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Investigation of exomic variants associated with overall survival 
in ovarian cancer

A full list of authors and affiliations appears at the end of the article.

Abstract

Background—While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been 

identified, few associations have been reported with overall survival. In the absence of common 

prognostic genetic markers, we hypothesize that rare coding variants may be associated with 

overall EOC survival and assessed their contribution in two exome-based genotyping projects of 

the Ovarian Cancer Association Consortium (OCAC).

Methods—The primary patient set (Set 1) included 14 independent EOC studies (4293 patients) 

and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies 

(1744 patients) and 114,620 variants. Because power to detect rare variants individually is 

reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and 

by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped).

Results—No individual variant reached genome-wide statistical significance. A SNP previously 

implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the 

strongest evidence of association with survival and similar effect size estimates across sets 

(Pmeta=1.1E-6, HRSet1=1.17, HRSet2=1.14). Rare variants in ATG2B, an autophagy gene important 

for apoptosis, were significantly associated with survival after multiple testing correction 

(Pmeta=1.1E-6; Pcorrected=0.01).

Conclusions—Common variant rs8170 and rare variants in ATG2B may be associated with 

EOC overall survival, although further study is needed.

Impact—This study represents the first exome-wide association study of EOC survival to include 

rare variant analyses, and suggests that complementary single variant and gene-level analyses in 

large studies are needed to identify rare variants that warrant follow-up study.
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Introduction

Epithelial ovarian cancer (EOC) is diagnosed in over 230,000 women world-wide every year 

and it is a leading cause of cancer death (1). Most women are diagnosed with advanced stage 

disease, when five-year survival rates are low (2, 3). Several clinical and demographic 

factors are associated with survival, such as stage, grade and histological subtype (4), but 

few germline prognostic variants have been identified (5). The strongest known genetic risk 

factors for EOC are rare BRCA1 and BRCA2 mutations (6), which also confer differences in 

clinical characteristics including improved five-year, but not ten-year, survival (7–9). 

Although genome-wide association studies (GWAS) to identify common risk loci have been 

fruitful (10–15), studies of survival have been less so (5). For example, variant rs8170 at the 

19p13 locus—a region associated with ovarian and breast cancer risk phenotypes and known 

to interact with BRCA1 (10, 16)— was associated with EOC survival in an initial phase of a 

GWAS (HR=1.35, P=2.4E-4) conducted by the Ovarian Cancer Association Consortium 

(OCAC), but not replicated in an independent dataset (HR=1.01, P=0.85) (10).

While the lack of identified common germline prognostic markers from earlier GWAS may 

be due to inadequate power (due to limited sample size or study heterogeneity), it is also 

possible that rare variants (in addition to those in BRCA1 and BRCA2) not captured in 

GWAS arrays may be associated with overall EOC survival. In fact, it has been suggested 

that multiple rare variants of large effect could collectively be responsible for some of the 

‘missing heritability’ not explained by the common variants of modest effect identified 

through GWAS (17). Motivated by this rare variant hypothesis (18), commercial genotype 

arrays based on exome sequencing studies that attempted to capture all variants (common 

and rare) within coding regions have emerged as a new approach. As single marker tests 

have very little power to detect association with rare variants, approaches that pool 

information across all variants within a gene region may provide improved power (19–23). 

We hypothesize that rare variants, either individually or collectively across a gene, may be 

associated with overall survival in EOC. To test this hypothesis, we combined data from two 

exome-based OCAC genotyping projects that used commercial arrays based on 16 major 

exome sequencing projects (24). With over 6,000 EOC patients, this is the first exome-wide 

rare variant assessment of genetic associations with EOC overall survival.

Materials and Methods

Study Participants

Study participants included 20 independent studies of EOC (Supplemental Table S1), which 

consisted of two sample sets that were genotyped separately on different platforms.

Set 1—For Set 1, 14 independent studies of EOC (DOV, HAW, HOP, LAX, MAC, MAY, 

MSK, NCO, NEC, NJO, ORE, POL, UCI, USC) served as the primary sample 

(Supplemental Table S1), including 6293 patients. Patients consisted of women aged 18 and 

older with a pathologically confirmed primary invasive EOC, fallopian tube cancer, or 

primary peritoneal cancer, excluding Brenner tumors or those missing tumor histology. 

Patients were excluded with incomplete survival time information, such as missing vital 

status or time from diagnosis to follow-up, resulting in 4,976 patients. To avoid potential 
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issues with population stratification, only patients of European ancestry were analyzed 

(N=4293; 2257 deaths at 10 years post-diagnosis).

Set 2—The smaller Set 2 consisted of six additional independent studies of invasive EOC 

(AUS, MAL, POC, RMH, SEA, UKO) (Supplemental Table S1) with 1878 patients of 

European ancestry. To increase statistical power, Set 2 was combined with Set 1 via meta-

analysis (due to separate genotyping). Patients with incomplete survival time information 

(e.g. missing vital status, enrollment greater than 10 years after diagnosis) were excluded, 

resulting in 1744 patients available for analysis (1027 deaths at 10 years post-diagnosis). 

Sixteen patients had missing follow-up time, and were set to the median follow-up time of 

the study; six patients had incomplete time-to-entry information, and were set to entry at 

time zero. Characteristics of both sample sets are described in Table 1. Both patient sets 

consist of predominantly patients with high-grade serous histology, although Set 1 also 

includes a large number of endometrioid patients.

Genotyping and Quality Control

For Set 1, genotyping was performed using genomic DNA and whole genome amplified 

(WGA) DNA for 5904 and 389 patients, respectively. Genotyping was performed at 

Affymetrix Corporation using the Affymetrix Axiom Exome Array (www.affymetrix.com) 

of 409,582 markers, including standard content markers, as well as 100,000 custom markers 

chosen based on preliminary survival associations, follow-up of prior risk associations, and 

non-coding candidate gene variants. The default quality control (QC) criteria recommended 

by Affymetrix was applied to all samples, and then the WGA and genomic samples were 

processed separately. For genomic samples, genotypes were recalled using Powertool for 

variants with MAF < 5%, and samples and variants with call rates < 97% were excluded. 

WGA samples and variants with call rates < 97% were also excluded and then merged with 

genomic samples, resulting in 384,029 variants. Excluding monomorphic variants, 227,892 

variants were used in analysis.

For Set 2, patients contributed genomic DNA samples that were genotyped at the University 

of Cambridge on the Illumina Infinium HumanExome BeadChip (www.Illumina.com) at a 

total of 247,840 exonic markers. Genotype calling was carried out according to Best Practice 

Guidelines using the GenCall module in Illumina’s Genome Studio with a default GenCall 

threshold of 0.15 (25). Samples with low call rate (<99%), high or low heterozygosity based 

on common SNPs (MAF ≥ 0.05), and ambiguous sex or relatedness were excluded. A total 

of 130,909 variants were monomorphic and 147 variants were excluded due to low call rate, 

resulting in 114,620 markers.

Of the 73,203 variants overlapping on both genotyping arrays, a majority are rare variants 

(median MAF=0.0028, IQR=0.068) and coding variants (89.2%). Supplemental Figure S1 

displays the MAF distribution by functional category.

Single Variant Analysis

Both patient sets were analyzed using Cox proportional hazards regression to estimate the 

association of each variant with overall 10-year survival time. For each variant, a Cox 
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proportional hazards model was fit to the number of copies of the minor allele, and a 

likelihood ratio test was conducted, accounting for left truncation (26) and right-censoring 

after 10 years. For top variants, Kaplan-Meier curves were also generated that account for 

left truncation and right censoring. Because the primary and secondary patient sets were 

genotyped separately and on different platforms, they were analyzed separately.

For the primary patient set, models were first minimally adjusted for age, site, and three 

principal components (PCs) to account for population stratification. PCs were computed 

based on common variants (MAF > 1%, HWE p > 1E-7) using the study patients, as well as 

HapMap subjects. Additionally, the following clinical factors with univariate survival 

associations of p<0.05 and with p<0.0001 in multivariable modelling were included as 

covariates along with three PCs: age, stage, grade, histology, and site. Both sample sets 

consisted of patients of primarily serous histology, although Set 1 also included many 

endometrioid cases. Therefore all histologies were included in analyses (N=4293), but 

histological subtype-specific analyses were also conducted for high-grade serous (N=3149) 

and endometrioid subtypes (N=735), because some candidate variants were targeted for 

these subtypes. Variants with p < 2.2E-7 were considered significant after Bonferroni 

correction for multiple testing.

Because the sample size of Set 2 was relatively small, its primary utility was to improve 

power and provide supportive evidence for the primary results via meta-analysis; the patient 

sets were genotyped separately, which limited the ability to conduct a pooled analysis. For 

Set 2, Cox proportional hazards analyses (accounting for left truncation and right-censoring 

after 10 years) were conducted using minimal adjustments as above; no other covariates 

were associated with the outcome and therefore additional adjustments were not included 

due to the smaller sample size. Fixed effect meta-analyses were conducted for the 

overlapping variants on both the Affymetrix and Illumina platforms (73,203 variants), based 

on the likelihood ratio summary statistics from the minimally adjusted Set 1 and Set 2 

analyses. Single variant meta-analysis was conducted using the R package ‘rMeta’ (http://

cran.r-project.org/web/packages/rmeta/). All analyses were conducted in R version 3.0.2 

(http://www.R-project.org/).

Gene-Level Analysis

As single variant analyses are under-powered for rare variants, gene-level tests were also 

used. Variants were mapped to genes based on Human Genome Build 37 and annotation 

supplied by Affymetrix and Illumina, resulting in 18,323 genes analyzed in Set 1 and 13,191 

genes analyzed in Set 2. To be included in gene-level analysis, genes were required to 

contain at least two SNPs. Gene-level testing was conducted on both the sample sets 

separately using burden tests, as well as Sequence Kernel Association Test (SKAT) for Cox 

proportional hazards models (27). The gene-level burden test is a weighted sum of the 

genotypes of all variants with a gene regressed on survival time (20). The gene-level SKAT 

statistic is a weighted sum of the single variant likelihood ratio test statistics, across all 

variants within a gene (23). Variant weights were computed as a function of MAF, where all 

variants were included, and rare variants received much greater weight; specifically, the 

weight function used was  for each variant j (23). Minimally 
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adjusted (Sets 1 and 2) and fully-adjusted tests (Set 1) were computed as described above for 

single variant tests. Gene-level tests (SKAT and burden tests) were computed using the R 

package ‘seqMeta’ (http://cran.r-project.org/web/packages/seqMeta/), with minor 

modifications to accommodate left-truncated data.

As with the single variant tests, meta-analyses of gene-level tests across the sample sets 

were also conducted. For the purpose of meta-analysis only, variants that were 

monomorphic in one set but not the other were included to provide information on MAF 

across both studies. A total of 13,163 genes available in both sample sets were meta-

analyzed using the R-package ‘seqMeta’. Genes with p<3.8E-6 were considered significant 

after Bonferroni correction for multiple testing. Sensitivity analyses were conducted for 

variants with MAF<0.05, MAF<0.10, and MAF<0.25, as well as for coding variants only.

Results

Single variants

Results for all 73,203 variants included in the meta-analysis of 6,054 invasive EOC patients 

are displayed in Figure 1. Three variants were associated with overall survival at p-values < 

1.0E-4, including two with MAF < 0.001 (Table 2). The top ranking variant in the meta-

analysis was common variant rs8170 in BABAM1 at 19p13.11 (Pmeta=1.14E-6), previously 

reported to be associated with EOC risk (10); the minor allele of this variant was associated 

with decreased survival in both sets (HR1=1.17, HR2=1.14; Figure 2). Additional top 

ranking variants were rare non-synonymous variants rs140079492 in PAK7 (P21 protein 

(cdc42/rac)-activated kinase) at 20p12.2 ((Pmeta=9.32E-6) and rs34335714 in CTSW 

(cathepsin W) at 11q13.1 (Pmeta=4.91E-5, Table 2).

Despite reduced sample size compared to meta-analysis, Set 1-specific results are also of 

interest due to the much larger number of variants targeted than in Set 2 (including custom 

candidate variants); therefore we also report the results of all variants analyzed in Set 1 

(including those non-overlapping with Set 2). In this primary EOC sample set (4293 

patients), with adjustment for age, site, stage, grade, histology, and PCs, 24 variants in 11 

chromosomal regions showed evidence of association with overall survival with P<5.0E-5, 

although none of these associations are significant after correction for multiple testing. 

Genome-wide results are plotted in Supplemental Figure S2, and top variants are described 

in Supplemental Table S2. The variant most strongly associated with survival was 

rs7642051, a common variant (MAF=0.46) in LMCD1-AS1 (LMCD1 antisense RNA 1) at 

3p26.1 (p=4.10E-6); its minor allele was associated with decreased survival (HR=1.15; 

Supplemental Table S2, Supplemental Figure S3). Several correlated variants in an 

intergenic region of chromosome 1 between UBE2U and CACHD1 (1p31.3), targeted due to 

a prior study of overall survival, also showed modest evidence for association with survival 

(Supplemental Figure S4). This region showed similar results for the high grade serous 

subtype (data not shown). Among patients with endometrioid subtype, the most strongly 

associated variant was rs757759 in TBXAS1 at 7q34 (HR=1.78, P=1.55E-6, MAF=0.23).
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Gene-level

Results for all 13,163 genes included in the meta-analysis across Sets 1 and 2 are displayed 

in Figure 3. Five genes had meta-analysis p<1.0E-4 based on the burden test, and four of 

these genes showed evidence of association in both sets separately (Table 3). The top-

ranking gene was ATG2B (Pmeta=1.08E-6), which was significant after multiple testing 

correction based on 13,163 genes (Pcorrected=0.014). Out of 17 single variants meta-analyzed 

in ATG2B at 14q32.2, nine had p<0.10 (Supplemental Figure S5) and 15 with positive effect 

size estimates (HR>1.0); of note, variants were largely uncorrelated (pairwise r2 <0.2), and 

most were rare (16 with MAF<0.01; median=5.9E-4, range=1.7E-4 – 6.8E-3). When 

restricted to the high-grade serous subset, ATG2B remains the top gene (Pmeta=1.75E-6). 

Other genes of interest across all histologies include zinc finger protein PEG3 

(Pmeta=1.82E-5), helicase-like transcription factor HLTF (Pmeta=1.9E-5), mitochondrial 

fission regulator 1-like gene MTFR1L (p=3.1E-5), and T-cell surface glycoprotein CD1E 

(Pmeta=8.78E-5; Table 3). Results differed based on the SKAT meta-analysis; while gene-

rankings were relatively similar to the burden test, p-values were higher (min P=1.17E-4 for 

ZNF131). In particular, the meta-analysis p-value based on SKAT for ATGB2 was p=0.006 

(Table 3). Although top-ranked in single variant analyses, BABAM1 was not significant at 

the gene-level (Pburden=0.83, PSKAT=0.53).

In analysis of Set 1 alone, when adjusted for age, site, stage, grade, histology, and PCs, five 

genes showed evidence of association with overall survival at P<1.0 × 10−4 from the burden 

test, although none of these associations are significant after multiple testing correction 

based on number of genes (Supplemental Table S3); results were similar using SKAT 

(Supplemental Figure S6). The top-ranked genes were POGLUT1 (protein O-

glucosyltransferase 1; Pburden=7.10E-6, PSKAT=8.33E-6), ST20 (suppressor of 

tumorigenicity 20; Pburden=2.32E-5, PSKAT=2.32E-5), and ATG2B (autophagy related 2B; 

Pburden=5.16E-5, PSKAT=3.23E-2)—the most significant gene in meta-analysis. 

Additionally, consistent with individual variant analysis, variation in UBE2U showed some 

evidence of association (36 variants, Pburden=5.07E-4, PSKAT=4.95E-4), although evidence 

was less strong in the CACHD1 region (65 variants, Pburden=0.004, PSKAT=0.025). Gene-

level results were similar when restricted to patients with high-grade serous subtype, when 

restricted to variants with MAF<0.05, MAF<0.10, and MAF<0.25, and when restricted to 

only coding variants (data not shown); ATG2B remained the top gene, with meta-analysis p-

values based on a burden test ranging from 3.94E-7 to 1.08E-6.

Discussion

To our knowledge, this study represents the first exome-wide assessment of association 

between EOC survival and rare genetic variation, both for single variants and for genes, 

including over 6000 patients. By combining data from two exome-based OCAC genotyping 

projects, genome-wide significant findings were identified at the gene-level in ATG2B 

(Pmeta=1.1E-6, Pcorrected=0.01); and, in analysis of approximately 73,000 variants, the 

known EOC susceptibility variant rs8170 in BABAM1 arose as the most statistically 

significant (Pmeta=1.1E-6), followed by non-synonymous variants rs140079492 in PAK7 

(serine/threonine-protein kinase; missense mutation Glu → Gly) and rs34335714 in CTSW 
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(cathepsin W; missense mutation Ser → Asn, predicted splice variant). As genotype 

imputation methods are known to be unreliable in the context of rare variation (28, 29), the 

use of direct genotyping is an important strength of this report.

ATG2B, the survival-associated gene based on burden testing, is a key autophagy gene 

residing on chromosome 14q32.2. Autophagy is a cell death process which uses degradation 

of lysosomal cytoplasmic components; in cancer, it is thought to link apoptosis with 

programmed necrosis and has been proposed as an alternative target to treat tumor resistance 

(30). It is regulated by several microRNAs, including mir-30d and mir-130a (31, 32), and 

has recently been linked to precursors of pancreatic cancer (33). Here, up to 34 ATG2B 

variants genotyped in either Sets 1 or 2 associated in combination with EOC survival; this 

was consistent with the trends of individual ATG2B variants, where nine of 17 ATG2B 

variants observed in both sets had p<0.10 in the meta-analysis. These results suggest that 

ATG2B may warrant targeted sequencing in large datasets to confirm the existence of 

potentially rare, inherited prognostic variants.

Although not statistically significant after correction for multiple testing, BABAM1 rs8170 at 

19p13, the top ranking individual variant across both sample sets (adjusting for age, site, and 

PCs), warrants attention. This synonymous coding variant is relatively common 

(MAF=0.20) and is included on multiple commercial GWAS arrays, as well as the 

Affymetrix and Illumina exome-based arrays used here. Its MAF contributed to increased 

power to its detection over the rarer variants on the arrays. BABAM1 rs8170 is known to 

associate with EOC risk (10), with triple-negative breast cancer risk (34), and with risk of 

ovarian cancer and estrogen-negative subtypes of breast cancer among BRCA1 and BRCA2 

mutation carriers (16, 35). The estimated hazard ratio in meta-analysis was 1.16, which 

roughly translates to a 16% reduction in median survival time for patients with one copy of 

the minor allele compared to those with no copies (36). Sensitivity analysis of the current 

data show that when also adjusted for stage, grade, and histology, the rs8170 effect size was 

slightly reduced (HR=1.11 vs. HR=1.17; P=4.33E-5). However, when the analysis was 

restricted to patients with high-grade serous cancer, effect size estimates were relatively 

robust whether adjusted for age, site, and PCs (HR=1.17, P=4.66E-5) or also stage and grade 

(HR=1.14, P=8.02E-5). Additional patient subset analyses may uncover other patterns of 

survival; for example, for a subset of OCAC with available data regarding detailed treatment 

strategies, no association of rs8170 with overall survival or progression free survival was 

observed after stratifying by treatment (37). Although prior EOC survival studies yielded 

inconsistent results (10), unpublished meta-analysis of genotyped and imputed variation at 

rs8170 from a much larger sample of over 18,000 EOC patients (including the majority of 

those in the current study and all of the patients from a prior EOC survival study (10)) 

revealed a genome-wide significant association (HR=1.15, P=4.7E-9) (Pharoah et al, 

personal communication). Altogether, the BABAM1 region containing rs8170 is clearly of 

importance to ovarian cancer and will be subjected to fine-mapping and detailed functional 

analyses.

As one of the early GWAS using exome-based Affymetrix and Illumina genotyping arrays, 

we note some rare variant analytical lessons learned. Single variant analyses often yielded 

different results than the aggregate gene-level tests, and represent useful, complementary 
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analysis strategies. Because single variant tests were subject to reduced power to detect 

associations with rare variants, only associations with common variants (such as rs8170) and 

rare variants with extremely large effect sizes were detectable. For example, in the single 

variant meta-analysis, the median MAF is less than 0.005, which translates to less than 60 

subjects out of the combined Set 1 and Set 2 sample size of 6037 that can be expected to 

harbor at least one copy of the rare allele. For rare variants with MAF of 0.005, we have 

80% power to detect hazard ratios greater than 2.9, and for even rarer variants, only much 

larger hazard ratios would be detectable with this sample size. Thus, larger sample sets will 

be necessary to rule out or detect individual associations with the approximately 70,000 

variants that were individually meta-analyzed here. However, because gene-level tests 

consider all variants within a region and weight rare variants more heavily, they are able to 

identify associations with regions that contain many variants with moderate evidence of 

association; for example, no variant in ATG2B had a meta-analysis p-value<0.001, yet it was 

genome-wide significant at the gene-level.

The most powerful gene-level analysis tool is dependent on the underlying genetic etiology 

of the trait, and because the true genetic architecture of EOC survival is unknown, we used 

two methods for gene-level testing that have been shown to be powerful under different 

scenarios (20, 27). While the gene rankings using a burden test or SKAT were similar, the p-

values based on the SKAT analysis were often higher, suggesting that SKAT may be less 

powerful, consistent with simulation studies (23). The burden test assumes that the direction 

of effect for each variant within the gene region is the same, while SKAT does not assume 

consistent effect direction. Therefore the burden test will be more powerful to detect rare 

variants if the true causal effects are in the same direction (23); because our outcome of 

interest in this study was survival, it is not unreasonable to assume that rare variants would 

increase risk of death (rather than the converse), although of course the true underlying 

genetic model of EOC survival remains unknown. In fact, for ATG2B (where the SKAT p-

value was higher than the burden p-value), all but one of the nine variants with meta-p<0.10 

had estimated hazard ratios greater than 1.0.

The findings of this study should be considered in the context of the following limitations, in 

addition to sample size. The two patient sets were genotyped separately on different 

platforms that targeted different variants due to differences in chemistry (Affymetrix vs. 

Illumina), even though both panels were designed from a common set of variants from the 

Exome Sequencing Project (24). This is far from ideal, not only requiring extensive 

additional data harmonization measures, but limiting our ability to conduct a pooled analysis 

and restricting meta-analysis to a reduced set of variants (only 73,203 combined from 

227,892 Set 1 and 114,620 Set 2 variants) and genes (only 13,163 combined from 18,323 

Set 1 and 13,191 from Set 2 genes) that were observed in both sets. Therefore many rare 

variants that were observed in the larger Set 1 were not assessed in Set 2. Furthermore, 

although also a strength, approximately 25% of the Affymetrix array was customized 

content, and therefore not interrogated in Set 2, including the intergenic region in 

chromosome 1 between UBE2U and CACHD1. Imputation to a denser set of variants, for 

example using 1000 Genomes Project data, is known to be unreliable based on rare variants 

and was therefore not performed; future work to integrate these data with other available 
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genotypes for these patients will be informative. Additionally, while all patients underwent 

surgery, the important clinical factors of optimal debulking and type of treatment (e.g. 

chemotherapy) could not be included as covariates or stratification factors due to a large 

amount of missing data; both should be examined in future genetic studies to assess their 

impact on survival outcomes. Finally, it should be noted that some of the data analyzed here 

were not independent from previous OCAC EOC overall survival reports (5, 10, 38); 

specifically, some variants on the exome arrays were also on GWAS or candidate gene 

arrays which had previously been used on a subset of the current patients. However, the vast 

majority of the current array content was largely used to test the novel rare variant 

hypothesis.

Lastly, this study comprised data from 20 OCAC studies, with differing ascertainment 

strategies and methods for clinical follow-up of cases, resulting in the potential for increased 

study heterogeneity in the overall survival outcome measure. While we adjusted for study 

site in all models, uncaptured heterogeneity across studies (such as differences in treatment 

strategies over time and across medical institutions) will lead to increased noise and reduced 

power. In future studies, more refined outcome measures targeted at reducing this 

heterogeneity could improve power. For example, because first-line therapy may differ from 

treatment strategies after a recurrence, progression free survival may be a more optimal 

endpoint, although this measure is also susceptible to study site heterogeneity. Because 

recurrence data was not widely available for all patients across all sites, it was not 

considered as a primary endpoint in this study. However, analysis of the association between 

rs8170 and progression free survival were consistent with the results observed for the overall 

survival outcome (HRmeta=1.15, Pmeta=1.3E-6, 95% CI=1.09–1.22).

To summarize, in the absence of associations between common genetic variants and EOC 

survival, we examined the role of primarily rare exonic variants, individually and 

collectively across genes, using partially customized commercial arrays in over 6000 

patients. While no individual variants were significant at the genome-wide level, ATG2B 

showed gene-level evidence of association with overall survival, and BABAM1 rs8170 was 

again highlighted to be of particular relevance. This suggests potential candidates for future 

studies that may lead to targets for improved EOC outcomes, although follow-up in the 

larger sample of OCAC subjects not included here, as well as a focus on reducing the 

heterogeneity in the outcome measure, will be critical.
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Figure 1. 
(A) Manhattan plot of single variant meta-analysis for variants present in both Set 1 and Set 

2. −log10(p-values) are plotted by chromosomal location. Survival analysis was adjusted for 

age, site, and PCs. (B) QQ-plot of single variant meta-analysis; because some variants occur 

in multiple genes, there are dependencies among tests.
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Figure 2. 
Kaplan-Meier plot based on rs8170 genotype for Set 1 (A) and Set 2 (B).
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Figure 3. 
(A) Manhattan plot of gene-level meta-analysis for genes present in both Set 1 and Set 2. 

−log10(p-values) are plotted by chromosomal location. Survival analysis was based on the 

burden test, and adjusted for age, site, and PCs. (B) QQ-plot of gene-level meta-analysis; 

because some variants occur in multiple genes, there are dependencies among tests.
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