }^{137}$, A. Borisov ${ }^{131}$, G. Borissov ${ }^{74}$, J. Bortfeldt ${ }^{101}$, D. Bortoletto ${ }^{121}$, V. Bortolotto ${ }^{61 \mathrm{a}, 61 \mathrm{~b}, 61 \mathrm{c}}$, K. Bos ${ }^{108}$, D. Boscherini ${ }^{21 \mathrm{a}}$, M. Bosman ${ }^{12}$, J.D. Bossio Sola ${ }^{28}$, J. Boudreau ${ }^{126}$, J. Bouffard ${ }^{2}$, E.V. Bouhova-Thacker ${ }^{74}$, D. Boumediene ${ }^{35}$, C. Bourdarios ${ }^{118}$, N. Bousson ${ }^{115}$, S.K. Boutle ${ }^{54}$, A. Boveia ${ }^{31}$, J. Boyd ${ }^{31}$, I.R. Boyko ${ }^{67}$, J. Bracinik ${ }^{18}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{55}$, O. Brandt ${ }^{59 \mathrm{a}}$, U. Bratzler ${ }^{157}$, B. Brau ${ }^{88}$, J.E. Brau ${ }^{117}$, H.M. Braun ${ }^{174, *}$, W.D. Breaden Madden ${ }^{54}$, K. Brendlinger ${ }^{123}$, A.J. Brennan ${ }^{90}$, L. Brenner ${ }^{108}$, R. Brenner ${ }^{164}$, S. Bressler ${ }^{171}$, T.M. Bristow ${ }^{47}$, D. Britton ${ }^{54}$, D. Britzger ${ }^{43}$, F.M. Brochu ${ }^{29}$, I. Brock ${ }^{22}$, R. Brock ${ }^{92}$, G. Brooijmans ${ }^{36}$, T. Brooks ${ }^{79}$, W.K. Brooks ${ }^{33 b}$, J. Brosamer ${ }^{15}$, E. Brost ${ }^{117}$,
P.A. Bruckman de Renstrom ${ }^{40}$, D. Bruncko ${ }^{145 b}$, R. Bruneliere ${ }^{49}$, A. Bruni ${ }^{21 a}$, G. Bruni ${ }^{21 a}$, BH Brunt ${ }^{29}$, M. Bruschi ${ }^{21 \mathrm{a}}$, N. Bruscino ${ }^{22}$, P. Bryant ${ }^{32}$, L. Bryngemark ${ }^{83}$, T. Buanes ${ }^{14}$, Q. Buat ${ }^{143}$, P. Buchholz ${ }^{142}$, A.G. Buckley ${ }^{54}$, I.A. Budagov ${ }^{67}$, F. Buehrer ${ }^{49}$, M.K. Bugge ${ }^{120}$, O. Bulekov ${ }^{99}$, D. Bullock ${ }^{8}$, H. Burckhart ${ }^{31}$, S. Burdin ${ }^{76}$, C.D. Burgard ${ }^{49}$, B. Burghgrave ${ }^{109}$, K. Burka ${ }^{40}$, S. Burke ${ }^{132}$, I. Burmeister ${ }^{44}$, E. Busato ${ }^{35}$, D. Büscher ${ }^{49}$, V. Büscher ${ }^{85}$, P. Bussey ${ }^{54}$, J.M. Butler ${ }^{23}$, A.I. Butt ${ }^{3}$, C.M. Buttar ${ }^{54}$, J.M. Butterworth ${ }^{80}$, P. Butti ${ }^{108}$, W. Buttinger ${ }^{26}$, A. Buzatu ${ }^{54}$, A.R. Buzykaev ${ }^{110, c}$, S. Cabrera Urbán ${ }^{166}$, D. Caforio ${ }^{129}$, V.M. Cairo ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, O. Cakir ${ }^{4 \mathrm{a}}$, N. Calace ${ }^{50}$, P. Calafiura ${ }^{15}$, A. Calandri ${ }^{87}$, G. Calderini ${ }^{82}$, P. Calfayan ${ }^{101}$, L.P. Caloba ${ }^{25 a}$, D. Calvet ${ }^{35}$, S. Calvet ${ }^{35}$, T.P. Calvet ${ }^{87}$, R. Camacho Toro ${ }^{32}$, S. Camarda ${ }^{43}$, P. Camarri ${ }^{134 a, 134 b}$, D. Cameron ${ }^{120}$, R. Caminal Armadans ${ }^{165}$, C. Camincher ${ }^{56}$, S. Campana ${ }^{31}$, M. Campanelli ${ }^{80}$, A. Campoverde ${ }^{149}$, V. Canale ${ }^{105 a, 105 b}$, A. Canepa ${ }^{160 a}$, M. Cano Bret ${ }^{34 \mathrm{e}}$, J. Cantero ${ }^{84}$, R. Cantrill ${ }^{127 \mathrm{a}}$, T. Cao ${ }^{41}$, M.D.M. Capeans Garrido ${ }^{31}$, I. Caprini ${ }^{27 \mathrm{~b}}$, M. Caprini ${ }^{27 b}$, M. Capua ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, R. Caputo ${ }^{85}$, R.M. Carbone ${ }^{36}$, R. Cardarelli ${ }^{134 \mathrm{a}}$, F. Cardillo ${ }^{49}$, T. Carli ${ }^{31}$, G. Carlino ${ }^{105 a}$, L. Carminati ${ }^{93 a, 93 b}$, S. Caron ${ }^{107}$, E. Carquin ${ }^{33 a}$, G.D. Carrillo-Montoya ${ }^{31}$, J.R. Carter ${ }^{29}$, J. Carvalho ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, D. Casadei 80, M.P. Casado ${ }^{12, h}$, M. Casolino ${ }^{12}$, D.W. Casper ${ }^{66}$, E. Castaneda-Miranda ${ }^{146 a}$, A. Castelli ${ }^{108}$, V. Castillo Gimenez ${ }^{166}$, N.F. Castro ${ }^{127 a, i}$, A. Catinaccio ${ }^{31}$, J.R. Catmore ${ }^{120}$, A. Cattai ${ }^{31}$, J. Caudron ${ }^{85}$, V. Cavaliere ${ }^{165}$, D. Cavalli ${ }^{93 a}$, M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{125 a, 125 b}$, F. Ceradini ${ }^{135 a, 135 b}$, L. Cerda Alberich ${ }^{166}$, B.C. Cerio ${ }^{46}$, A.S. Cerqueira ${ }^{25 b}$, A. Cerri ${ }^{150}$, L. Cerrito ${ }^{78}$, F. Cerutti ${ }^{15}$, M. Cerv ${ }^{31}$, A. Cervelli ${ }^{17}$, S.A. Cetin ${ }^{19 \mathrm{~d}}$, A. Chafaq ${ }^{136 \mathrm{a}}$, D. Chakraborty ${ }^{109}$, I. Chalupkova ${ }^{130}$, Y.L. Chan ${ }^{61 a}$, P. Chang ${ }^{165}$, J.D. Chapman ${ }^{29}$, D.G. Charlton ${ }^{18}$, C.C. Chau ${ }^{159}$, C.A. Chavez Barajas ${ }^{150}$, S. Che ${ }^{112}$, S. Cheatham ${ }^{74}$, A. Chegwidden ${ }^{92}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{160 \mathrm{a}}$, G.A. Chelkov ${ }^{67, j}$, M.A. Chelstowska ${ }^{91}$, C. Chen ${ }^{65}$, H. Chen ${ }^{26}$, K. Chen ${ }^{149}$, S. Chen ${ }^{34 \mathrm{c}}$, S. Chen ${ }^{156}$, X. Chen ${ }^{34 \mathrm{f}}$, Y. Chen ${ }^{69}$, H.C. Cheng ${ }^{91}$, Y. Cheng ${ }^{32}$, A. Cheplakov ${ }^{67}$, E. Cheremushkina ${ }^{131}$, R. Cherkaoui El Moursli ${ }^{136 e}$, V. Chernyatin ${ }^{26, *}$, E. Cheu ${ }^{7}$, L. Chevalier ${ }^{137}$, V. Chiarella ${ }^{48}$, G. Chiarelli ${ }^{125 a, 125 b}$, G. Chiodini ${ }^{75 \mathrm{a}}$, A.S. Chisholm ${ }^{18}$, R.T. Chislett ${ }^{80}$, A. Chitan ${ }^{27 \mathrm{~b}}$, M.V. Chizhov ${ }^{67}$, K. Choi ${ }^{62}$, S. Chouridou ${ }^{9}$, B.K.B. Chow ${ }^{101}$, V. Christodoulou ${ }^{80}$,
D. Chromek-Burckhart ${ }^{31}$, J. Chudoba ${ }^{128}$, A.J. Chuinard ${ }^{89}$, J.J. Chwastowski ${ }^{40}$, L. Chytka ${ }^{116}$, G. Ciapetti ${ }^{133 a, 133 b}$, A.K. Ciftci ${ }^{4 a}$, D. Cinca ${ }^{54}$, V. Cindro ${ }^{77}$, I.A. Cioara ${ }^{22}$, A. Ciocio ${ }^{15}$, F. Cirotto ${ }^{105 a}$, 105b , Z.H. Citron ${ }^{171}$, M. Ciubancan ${ }^{27 b}$, A. Clark ${ }^{50}$, B.L. Clark ${ }^{58}$, P.J. Clark ${ }^{47}$, R.N. Clarke ${ }^{15}$,
C. Clement ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, Y. Coadou ${ }^{87}$, M. Cobal ${ }^{163 \mathrm{a}, 163 \mathrm{c}}$, A. Coccaro ${ }^{50}$, J. Cochran ${ }^{65}$, L. Coffey ${ }^{24}$, L. Colasurdo ${ }^{107}$, B. Cole ${ }^{36}$, S. Cole ${ }^{109}$, A.P. Colijn ${ }^{108}$, J. Collot ${ }^{56}$, T. Colombo ${ }^{59 \mathrm{c}}$, G. Compostella ${ }^{102}$, P. Conde Muiño ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, E. Coniavitis ${ }^{49}$, S.H. Connell ${ }^{146 \mathrm{~b}}$, I.A. Connelly ${ }^{79}$, V. Consorti ${ }^{49}$, S. Constantinescu ${ }^{27 \mathrm{~b}}$, C. Conta ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, G. Conti ${ }^{31}$, F. Conventi ${ }^{105 \mathrm{a}, k}$, M. Cooke ${ }^{15}$, B.D. Cooper ${ }^{80}$, A.M. Cooper-Sarkar ${ }^{121}$, T. Cornelissen ${ }^{174}$, M. Corradi ${ }^{133 a, 133 b}$, F. Corriveau ${ }^{89, l}$, A. Corso-Radu ${ }^{66}$, A. Cortes-Gonzalez ${ }^{12}$, G. Cortiana ${ }^{102}$, G. Costa ${ }^{93 a}$, M.J. Costa ${ }^{166}$, D. Costanzo ${ }^{140}$, G. Cottin ${ }^{29}$, G. Cowan ${ }^{79}$, B.E. Cox ${ }^{86}$, K. Cranmer ${ }^{111}$, S.J. Crawley ${ }^{54}$, G. Cree ${ }^{30}$, S. Crépé-Renaudin ${ }^{56}$, F. Crescioli ${ }^{82}$, W.A. Cribbs ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Crispin Ortuzar ${ }^{121}$, M. Cristinziani ${ }^{22}$, V. Croft ${ }^{107}$, G. Crosetti ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$,
T. Cuhadar Donszelmann ${ }^{140}$, J. Cummings ${ }^{175}$, M. Curatolo ${ }^{48}$, J. Cúth ${ }^{85}$, C. Cuthbert ${ }^{151}$, H. Czirr ${ }^{142}$, P. Czodrowski ${ }^{3}$, S. D’Auria ${ }^{54}$, M. D’Onofrio ${ }^{76}$, M.J. Da Cunha Sargedas De Sousa ${ }^{127 a, 127 b}$, C. Da Via ${ }^{86}$, W. Dabrowski ${ }^{39 a}$, T. Dai ${ }^{91}$, O. Dale ${ }^{14}$, F. Dallaire ${ }^{96}$, C. Dallapiccola ${ }^{88}$, M. Dam ${ }^{37}$, J.R. Dandoy ${ }^{32}$, N.P. Dang ${ }^{49}$, A.C. Daniells ${ }^{18}$, M. Danninger ${ }^{167}$, M. Dano Hoffmann ${ }^{137}$, V. Dao ${ }^{49}$, G. Darbo ${ }^{51 a}$, S. Darmora ${ }^{8}$, J. Dassoulas ${ }^{3}$, A. Dattagupta ${ }^{62}$, W. Davey ${ }^{22}$, C. David ${ }^{168}$, T. Davidek ${ }^{130}$, M. Davies ${ }^{154}$, P. Davison ${ }^{80}$, Y. Davygora ${ }^{59 a}$, E. Dawe ${ }^{90}$, I. Dawson ${ }^{140}$, R.K. Daya-Ishmukhametova ${ }^{88}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{105 a}$, A. De Benedetti ${ }^{114}$, S. De Castro ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, S. De Cecco ${ }^{82}$, N. De Groot ${ }^{107}$, P. de Jong ${ }^{108}$, H. De la Torre ${ }^{84}$, F. De Lorenzi ${ }^{65}$, D. De Pedis ${ }^{133 a}$, A. De Salvo ${ }^{133 a}$, U. De Sanctis ${ }^{150}$, A. De Santo ${ }^{150}$, J.B. De Vivie De Regie ${ }^{118}$, W.J. Dearnaley ${ }^{74}$, R. Debbe ${ }^{26}$, C. Debenedetti ${ }^{138}$, D.V. Dedovich ${ }^{67}$, I. Deigaard ${ }^{108}$, J. Del Peso ${ }^{84}$, T. Del Prete ${ }^{125 a, 125 b}$, D. Delgove ${ }^{118}$, F. Deliot ${ }^{137}$, C.M. Delitzsch ${ }^{50}$, M. Deliyergiyev ${ }^{77}$, A. Dell'Acqua ${ }^{31}$, L. Dell'Asta ${ }^{23}$, M. Dell'Orso ${ }^{125 a, 125 b}$, M. Della Pietra ${ }^{105 a, k}$, D. della Volpe ${ }^{50}$, M. Delmastro ${ }^{5}$, P.A. Delsart ${ }^{56}$, C. Deluca ${ }^{108}$, D.A. DeMarco ${ }^{159}$, S. Demers ${ }^{175}$, M. Demichev ${ }^{67}$, A. Demilly ${ }^{82}$, S.P. Denisov ${ }^{131}$, D. Denysiuk ${ }^{137}$, D. Derendarz ${ }^{40}$, J.E. Derkaoui ${ }^{136 \mathrm{~d}}$, F. Derue ${ }^{82}$, P. Dervan ${ }^{76}$, K. Desch ${ }^{22}$, C. Deterre ${ }^{43}$, K. Dette ${ }^{44}$, P.O. Deviveiros ${ }^{31}$, A. Dewhurst ${ }^{132}$, S. Dhaliwal ${ }^{24}$, A. Di Ciaccio ${ }^{134 a, 134 b}$, L. Di Ciaccio ${ }^{5}$, W.K. Di Clemente ${ }^{123}$, A. Di Domenico ${ }^{133 a, 133 b}$, C. Di Donato ${ }^{133 a, 133 b}$, A. Di Girolamo ${ }^{31}$, B. Di Girolamo ${ }^{31}$, A. Di Mattia ${ }^{153}$, B. Di Micco ${ }^{135 a, 135 b}$, R. Di Nardo ${ }^{48}$, A. Di Simone ${ }^{49}$, R. Di Sipio ${ }^{159}$, D. Di Valentino ${ }^{30}$, C. Diaconu ${ }^{87}$, M. Diamond ${ }^{159}$, F.A. Dias ${ }^{47}$, M.A. Diaz ${ }^{33 a}$, E.B. Diehl ${ }^{91}$, J. Dietrich ${ }^{16}$, S. Diglio ${ }^{87}$, A. Dimitrievska ${ }^{13}$, J. Dingfelder ${ }^{22}$, P. Dita ${ }^{27 b}$, S. Dita ${ }^{27 b}$, F. Dittus ${ }^{31}$, F. Djama ${ }^{87}$, T. Djobava ${ }^{52 b}$, J.I. Djuvsland ${ }^{59 a}$, M.A.B. do Vale ${ }^{25 \mathrm{c}}$, D. Dobos 31, M. Dobre ${ }^{27 b}$, C. Doglioni ${ }^{83}$, T. Dohmae ${ }^{156}$, J. Dolejsi ${ }^{130}$, Z. Dolezal ${ }^{130}$, B.A. Dolgoshein ${ }^{99, *}$, M. Donadelli ${ }^{25 d}$, S. Donati ${ }^{125 a, 125 b}$, P. Dondero ${ }^{122 a, 122 b}$, J. Donini ${ }^{35}$, J. Dopke ${ }^{132}$, A. Doria ${ }^{105 a}$, M.T. Dova ${ }^{73}$, A.T. Doyle ${ }^{54}$, E. Drechsler ${ }^{55}$, M. Dris ${ }^{10}$, Y. Du ${ }^{34 \mathrm{~d}}$, J. Duarte-Campderros ${ }^{154}$, E. Duchovni ${ }^{171}$, G. Duckeck ${ }^{101}$, O.A. Ducu ${ }^{27 b}$, D. Duda ${ }^{108}$, A. Dudarev ${ }^{31}$, L. Duflot ${ }^{118}$, L. Duguid ${ }^{79}$, M. Dührssen ${ }^{31}$, M. Dunford ${ }^{59 \mathrm{a}}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{53}$, A. Durglishvili ${ }^{52 \mathrm{~b}}$, D. Duschinger ${ }^{45}$, B. Dutta ${ }^{43}$, M. Dyndal ${ }^{39 a}$, C. Eckardt ${ }^{43}$, K.M. Ecker ${ }^{102}$, R.C. Edgar ${ }^{91}$, W. Edson ${ }^{2}$, N.C. Edwards ${ }^{47}$, T. Eifert ${ }^{31}$, G. Eigen ${ }^{14}$, K. Einsweiler ${ }^{15}$, T. Ekelof ${ }^{164}$, M. El Kacimi ${ }^{136 c}$, V. Ellajosyula ${ }^{87}$, M. Ellert ${ }^{164}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{174}$, A.A. Elliot ${ }^{168}$, N. Ellis ${ }^{31}$, J. Elmsheuser ${ }^{101}$, M. Elsing ${ }^{31}$, D. Emeliyanov ${ }^{132}$, Y. Enari ${ }^{156}$, O.C. Endner ${ }^{85}$, M. Endo ${ }^{119}$, J.S. Ennis ${ }^{169}$, J. Erdmann ${ }^{44}$, A. Ereditato ${ }^{17}$, G. Ernis ${ }^{174}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{26}$, S. Errede ${ }^{165}$, E. Ertel ${ }^{85}$, M. Escalier ${ }^{118}$, H. Esch ${ }^{44}$, C. Escobar ${ }^{126}$, B. Esposito ${ }^{48}$, A.I. Etienvre ${ }^{137}$, E. Etzion ${ }^{154}$, H. Evans ${ }^{62}$, A. Ezhilov ${ }^{124}$, L. Fabbri ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, G. Facini ${ }^{32}$, R.M. Fakhrutdinov ${ }^{131}$, S. Falciano ${ }^{133 a}$, R.J. Falla ${ }^{80}$, J. Faltova ${ }^{130}$, Y. Fang ${ }^{34 \mathrm{a}}$, M. Fanti ${ }^{93 \mathrm{a}, 93 \mathrm{~b}}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{135 \mathrm{a}}$, C. Farina ${ }^{126}$, T. Farooque ${ }^{12}$, S. Farrell ${ }^{15}$, S.M. Farrington ${ }^{169}$, P. Farthouat ${ }^{31}$, F. Fassi ${ }^{136 e}$, P. Fassnacht ${ }^{31}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{79}$, A. Favareto ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, L. Fayard ${ }^{118}$, O.L. Fedin ${ }^{124, m}$, W. Fedorko ${ }^{167}$, S. Feig1 ${ }^{120}$, L. Feligioni ${ }^{87}$, C. Feng ${ }^{34 \mathrm{~d}}$, E.J. Feng ${ }^{31}$, H. Feng ${ }^{91}$, A.B. Fenyuk ${ }^{131}$, L. Feremenga ${ }^{8}$, P. Fernandez Martinez ${ }^{166}$, S. Fernandez Perez ${ }^{12}$, J. Ferrando ${ }^{54}$, A. Ferrari ${ }^{164}$, P. Ferrari ${ }^{108}$, R. Ferrari ${ }^{122 a}$, D.E. Ferreira de Lima ${ }^{54}$, A. Ferrer ${ }^{166}$, D. Ferrere ${ }^{50}$, C. Ferretti ${ }^{91}$, A. Ferretto Parodi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, F. Fiedler ${ }^{85}$, A. Filipčič ${ }^{77}$, M. Filipuzzi ${ }^{43}$, F. Filthaut ${ }^{107}$, M. Fincke-Keeler ${ }^{168}$, K.D. Finelli ${ }^{151}$, M.C.N. Fiolhais ${ }^{127 a, 127 c}$, L. Fiorini ${ }^{166}$, A. Firan ${ }^{41}$, A. Fischer ${ }^{2}$, C. Fischer ${ }^{12}$, J. Fischer ${ }^{174}$, W.C. Fisher ${ }^{92}$, N. Flaschel ${ }^{43}$, I. Fleck ${ }^{142}$, P. Fleischmann ${ }^{91}$, G.T. Fletcher ${ }^{140}$, G. Fletcher ${ }^{78}$, R.R.M. Fletcher ${ }^{123}$, T. Flick ${ }^{174}$, A. Floderus ${ }^{83}$, L.R. Flores Castillo ${ }^{61 \mathrm{a}}$, M.J. Flowerdew ${ }^{102}$, G.T. Forcolin ${ }^{86}$, A. Formica ${ }^{137}$, A. Forti ${ }^{86}$, D. Fournier ${ }^{118}$, H. Fox ${ }^{74}$, S. Fracchia ${ }^{12}$, P. Francavilla ${ }^{82}$, M. Franchini ${ }^{21 a, 21 b}$, D. Francis ${ }^{31}$, L. Franconi ${ }^{120}$, M. Franklin ${ }^{58}$, M. Frate ${ }^{66}$, M. Fraternali ${ }^{122 a, 122 b}$, D. Freeborn ${ }^{80}$, S.M. Fressard-Batraneanu ${ }^{31}$, F. Friedrich ${ }^{45}$, D. Froidevaux ${ }^{31}$, J.A. Frost ${ }^{121}$, C. Fukunaga ${ }^{157}$, E. Fullana Torregrosa ${ }^{85}$, T. Fusayasu ${ }^{103}$, J. Fuster ${ }^{166}$, C. Gabaldon ${ }^{56}$, O. Gabizon ${ }^{174}$, A. Gabrielli ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, A. Gabrielli ${ }^{15}$, G.P. Gach ${ }^{39 \mathrm{a}}$, S. Gadatsch ${ }^{31}$, S. Gadomski ${ }^{50}$, G. Gagliardi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, P. Gagnon ${ }^{62}$, C. Galea ${ }^{107}$, B. Galhardo ${ }^{127 \mathrm{a}, 127 \mathrm{c}}$, E.J. Gallas ${ }^{121}$, B.J. Gallop ${ }^{132}$, P. Gallus ${ }^{129}$, G. Galster ${ }^{37}$, K.K. Gan ${ }^{112}$, J. Gao ${ }^{34 \mathrm{~b}, 87}$, Y. Gao ${ }^{47}$, Y.S. Gao ${ }^{144, f}$, F.M. Garay Walls ${ }^{47}$, C. García ${ }^{166}$,
J.E. García Navarro ${ }^{166}$, M. Garcia-Sciveres ${ }^{15}$, R.W. Gardner ${ }^{32}$, N. Garelli ${ }^{144}$, V. Garonne ${ }^{120}$, A. Gascon Bravo ${ }^{43}$, C. Gatti ${ }^{48}$, A. Gaudiello ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, G. Gaudio ${ }^{122 \mathrm{a}}$, B. Gaur ${ }^{142}$, L. Gauthier ${ }^{96}$, I.L. Gavrilenko ${ }^{97}$, C. Gay ${ }^{167}$, G. Gaycken ${ }^{22}$, E.N. Gazis ${ }^{10}$, Z. Gecse ${ }^{167}$, C.N.P. Gee ${ }^{132}$, Ch. Geich-Gimbel ${ }^{22}$, M.P. Geisler ${ }^{59 \mathrm{a}}$, C. Gemme ${ }^{51 \mathrm{a}}$, M.H. Genest ${ }^{56}$, C. Geng ${ }^{34 \mathrm{~b}, n}$, S. Gentile ${ }^{\text {133a, 133b }}$, S. George ${ }^{79}$, D. Gerbaudo ${ }^{66}$, A. Gershon ${ }^{154}$, S. Ghasemi ${ }^{142}$, H. Ghazlane ${ }^{136 \mathrm{~b}}$, B. Giacobbe ${ }^{21 \mathrm{a}}$, S. Giagu ${ }^{133 a, 133 b}$, P. Giannetti ${ }^{125 a, 125 b}$, B. Gibbard ${ }^{26}$, S.M. Gibson ${ }^{79}$, M. Gignac ${ }^{167}$, M. Gilchriese ${ }^{15}$, T.P.S. Gillam ${ }^{29}$, D. Gillberg ${ }^{30}$, G. Gilles ${ }^{174}$, D.M. Gingrich ${ }^{3, d}$, N. Giokaris ${ }^{9}$, M.P. Giordani ${ }^{163 a, 163 \mathrm{c}}$, F.M. Giorgi ${ }^{21 a}$, F.M. Giorgi ${ }^{16}$, P.F. Giraud ${ }^{137}$, P. Giromini ${ }^{58}$, D. Giugni ${ }^{93 a}$, C. Giuliani ${ }^{102}$, M. Giulini ${ }^{59 b}$, B.K. Gjelsten ${ }^{120}$, S. Gkaitatzis ${ }^{155}$, I. Gkialas ${ }^{155}$, E.L. Gkougkousis ${ }^{118}$, L.K. Gladilin ${ }^{100}$, C. Glasman ${ }^{84}$, J. Glatzer ${ }^{31}$, P.C.F. Glaysher ${ }^{47}$, A. Glazov ${ }^{43}$, M. Goblirsch-Kolb ${ }^{102}$, J. Godlewski ${ }^{40}$, S. Goldfarb ${ }^{91}$, T. Golling ${ }^{50}$, D. Golubkov ${ }^{131}$, A. Gomes ${ }^{127 \mathrm{a}, 127 \mathrm{~b}, 127 \mathrm{~d}}$, R. Gonçalo ${ }^{127 \mathrm{a}}$,
J. Goncalves Pinto Firmino Da Costa ${ }^{137}$, L. Gonella ${ }^{22}$, A. Gongadze ${ }^{67}$, S. González de la Hoz^{166},
G. Gonzalez Parra ${ }^{12}$, S. Gonzalez-Sevilla ${ }^{50}$, L. Goossens ${ }^{31}$, P.A. Gorbounov ${ }^{98}$, H.A. Gordon ${ }^{26}$, I. Gorelov ${ }^{106}$, B. Gorini ${ }^{31}$, E. Gorini ${ }^{75 \mathrm{a}, 75 b}$, A. Gorišek ${ }^{77}$, E. Gornicki ${ }^{40}$, A.T. Goshaw ${ }^{46}$, C. Gössling ${ }^{44}$, M.I. Gostkin ${ }^{67}$, C.R. Goudet ${ }^{118}$, D. Goujdami ${ }^{136 c}$, A.G. Goussiou ${ }^{139}$, N. Govender ${ }^{146 \mathrm{~b}}$, E. Gozani ${ }^{153}$, L. Graber ${ }^{55}$, I. Grabowska-Bold ${ }^{39 a}$, P.O.J. Gradin ${ }^{164}$, P. Grafström ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, J. Gramling ${ }^{50}$, E. Gramstad ${ }^{120}$, S. Grancagnolo ${ }^{16}$, V. Gratchev ${ }^{124}$, H.M. Gray ${ }^{31}$, E. Graziani ${ }^{135 a}$, Z.D. Greenwood ${ }^{81, o}$, C. Grefe ${ }^{22}$, K. Gregersen ${ }^{80}$, I.M. Gregor ${ }^{43}$, P. Grenier ${ }^{144}$, K. Grevtsov ${ }^{5}$, J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{138}$, K. Grimm ${ }^{74}$, S. Grinstein ${ }^{12, p}$, Ph. Gris ${ }^{35}$, J.-F. Grivaz ${ }^{118}$, S. Groh ${ }^{85}$, J.P. Grohs ${ }^{45}$, E. Gross ${ }^{171}$, J. Grosse-Knetter ${ }^{55}$, G.C. Grossi ${ }^{81}$, Z.J. Grout ${ }^{150}$, L. Guan ${ }^{91}$, J. Guenther ${ }^{129}$, F. Guescini ${ }^{50}$, D. Guest ${ }^{66}$, O. Gueta ${ }^{154}$, E. Guido ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{2}$, U. Gul ${ }^{54}$, C. Gumpert ${ }^{31}$, J. Guo ${ }^{34 \mathrm{e}}$, Y. Guo ${ }^{34 \mathrm{~b}, n}$, S. Gupta ${ }^{121}$, G. Gustavino ${ }^{133 a, 133 b}$, P. Gutierrez ${ }^{114}$, N.G. Gutierrez Ortiz ${ }^{80}$, C. Gutschow ${ }^{45}$, C. Guyot ${ }^{137}$, C. Gwenlan ${ }^{121}$, C.B. Gwilliam ${ }^{76}$, A. Haas ${ }^{111}$, C. Haber ${ }^{15}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{136 e}$, A. Hadef ${ }^{87}$, P. Haefner ${ }^{22}$, S. Hageböck ${ }^{22}$, Z. Hajduk ${ }^{40}$, H. Hakobyan ${ }^{176, *}$, M. Haleem ${ }^{43}$, J. Haley ${ }^{115}$, D. Hall ${ }^{121}$, G. Halladjian ${ }^{92}$, G.D. Hallewell ${ }^{87}$, K. Hamacher ${ }^{174}$, P. Hamal ${ }^{116}$, K. Hamano ${ }^{168}$, A. Hamilton ${ }^{146 a}$, G.N. Hamity ${ }^{140}$, P.G. Hamnett ${ }^{43}$, L. Han ${ }^{34 b}$, K. Hanagaki ${ }^{68, q}$, K. Hanawa ${ }^{156}$, M. Hance ${ }^{138}$, B. Haney ${ }^{123}$, P. Hanke ${ }^{59 \mathrm{a}}$, R. Hanna ${ }^{137}$, J.B. Hansen ${ }^{37}$, J.D. Hansen ${ }^{37}$, M.C. Hansen ${ }^{22}$, P.H. Hansen ${ }^{37}$, K. Hara ${ }^{161}$, A.S. Hard ${ }^{172}$, T. Harenberg ${ }^{174}$, F. Hariri ${ }^{118}$, S. Harkusha ${ }^{94}$, R.D. Harrington ${ }^{47}$, P.F. Harrison ${ }^{169}$, F. Hartjes ${ }^{108}$, M. Hasegawa ${ }^{69}$, Y. Hasegawa ${ }^{141}$, A. Hasib ${ }^{114}$, S. Hassani ${ }^{137}$, S. Haug ${ }^{17}$, R. Hauser ${ }^{92}$, L. Hauswald ${ }^{45}$, M. Havranek ${ }^{128}$, C.M. Hawkes ${ }^{18}$, R.J. Hawkings ${ }^{31}$, A.D. Hawkins ${ }^{83}$, T. Hayashi ${ }^{161}$, D. Hayden ${ }^{92}$, C.P. Hays ${ }^{121}$, J.M. Hays ${ }^{78}$, H.S. Hayward ${ }^{76}$, S.J. Haywood ${ }^{132}$, S.J. Head ${ }^{18}$, T. Heck ${ }^{85}$, V. Hedberg ${ }^{83}$, L. Heelan ${ }^{8}$, S. Heim ${ }^{123}$, T. Heim ${ }^{15}$, B. Heinemann ${ }^{15}$, J.J. Heinrich ${ }^{101}$, L. Heinrich ${ }^{111}$, C. Heinz ${ }^{53}$, J. Hejbal ${ }^{128}$, L. Helary ${ }^{23}$, S. Hellman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Helsens ${ }^{31}$, J. Henderson ${ }^{121}$, R.C.W. Henderson ${ }^{74}$, Y. Heng ${ }^{172}$, S. Henkelmann ${ }^{167}$, A.M. Henriques Correia ${ }^{31}$, S. Henrot-Versille ${ }^{118}$, G.H. Herbert ${ }^{16}$, Y. Hernández Jiménez ${ }^{166}$, G. Herten ${ }^{49}$, R. Hertenberger ${ }^{101}$, L. Hervas ${ }^{31}$, G.G. Hesketh ${ }^{80}$, N.P. Hessey ${ }^{108}$, J.W. Hetherly ${ }^{41}$, R. Hickling ${ }^{78}$, E. Higón-Rodriguez ${ }^{166}$, E. Hill ${ }^{168}$, J.C. Hill ${ }^{29}$, K.H. Hiller ${ }^{43}$, S.J. Hillier ${ }^{18}$, I. Hinchliffe ${ }^{15}$, E. Hines ${ }^{123}$, R.R. Hinman ${ }^{15}$, M. Hirose ${ }^{158}$, D. Hirschbuehl ${ }^{174}$, J. Hobbs ${ }^{149}$, N. Hod ${ }^{108}$, M.C. Hodgkinson ${ }^{140}$, P. Hodgson ${ }^{140}$, A. Hoecker ${ }^{31}$, M.R. Hoeferkamp ${ }^{106}$, F. Hoenig ${ }^{101}$, M. Hohlfeld ${ }^{85}$, D. Hohn ${ }^{22}$, T.R. Holmes ${ }^{15}$, M. Homann ${ }^{44}$, T.M. Hong ${ }^{126}$, B.H. Hooberman ${ }^{165}$, W.H. Hopkins ${ }^{117}$, Y. Horii ${ }^{104}$, A.J. Horton ${ }^{143}$, J-Y. Hostachy ${ }^{56}$, S. Hou ${ }^{152}$, A. Hoummada ${ }^{136 a}$, J. Howard ${ }^{121}$, J. Howarth ${ }^{43}$, M. Hrabovsky ${ }^{116}$, I. Hristova ${ }^{16}$, J. Hrivnac ${ }^{118}$, T. Hryn'ova ${ }^{5}$, A. Hrynevich ${ }^{95}$, C. Hsu ${ }^{146 \mathrm{c}}$, P.J. Hsu ${ }^{152, r}$, S.-C. Hsu ${ }^{139}$, D. Hu ${ }^{36}$, Q. Hu ${ }^{34 b}$, Y. Huang ${ }^{43}$, Z. Hubacek ${ }^{129}$, F. Hubaut ${ }^{87}$, F. Huegging ${ }^{22}$, T.B. Huffman ${ }^{121}$, E.W. Hughes ${ }^{36}$, G. Hughes ${ }^{74}$, M. Huhtinen ${ }^{31}$, T.A. Hülsing ${ }^{85}$, N. Huseynov ${ }^{67, b}$, J. Huston ${ }^{92}$, J. Huth ${ }^{58}$, G. Iacobucci ${ }^{50}$, G. Iakovidis ${ }^{26}$, I. Ibragimov ${ }^{142}$, L. Iconomidou-Fayard ${ }^{118}$, E. Ideal ${ }^{175}$, Z. Idrissi ${ }^{136 e}$, P. Iengo ${ }^{31}$, O. Igonkina ${ }^{108}$, T. Iizawa ${ }^{170}$, Y. Ikegami ${ }^{68}$, M. Ikeno ${ }^{68}$, Y. Ilchenko ${ }^{32, s}$, D. Iliadis ${ }^{155}$, N. Ilic ${ }^{144}$, T. Ince ${ }^{102}$, G. Introzzi ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, P. Ioannou ${ }^{9, *}$, M. Iodice ${ }^{135 \mathrm{a}}, \mathrm{K}$. Iordanidou 36, V. Ippolito ${ }^{58}$, A. Irles Quiles ${ }^{166}$,
C. Isaksson ${ }^{164}$, M. Ishino ${ }^{70}$, M. Ishitsuka ${ }^{158}$, R. Ishmukhametov ${ }^{112}$, C. Issever ${ }^{121}$, S. Istin ${ }^{19 a}$, J.M. Iturbe Ponce ${ }^{86}$, R. Iuppa ${ }^{134 a, 134 b}$, J. Ivarsson ${ }^{83}$, W. Iwanski ${ }^{40}$, H. Iwasaki ${ }^{68}$, J.M. Izen ${ }^{42}$, V. Izzo ${ }^{105 a}$, S. Jabbar ${ }^{3}$, B. Jackson ${ }^{123}$, M. Jackson ${ }^{76}$, P. Jackson ${ }^{1}$, V. Jain ${ }^{2}$, K.B. Jakobi ${ }^{85}$, K. Jakobs ${ }^{49}$, S. Jakobsen ${ }^{31}$, T. Jakoubek ${ }^{128}$, D.O. Jamin ${ }^{115}$, D.K. Jana ${ }^{81}$, E. Jansen ${ }^{80}$, R. Jansky ${ }^{63}$, J. Janssen ${ }^{22}$, M. Janus ${ }^{55}$, G. Jarlskog ${ }^{83}$, N. Javadov ${ }^{67, b}$, T. Javůrek ${ }^{49}$, F. Jeanneau ${ }^{137}$, L. Jeanty ${ }^{15}$, J. Jejelava ${ }^{52 \mathrm{a}, t}$, G.-Y. Jeng ${ }^{151}$, D. Jennens ${ }^{90}$, P. Jenni ${ }^{49, u}$, J. Jentzsch ${ }^{44}$, C. Jeske ${ }^{169}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{172}$, J. Jia ${ }^{149}$, H. Jiang ${ }^{65}$, Y. Jiang ${ }^{34 \mathrm{~b}}$, S. Jiggins ${ }^{80}$, J. Jimenez Pena ${ }^{166}$, S. Jin ${ }^{34 \mathrm{a}}$, A. Jinaru ${ }^{27 \mathrm{~b}}$, O. Jinnouchi ${ }^{158}$, P. Johansson ${ }^{140}$, K.A. Johns ${ }^{7}$, W.J. Johnson ${ }^{139}$, K. Jon-And ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, G. Jones ${ }^{169}$, R.W.L. Jones ${ }^{74}$, S. Jones ${ }^{7}$, T.J. Jones ${ }^{76}$, J. Jongmanns ${ }^{59 \mathrm{a}}$, P.M. Jorge ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, J. Jovicevic ${ }^{160 \mathrm{a}}$, X. Ju ${ }^{172}$, A. Juste Rozas ${ }^{12, p}$, M.K. Köhler ${ }^{171}$, M. Kaci ${ }^{166}$, A. Kaczmarska ${ }^{40}$, M. Kado ${ }^{118}$, H. Kagan ${ }^{112}$, M. Kagan ${ }^{144}$, S.J. Kahn ${ }^{87}$, E. Kajomovitz ${ }^{46}$, C.W. Kalderon ${ }^{121}$, A. Kaluza ${ }^{85}$, S. Kama ${ }^{41}$, A. Kamenshchikov ${ }^{131}$, N. Kanaya ${ }^{156}$, S. Kaneti ${ }^{29}$, V.A. Kantserov ${ }^{99}$, J. Kanzaki ${ }^{68}$, B. Kaplan ${ }^{111}$, L.S. Kaplan ${ }^{172}$, A. Kapliy ${ }^{32}$, D. Kar ${ }^{146 c}$, K. Karakostas ${ }^{10}$, A. Karamaoun ${ }^{3}$, N. Karastathis ${ }^{10,108}$, M.J. Kareem ${ }^{55}$, E. Karentzos ${ }^{10}$, M. Karnevskiy ${ }^{85}$, S.N. Karpov ${ }^{67}$, Z.M. Karpova ${ }^{67}$, K. Karthik ${ }^{111}$, V. Kartvelishvili ${ }^{74}$, A.N. Karyukhin ${ }^{131}$, K. Kasahara ${ }^{161}$, L. Kashif ${ }^{172}$, R.D. Kass ${ }^{112}$, A. Kastanas ${ }^{14}$, Y. Kataoka ${ }^{156}$, C. Kato ${ }^{156}$, A. Katre ${ }^{50}$, J. Katzy ${ }^{43}$, K. Kawade ${ }^{104}$, K. Kawagoe ${ }^{72}$, T. Kawamoto ${ }^{156}$, G. Kawamura ${ }^{55}$, S. Kazama ${ }^{156}$, V.F. Kazanin ${ }^{110, c}$, R. Keeler ${ }^{168}$, R. Kehoe ${ }^{41}$, J.S. Keller ${ }^{43}$, J.J. Kempster ${ }^{79}$, H. Keoshkerian ${ }^{86}$, O. Kepka ${ }^{128}$, B.P. Kerševan ${ }^{77}$, S. Kersten ${ }^{174}$, R.A. Keyes ${ }^{89}$, F. Khalil-zada ${ }^{11}$, H. Khandanyan ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Khanov ${ }^{115}$, A.G. Kharlamov ${ }^{110, c}$, T.J. Khoo 29, V. Khovanskiy ${ }^{98}$, E. Khramov ${ }^{67}$, J. Khubua ${ }^{52 \mathrm{~b}, v}$, S. Kido ${ }^{69}$, H.Y. Kim ${ }^{8}$, S.H. Kim 161, Y.K. Kim ${ }^{32}$, N. Kimura ${ }^{155}$, O.M. Kind ${ }^{16}$, B.T. King ${ }^{76}$, M. King ${ }^{166}$, S.B. King ${ }^{167}$, J. Kirk ${ }^{132}$, A.E. Kiryunin ${ }^{102}$, T. Kishimoto ${ }^{69}$, D. Kisielewska ${ }^{39 a}$, F. Kiss ${ }^{49}$, K. Kiuchi ${ }^{161}$, O. Kivernyk ${ }^{137}$, E. Kladiva ${ }^{145 b}$, M.H. Klein ${ }^{36}$, M. Klein ${ }^{76}$, U. Klein ${ }^{76}$, K. Kleinknecht ${ }^{85}$, P. Klimek ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Klimentov ${ }^{26}$, R. Klingenberg ${ }^{44}$, J.A. Klinger ${ }^{140}$, T. Klioutchnikova ${ }^{31}$, E.-E. Kluge ${ }^{59 \mathrm{a}}$, P. Kluit ${ }^{108}$, S. Kluth ${ }^{102}$, J. Knapik ${ }^{40}$, E. Kneringer ${ }^{63}$, E.B.F.G. Knoops ${ }^{87}$, A. Knue ${ }^{54}$, A. Kobayashi ${ }^{156}$, D. Kobayashi ${ }^{158}$, T. Kobayashi ${ }^{156}$, M. Kobel ${ }^{45}$, M. Kocian ${ }^{144}$, P. Kodys ${ }^{130}$, T. Koffas ${ }^{30}$, E. Koffeman ${ }^{108}$, L.A. Kogan ${ }^{121}$, S. Kohlmann ${ }^{174}$, T. Kohriki ${ }^{68}$, T. Koi ${ }^{144}$, H. Kolanoski ${ }^{16}$, M. Kolb ${ }^{59 b}$, I. Koletsou ${ }^{5}$, A.A. Komar ${ }^{97, *}$, Y. Komori ${ }^{156}$, T. Kondo ${ }^{68}$, N. Kondrashova ${ }^{43}$, K. Köneke ${ }^{49}$, A.C. König ${ }^{107}$, T. Kono ${ }^{68, w}$, R. Konoplich ${ }^{111, x}$, N. Konstantinidis ${ }^{80}$, R. Kopeliansky ${ }^{62}$, S. Koperny ${ }^{39 a}$, L. Köpke ${ }^{85}$, A.K. Kopp ${ }^{49}$, K. Korcyl ${ }^{40}$, K. Kordas ${ }^{155}$, A. Korn ${ }^{80}$, A.A. Korol ${ }^{110, c}$, I. Korolkov ${ }^{12}$, E.V. Korolkova ${ }^{140}$, O. Kortner ${ }^{102}$, S. Kortner ${ }^{102}$, T. Kosek ${ }^{130}$, V.V. Kostyukhin ${ }^{22}$, V.M. Kotov ${ }^{67}$, A. Kotwal ${ }^{46}$, A. Kourkoumeli-Charalampidi ${ }^{155}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{26}$, A. Koutsman ${ }^{160 a}$, R. Kowalewski ${ }^{168}$, T.Z. Kowalski ${ }^{39 a}$, W. Kozanecki ${ }^{137}$, A.S. Kozhin ${ }^{131}$, V.A. Kramarenko ${ }^{100}$, G. Kramberger ${ }^{77}$, D. Krasnopevtsev ${ }^{99}$, M.W. Krasny ${ }^{82}$, A. Krasznahorkay ${ }^{31}$, J.K. Kraus ${ }^{22}$, A. Kravchenko ${ }^{26}$, M. Kretz ${ }^{59 c}$, J. Kretzschmar ${ }^{76}$, K. Kreutzfeldt ${ }^{53}$, P. Krieger ${ }^{159}$, K. Krizka ${ }^{32}$, K. Kroeninger ${ }^{44}$, H. Kroha ${ }^{102}$, J. Kroll ${ }^{123}$, J. Kroseberg ${ }^{22}$, J. Krstic ${ }^{13}$, U. Kruchonak ${ }^{67}$, H. Krüger ${ }^{22}$, N. Krumnack ${ }^{65}$, A. Kruse ${ }^{172}$, M.C. Kruse ${ }^{46}$, M. Kruskal ${ }^{23}$, T. Kubota ${ }^{90}$, H. Kucuk ${ }^{80}$, S. Kuday ${ }^{4 b}$, J.T. Kuechler ${ }^{174}$, S. Kuehn ${ }^{49}$, A. Kugel ${ }^{59 \mathrm{c}}$, F. Kuger ${ }^{173}$, A. Kuhl ${ }^{138}$, T. Kuhl ${ }^{43}$, V. Kukhtin ${ }^{67}$, R. Kukla ${ }^{137}$, Y. Kulchitsky ${ }^{94}$, S. Kuleshov ${ }^{33 b}$, M. Kuna ${ }^{133 a, 133 b}$, T. Kunigo ${ }^{70}$, A. Kupco ${ }^{128}$, H. Kurashige ${ }^{69}$, Y.A. Kurochkin ${ }^{94}$, V. Kus ${ }^{128}$, E.S. Kuwertz ${ }^{168}$, M. Kuze ${ }^{158}$, J. Kvita ${ }^{116}$, T. Kwan ${ }^{168}$, D. Kyriazopoulos ${ }^{140}$, A. La Rosa ${ }^{102}$, J.L. La Rosa Navarro ${ }^{25 d}$, L. La Rotonda ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, C. Lacasta ${ }^{166}$, F. Lacava ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, J. Lacey ${ }^{30}$, H. Lacker ${ }^{16}$, D. Lacour ${ }^{82}$, V.R. Lacuesta ${ }^{166}$, E. Ladygin ${ }^{67}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{82}$, T. Lagouri ${ }^{175}$, S. Lai ${ }^{55}$, S. Lammers ${ }^{62}$, C.L. Lampen ${ }^{7}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{137}$, U. Landgraf ${ }^{49}$, M.P.J. Landon ${ }^{78}$, V.S. Lang ${ }^{59 a}$, J.C. Lange ${ }^{12}$, A.J. Lankford ${ }^{66}$, F. Lanni ${ }^{26}$, K. Lantzsch ${ }^{22}$, A. Lanza ${ }^{122 a}$, S. Laplace ${ }^{82}$, C. Lapoire ${ }^{31}$, J.F. Laporte ${ }^{137}$, T. Lari ${ }^{93 a}$, F. Lasagni Manghi ${ }^{21 a, 21 b}$, M. Lassnig ${ }^{31}$, P. Laurelli ${ }^{48}$, W. Lavrijsen ${ }^{15}$, A.T. Law ${ }^{138}$, P. Laycock ${ }^{76}$, T. Lazovich ${ }^{58}$, O. Le Dortz ${ }^{82}$, E. Le Guirriec ${ }^{87}$, E. Le Menedeu ${ }^{12}$, M. LeBlanc ${ }^{168}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{56}$, C.A. Lee ${ }^{26}$, S.C. Lee ${ }^{152}$, L. Lee 1, G. Lefebvre ${ }^{82}$, M. Lefebvre ${ }^{168}$, F. Legger ${ }^{101}$, C. Leggett ${ }^{15}$, A. Lehan ${ }^{76}$,
G. Lehmann Miotto ${ }^{31}$, X. Lei ${ }^{7}$, W.A. Leight ${ }^{30}$, A. Leisos ${ }^{155, y}$, A.G. Leister ${ }^{175}$, M.A.L. Leite ${ }^{25 d}$, R. Leitner ${ }^{130}$, D. Lellouch ${ }^{171}$, B. Lemmer ${ }^{55}$, K.J.C. Leney ${ }^{80}$, T. Lenz ${ }^{22}$, B. Lenzi ${ }^{31}$, R. Leone ${ }^{7}$, S. Leone ${ }^{125 a, 125 b}$, C. Leonidopoulos ${ }^{47}$, S. Leontsinis ${ }^{10}$, C. Leroy ${ }^{96}$, C.G. Lester ${ }^{29}$, M. Levchenko ${ }^{124}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{91}$, L.J. Levinson ${ }^{171}$, M. Levy ${ }^{18}$, A.M. Leyko ${ }^{22}$, M. Leyton ${ }^{42}$, B. Li ${ }^{34 \mathrm{~b}, z}$, H. Li ${ }^{149}$,
 A. Liblong ${ }^{159}$, P. Lichard ${ }^{31}$, K. Lie ${ }^{165}$, J. Liebal ${ }^{22}$, W. Liebig ${ }^{14}$, C. Limbach ${ }^{22}$, A. Limosani ${ }^{151}$, S.C. Lin $^{152, a a}$, T.H. Lin ${ }^{85}$, B.E. Lindquist ${ }^{149}$, E. Lipeles ${ }^{123}$, A. Lipniacka ${ }^{14}$, M. Lisovyi ${ }^{59 b}$, T.M. Liss ${ }^{165}$, D. Lissauer ${ }^{26}$, A. Lister ${ }^{167}$, A.M. Litke ${ }^{138}$, B. Liu ${ }^{152, a b}$, D. Liu ${ }^{152}$, H. Liu ${ }^{91}$, H. Liu ${ }^{26}$, J. Liu ${ }^{87}$,
 A. Lleres ${ }^{56}$, J. Llorente Merino ${ }^{84}$, S.L. Lloyd ${ }^{78}$, F. Lo Sterzo ${ }^{152}$, E. Lobodzinska ${ }^{43}$, P. Loch ${ }^{7}$, W.S. Lockman ${ }^{138}$, F.K. Loebinger ${ }^{86}$, A.E. Loevschall-Jensen ${ }^{37}$, K.M. Loew ${ }^{24}$, A. Loginov ${ }^{175}$, T. Lohse ${ }^{16}$, K. Lohwasser ${ }^{43}$, M. Lokajicek ${ }^{128}$, B.A. Long ${ }^{23}$, J.D. Long ${ }^{165}$, R.E. Long ${ }^{74}$, L. Longo ${ }^{75 a}$, 75 b , K.A. Looper ${ }^{112}$, L. Lopes ${ }^{127 a}$, D. Lopez Mateos ${ }^{58}$, B. Lopez Paredes ${ }^{140}$, I. Lopez Paz ${ }^{12}$,
A. Lopez Solis ${ }^{82}$, J. Lorenz ${ }^{101}$, N. Lorenzo Martinez ${ }^{62}$, M. Losada ${ }^{20}$, P.J. Lösel ${ }^{101}$, X. Lou ${ }^{34 a}$, A. Lounis ${ }^{118}$, J. Love ${ }^{6}$, P.A. Love ${ }^{74}$, H. Lu ${ }^{61 \mathrm{a}}$, N. Lu ${ }^{91}$, H.J. Lubatti ${ }^{139}$, C. Luci ${ }^{133 a, 133 b}$, A. Lucotte ${ }^{56}$, C. Luedtke ${ }^{49}$, F. Luehring ${ }^{62}$, W. Lukas ${ }^{63}$, L. Luminari ${ }^{133 a}$, O. Lundberg ${ }^{147 a, 147 b}$, B. Lund-Jensen ${ }^{148}$, D. Lynn 26, R. Lysak ${ }^{128}$, E. Lytken ${ }^{83}$, H. Ma ${ }^{26}$, L.L. Ma ${ }^{34 \mathrm{~d}}$, G. Maccarrone ${ }^{48}$, A. Macchiolo ${ }^{102}$, C.M. Macdonald ${ }^{140}$, B. Maček ${ }^{77}$, J. Machado Miguens ${ }^{123,127 b}$, D. Madaffari ${ }^{87}$, R. Madar ${ }^{35}$, H.J. Maddocks ${ }^{164}$, W.F. Mader ${ }^{45}$, A. Madsen ${ }^{43}$, J. Maeda ${ }^{69}$, S. Maeland ${ }^{14}$, T. Maeno ${ }^{26}$, A. Maevskiy ${ }^{100}$, E. Magradze ${ }^{55}$, J. Mahlstedt ${ }^{108}$, C. Maiani ${ }^{118}$, C. Maidantchik ${ }^{25 a}$, A.A. Maier ${ }^{102}$, T. Maier ${ }^{101}$, A. Maio ${ }^{127 a, 127 b, 127 d}$, S. Majewski ${ }^{117}$, Y. Makida ${ }^{68}$, N. Makovec ${ }^{118}$, B. Malaescu ${ }^{82}$, Pa. Malecki ${ }^{40}$, V.P. Maleev ${ }^{124}$, F. Malek ${ }^{56}$, U. Mallik ${ }^{64}$, D. Malon ${ }^{6}$, C. Malone ${ }^{144}$, S. Maltezos ${ }^{10}$, V.M. Malyshev ${ }^{110}$, S. Malyukov ${ }^{31}$, J. Mamuzic ${ }^{43}$, G. Mancini ${ }^{48}$, B. Mandelli ${ }^{31}$, L. Mandelli ${ }^{93 a}$, I. Mandić ${ }^{77}$, J. Maneira ${ }^{\text {127a, 127b }}$, L. Manhaes de Andrade Filho ${ }^{25 b}$, J. Manjarres Ramos ${ }^{160 \mathrm{~b}}$, A. Mann ${ }^{101}$, B. Mansoulie ${ }^{137}$, R. Mantifel ${ }^{89}$, M. Mantoani ${ }^{55}$, S. Manzoni ${ }^{93 a, 93 b}$, L. Mapelli ${ }^{31}$, G. Marceca ${ }^{28}$, L. March ${ }^{50}$, G. Marchiori ${ }^{82}$, M. Marcisovsky ${ }^{128}$, M. Marjanovic ${ }^{13}$, D.E. Marley ${ }^{91}$, F. Marroquim ${ }^{25 a}$, S.P. Marsden ${ }^{86}$, Z. Marshall ${ }^{15}$, L.F. Marti ${ }^{17}$, S. Marti-Garcia ${ }^{166}$, B. Martin ${ }^{92}$, T.A. Martin ${ }^{169}$, V.J. Martin ${ }^{47}$, B. Martin dit Latour ${ }^{14}$, M. Martinez ${ }^{12, p}$, S. Martin-Haugh ${ }^{132}$, V.S. Martoiu ${ }^{27 b}$, A.C. Martyniuk ${ }^{80}$, M. Marx ${ }^{139}$, F. Marzano ${ }^{133 a}$, A. Marzin ${ }^{31}$, L. Masetti ${ }^{85}$, T. Mashimo ${ }^{156}$, R. Mashinistov ${ }^{97}$, J. Masik ${ }^{86}$, A.L. Maslennikov ${ }^{110, c}$, I. Massa ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, L. Massa ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, P. Mastrandrea ${ }^{5}$, A. Mastroberardino ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, T. Masubuchi ${ }^{156}$, P. Mättig ${ }^{174}$, J. Mattmann ${ }^{85}$, J. Maurer ${ }^{27 \mathrm{~b}}$, S.J. Maxfield ${ }^{76}$, D.A. Maximov ${ }^{110, c}$, R. Mazini ${ }^{152}$, S.M. Mazza ${ }^{93 a, 93 b}$, N.C. Mc Fadden ${ }^{106}$, G. Mc Goldrick ${ }^{159}$, S.P. Mc Kee ${ }^{91}$, A. McCarn ${ }^{91}$, R.L. McCarthy ${ }^{149}$, T.G. McCarthy ${ }^{30}$, K.W. McFarlane ${ }^{57, *}$, J.A. Mcfayden ${ }^{80}$, G. Mchedlidze ${ }^{55}$, S.J. McMahon ${ }^{132}$, R.A. McPherson ${ }^{168, l}$, M. Medinnis ${ }^{43}$, S. Meehan ${ }^{139}$, S. Mehlhase ${ }^{101}$, A. Mehta ${ }^{76}$, K. Meier ${ }^{59 \text { a }}$, C. Meineck ${ }^{101}$, B. Meirose ${ }^{42}$, B.R. Mellado Garcia ${ }^{146 c}$, F. Meloni ${ }^{17}$, A. Mengarelli ${ }^{21 a, 21 b}$, S. Menke ${ }^{102}$, E. Meoni ${ }^{162}$, K.M. Mercurio ${ }^{58}$, S. Mergelmeyer ${ }^{16}$, P. Mermod ${ }^{50}$, L. Merola ${ }^{105 a, 105 b}$, C. Meroni ${ }^{93 a}$, F.S. Merritt ${ }^{32}$, A. Messina ${ }^{133 a, 133 b}$, J. Metcalfe ${ }^{6}$, A.S. Mete ${ }^{66}$, C. Meyer ${ }^{85}$, C. Meyer ${ }^{123}$, J-P. Meyer ${ }^{137}$, J. Meyer ${ }^{108}$,
H. Meyer Zu Theenhausen ${ }^{59 \mathrm{a}}$, R.P. Middleton ${ }^{132}$, S. Miglioranzi ${ }^{163 \mathrm{a}, 163 \mathrm{c}}$, L. Mijović ${ }^{22}$, G. Mikenberg ${ }^{171}$, M. Mikestikova ${ }^{128}$, M. Mikuž ${ }^{77}$, M. Milesi ${ }^{90}$, A. Milic ${ }^{31}$, D.W. Miller ${ }^{32}$, C. Mills ${ }^{47}$, A. Milov ${ }^{171}$, D.A. Milstead ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A.A. Minaenko ${ }^{131}$, Y. Minami ${ }^{156}$, I.A. Minashvili ${ }^{67}$, A.I. Mincer ${ }^{111}$, B. Mindur ${ }^{39 a}$, M. Mineev ${ }^{67}$, Y. Ming ${ }^{172}$, L.M. Mir ${ }^{12}$, K.P. Mistry ${ }^{123}$, T. Mitani ${ }^{170}$, J. Mitrevski ${ }^{101}$, V.A. Mitsou ${ }^{166}$, A. Miucci ${ }^{50}$, P.S. Miyagawa ${ }^{140}$, J.U. Mjörnmark ${ }^{83}$, T. Moa ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, K. Mochizuki ${ }^{87}$, S. Mohapatra ${ }^{36}$, W. Mohr ${ }^{49}$, S. Molander ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, R. Moles-Valls ${ }^{22}$, R. Monden ${ }^{70}$, M.C. Mondragon ${ }^{92}$, K. Mönig ${ }^{43}$, J. Monk ${ }^{37}$, E. Monnier ${ }^{87}$, A. Montalbano ${ }^{149}$, J. Montejo Berlingen ${ }^{31}$, F. Monticelli ${ }^{73}$, S. Monzani ${ }^{93 a, 93 b}$, R.W. Moore ${ }^{3}$, N. Morange ${ }^{118}$, D. Moreno ${ }^{20}$, M. Moreno Llácer ${ }^{55}$, P. Morettini ${ }^{51 a}$, D. Mori ${ }^{143}$, T. Mori ${ }^{156}$, M. Morii ${ }^{58}$, M. Morinaga ${ }^{156}$, V. Morisbak ${ }^{120}$, S. Moritz ${ }^{85}$, A.K. Morley ${ }^{151}$,
G. Mornacchi ${ }^{31}$, J.D. Morris ${ }^{78}$, S.S. Mortensen ${ }^{37}$, L. Morvaj ${ }^{149}$, M. Mosidze ${ }^{52 b}$, J. Moss ${ }^{144}$, K. Motohashi ${ }^{158}$, R. Mount ${ }^{144}$, E. Mountricha ${ }^{26}$, S.V. Mouraviev ${ }^{97, *}$, E.J.W. Moyse ${ }^{88}$, S. Muanza ${ }^{87}$, R.D. Mudd ${ }^{18}$, F. Mueller ${ }^{102}$, J. Mueller ${ }^{126}$, R.S.P. Mueller ${ }^{101}$, T. Mueller ${ }^{29}$, D. Muenstermann ${ }^{74}$, P. Mullen ${ }^{54}$, G.A. Mullier ${ }^{17}$, F.J. Munoz Sanchez ${ }^{86}$, J.A. Murillo Quijada ${ }^{18}$, W.J. Murray ${ }^{169,132}$, H. Musheghyan ${ }^{55}$, A.G. Myagkov ${ }^{131, a c}$, M. Myska ${ }^{129}$, B.P. Nachman ${ }^{144}$, O. Nackenhorst ${ }^{50}$, J. Nadal ${ }^{55}$, K. Nagai ${ }^{121}$, R. Nagai ${ }^{68, w}$, Y. Nagai ${ }^{87}$, K. Nagano ${ }^{68}$, Y. Nagasaka ${ }^{60}$, K. Nagata ${ }^{161}$, M. Nagel ${ }^{102}$, E. Nagy ${ }^{87}$, A.M. Nairz ${ }^{31}$, Y. Nakahama ${ }^{31}$, K. Nakamura ${ }^{68}$, T. Nakamura ${ }^{156}$, I. Nakano ${ }^{113}$, H. Namasivayam ${ }^{42}$, R.F. Naranjo Garcia ${ }^{43}$, R. Narayan ${ }^{32}$, D.I. Narrias Villar ${ }^{59 a}$, I. Naryshkin ${ }^{124}$, T. Naumann ${ }^{43}$, G. Navarro 20, R. Nayyar ${ }^{7}$, H.A. Neal ${ }^{91}$, P.Yu. Nechaeva ${ }^{97}$, T.J. Neep ${ }^{86}$, P.D. Nef ${ }^{144}$, A. Negri ${ }^{122 a, 122 b}$, M. Negrini ${ }^{21 a}$, S. Nektarijevic ${ }^{107}$, C. Nellist ${ }^{118}$, A. Nelson ${ }^{66}$, S. Nemecek ${ }^{128}$, P. Nemethy ${ }^{111}$, A.A. Nepomuceno ${ }^{25 a}$, M. Nessi ${ }^{31, a d}$, M.S. Neubauer ${ }^{165}$, M. Neumann ${ }^{174}$, R.M. Neves ${ }^{111}$, P. Nevski ${ }^{26}$, P.R. Newman ${ }^{18}$, D.H. Nguyen ${ }^{6}$, R.B. Nickerson ${ }^{121}$, R. Nicolaidou ${ }^{137}$, B. Nicquevert ${ }^{31}$, J. Nielsen ${ }^{138}$, A. Nikiforov ${ }^{16}$, V. Nikolaenko ${ }^{131, a c}$, I. Nikolic-Audit ${ }^{82}$, K. Nikolopoulos ${ }^{18}$, J.K. Nilsen ${ }^{120}$, P. Nilsson ${ }^{26}$, Y. Ninomiya ${ }^{156}$, A. Nisati ${ }^{133 a}$, R. Nisius ${ }^{102}$, T. Nobe ${ }^{156}$, L. Nodulman ${ }^{6}$, M. Nomachi ${ }^{119}$, I. Nomidis ${ }^{30}$, T. Nooney ${ }^{78}$, S. Norberg ${ }^{114}$, M. Nordberg ${ }^{31}$, O. Novgorodova ${ }^{45}$, S. Nowak 102, M. Nozaki ${ }^{68}$, L. Nozka ${ }^{116}$, K. Ntekas ${ }^{10}$, E. Nurse ${ }^{80}$, F. Nuti ${ }^{90}$, F. O'grady ${ }^{7}$, D.C. O'Neil ${ }^{143}$, V. O'Shea ${ }^{54}$, F.G. Oakham ${ }^{30, d}$, H. Oberlack ${ }^{102}$, T. Obermann ${ }^{22}$, J. Ocariz ${ }^{82}$, A. Ochi ${ }^{69}$, I. Ochoa ${ }^{36}$, J.P. Ochoa-Ricoux ${ }^{33 \mathrm{a}}$, S. Oda ${ }^{72}$, S. Odaka ${ }^{68}$, H. Ogren ${ }^{62}$, A. Oh ${ }^{86}$, S.H. Oh^{46}, C.C. Ohm ${ }^{15}$, H. Ohman ${ }^{164}$, H. Oide ${ }^{31}$, H. Okawa ${ }^{161}$, Y. Okumura ${ }^{32}$, T. Okuyama ${ }^{68}$, A. Olariu ${ }^{27 b}$, L.F. Oleiro Seabra ${ }^{127 a}$, S.A. Olivares Pino ${ }^{47}$, D. Oliveira Damazio ${ }^{26}$, A. Olszewski ${ }^{40}$, J. Olszowska ${ }^{40}$, A. Onofre ${ }^{127 a, 127 e}$, K. Onogi ${ }^{104}$, P.U.E. Onyisi ${ }^{32, s}$, C.J. Oram ${ }^{160 a}$, M.J. Oreglia ${ }^{32}$, Y. Oren ${ }^{154}$, D. Orestano ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, N. Orlando ${ }^{61 \mathrm{~b}}$, R.S. Orr ${ }^{159}$, B. Osculati ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, R. Ospanov ${ }^{86}$, G. Otero y Garzon ${ }^{28}$, H. Otono ${ }^{72}$, M. Ouchrif ${ }^{136 \mathrm{~d}}$, F. Ould-Saada ${ }^{120}$, A. Ouraou ${ }^{137}$, K.P. Oussoren ${ }^{108}$, Q. Ouyang ${ }^{34 \mathrm{a}}$, A. Ovcharova ${ }^{15}$, M. Owen ${ }^{54}$, R.E. Owen ${ }^{18}$, V.E. Ozcan ${ }^{19 \mathrm{a}}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{143}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, M. Pagáčová ${ }^{49}$, S. Pagan Griso ${ }^{15}$, F. Paige ${ }^{26}$, P. Pais ${ }^{88}$, K. Pajchel ${ }^{120}$, G. Palacino ${ }^{160 \mathrm{~b}}$, S. Palestini ${ }^{31}$, M. Palka ${ }^{39 \mathrm{~b}}$, D. Pallin ${ }^{35}$, A. Palma ${ }^{\text {127a, 127b }}$, E.St. Panagiotopoulou ${ }^{10}$, C.E. Pandini ${ }^{82}$, J.G. Panduro Vazquez ${ }^{79}$, P. Pani ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, S. Panitkin ${ }^{26}$, D. Pantea ${ }^{27 \mathrm{~b}}$, L. Paolozzi ${ }^{50}$, Th.D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{155}$, A. Paramonov ${ }^{6}$,
D. Paredes Hernandez ${ }^{175}$, M.A. Parker ${ }^{29}$, K.A. Parker ${ }^{140}$, F. Parodi ${ }^{51 a, 51 b}$, J.A. Parsons ${ }^{36}$, U. Parzefall ${ }^{49}$, V. Pascuzzi ${ }^{159}$, E. Pasqualucci ${ }^{133 a}$, S. Passaggio ${ }^{51 a}$, F. Pastore ${ }^{135 a, 135 b, *}$, Fr. Pastore ${ }^{79}$, G. Pásztor ${ }^{30}$, S. Pataraia ${ }^{174}$, N.D. Patel ${ }^{151}$, J.R. Pater ${ }^{86}$, T. Pauly ${ }^{31}$, J. Pearce ${ }^{168}$, B. Pearson ${ }^{114}$, L.E. Pedersen ${ }^{37}$, M. Pedersen ${ }^{120}$, S. Pedraza Lopez ${ }^{166}$, R. Pedro ${ }^{127 a, 127 b}$, S.V. Peleganchuk ${ }^{110, c}$, D. Pelikan ${ }^{164}$, O. Penc ${ }^{128}$, C. Peng ${ }^{34 \mathrm{a}}$, H. Peng ${ }^{34 b}$, J. Penwell ${ }^{62}$, B.S. Peralva ${ }^{25 b}$, D.V. Perepelitsa ${ }^{26}$, E. Perez Codina ${ }^{160 a}$, L. Perini ${ }^{93 a, 93 b}$, H. Pernegger ${ }^{31}$, S. Perrella ${ }^{105 a, 105 b}$, R. Peschke ${ }^{43}$, V.D. Peshekhonov ${ }^{67}$, K. Peters ${ }^{31}$, R.F.Y. Peters ${ }^{86}$, B.A. Petersen ${ }^{31}$, T.C. Petersen ${ }^{37}$, E. Petit ${ }^{56}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{155}$, P. Petroff ${ }^{118}$, E. Petrolo ${ }^{133 a}$, F. Petrucci ${ }^{135 a, 135 b}$, N.E. Pettersson ${ }^{158}$, A. Peyaud ${ }^{137}$, R. Pezoa ${ }^{33 b}$, P.W. Phillips ${ }^{132}$, G. Piacquadio ${ }^{144}$, E. Pianori ${ }^{169}$, A. Picazio ${ }^{88}$, E. Piccaro ${ }^{78}$, M. Piccinini ${ }^{21 a}$, 21 b , M.A. Pickering ${ }^{121}$, R. Piegaia ${ }^{28}$, J.E. Pilcher ${ }^{32}$, A.D. Pilkington ${ }^{86}$, A.W.J. Pin ${ }^{86}$, J. Pina ${ }^{127 a, 127 b, 127 d}$,
M. Pinamonti ${ }^{163 a, 163 c, a e}$, J.L. Pinfold ${ }^{3}$, A. Pingel ${ }^{37}$, S. Pires ${ }^{82}$, H. Pirumov ${ }^{43}$, M. Pitt ${ }^{171}$, L. Plazak ${ }^{145 a}$, M.-A. Pleier ${ }^{26}$, V. Pleskot ${ }^{85}$, E. Plotnikova ${ }^{67}$, P. Plucinski ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Pluth ${ }^{65}$, R. Poettgen ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Poggioli ${ }^{118}$, D. Pohl ${ }^{22}$, G. Polesello ${ }^{122 \mathrm{a}}$, A. Poley ${ }^{43}$, A. Policicchio ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, R. Polifka ${ }^{159}$, A. Polini ${ }^{21 a}$, C.S. Pollard ${ }^{54}$, V. Polychronakos ${ }^{26}$, K. Pommès ${ }^{31}$, L. Pontecorvo ${ }^{133 a}$, B.G. Pope ${ }^{92}$, G.A. Popeneciu ${ }^{27 \mathrm{c}}$, D.S. Popovic ${ }^{13}$, A. Poppleton ${ }^{31}$, S. Pospisil ${ }^{129}$, K. Potamianos ${ }^{15}$, I.N. Potrap ${ }^{67}$, C.J. Potter ${ }^{29}$, C.T. Potter ${ }^{117}$, G. Poulard ${ }^{31}$, J. Poveda ${ }^{31}$, V. Pozdnyakov ${ }^{67}$, M.E. Pozo Astigarraga ${ }^{31}$, P. Pralavorio ${ }^{87}$, A. Pranko ${ }^{15}$, S. Prell ${ }^{65}$, D. Price ${ }^{86}$, L.E. Price ${ }^{6}$, M. Primavera ${ }^{75 a}$, S. Prince ${ }^{89}$, M. Proissl ${ }^{47}$, K. Prokofiev ${ }^{61 \mathrm{c}}$, F. Prokoshin ${ }^{33 \mathrm{~b}}$, S. Protopopescu ${ }^{26}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{39 \mathrm{a}}$, D. Puddu ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, D. Puldon ${ }^{149}$, M. Purohit ${ }^{26, a f}$, P. Puzo ${ }^{118}$, J. Qian ${ }^{91}$, G. Qin ${ }^{54}$, Y. Qin ${ }^{86}$, A. Quadt ${ }^{55}$, D.R. Quarrie ${ }^{15}$,
W.B. Quayle ${ }^{163 a, 163 b}$, M. Queitsch-Maitland ${ }^{86}$, D. Quilty ${ }^{54}$, S. Raddum ${ }^{120}$, V. Radeka ${ }^{26}$, V. Radescu ${ }^{43}$, S.K. Radhakrishnan ${ }^{149}$, P. Radloff ${ }^{117}$, P. Rados ${ }^{90}$, F. Ragusa ${ }^{93 a, 93 b}$, G. Rahal ${ }^{177}$, S. Rajagopalan ${ }^{26}$, M. Rammensee ${ }^{31}$, C. Rangel-Smith ${ }^{164}$, F. Rauscher ${ }^{101}$, S. Rave ${ }^{85}$, T. Ravenscroft ${ }^{54}$, M. Raymond ${ }^{31}$, A.L. Read ${ }^{120}$, N.P. Readioff ${ }^{76}$, D.M. Rebuzzi ${ }^{122 a, 122 b}$, A. Redelbach ${ }^{173}$, G. Redlinger ${ }^{26}$, R. Reece ${ }^{138}$, K. Reeves ${ }^{42}$, L. Rehnisch ${ }^{16}$, J. Reichert ${ }^{123}$, H. Reisin ${ }^{28}$, C. Rembser ${ }^{31}$, H. Ren ${ }^{34 a}$, M. Rescigno ${ }^{133 a}$, S. Resconi ${ }^{93 a}$, O.L. Rezanova ${ }^{110, c}$, P. Reznicek ${ }^{130}$, R. Rezvani ${ }^{96}$, R. Richter ${ }^{102}$, S. Richter ${ }^{80}$, E. Richter-Was ${ }^{39 \mathrm{~b}}$, O. Ricken ${ }^{22}$, M. Ridel ${ }^{82}$, P. Rieck ${ }^{16}$, C.J. Riegel ${ }^{174}$, J. Rieger ${ }^{55}$, O. Rifki ${ }^{114}$, M. Rijssenbeek ${ }^{149}$, A. Rimoldi ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, L. Rinaldi ${ }^{21 \mathrm{a}}$, B. Ristić ${ }^{50}$, E. Ritsch ${ }^{31}$, I. Riu ${ }^{12}$, F. Rizatdinova ${ }^{115}$, E. Rizvi ${ }^{78}$, S.H. Robertson ${ }^{89, l}$, A. Robichaud-Veronneau ${ }^{89}$, D. Robinson ${ }^{29}$, J.E.M. Robinson ${ }^{43}$, A. Robson ${ }^{54}$, C. Roda ${ }^{125 a, 125 b}$, Y. Rodina ${ }^{87}$, A. Rodriguez Perez ${ }^{12}$, S. Roe ${ }^{31}$, C.S. Rogan ${ }^{58}$, O. Røhne ${ }^{120}$, A. Romaniouk ${ }^{99}$, M. Romano ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, S.M. Romano Saez ${ }^{35}$, E. Romero Adam ${ }^{166}$, N. Rompotis ${ }^{139}$, M. Ronzani ${ }^{49}$, L. Roos ${ }^{82}$, E. Ros ${ }^{166}$, S. Rosati ${ }^{133 a}$, K. Rosbach ${ }^{49}$, P. Rose ${ }^{138}$, O. Rosenthal ${ }^{142}$, V. Rossetti ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, E. Rossi ${ }^{105 \mathrm{a}, 105 \mathrm{~b}}$, L.P. Rossi ${ }^{51 \mathrm{a}}$, J.H.N. Rosten ${ }^{29}$, R. Rosten ${ }^{139}$, M. Rotaru ${ }^{27 b}$, I. Roth ${ }^{171}$, J. Rothberg ${ }^{139}$, D. Rousseau ${ }^{118}$, C.R. Royon ${ }^{137}$, A. Rozanov ${ }^{87}$, Y. Rozen ${ }^{153}$, X. Ruan ${ }^{146 c}$, F. Rubbo ${ }^{144}$, I. Rubinskiy ${ }^{43}$, V.I. Rud ${ }^{100}$, M.S. Rudolph ${ }^{159}$, F. Rühr ${ }^{49}$, A. Ruiz-Martinez ${ }^{31}$, Z. Rurikova ${ }^{49}$, N.A. Rusakovich ${ }^{67}$, A. Ruschke ${ }^{101}$, H.L. Russell ${ }^{139}$, J.P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{31}$, Y.F. Ryabov ${ }^{124}$, M. Rybar ${ }^{165}$, G. Rybkin ${ }^{118}$, N.C. Ryder ${ }^{121}$, S. Ryu ${ }^{6}$, A. Ryzhov ${ }^{131}$, A.F. Saavedra ${ }^{151}$, G. Sabato ${ }^{108}$, S. Sacerdoti ${ }^{28}$, H.F-W. Sadrozinski ${ }^{138}$, R. Sadykov ${ }^{67}$, F. Safai Tehrani ${ }^{133 a}$, P. Saha ${ }^{109}$, M. Sahinsoy ${ }^{59 a}$, M. Saimpert ${ }^{137}$, T. Saito ${ }^{156}$, H. Sakamoto ${ }^{156}$, Y. Sakurai ${ }^{170}$, G. Salamanna ${ }^{135 a, 135 b}$, A. Salamon ${ }^{134 a}$, J.E. Salazar Loyola ${ }^{33 b}$, D. Salek ${ }^{108}$, P.H. Sales De Bruin ${ }^{139}$, D. Salihagic ${ }^{102}$, A. Salnikov ${ }^{144}$, J. Salt ${ }^{166}$, D. Salvatore ${ }^{38 a, 38 b}$, F. Salvatore ${ }^{150}$, A. Salvucci ${ }^{61 a}$, A. Salzburger ${ }^{31}$, D. Sammel ${ }^{49}$, D. Sampsonidis ${ }^{155}$, A. Sanchez ${ }^{105 a, 105 b}$, J. Sánchez ${ }^{166}$, V. Sanchez Martinez ${ }^{166}$, H. Sandaker ${ }^{120}$, R.L. Sandbach ${ }^{78}$, H.G. Sander ${ }^{85}$, M.P. Sanders ${ }^{101}$, M. Sandhoff ${ }^{174}$, C. Sandoval ${ }^{20}$, R. Sandstroem ${ }^{102}$, D.P.C. Sankey ${ }^{132}$, M. Sannino ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, A. Sansoni ${ }^{48}$, C. Santoni ${ }^{35}$, R. Santonico ${ }^{134 a, 134 b}$, H. Santos ${ }^{127 a}$, I. Santoyo Castillo ${ }^{150}$, K. Sapp ${ }^{126}$, A. Sapronov ${ }^{67}$, J.G. Saraiva ${ }^{127 a, 127 d}$, B. Sarrazin ${ }^{22}$, O. Sasaki ${ }^{68}$, Y. Sasaki ${ }^{156}$, K. Sato ${ }^{161}$, G. Sauvage ${ }^{5, *}$, E. Sauvan ${ }^{5}$, G. Savage ${ }^{79}$, P. Savard ${ }^{159, d}$, C. Sawyer ${ }^{132}$, L. Sawyer ${ }^{81, o}$, J. Saxon ${ }^{32}$, C. Sbarra ${ }^{21 a}$, A. Sbrizzi ${ }^{21 a, 21 b}$, T. Scanlon ${ }^{80}$, D.A. Scannicchio ${ }^{66}$, M. Scarcella ${ }^{151}$, V. Scarfone ${ }^{38 a, 38 b}$, J. Schaarschmidt ${ }^{171}$, P. Schacht ${ }^{102}$, D. Schaefer ${ }^{31}$, R. Schaefer ${ }^{43}$, J. Schaeffer ${ }^{85}$, S. Schaepe ${ }^{22}$, S. Schaetzel ${ }^{59 b}$, U. Schäfer ${ }^{85}$, A.C. Schaffer ${ }^{118}$, D. Schaile ${ }^{101}$, R.D. Schamberger ${ }^{149}$, V. Scharf ${ }^{59 \mathrm{a}}$, V.A. Schegelsky ${ }^{124}$, D. Scheirich ${ }^{130}$, M. Schernau ${ }^{66}$, C. Schiavi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, C. Schillo ${ }^{49}$, M. Schioppa ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, S. Schlenker ${ }^{31}$, K. Schmieden ${ }^{31}$, C. Schmitt ${ }^{85}$, S. Schmitt ${ }^{59 b}$, S. Schmitt ${ }^{43}$, S. Schmitz ${ }^{85}$, B. Schneider ${ }^{160 \text { a }}$, Y.J. Schnellbach ${ }^{76}$, U. Schnoor ${ }^{49}$, L. Schoeffel ${ }^{137}$, A. Schoening ${ }^{59 b}$, B.D. Schoenrock ${ }^{92}$, E. Schopf ${ }^{22}$, A.L.S. Schorlemmer ${ }^{55}$, M. Schott ${ }^{85}$, D. Schouten ${ }^{160 a}$, J. Schovancova ${ }^{8}$, S. Schramm ${ }^{50}$, M. Schreyer ${ }^{173}$, N. Schuh ${ }^{85}$, M.J. Schultens ${ }^{22}$, H.-C. Schultz-Coulon ${ }^{59 a}$, H. Schulz ${ }^{16}$, M. Schumacher ${ }^{49}$, B.A. Schumm ${ }^{138}$, Ph. Schune ${ }^{137}$, C. Schwanenberger ${ }^{86}$, A. Schwartzman ${ }^{144}$, T.A. Schwarz ${ }^{91}$, Ph. Schwegler ${ }^{102}$, H. Schweiger ${ }^{86}$, Ph. Schwemling ${ }^{137}$, R. Schwienhorst ${ }^{92}$, J. Schwindling ${ }^{137}$, T. Schwindt ${ }^{22}$, G. Sciolla ${ }^{24}$, F. Scuri ${ }^{125 a, 125 b}$, F. Scutti ${ }^{90}$, J. Searcy ${ }^{91}$, P. Seema ${ }^{22}$, S.C. Seidel ${ }^{106}$, A. Seiden ${ }^{138}$, F. Seifert ${ }^{129}$, J.M. Seixas ${ }^{25 a}$, G. Sekhniaidze ${ }^{105 a}$, K. Sekhon ${ }^{91}$, S.J. Sekula ${ }^{41}$, D.M. Seliverstov ${ }^{124, *}$, N. Semprini-Cesari ${ }^{21 a, 21 b}$, C. Serfon ${ }^{31}$, L. Serin ${ }^{118}$, L. Serkin ${ }^{163 a, 163 b}$, M. Sessa ${ }^{135 a, 135 b}$, R. Seuster ${ }^{160 a}$, H. Severini ${ }^{114}$, T. Sfiligoj ${ }^{77}$, F. Sforza ${ }^{31}$, A. Sfyrla ${ }^{50}$, E. Shabalina ${ }^{55}$, N.W. Shaikh ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L.Y. Shan ${ }^{34 \mathrm{a}}$, R. Shang ${ }^{165}$, J.T. Shank ${ }^{23}$, M. Shapiro ${ }^{15}$, P.B. Shatalov ${ }^{98}$, K. Shaw ${ }^{163 a, 163 b}$, S.M. Shaw ${ }^{86}$, A. Shcherbakova ${ }^{147 a, 147 b}$, C.Y. Shehu ${ }^{150}$, P. Sherwood ${ }^{80}$, L. Shi ${ }^{152, a g}$, S. Shimizu ${ }^{69}$, C.O. Shimmin ${ }^{66}$, M. Shimojima ${ }^{103}$, M. Shiyakova ${ }^{67, a h}$, A. Shmeleva ${ }^{97}$, D. Shoaleh Saadi ${ }^{96}$, M.J. Shochet ${ }^{32}$, S. Shojaii ${ }^{93 a, 93 b}$, S. Shrestha ${ }^{112}$, E. Shulga ${ }^{99}$, M.A. Shupe ${ }^{7}$, P. Sicho ${ }^{128}$, P.E. Sidebo ${ }^{148}$, O. Sidiropoulou ${ }^{173}$, D. Sidorov ${ }^{115}$, A. Sidoti ${ }^{21 a, 21 b}$, F. Siegert ${ }^{45}$, Dj. Sijacki ${ }^{13}$, J. Silva ${ }^{127 a, 127 d}$, S.B. Silverstein ${ }^{147 a}$, V. Simak ${ }^{129}$, O. Simard ${ }^{5}$, Lj. Simic ${ }^{13}$, S. Simion ${ }^{118}$,
E. Simioni ${ }^{85}$, B. Simmons ${ }^{80}$, D. Simon 35, M. Simon ${ }^{85}$, P. Sinervo ${ }^{159}$, N.B. Sinev ${ }^{117}$, M. Sioli ${ }^{21 a, 21 b}$, G. Siragusa ${ }^{173}$, S.Yu. Sivoklokov ${ }^{100}$, J. Sjölin ${ }^{147 a, 147 b}$, T.B. Sjursen ${ }^{14}$, M.B. Skinner ${ }^{74}$, H.P. Skottowe ${ }^{58}$, P. Skubic ${ }^{114}$, M. Slater ${ }^{18}$, T. Slavicek ${ }^{129}$, M. Slawinska ${ }^{108}$, K. Sliwa ${ }^{162}$, V. Smakhtin ${ }^{171}$, B.H. Smart ${ }^{47}$, L. Smestad ${ }^{14}$, S.Yu. Smirnov ${ }^{99}$, Y. Smirnov ${ }^{99}$, L.N. Smirnova ${ }^{100, a i}$, O. Smirnova ${ }^{83}$, M.N.K. Smith ${ }^{36}$, R.W. Smith ${ }^{36}$, M. Smizanska ${ }^{74}$, K. Smolek ${ }^{129}$, A.A. Snesarev ${ }^{97}$, G. Snidero ${ }^{78}$, S. Snyder ${ }^{26}$, R. Sobie ${ }^{168, l}$, F. Socher ${ }^{45}$, A. Soffer ${ }^{154}$, D.A. Soh ${ }^{152, a g}$, G. Sokhrannyi ${ }^{77}$, C.A. Solans Sanchez ${ }^{31}$, M. Solar ${ }^{129}$, E.Yu. Soldatov ${ }^{99}$, U. Soldevila ${ }^{166}$, A.A. Solodkov ${ }^{131}$, A. Soloshenko ${ }^{67}$, O.V. Solovyanov ${ }^{131}$, V. Solovyev ${ }^{124}$, P. Sommer ${ }^{49}$, H.Y. Song ${ }^{34 b, z}$, N. Soni ${ }^{1}$, A. Sood ${ }^{15}$, A. Sopczak ${ }^{129}$, V. Sopko ${ }^{129}$, V. Sorin ${ }^{12}$, D. Sosa ${ }^{59 b}$, C.L. Sotiropoulou ${ }^{125 a, 125 b}$, R. Soualah ${ }^{163 a, 163 c}$, A.M. Soukharev ${ }^{110, c}$, D. South ${ }^{43}$, B.C. Sowden ${ }^{79}$, S. Spagnolo ${ }^{75 a, 75 b}$, M. Spalla ${ }^{125 a, 125 b}$, M. Spangenberg ${ }^{169}$, F. Spanò ${ }^{79}$, D. Sperlich ${ }^{16}$, F. Spettel ${ }^{102}$, R. Spighi ${ }^{21 a}$, G. Spigo 31, L.A. Spiller ${ }^{90}$, M. Spousta ${ }^{130}$, R.D. St. Denis ${ }^{54, *}$, A. Stabile ${ }^{93 a}$, S. Staerz ${ }^{31}$, J. Stahlman ${ }^{123}$, R. Stamen ${ }^{59 a}$, S. Stamm ${ }^{16}$, E. Stanecka ${ }^{40}$, R.W. Stanek ${ }^{6}$, C. Stanescu ${ }^{135 a}$, M. Stanescu-Bellu ${ }^{43}$, M.M. Stanitzki ${ }^{43}$, S. Stapnes ${ }^{120}$, E.A. Starchenko ${ }^{131}$, G.H. Stark ${ }^{32}$, J. Stark ${ }^{56}$, P. Staroba ${ }^{128}$, P. Starovoitov ${ }^{59 a}$, R. Staszewski ${ }^{40}$, P. Steinberg ${ }^{26}$, B. Stelzer ${ }^{143}$, H.J. Stelzer ${ }^{31}$, O. Stelzer-Chilton ${ }^{160 a}$, H. Stenzel ${ }^{53}$, G.A. Stewart ${ }^{54}$, J.A. Stillings ${ }^{22}$, M.C. Stockton ${ }^{89}$, M. Stoebe ${ }^{89}$, G. Stoicea ${ }^{27 b}$, P. Stolte ${ }^{55}$, S. Stonjek ${ }^{102}$, A.R. Stradling ${ }^{8}$, A. Straessner ${ }^{45}$, M.E. Stramaglia ${ }^{17}$, J. Strandberg ${ }^{148}$, S. Strandberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Strandlie ${ }^{120}$, M. Strauss ${ }^{114}$, P. Strizenec ${ }^{145 b}$, R. Ströhmer ${ }^{173}$, D.M. Strom ${ }^{117}$, R. Stroynowski ${ }^{41}$, A. Strubig ${ }^{107}$, S.A. Stucci ${ }^{17}$, B. Stugu ${ }^{14}$, N.A. Styles ${ }^{43}$, D. Su ${ }^{144}$, J. Su ${ }^{126}$, R. Subramaniam ${ }^{81}$, S. Suchek ${ }^{59 a}$, Y. Sugaya ${ }^{119}$, M. Suk ${ }^{129}$, V.V. Sulin ${ }^{97}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{70}$, S. Sun 58, X. Sun $^{34 a}$, J.E. Sundermann ${ }^{49}$, K. Suruliz ${ }^{150}$, G. Susinno ${ }^{38 a, 38 b}$, M.R. Sutton ${ }^{150}$, S. Suzuki ${ }^{68}$, M. Svatos ${ }^{128}$, M. Swiatlowski ${ }^{32}$, I. Sykora ${ }^{145 a}$, T. Sykora ${ }^{130}$, D. Ta ${ }^{49}$, C. Taccini ${ }^{135 a}$, 135b , K. Tackmann ${ }^{43}$, J. Taenzer ${ }^{159}$, A. Taffard ${ }^{66}$, R. Tafirout ${ }^{160 \text { a }}$, N. Taiblum ${ }^{154}$, H. Takai ${ }^{26}$, R. Takashima ${ }^{71}$, H. Takeda ${ }^{69}$, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{68}$, M. Talby ${ }^{87}$, A.A. Talyshev ${ }^{110, c}$, J.Y.C. Tam ${ }^{173}$, K.G. Tan ${ }^{90}$, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{118}$, S. Tanaka ${ }^{68}$, B.B. Tannenwald ${ }^{112}$, S. Tapia Araya ${ }^{33 b}$, S. Tapprogge ${ }^{85}$, S. Tarem ${ }^{153}$, G.F. Tartarelli ${ }^{93 \mathrm{a}}$, P. Tas ${ }^{130}$, M. Tasevsky ${ }^{128}$, T. Tashiro ${ }^{70}$, E. Tassi ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, A. Tavares Delgado ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, Y. Tayalati ${ }^{136 \mathrm{~d}}$, A.C. Taylor ${ }^{106}$, G.N. Taylor ${ }^{90}$, P.T.E. Taylor ${ }^{90}$, W. Taylor ${ }^{160 \mathrm{~b}}$, F.A. Teischinger ${ }^{31}$, P. Teixeira-Dias ${ }^{79}$, K.K. Temming ${ }^{49}$, D. Temple ${ }^{143}$, H. Ten Kate ${ }^{31}$, P.K. Teng ${ }^{152}$, J.J. Teoh ${ }^{119}$, F. Tepel ${ }^{174}$, S. Terada ${ }^{68}$, K. Terashi ${ }^{156}$, J. Terron ${ }^{84}$, S. Terzo ${ }^{102}$, M. Testa ${ }^{48}$, R.J. Teuscher ${ }^{159, l}$, T. Theveneaux-Pelzer ${ }^{87}$, J.P. Thomas ${ }^{18}$, J. Thomas-Wilsker ${ }^{79}$, E.N. Thompson ${ }^{36}$, P.D. Thompson ${ }^{18}$, R.J. Thompson ${ }^{86}$, A.S. Thompson ${ }^{54}$, L.A. Thomsen ${ }^{175}$, E. Thomson ${ }^{123}$, M. Thomson ${ }^{29}$, M.J. Tibbetts ${ }^{15}$, R.E. Ticse Torres ${ }^{87}$, V.O. Tikhomirov ${ }^{97, a j}$, Yu.A. Tikhonov ${ }^{110, c}$, S. Timoshenko ${ }^{99}$, E. Tiouchichine ${ }^{87}$, P. Tipton ${ }^{175}$, S. Tisserant ${ }^{87}$, K. Todome ${ }^{158}$, T. Todorov ${ }^{5, *}$, S. Todorova-Nova ${ }^{130}$, J. Tojo ${ }^{72}$, S. Tokár ${ }^{145 a}$, K. Tokushuku ${ }^{68}$, E. Tolley ${ }^{58}$, L. Tomlinson ${ }^{86}$, M. Tomoto ${ }^{104}$, L. Tompkins ${ }^{144, a k}$, K. Toms ${ }^{106}$, B. Tong ${ }^{58}$, E. Torrence ${ }^{117}$, H. Torres ${ }^{143}$, E. Torró Pastor ${ }^{139}$, J. Toth ${ }^{87, a l}$, F. Touchard ${ }^{87}$, D.R. Tovey ${ }^{140}$, T. Trefzger ${ }^{173}$, L. Tremblet ${ }^{31}$, A. Tricoli ${ }^{31}$, I.M. Trigger ${ }^{160 a}$, S. Trincaz-Duvoid ${ }^{82}$, M.F. Tripiana ${ }^{12}$, W. Trischuk ${ }^{159}$, B. Trocmé ${ }^{56}$, A. Trofymov ${ }^{43}$, C. Troncon ${ }^{93 a}$, M. Trottier-McDonald ${ }^{15}$, M. Trovatelli ${ }^{168}$, L. Truong ${ }^{163 a, 163 b}$, M. Trzebinski ${ }^{40}$, A. Trzupek ${ }^{40}$, J.C-L. Tseng ${ }^{121}$, P.V. Tsiareshka ${ }^{94}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{12}$, V. Tsiskaridze ${ }^{49}$, E.G. Tskhadadze ${ }^{52 \mathrm{a}}$, K.M. Tsui ${ }^{61 \mathrm{a}}$, I.I. Tsukerman ${ }^{98}$, V. Tsulaia ${ }^{15}$, S. Tsuno ${ }^{68}$, D. Tsybychev ${ }^{149}$, A. Tudorache ${ }^{27 \mathrm{~b}}$, V. Tudorache ${ }^{27 \mathrm{~b}}$, A.N. Tuna ${ }^{58}$, S.A. Tupputi ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, S. Turchikhin ${ }^{100, a i}$, D. Turecek ${ }^{129}$, D. Turgeman ${ }^{171}$, R. Turra ${ }^{93 \mathrm{a}, 93 \mathrm{~b}}$, A.J. Turvey ${ }^{41}$, P.M. Tuts ${ }^{36}$, M. Tylmad ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Tyndel ${ }^{132}$, I. Ueda ${ }^{156}$, R. Ueno ${ }^{30}$, M. Ughetto ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Ukegawa ${ }^{161}$, G. Unal ${ }^{31}$, A. Undrus ${ }^{26}$, G. Unel ${ }^{66}$, F.C. Ungaro ${ }^{90}$, Y. Unno ${ }^{68}$, C. Unverdorben ${ }^{101}$, J. Urban ${ }^{145 b}$, P. Urquijo ${ }^{90}$, P. Urrejola ${ }^{85}$, G. Usai ${ }^{8}$, A. Usanova ${ }^{63}$, L. Vacavant ${ }^{87}$, V. Vacek ${ }^{129}$, B. Vachon ${ }^{89}$, C. Valderanis ${ }^{85}$, N. Valencic ${ }^{108}$, S. Valentinetti ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, A. Valero ${ }^{166}$, L. Valery ${ }^{12}$, S. Valkar ${ }^{130}$, S. Vallecorsa ${ }^{50}$, J.A. Valls Ferrer ${ }^{166}$, W. Van Den Wollenberg ${ }^{108}$, P.C. Van Der Deij1 ${ }^{108}$, R. van der Geer ${ }^{108}$, H. van der Graaf ${ }^{108}$, N. van Eldik ${ }^{153}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{143}$, I. van Vulpen ${ }^{108}$,
M.C. van Woerden ${ }^{31}$, M. Vanadia ${ }^{133 a, 133 b}$, W. Vandelli ${ }^{31}$, R. Vanguri ${ }^{123}$, A. Vaniachine ${ }^{6}$, G. Vardanyan ${ }^{176}$, R. Vari ${ }^{133 a}$, E.W. Varnes ${ }^{7}$, T. Varol ${ }^{41}$, D. Varouchas ${ }^{82}$, A. Vartapetian ${ }^{8}$, K.E. Varvell ${ }^{151}$, F. Vazeille ${ }^{35}$, T. Vazquez Schroeder ${ }^{89}$, J. Veatch ${ }^{7}$, L.M. Veloce ${ }^{159}$, F. Veloso ${ }^{127 a, 127 c}$, S. Veneziano ${ }^{133 a}$, A. Ventura ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, M. Venturi ${ }^{168}$, N. Venturi ${ }^{159}$, A. Venturini ${ }^{24}$, V. Vercesi ${ }^{122 \mathrm{a}}$, M. Verducci ${ }^{133 \mathrm{a}}{ }^{133 \mathrm{~b}}$, W. Verkerke ${ }^{108}$, J.C. Vermeulen ${ }^{108}$, A. Vest ${ }^{45, a m}$, M.C. Vetterli ${ }^{143, d}$, O. Viazlo ${ }^{83}$, I. Vichou ${ }^{165}$, T. Vickey ${ }^{140}$, O.E. Vickey Boeriu ${ }^{140}$, G.H.A. Viehhauser ${ }^{121}$, S. Viel ${ }^{15}$, R. Vigne ${ }^{63}$, M. Villa ${ }^{21 a, 21 b}$, M. Villaplana Perez ${ }^{93 a, 93 b}$, E. Vilucchi ${ }^{48}$, M.G. Vincter ${ }^{30}$, V.B. Vinogradov ${ }^{67}$, I. Vivarelli ${ }^{150}$, S. Vlachos ${ }^{10}$, M. Vlasak ${ }^{129}$, M. Vogel ${ }^{174}$, P. Vokac ${ }^{129}$, G. Volpi ${ }^{125 a, 125 b}$, M. Volpi ${ }^{99}$, H. von der Schmitt ${ }^{102}$, E. von Toerne ${ }^{22}$, V. Vorobel ${ }^{130}$, K. Vorobev ${ }^{99}$, M. Vos ${ }^{166}$, R. Voss ${ }^{31}$, J.H. Vossebeld ${ }^{76}$, N. Vranjes ${ }^{13}$, M. Vranjes Milosavljevic ${ }^{13}$, V. Vrba ${ }^{128}$, M. Vreeswijk ${ }^{108}$, R. Vuillermet ${ }^{31}$, I. Vukotic ${ }^{32}$, Z. Vykydal ${ }^{129}$, P. Wagner ${ }^{22}$, W. Wagner ${ }^{174}$, H. Wahlberg ${ }^{73}$,
S. Wahrmund ${ }^{45}$, J. Wakabayashi ${ }^{104}$, J. Walder ${ }^{74}$, R. Walker ${ }^{101}$, W. Walkowiak ${ }^{142}$, V. Wallangen ${ }^{147 a, 147 \mathrm{~b}}$,
C. Wang ${ }^{152}$, C. Wang ${ }^{34 \mathrm{~d}, 87}$, F. Wang ${ }^{172}$, H. Wang ${ }^{15}$, H. Wang ${ }^{41}$, J. Wang ${ }^{43}$, J. Wang ${ }^{151}$, K. Wang ${ }^{89}$, R. Wang ${ }^{6}$, S.M. Wang ${ }^{152}$, T. Wang ${ }^{22}$, T. Wang ${ }^{36}$, X. Wang ${ }^{175}$, C. Wanotayaroj ${ }^{117}$, A. Warburton ${ }^{89}$, C.P. Ward ${ }^{29}$, D.R. Wardrope ${ }^{80}$, A. Washbrook ${ }^{47}$, P.M. Watkins ${ }^{18}$, A.T. Watson ${ }^{18}$, I.J. Watson ${ }^{151}$, M.F. Watson ${ }^{18}$, G. Watts ${ }^{139}$, S. Watts ${ }^{86}$, B.M. Waugh ${ }^{80}$, S. Webb ${ }^{86}$, M.S. Weber ${ }^{17}$, S.W. Weber ${ }^{173}$, J.S. Webster ${ }^{6}$, A.R. Weidberg ${ }^{121}$, B. Weinert ${ }^{62}$, J. Weingarten ${ }^{55}$, C. Weiser ${ }^{49}$, H. Weits ${ }^{108}$, P.S. Wells ${ }^{31}$, T. Wenaus ${ }^{26}$, T. Wengler ${ }^{31}$, S. Wenig ${ }^{31}$, N. Wermes ${ }^{22}$, M. Werner ${ }^{49}$, P. Werner ${ }^{31}$, M. Wessels ${ }^{59 \mathrm{a}}$, J. Wetter ${ }^{162}$, K. Whalen ${ }^{117}$, A.M. Wharton ${ }^{74}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{33 \mathrm{~b}}$, S. White ${ }^{125 a, 125 b}$, D. Whiteson ${ }^{66}$, F.J. Wickens ${ }^{132}$, W. Wiedenmann ${ }^{172}$, M. Wielers ${ }^{132}$, P. Wienemann ${ }^{22}$, C. Wiglesworth ${ }^{37}$, L.A.M. Wiik-Fuchs ${ }^{22}$, A. Wildauer ${ }^{102}$, H.G. Wilkens ${ }^{31}$, H.H. Williams ${ }^{123}$, S. Williams ${ }^{108}$, C. Willis ${ }^{92}$, S. Willocq ${ }^{88}$, J.A. Wilson ${ }^{18}$, I. Wingerter-Seez ${ }^{5}$, F. Winklmeier ${ }^{117}$, B.T. Winter ${ }^{22}$, M. Wittgen ${ }^{144}$, J. Wittkowski ${ }^{101}$, S.J. Wollstadt ${ }^{85}$, M.W. Wolter ${ }^{40}$, H. Wolters ${ }^{127 \text { a, } 127 \text { c }}$, B.K. Wosiek ${ }^{40}$, J. Wotschack ${ }^{31}$, M.J. Woudstra ${ }^{86}$, K.W. Wozniak ${ }^{40}$, M. Wu^{56}, M. Wu ${ }^{32}$, S.L. Wu ${ }^{172}$, X. Wu ${ }^{50}$, Y. Wu ${ }^{91}$, T.R. Wyatt ${ }^{86}$, B.M. Wynne ${ }^{47}$, S. Xella ${ }^{37}$, D. Xu $^{34 \mathrm{a}}$, L. Xu^{26}, B. Yabsley ${ }^{151}$, S. Yacoob ${ }^{146 \mathrm{a}}$, R. Yakabe ${ }^{69}$, D. Yamaguchi ${ }^{158}$, Y. Yamaguchi ${ }^{119}$, A. Yamamoto ${ }^{68}$, S. Yamamoto ${ }^{156}$, T. Yamanaka ${ }^{156}$, K. Yamauchi ${ }^{104}$, Y. Yamazaki ${ }^{69}$, Z. Yan ${ }^{23}$, H. Yang ${ }^{34 \mathrm{e}}$, H. Yang ${ }^{172}$, Y. Yang ${ }^{152}$, Z. Yang ${ }^{14}$, W-M. Yao ${ }^{15}$, Y.C. Yap ${ }^{82}$, Y. Yasu ${ }^{68}$, E. Yatsenko ${ }^{5}$, K.H. Yau Wong ${ }^{22}$, J. Ye ${ }^{41}$, S. Ye ${ }^{26}$, I. Yeletskikh ${ }^{67}$, A.L. Yen ${ }^{58}$, E. Yildirim ${ }^{43}$, K. Yorita ${ }^{170}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{123}$, C. Young ${ }^{144}$, C.J.S. Young ${ }^{31}$, S. Youssef ${ }^{23}$, D.R. Yu^{15}, J. Yu ${ }^{8}$, J.M. Yu^{91}, J. Yu^{65}, L. Yuan ${ }^{69}$, S.P.Y. Yuen ${ }^{22}$, I. Yusuff ${ }^{29, a n}$, B. Zabinski ${ }^{40}$, R. Zaidan ${ }^{34 \mathrm{~d}}$, A.M. Zaitsev ${ }^{131, a c}$, N. Zakharchuk ${ }^{43}$, J. Zalieckas ${ }^{14}$, A. Zaman ${ }^{149}$, S. Zambito ${ }^{58}$, L. Zanello ${ }^{133 a, 133 b}$, D. Zanzi ${ }^{90}$, C. Zeitnitz ${ }^{174}$, M. Zeman ${ }^{129}$, A. Zemla ${ }^{39 \mathrm{a}}$, J.C. Zeng ${ }^{165}$, Q. Zeng ${ }^{144}$, K. Zengel ${ }^{24}$, O. Zenin ${ }^{131}$, T. Ženiš ${ }^{145 a}$, D. Zerwas ${ }^{118}$, D. Zhang ${ }^{91}$, F. Zhang ${ }^{172}$, G. Zhang ${ }^{34 b, z}$, H. Zhang ${ }^{34 \mathrm{c}}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{49}$, R. Zhang ${ }^{22}$, R. Zhang ${ }^{34 \mathrm{~b}, a o}$, X. Zhang ${ }^{34 \mathrm{~d}}$, Z. Zhang ${ }^{118}$, X. Zhao ${ }^{41}$, Y. Zhao ${ }^{34 d, 118}$, Z. Zhao ${ }^{34 b}$, A. Zhemchugov ${ }^{67}$, J. Zhong ${ }^{121}$, B. Zhou ${ }^{91}$, C. Zhou ${ }^{46}$, L. Zhou ${ }^{36}$, L. Zhou ${ }^{41}$, M. Zhou ${ }^{149}$, N. Zhou ${ }^{34 \mathrm{f}}$, C.G. Zhu ${ }^{34 \mathrm{~d}}$, H. Zhu ${ }^{34 \mathrm{a}}$, J. Zhu ${ }^{91}$, Y. Zhu ${ }^{34 \mathrm{~b}}$, X. Zhuang ${ }^{34 \mathrm{a}}$, K. Zhukov ${ }^{97}$, A. Zibell ${ }^{173}$, D. Zieminska ${ }^{62}$, N.I. Zimine ${ }^{67}$, C. Zimmermann ${ }^{85}$, S. Zimmermann ${ }^{49}$, Z. Zinonos ${ }^{55}$, M. Zinser ${ }^{85}$, M. Ziolkowski ${ }^{142}$, L. Živković ${ }^{13}$, G. Zobernig ${ }^{172}$, A. Zoccoli ${ }^{21 a, 21 b}$, M. zur Nedden ${ }^{16}$, G. Zurzolo ${ }^{105 a, 105 b}$, L. Zwalinski ${ }^{31}$.
${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany NY, United States of America
${ }^{3}$ Department of Physics, University of Alberta, Edmonton AB, Canada

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
${ }^{7}$ Department of Physics, University of Arizona, Tucson AZ, United States of America
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{12}$ Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain, Spain
${ }^{13}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{15}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
${ }^{16}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{17}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{18}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Department of Physics Engineering, Gaziantep University, Gaziantep; ${ }^{(d)}$ Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul,Turkey; ${ }^{(e)}$ Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey, Turkey
${ }^{20}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
21 (a) INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }^{22}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{23}$ Department of Physics, Boston University, Boston MA, United States of America
${ }^{24}$ Department of Physics, Brandeis University, Waltham MA, United States of America
25 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil ${ }^{26}$ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
27 (a) Transilvania University of Brasov, Brasov, Romania; ${ }^{(b)}$ National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(c)}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; ${ }^{(d)}$ University Politehnica Bucharest, Bucharest; ${ }^{(e)}$ West University in Timisoara, Timisoara, Romania
${ }^{28}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{29}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{30}$ Department of Physics, Carleton University, Ottawa ON, Canada
${ }^{31}$ CERN, Geneva, Switzerland
${ }^{32}$ Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
$33{ }^{(a)}$ Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
34 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui; ${ }^{(c)}$ Department of Physics, Nanjing University, Jiangsu; ${ }^{(d)}$ School of Physics, Shandong University, Shandong; ${ }^{(e)}$ Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (also affiliated with PKU-CHEP); ${ }^{(f)}$ Physics Department, Tsinghua University, Beijing 100084, China
${ }^{35}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and

CNRS/IN2P3, Clermont-Ferrand, France
${ }^{36}$ Nevis Laboratory, Columbia University, Irvington NY, United States of America
${ }^{37}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
38 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
39 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
${ }^{40}$ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
${ }^{41}$ Physics Department, Southern Methodist University, Dallas TX, United States of America
${ }^{42}$ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
${ }^{43}$ DESY, Hamburg and Zeuthen, Germany
${ }^{44}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{45}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{46}$ Department of Physics, Duke University, Durham NC, United States of America
${ }^{47}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{48}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{49}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{50}$ Section de Physique, Université de Genève, Geneva, Switzerland
51 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
$52(a)$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High
Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{53}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{54}$ SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{55}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{56}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
${ }^{57}$ Department of Physics, Hampton University, Hampton VA, United States of America
${ }^{58}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of

America

$59{ }^{(a)}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(c)}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{60}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
$61{ }^{(a)}$ Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ${ }^{(b)}$
Department of Physics, The University of Hong Kong, Hong Kong; ${ }^{(c)}$ Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
${ }^{62}$ Department of Physics, Indiana University, Bloomington IN, United States of America
${ }^{63}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{64}$ University of Iowa, Iowa City IA, United States of America
${ }^{65}$ Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
${ }^{66}$ Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
${ }^{67}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{68}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{69}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{70}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{71}$ Kyoto University of Education, Kyoto, Japan
${ }^{72}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{73}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{74}$ Physics Department, Lancaster University, Lancaster, United Kingdom
$75{ }^{(a)}$ INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
${ }^{76}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{77}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{78}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }^{79}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }^{80}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{81}$ Louisiana Tech University, Ruston LA, United States of America
${ }^{82}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{83}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{84}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{85}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{86}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{87}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{88}$ Department of Physics, University of Massachusetts, Amherst MA, United States of America
${ }^{89}$ Department of Physics, McGill University, Montreal QC, Canada
${ }^{90}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{91}$ Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
92 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
93 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{94}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
${ }^{95}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
${ }^{96}$ Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{97}$ P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
${ }^{98}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{99}$ National Research Nuclear University MEPhI, Moscow, Russia
${ }^{100}$ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{101}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{102}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{103}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{104}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
$105{ }^{(a)}$ INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
${ }^{106}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
${ }^{107}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
108 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam,
Netherlands
${ }^{109}$ Department of Physics, Northern Illinois University, DeKalb IL, United States of America
${ }^{110}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{111}$ Department of Physics, New York University, New York NY, United States of America
112 Ohio State University, Columbus OH, United States of America
${ }^{113}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{114}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
${ }^{115}$ Department of Physics, Oklahoma State University, Stillwater OK, United States of America
${ }^{116}$ Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{117}$ Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
${ }^{118}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
${ }^{119}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{120}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{121}$ Department of Physics, Oxford University, Oxford, United Kingdom
122 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
${ }^{123}$ Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
${ }^{124}$ National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
125 (a) INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{126}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
127 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; ${ }^{(b)}$ Faculdade de Ciências, Universidade de Lisboa, Lisboa; ${ }^{(c)}$ Department of Physics, University of Coimbra, Coimbra;
${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; ${ }^{(e)}$ Departamento de Fisica,
Universidade do Minho, Braga; ${ }^{(f)}$ Departamento de Fisica Teorica y del Cosmos and CAFPE,
Universidad de Granada, Granada (Spain); ${ }^{(g)}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e
Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
${ }^{128}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{129}$ Czech Technical University in Prague, Praha, Czech Republic
${ }^{130}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
${ }^{131}$ State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
${ }_{132}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
133 (a) INFN Sezione di Roma; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
$134{ }^{(a)}$ INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata,
Roma, Italy
$135{ }^{(a)}$ INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies -
Université Hassan II, Casablanca; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V, Rabat, Morocco
${ }^{137}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
${ }^{138}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
${ }^{139}$ Department of Physics, University of Washington, Seattle WA, United States of America
${ }^{140}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
${ }^{141}$ Department of Physics, Shinshu University, Nagano, Japan
${ }^{142}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
${ }^{143}$ Department of Physics, Simon Fraser University, Burnaby BC, Canada
${ }^{144}$ SLAC National Accelerator Laboratory, Stanford CA, United States of America
$145{ }^{(a)}$ Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town; ${ }^{(b)}$ Department of Physics, University of Johannesburg, Johannesburg; ${ }^{(c)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
$147{ }^{(a)}$ Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
${ }^{150}$ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
${ }^{151}$ School of Physics, University of Sydney, Sydney, Australia
${ }^{152}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{153}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{154}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
${ }^{155}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{156}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{157}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{158}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{159}$ Department of Physics, University of Toronto, Toronto ON, Canada
160 (a) TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON, Canada
${ }^{161}$ Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America 163 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
${ }^{164}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
165 Department of Physics, University of Illinois, Urbana IL, United States of America
${ }^{166}$ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona
(IMB-CNM), University of Valencia and CSIC, Valencia, Spain
${ }^{167}$ Department of Physics, University of British Columbia, Vancouver BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
${ }^{169}$ Department of Physics, University of Warwick, Coventry, United Kingdom
170 Waseda University, Tokyo, Japan
${ }^{171}$ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison WI, United States of America
${ }^{173}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{174}$ Fakult[̈a]t für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

175 Department of Physics, Yale University, New Haven CT, United States of America
${ }^{176}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{177}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{a}$ Also at Department of Physics, King's College London, London, United Kingdom
${ }^{b}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{c}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{d}$ Also at TRIUMF, Vancouver BC, Canada
${ }^{e}$ Also at Department of Physics \& Astronomy, University of Louisville, Louisville, KY, United States of America
${ }^{f}$ Also at Department of Physics, California State University, Fresno CA, United States of America
${ }^{g}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
${ }^{h}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
${ }^{i}$ Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
${ }^{j}$ Also at Tomsk State University, Tomsk, Russia
${ }^{k}$ Also at Universita di Napoli Parthenope, Napoli, Italy
${ }^{l}$ Also at Institute of Particle Physics (IPP), Canada
${ }^{m}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
${ }^{n}$ Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
${ }^{o}$ Also at Louisiana Tech University, Ruston LA, United States of America
${ }^{p}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
${ }^{q}$ Also at Graduate School of Science, Osaka University, Osaka, Japan
${ }^{r}$ Also at Department of Physics, National Tsing Hua University, Taiwan
${ }^{s}$ Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
${ }^{t}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
${ }^{u}$ Also at CERN, Geneva, Switzerland
${ }^{v}$ Also at Georgian Technical University (GTU),Tbilisi, Georgia
${ }^{w}$ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
${ }^{x}$ Also at Manhattan College, New York NY, United States of America
${ }^{y}$ Also at Hellenic Open University, Patras, Greece
${ }^{z}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{a a}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{a b}$ Also at School of Physics, Shandong University, Shandong, China
${ }^{a c}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{a d}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{a e}$ Also at International School for Advanced Studies (SISSA), Trieste, Italy
af Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
${ }^{a g}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
${ }^{a h}$ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{a i}$ Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
${ }^{a j}$ Also at National Research Nuclear University MEPhI, Moscow, Russia
${ }^{a k}$ Also at Department of Physics, Stanford University, Stanford CA, United States of America
${ }^{a l}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{a m}$ Also at Flensburg University of Applied Sciences, Flensburg, Germany
${ }^{a n}$ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
${ }^{a o}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

* Deceased

[^0]: ${ }^{1}$ Since, experimentally, the two partons cannot be distinguished, θ^{*} is always taken between 0 and $\pi / 2$ with respect to the beam.
 2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam line. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. It is equivalent to the rapidity for massless particles.

[^1]: ${ }^{3}$ Black holes decay thermally to non-rotating QBH in BlackMax, while the decay products of the QBH generator are dictated by local gauge symmetries of the SM.

