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Abstract

We compare the most successful and widely used map of Galactic dust extinc-

tion, provided by Schlegel, Finkbeiner & Davis (1998; hereafter SFD), to the galaxy

number counts in the Sloan Digital Sky Survey (SDSS) photometric/spectroscopic

DR4 sample. We divide the SDSS survey area into 69 disjoint subregions according

to the dust extinction provided by SFD and compare the surface number density of

galaxies in each subregion. As expected, the galaxy surface number density decreases

with increasing extinction but only for SFD extinction values above about 0.1 to 0.2

magnitudes (depending on the band). At lower values of the SFD extinction, we find

that the sky surface density of galaxies increases with increasing extinction, precisely

the opposite of the effect expected from Galactic dust. We also find that the aver-

age color of the SDSS photometric galaxy sample is bluer at higher SFD extinctions

in this regime, again the opposite of the effect expected from Galactic dust. Even

though these anomalies occur only for sight-lines with low SFD extinction values,

they affect over 70% of the high Galactic latitude sky in which galaxies and their

clustering properties are normally studied. Although it would be possible to explain

these effects with a mysterious component of Galactic dust which is anti-correlated

with the 100µm flux on which the SFD extinction map is based, this model is not

physically plausible. Moreover, we find that the surface number density of SDSS

photometric quasars does not show any similar effect, as would be expected if the

explanation were an unknown Galactic dust component. Considering these results,

we suggest that the far infrared (FIR) brightness of the sky in regions of true low

dust extinction is significantly “contaminated” by the FIR emission from background

galaxies. We show that such an explanation is both qualitatively and quantitatively

consistent with the available data. Based on this interpretation we conclude that
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systematic errors in the SFD extinction map due to extragalactic FIR emission are

quite small, of order hundredths of a magnitude, but nevertheless statistically de-

tectable. Unfortunately, however, these errors are also entangled in a complex way

with a signal of great interest to many “precision cosmology” applications, namely

the large scale clustering of galaxies.

Key words: ISM: dust, extinction — cosmology: large-scale structure of universe

— cosmology: observations

1. Introduction

Understanding the properties of dust is a fundamental goal in astronomy and cosmology,

as is correcting for its effects on other observables. Mapping dust extinction over the sky

is crucial to extracting correct astrophysical quantities from observables. In particular it is

essential in measuring the large scale structure of the universe. For instance, if one does not

properly correct for Galactic dust extinction, the surface number densities of galaxy behind

strongly obscured regions are reduced systematically, producing apparent void structures and

distorting the real cosmic clustering signal.

For such purposes, Schlegel, Finkbeiner & Davis (1998; hereafter, SFD) constructed a

dust extinction map (hereafter, the SFD-map), which has been used very extensively for a wide

variety of astronomical and cosmological studies.

The SFD-map was obtained by the following procedures: (i) making dust temperature

and emissivity maps (0.7◦ FWHM spatial resolution) from COBE/DIRBE data at 100 µm and

240 µm. (ii) making a finer resolution map for dust emission (6.1′ angular resolution) from

IRAS/ISSA data at 100 µm using the COBE temperature map as a calibrator. (iii) making

final maps of reddening and extinction assuming a simple linear relation between 100µm flux

and dust column density with a temperature correction for dust emissivity.

For most astronomical purposes one wants an “absorption-weighted” dust extinction

map. Since extinction in the SFD-map is inferred from dust emission, however, it corresponds

to an “emission-weighted” map. Therefore, if the proportionality between reddening and emis-

sivity breaks down in some regions, for example, the SFD-map could be a poor representation

of the actual extinction map. And in any case, there is no guarantee that the assumptions on

which the SFD-map is based are accurate enough to construct a highly accurate and reliable

account of Galactic extinction and reddening. For such reasons, SFD carried out several tests

of the derived maps in their initial studies. They found that the SFD-map reproduces intrinsic

colors of elliptical galaxies as estimated from the Mg II index (Faber et al. 1989) with an accu-

racy roughly twice as good as the dust extinction map provided by Burstein and Heiles (1978,

1982) based on HI 21-cm emission. They also found that the SFD-map tends to overestimate
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reddening at very high dust column densities. Also, indications of possible systematic errors

emerged from considerations of the conversion coefficient between dust emissivity and dust

reddening as determined by two different techniques: 1 - removing the correlation between the

colors of brightest cluster galaxies and the SFD-map, versus 2 - a comparison of dust emission

with galaxy number counts in the APM galaxy survey (SFD). The coefficients determined by

these two techniques differ by approximately a factor of two.

In this paper, we evaluate the SFD-map by a comparison with galaxy number counts

from the latest SDSS data release. Fukugita et al. (2004) carried out a similar study using the

earlier galaxy catalog provided by the Sloan Digital Sky Survey (SDSS:York et al. (2000)),

Data Release 1 (DR1;Abazajian et al. (2003)). They found that dust extinction values estimated

from the DR1 galaxy counts are in good agreement with the SFD ones. The availability of the

latest catalog of SDSS (Data Release 4; Adelman-McCarthy. et al. 2006) allows us to subject

the SFD-map to a new and higher precision test.

2. The Data

2.1. The Sloan Digital Sky Survey DR4

The SDSS DR4 covers 6670 deg2 of sky area and contains 180 million objects with

photometry in five pass bands, u, g, r, i, and z (Fukugita et al. 1996; Gunn et al. 1998; Hogg

et al. 2001; Pier et al. 2003; Blanton et al. 2003; Ivezić et al. 2004; Smith et al. 2002; Gunn

et al. 2006; Tucker et al. 2006). In the database, each object is catalogued with not only

its photometric properties but also the dust extinction estimated from the SFD-map, Ax,SFD,

(x=u,g,r,i and z). The conversion factor from reddening, Ax,SFD/E(B − V ), in the SFD-map

to Ax,SFD is provided by SFD (see Table 6 of SFD). To compute these factors, it was assumed

that all objects have the spectral energy distribution of an elliptical galaxy and that Galactic

dust properties are the same in all directions (as seen from the Earth); in particular, we then

adopt the extinction curve parameter:

RV ≡ AV /E(B −V ) = 3.1, (1)

(see Stoughton et al. 2002 and Appendix B of SFD).

Figure 1 shows the SDSS DR4 photometric survey area, and r-band SFD-extinction

Ar,SFD in the same part of the sky. Figure 2 shows the cumulative area of the regions where the

value of Ar,SFD is lower than a certain value Ar,SFD,max. We exclude the regions with relatively

high extinction, Ar,SFD > 0.534, whose total fractional area is less than 0.2%. The gray thin

lines indicate the boundary of subregions each containing about 100 deg2 of sky (see section

3.1). The region corresponding to Ar,SFD < 0.1 is indicated in both figure 1 and figure 2; this is

the regime in which an anomalous correlation of the SDSS galaxy counts with the SFD-map is

demonstrated in section 3.
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2.2. Constructing a Photometric Galaxy Sample

In this paper, we initially assume that after correction for dust extinction, the surface

number density of galaxies will be homogeneously averaged over sufficiently large areas of the

sky, and that any remaining inhomogeneities indicate an error in the estimated extinction.

For this analysis, accurate star-galaxy separation is important since the spatial distribu-

tion of stars is not homogeneous and is likely to be correlated with the dust distribution. We

therefore carefully constructed a reliable photometric galaxy sample for our analysis as follows:

1. False objects are discarded using photometric processing flags.

2. Masked regions are excluded.

3. A magnitude range is determined so as to ensure the reliability of the star-galaxy separation

procedure.

Details of these three steps are described below.

2.2.1. False objects

First we remove those photometric objects in the database table that have saturated

fluxes, were observed during bad sky conditions, or are fast-moving (and thus suspected of

being in the Solar System).

While one could also remove objects with interpolated fluxes, we have chosen to retain

them because they are preferentially associated with specific bad CCD pixels and, therefore, are

not randomly distributed on the sky. In other words, the additional photometric uncertainty

associated with pixel defects seems less likely to produce systematic errors in our analysis than

excluding a non-random spatial distribution of objects entirely.

2.2.2. Masks

The SDSS database defines masked regions on the basis of five different conditions. Our

analysis excludes regions labeled “BLEEDING”, “BRIGHT STAR”, “TRAIL”, or “HOLE”,

but keeps those labeled “SEEING” which occupy a significant fraction of the entire survey

area. We ignore the “SEEING” information because the effect of relatively bad seeing is not

serious for photometry of bright galaxies. The total area of the masked regions we exclude is

about 70 deg2, roughly 1% of the overall survey region.

2.2.3. Magnitude range

We select galaxies from those DR4 objects in which the “type” attribute is equal to

GALAXY. The resulting number counts of galaxies are plotted in figure 3 as a function of

magnitudes uncorrected for the SFD-extinction, mx.

For our current purpose, we would like to construct subsets of the galaxy sample which

are not contaminated by mis-identified stars to the extent possible. For this purpose we restrict

the range of magnitudes in the analysis below.
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Star-galaxy separation is based on the difference between the composite model magni-

tude and the PSF magnitude (Abazajian et al. 2004). The reliability of this separation proce-

dure depends on the magnitude of objects (Yasuda et al. 2001; Scranton et al. 2002; Strauss

et al. 2002). In the r-band, the procedure is known to be reliable down to ∼ 21 mag. The

saturation of stellar images typically occurs for mr < 15. To be conservative, therefore, we chose

the same magnitude range 17.5 < mr < 19.4 and 17.5 < mr,ec < 19.4 for analysis, independent

of the extinction correction; the dashed vertical lines in figure 3 indicate the above range for

mr, while the white regions correspond to that for mr,ec, the extinction corrected magnitude.

The corresponding magnitude ranges in the other bands are similarly indicated in figure

3. In addition we checked that shifting the adopted magnitude ranges by up to 1 magnitude

does not significantly affect our results.

The number of galaxies in the selected magnitude range (between the dashed lines) is

on the order of 105 for the u-band and 106 for the other bands.

3. Analysis

3.1. Surface number density and average color of galaxies

We divide the entire selected survey region into 69 subregions grouped by their values

of Ar,SFD. Each subregion consists of spatially separated (disjoint) small regions of the sky

with Ar,SFD values in a given interval. We define the intervals of Ar,SFD such that the area of

each subregion is approximately equal (∼ 100 deg2). The adopted intervals are shown by thin

vertical lines in figure 2.

Figure 4 shows the surface number densities of galaxies, Sgal, for the 69 subregions as a

function of its mean extinction value, Ār,SFD. We define Ār,SFD simply by averaging Ar,SFD for

all galaxies located in the subregion. We select the r-band to represent the extinction simply

because it is the central SDSS band and used for many selection cuts, and it is indeed trivial

to translate the extinction to other bands using Table 6 of SFD.

The open circles indicate Sgal uncorrected for extinction, while the filled triangles indicate

the results after the extinction correction. The crosses show the results using the extinction

correction obtained from the galaxy number counts as explained in Section 3.2; all dependence

of counts on extinction is removed by construction for the points plotted as crosses.

We compute an error estimate, ∆S, for Sgal in each subregion according to

(∆S)2 =
N

Ω2
+

N2

Ω3

∫

Ω
dΩ′w(θ′), (2)

where N denotes the number of galaxies in the subregion with area Ω, and w(θ) is the angular

correlation function of galaxies.

We adopt a double power-law model for w(θ):
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w(θ) =

{

0.008(θ/deg)−0.75 (θ ≤ 1deg)

0.008(θ/deg)−2.1 (θ > 1deg)
, (3)

(Scranton et al. 2002; Fukugita et al. 2004).

Strictly speaking, the integral in equation (2) should be performed over the complex and

disjoint shape of each subregion. However, for simplicity we adopt a circular approximation,

integrating over 0<θ<θc for the actual area of the subregion, i.e., out to 2π(1−cosθ)=Ω. This

approximation may slightly overestimate the true error, but it does not affect our conclusion.

For the typical values of N ∼ 5×104 and Ω∼ 100deg2, the second term is larger by two orders

of magnitude than the first term. The above error-bars are plotted in figure 4.

Figure 4 indicates that the galaxy counts, uncorrected for extinction (open circles),

decrease with increasing Ār,SFD for Ār,SFD > 0.1, the expected effect of Galactic dust. However,

the increase in galaxy counts with increasing extinction for Ār,SFD < 0.1 is a surprise and is the

opposite of the effect expected from Galactic dust. Furthermore, this puzzling feature remains

even after the SFD extinction correction is applied (filled triangles). The SFD extinction

correction does properly remove the expected anti-correlation of counts and extinction for

Ār,SFD > 0.1.

A presumably related anomaly can be also seen in the average color of galaxies against

Ār,SFD for low extinctions. Figure 5 shows the average g− r color of galaxies corresponding to

figure 4. The color of galaxies before the extinction correction is redder at higher extinction

for Ār,SFD > 0.1, but is constant for Ār,SFD < 0.1. After the SFD correction, the galaxy color is

independent of Ār,SFD for Ār,SFD > 0.1 as expected. Nevertheless the anti-correlation between

g− r and Ār,SFD is recognizable for Ār,SFD < 0.1 (see inset in figure 5). A similar plot for r− i

color is shown in figure 6, but the above features are weak, though perhaps not entirely absent.

3.2. An additional extinction ∆Cx based on galaxy number counts

In order to investigate possible reasons for the anomalous behavior of galaxy counts at

low SFD extinction, we derive an additional extinction correction ∆Cx, explicitly constructed

to make the two quantities independent. In other words, by using the fact that Sgal should

be independent of Ar,SFD if the galaxy magnitudes are properly corrected for Galactic dust

extinction, we solve for an additional extinction ∆Cx relative to Ax,SFD that enforces this

behavior.

Figure 7 shows the differential surface number density of galaxies , dS/dmx,ec. Note

that the magnitudes, mx,ec, in this figure refer to the values corrected for the extinction using

Ax,SFD. The black lines are the differential surface number density of galaxies in the entire

survey region, dSe/dmx,ec). Those for each subregion, dS/dmx,ec, are plotted in colored dots

according to the value of Ār,SFD indicated in the color bar.

It is clear that low Ar,SFD subregions (blue dots) preferentially lie below dSe/dmx,ec, while

redder ones lie above it. This systematic trend is simply another representation of the anomalies

6



shown in figure 4. We now find the best fit values for the additional correction ∆Cx(Āx,SFD) by a

χ2 analysis for the shifted number density dS/dmx,ec−∆Cx) in each subregion, and dSe/dmx,ec.

The results for ∆Cx as a function of Āx,SFD in the five different bands are plotted in

figure 8. All the panels show the same systematic behavior for Ar,SFD < 0.1 which is required

to cancel the anomaly in figure 4 (crosses). The Sgal with the additional correction is indeed

completely independent of Ār,SFD within the quoted error-bars, which simply confirms that the

calculation has been carried out correctly.

The same correction simultaneously removes the anomaly in the g − r color of galaxies

in figure 5 (crosses). This, however, is not a circular result and thus lends some credibility

to the exercise since the same hypothetical additional dust component required to remove the

anomaly in the counts need not also be one which eliminates the color anomaly.

Despite being internally self-consistent and simultaneously satisfying both count and

color correction constraints with a single free function, the physical implications of this ex-

planation of the anomalies, basically that they are due to an unknown component of Galactic

dust, are not particularly plausible. In particular, the amplitudes of the corrections are sur-

prisingly large, of order 0.1 to 0.2 magnitudes, and rather insensitive to the band in which

they are defined (about half as large in z-band as in u-band). In the next section we subject

the unknown dust component explanation to further tests and suggest an alternative and more

plausible possibility.

4. Interpretation

In this section we will consider possible explanations for the surprising anomaly reported

in the previous section, namely that there are fewer SDSS galaxies (in both raw and corrected

counts) in regions of the sky where the SFD map indicates the least extinction, precisely the

opposite of the trend one would naively expect.

4.1. Effects on counts of more distant objects

If the anomalous excess counts of SDSS galaxies at low values of Ax,SFD reported above

were actually due to systematic underestimation of the extinction at low extinction in the SFD

map (i.e., the most direct interpretation), then the same effect would also be apparent in the

distribution of more distant cosmic objects. Here we show that this is not the case.

In order to see the extent to which the anomaly in Sgal depends on the distance of the

sample, we repeat the same analysis separately for samples of nearby and more distant SDSS

spectroscopic galaxies as well as for a SDSS photometric quasar sample (Richards et al. 2004).

The results are summarized in figure 9. The different symbol colors indicate the surface number

densities of photometric quasars (blue) and spectroscopic galaxies (red). The latter is further

divided into two subsamples according to the redshift; z > 0.1 (green) and z < 0.1 (yellow). The

open circles refer to the uncorrected data, while the filled ones to the data which are corrected
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using Ax,SFD. Note that the selection criteria for the photometric quasar sample already make

use of the SFD-extinction correction, but this should not invalidate our use of the data.

Clearly, the spectroscopic galaxy sample shows a similar anomaly at low Ar,SFD to the

one seen in the photometric galaxy sample. However, the effect is much weaker in the z > 0.1

subsample than in the z < 0.1 one. Moreover, the photometric quasar sample shows little, if

any, sign of the effect at low extinction.

We find no obvious correlation between the Ār,SFD and the observed (uncorrected) mean

surface density of QSO’s for the cells in the range Ār,SFD < 0.15. The galaxy clustering anomaly

acts to shuffle cells in the Ār,SFD < 0.15 range, producing spuriously higher and lower values

of ASFD around the level of any underlying galactic extinction. We expect that the anomaly

is clustered like bright galaxies and therefore it should be unrelated to the surface density

of distant QSO’s. Hence, where we are dominated by this, we may expect a flatter relation

between the QSO counts and ASFD, as observed, washing out the weak underlying galactic

extinction. A flat relation is also clear for the z > 0.1 galaxy sample, indicating they are in the

background, relatively unrelated to the anomaly.

The fact that the SFD extinction corrected counts of distant objects are uncorrelated

with the extinction while those of nearby objects exhibit the low Ax,SFD anomaly strongly

suggests that the effect is not solely a problem with the extinction map but must also be

connected to the nearby galaxies as well. In order to further elucidate the situation, we now

turn to an alternative indicator of Galactic extinction.

4.2. Galaxy surface number density versus an Hi extinction map

We next investigate the correlation between the surface number density of SDSS photo-

metric galaxies and the Leiden-Dwingeloo Hi (21 cm) map (Hartmann & Burton 1997). The

Hi map can be used as a tracer of dust column density in optically thin regions. According to

SFD, the conversion from the Hi map to r-band extinction, Ar,HI, is given as follows.

Ar,HI [mag] = 2.751× 0.0184 [mag/(MJy/sr)]

× 0.01222 [(MJy/sr)/(K km/s)]

×
∑

−72<vLSR [km/s]<+25

1.03Ta(vLSR) [K km/s], (4)

where Ta is antenna temperature in the Hi map. The 21 cm emission is summed up in the

velocity range −72 < vLSR < +25. The velocity cut is very important because it rigorously ex-

cludes extragalactic effects on the Galactic extinction map. In addition, it also removes the

contribution of high velocity clouds which presumably have very little dust. Figure 10 shows

the correlation between Ar,HI and Ar,SFD. In the low extinction region (Ar,SFD < 0.1), the corre-

lation is almost linear. Figure 11 shows the surface number density (no extinction correction)

as a function of Ar,HI. In this figure, there is very little, if any, anomaly of the type seen in

figure 4.
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4.3. Likely Contamination of the SFD Extinction Map by Extragalactic FIR Emission

In attempting to understand the low extinction anomaly it is useful to keep in mind that

Ax,SFD is basically proportional to the 100µm flux observed in the IRAS/ISSA sky map, aside

from modest dust temperature corrections derived from the COBE/DIRBE sky map at 100

and 240 µm. This means that the positive correlation between SDSS galaxy counts and Ax,SFD

can also be thought of as being a positive correlation with the 100µm flux. This suggests the

obvious and plausible hypothesis that the correlation is simply due to the 100µm emission of the

galaxies themselves, both those directly detected in the Sloan survey as well as other (optically)

fainter ones which follow the galaxy clustering structures traced by the SDSS galaxies.

Figure 12 combines the information in Figures 10 and 11 and illustrates that the tight

correlation of Ār,SFD and Ār,HI extends to very small extinctions. More importantly, we note

that Ār,SFD is slightly but systematically larger for larger Sgal, which is clearly exhibited in the

lower panel. On the other hand, the weak departure from linearity below 0.02 is an artifact due

to the averaging procedure over bins of Ār,HI with the presence of noises; we made sure that

the data points shift to the right, instead of downward, when the average is taken over the bins

of Ār,SFD.

This again suggests that the galaxy count behavior in the low ASFD regions is related to

some effect in the construction of the SFD map and not to some previously unknown component

of Galactic dust.

The hypothesis can be most clearly understood by examining the shape of the rela-

tionship between raw galaxy counts and Ax,SFD shown by the red points in figure 4. At SFD

extinctions above the peak in Sgal in each band, we suppose that the observed 100µm flux is

indeed dominated by Galactic dust emission and thus that the inferred SFD extinction is thus a

good indicator of the actual extinction; as expected the raw galaxy counts then fall with increas-

ing extinction. However, at SFD extinctions below this peak, we suppose that extragalactic

FIR emission is making a substantial, perhaps dominant, contribution to the total 100µm flux

and thus producing the observed positive correlation between galaxy counts and SFD inferred

extinction. In other words, we can still observe the intrinsic correlation of extragalactic optical

and FIR emission where the Galactic dust emission is weak enough to unveil it.

Of course, SFD were aware of the possibility of extragalactic contributions to the ob-

served IRAS/ISSA 100µm flux and attempted to minimize it by both subtracting the contri-

butions of approximately 10,000 known point sources from the sky map and then subtracting

a uniform flux density of νIν ∼ 25 nWm−2sr−1 at 100µm in order to remove the mean con-

tribution of fainter, unresolved point sources. However, it is clear that neither procedure can

remove the fluctuations in the background extragalactic FIR light due to faint sources. It is

these fluctuations, interpreted as variations in Galactic extinction in the SFD map, which we

believe to be responsible for the observed anomaly.

We may now investigate this hypothesis quantitatively by comparing the extinction
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inferred from galaxy number counts (as in section 3.2) with that inferred from 100µm flux by

SFD on the assumption that there is actually a contribution to this flux from galaxies at the

expected level.

First we note that Finkbeiner, Davis & Schlegel (2000) detected the infrared background

at a level of νIν ∼ 25 nWm−2sr−1 at 100µm. This corresponds to about 0.015 mag in E(B −

V ), (∼ 0.04 mag in Ar). This value is comparable to the Ar,SFD values in the region where

the anomalous positive correlation of surface number density of galaxies exist with Ar,SFD is

observed. By itself this indicates that the order-of-magnitude strength of the hypothesized

contamination is appropriate to explain the anomaly.

Second if fluctuations in galaxy surface density on the sky are attributed entirely to dust,

the ratio of the observed surface number density in a certain direction, Sgal and the average of

the surface number density of galaxies over the whole sky, S̄gal can be written as

Sx,gal/S̄x,gal = 10−γx∆Cx , (5)

where γx and ∆Cx are the slope of dS/dmx and the correction to the Ax,SFD required to yield

uniform galaxy counts across the sky (see section 3.2), respectively. On the other hand, if

fluctuations in galaxy surface density on the sky comes from the contamination of total FIR

flux by extragalactic flux, the expected correction to the Ax,SFD, ∆Ax,IR can be written as

∆Ax,IR = kx/r
0.04

S̄x,gal
(S̄x,gal −Sx,gal), (6)

where kx/r is the conversion factor from Ar to Ax. Therefore, the relation between ∆Cx and

∆Ax,IR is

∆Ax,IR = 0.04kx/r(1− 10−γx∆Cx). (7)

Note that equations (5) to (7) should be interpreted as an order-of-magnitude relation,

but illustrate the qualitative effect of the IR emission of galaxies on the estimate of the Galactic

extinction. Figure 13 shows ∆Ax,IR converted by equation (7) from ∆Cx which is shown in

figure 8. Thus the amplitude of ∆Ax,IR is about one-tenth that of ∆Cx. This quantitative

analysis supports the extragalactic FIR contamination hypothesis. It shows that rather small

systematic errors, of order hundredths of a magnitude, in the SFD extinction values (at low

extinction) can plausibly explain the surprisingly large values of ∆Cx shown in figure 8.

Note that one cannot use the above relationship directly as a correction to ASFD be-

cause it only applies on average (over 100 deg2 regions of the sky) but would not improve the

extinction estimate for individual pixels in the SFD map. In principle, some combination of

the observed SDSS galaxy counts in each SFD pixel and the observed 100µm flux could be

combined to provide an improved estimate of the actual extinction; however, in practice this is

not likely to be very successful due to the Poisson noise in the SDSS map at the SFD angular

resolution (corresponding to only of order a single survey galaxy per pixel). Moreover, the

absolute correction to the SFD extinction would be quite small, of order 0.01-0.02 magnitudes,
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although the relative correction could be substantial on the sight-lines with already very low

SFD extinctions.

As a final test of the hypothesis, we simulate the expected effect using mock data and

show that it is consistent with the observations. We constructed a mock galaxy sample with

the Poisson noise in the same region of the sky as the SDSS survey area, and counted the mock

galaxies in pixels as defined in SFD map (each pixel has 5.635 min2 area). Then we use the

existing SFD-map as the “true” dust extinction and add extra “extinction”, inferred from the

assumed extra 100µm flux, proportional to the number of galaxies in each pixel according to

Ar,c = Ar,SFD + cr(Nmock − N̄mock), (8)

where Ar,c is the calculated r-band model extinction when the extragalactic FIR flux is not

distinguished from the infrared emission from Galactic dust. Thus cr and Nmock are the mean

conversion factor and number of mock galaxies in a pixel. We then computed the “observed”

surface number density of mock galaxies, Smock,obs, as follows:

Smock,obs = Smock10(−0.5Ar,c), (9)

where Smock is the true surface number density of mock galaxies. The open square and open

triangle in figure 14 show Smock and Smock,obs, respectively. It exhibits the same qualitative

behavior seen in figure 4 and is even more dramatic due to the absence of all noise and mea-

surement errors.

5. Summary

We have compared the SFD Galactic extinction map to the number counts of SDSS

photometric galaxies. For SFD extinctions above 0.1 to 0.2 magnitudes, depending on the

band, we find the two types of estimates to be in tolerable agreement on average. However,

for smaller values of the SFD extinction, we find a substantial and systematic disagreement

In particular, we find that that average galaxy counts (surface density on the sky) increase

and average galaxy colors become slightly redder with increasing SFD extinction, precisely

the opposite of expected dust effects. This low SFD extinction regime exhibiting anomalous

behavior includes approximately 68% of the high Galactic latitude sky covered by the SDSS,

as well as most other observations of extragalactic objects.

Although one could explain the observations with a hypothetical component of Galactic

dust which is somehow anti-correlated the 100µm flux based SFD-map, this does not seem

physically plausible. In addition there is no sign of such a component in Hi based extinction

maps. Moreover, the surface number density of distant quasars does not exhibit any such

anomaly, as would be expected if it arose from some unknown component of Galactic dust.

Therefore, we conclude the effect is not due to major deficiencies in the SFD extinction map.

An alternative and more reasonable explanation is provided by the hypothesis that resid-

ual FIR emission from external galaxies contaminates the signal from Galactic dust and becomes
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the dominant contribution on sight-lines where the actual Galactic extinction and, thus, dust

emission are low. We show that this explanation is quantitatively plausible and consistent with

the observed effect. An extragalactic FIR flux corresponding to only of order 0.01 magnitudes

of inferred SFD extinction is sufficient to explain the anomaly. Moreover, simulation of the

effect with mock data reproduces the anomaly’s major qualitative and quantitative features.

Assuming the above interpretation to be correct, our results represent good news in one

respect and bad news in another:

In the former sense, it is reassuring that the implied systematic errors in the widely used

SFD extinction map are quite small in magnitude, of order hundredths of a magnitude, and in

the range those authors expected; in other words, they are not likely to be a significant problem

for most applications.

However, the bad news is that these systematic errors are themselves correlated with the

spatial clustering and distribution of galaxies in some complex and potentially pernicious way.

For “precision cosmology” applications that depend sensitively on the accuracy of statistical

measures of galaxy clustering (e.g., the power spectrum or baryon acoustic oscillations), it will

be necessary to disentangle the signal from a systematic source of noise (the extinction) which

depends on the signal one is trying to measure (Yahata et al. 2005; Eisenstein et al. 2005).

Moreover, studies of galaxy clustering are ordinarily carried out in regions of the sky selected to

have low extinction, i.e., just those in which the systematic extinction errors are most strongly

correlated with the large scale structure. We plan to address this and related problems in future

work.
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Fig. 1. Photometric survey area of the SDSS DR4 in Galactic coordinates. The gray scale indicates the

magnitude of Ar,SFD, as indicated by at the right. The region in which Ar,SFD < 0.1 is indicated by a

contour line.
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Fig. 2. Cumulative distribution of sky area as a function of Ar,SFD,max. Note that Ar,SFD is less than

0.1 mag for the majority of the survey region, approximately 68% in fact, as denoted by the heavy vertical

and horizontal lines. The vertical gray lines show the division of the SDSS survey region (see section 3.1)

according to extinction values. The horizontal gray lines indicate the corresponding area.
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Fig. 3. Differential number counts of galaxies (thick line) and stars (thin line) (upper part of each panel),

and the number ratio of galaxies to stars (lower part of each panel) as a function of magnitude (no

extinction correction). The two vertical dashed lines show the magnitude range in which we compute the

surface number density of galaxies. The upper left, the upper middle, the upper right, the lower left and

the lower right panels correspond to data for u-, g-, r-, i− and z-bands, respectively. In the r-band, we

choose the magnitude range 17.5 < mr < 19.4 (the dashed vertical lines in the upper right panel). Even

for the extinction corrected magnitude mr,ec, we choose the same magnitude range which is plotted as

a white region. The range of analysis differs from band to band, and they are similarly indicated in the

other panels.
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Fig. 4. Surface number density of SDSS DR4 photometric sample galaxies in each subregion. The

horizontal axis is the mean SFD-extinction for the subregion, Ār,SFD. The open circles (filled triangles)

indicate that the magnitude is corrected (not corrected) using Ax,SFD. The crosses indicate the magnitude

after an additional extinction derived from the galaxy counts (see section 3.2). The error bars are calculated

using eq. 2.
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Fig. 5. The average g − r color of galaxies

in each subregion as a function of Ar,SFD.

The symbols are also the same as in figure

4.
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Fig. 6. Same as figure 5 but for average

r− i color.

Fig. 7. Differential surface number density of galaxies, dS/dmx,ec for subregions (colored dots) and

dSe/mx,ec (black dots) (upper part of each panel), and the ratio of dS/dmx,ec to dSe/dmx,ec (lower part of

each panel). The bluer dots correspond to data for low ĀSFD regions and redder lines correspond to those

for high ĀSFD regions. The two vertical dashed lines are the same as those in figure 3. The observational

band for each panel is the same as in figure 3.
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Fig. 8. The additional extinction ∆Cx required to give a constant corrected galaxy surface number density

in each subregion. The horizontal axis is the mean Ax,SFD in each band and is scaled so that the relative

positions of a subregion in each of the five panels are the same (the upper scales indicate the corresponding

Ar,SFD values). Error bars are evaluated by the χ2 minimization procedure to fit dS/dmx,ec −∆Cx) to

dSe/dmx,ec.
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Fig. 9. Surface number density of SDSS photometric quasars and spectroscopic galaxies as a function of

Ār,SFD. The filled circles and the crosses indicate the results with and without an extinction correction

using Ax,SFD, respectively. Just for clarity, the data points of photometric quasars and spectroscopic

galaxies with z > 0.1 are shifted upward by +70deg−2 and +60deg−2, respectively. The error bars are 1-σ

Poisson error.

Fig. 10. Correlation between Ar,SFD and Ar,HI. The latter is estimated from the Leiden-Dwingeloo Hi

(21 cm) map (Hartmann & Burton 1997).
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Fig. 11. Surface number density of galaxies as a function of Ar,HI. Filled circles and crosses indicate

Sgal before and after correcting for the extinction using Ar,SFD, respectively.
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Fig. 12. Correlation between Ar,SFD and Ar,HI binned according to Sgal.

21



Fig. 13. The mean correction ∆Ax,IR to Ax,SFD implied by the hypothesis of extragalactic FIR contam-

ination of the SFD-map. The vertical axis is the mean extinction in the SFD-map which is actually due

to this contamination rather than actual Galactic dust (see eq.[7]).
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Fig. 14. Simulated surface number density of galaxies in a mock survey as a function of Ār,c or Ār,SFD.

The open triangle (square) corresponds to extragalactic FIR emission contamination (or absence thereof)

of the FIR Galactic dust emission. We set the surface number density of mock galaxies ,S̄mock, to 1000

deg−2 and the typical contribution to the Ar,SFD of those galaxies, crN̄mock, to 0.02 mag.
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