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Abstract

The structural manipulation of small molecule metabolites occurs in all organisms and plays a 

fundamental role in essentially all biological processes. Despite an increasing interest in 

developing new, non-enzymatic chemical reactions capable of functioning in the presence of 

living organisms, the ability of such transformations to interface with cellular metabolism and 

influence biological function is a comparatively underexplored area of research. This review will 

discuss efforts to combine non-enzymatic chemistry with microbial metabolism. We will highlight 

recent and historical uses of non-biological reactions to study microbial growth and function, the 

use of non-enzymatic transformations to rescue auxotrophic microorganisms, and the combination 

of engineered microbial metabolism and biocompatible chemical reactions for organic synthesis.

1.1 Introduction

Microorganisms are the most abundant and diverse organisms on Earth. Through billions of 

years of evolution they have acquired the ability to inhabit an astonishing array of 

environments [1]. These include the extreme temperatures found in deep-sea hydrothermal 

vents (hyperthermophiles) [2] and in subterranean ice sheets (psychrophiles) [3]; the high 

pressure of the Mariana Trench (piezophiles) [4]; and various sites in and on the human 

body (the human microbiota) [5]. To support growth in these habitats, many microbes have 

coevolved strategies to support their metabolism that involve chemistry not encoded by their 

genomes. In many cases survival is therefore dependent on a microbe’s ability to interface 

its metabolism with the surrounding chemical environment. Conceptually this parallels the 

way synthetic chemists make molecules in a laboratory setting, using non-enzymatic 

reagents and catalysts to synthesize molecules essential to our everyday lives.

Over the last several decades there has been a steadily growing interest in developing non-

biological chemical transformations for use in a cellular setting [6–12]. Although such 
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reactions have been demonstrated to occur in both cells and in living organisms and are 

powerful tools for studying natural biological processes (bioorthogonal chemistry), the 

question of whether or not their reactivity can interface with cellular metabolism and alter 

biological function remains comparatively underexplored. One approach to achieving this 

goal is the development of biocompatible chemistry: non-enzymatic reactions that alter the 

structures of metabolites as they are produced by living organisms. There are multiple ways 

in which biocompatible transformations could be integrated with cellular metabolism 

(Figure 1). They could modify the end products of metabolic pathways, support metabolic 

functions by generating key substrates or nutrients in vivo, or be fully integrated into cellular 

metabolism.

One of the largest challenges encountered in merging non-enzymatic chemistry with 

metabolism is the apparent mismatch between the approaches used in synthetic organic 

chemistry (non-aqueous solvents, rare earth and transition metals, reactive intermediates, 

extreme temperatures and pH) and the growth conditions required to support a living 

organism (aqueous media, ambient temperature, neutral pH). The complexity of the cellular 

and extracellular environments and the typically low concentrations of cellular metabolites 

are also potential concerns. As has been the case with bioorthogonal reactions, we feel that 

these obstacles may be overcome through reaction screening optimization and that the 

potential benefits associated with the realization of this approach justify the challenges 

associated with developing such transformations.

Biocompatible chemistry would provide scientists with a unique toolkit for manipulating 

and augmenting biological function in vivo that would not require genetic manipulation and 

could be applied to both cultured and uncultured organisms. This review will discuss recent 

achievements in combining non-enzymatic chemistry with metabolism, with a particular 

emphasis on studies involving microorganisms. We will focus on non-enzymatic reactions 

that have a direct influence on metabolic function. We will not include examples that use 

solely genetic approaches to manipulate metabolism or studies that use non-enzymatic de-

caging strategies to control protein function in vivo. We will highlight key experiments that 

have seeded interest in this topic and provide our perspective on the future challenges and 

opportunities for this area of research.

2.1 The role of non-enzymatic chemistry in natural microbial habitats

Before discussing examples of non-biological transformations that have been designed by 

chemists and chemical biologists to function in the presence of living systems, we will 

briefly discuss several examples of how microbes have evolved to utilize non-enzymatic 

reactions to facilitate growth in natural settings. The influence of non-enzymatic chemistry 

on microbial metabolism is a phenomenon often observed in natural microbial populations. 

Non-enzymatic transformations have also frequently been proposed to play important roles 

in the origin of life and metabolic pathways. In 1924 biochemist Aleksandr Oparin first 

hypothesized that carbon-based metabolism could have originated from non-enzymatic 

chemistry enabled by the highly reducing geochemical environment of the early Earth [13–

16]. In support of this hypothesis, ferrous iron has been shown to catalyze transformations 

that in modern organisms constitute glycolysis and pentose phosphate pathway chemistry, 
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suggesting that the origins of cellular metabolism could date back to non-enzymatic 

chemistry operating in the iron-rich oceans of the prebiotic world [17].

The chemistry of environmental iron impacts microbial survival in limiting habitats [18–22]. 

Under oxygen-limiting conditions many facultative anaerobic microbes use extracellular 

iron and manganese ions as terminal electron acceptors [23]. This use of redox-active 

environmental metals is especially remarkable due to the chemical challenges associated 

with their acquisition. For example, geological manganese and iron exist in metal oxides/

oxyhydroxides that are inaccessible to reduction due to their insolubility. Microbes 

overcome this issue by excreting small molecules capable of solubilizing these metal ions 

(siderophores), as well as redox active small molecules that can directly reduce metal oxides 

(extracellular electron shuttles) [24]. An example of a microbe that uses redox-active small 

molecules to facilitate respiration of metals is the opportunistic pathogen Pseudomonas 

aeruginosa, which secretes redox-active pigments collectively known as phenazines [25]. 

Secreted, reduced phenazines support respiration under anaerobic conditions by transferring 

electrons to nearby extracellular oxidants (frequently Fe2+/3+). This generates ATP through 

the Entner-Doudoroff pathway, which involves the non-enzymatic regeneration of NAD+ 

from accumulating NADH (Figure 2A) [26]. Phenazines and Fe2+ have been detected in the 

sputum of cystic fibrosis patients at levels consistent with this process supporting the 

anaerobic survival of P. aeruginosa in this environment and contributing to chronic 

infection [27,28]. This observation has led to research into iron-chelation therapy as a 

treatment for persistent P. aeruginosa infections [29–31].

Microbes in soil and aquatic ecosystems also use iron to support their metabolism by 

harnessing its reactivity to promote the non-enzymatic degradation of lignin [32]. Lignin is 

complex polymer containing aromatic functionality and is a critical component of plant cell 

walls. It represents one of the largest sources of fixed carbon on Earth and its biodegradation 

therefore occupies a significant role in global carbon cycling [33]. The white and brown rot 

fungi Perenniporia medulla-panis and Gloeophyllum trabeum degrade lignin to humic acids 

using an extracellular hydroquinone-quinone redox couple to environmental Fe3+ to produce 

hydrogen peroxide from oxygen [34]. This enables the non-enzymatic degradation of lignin 

via the generation of highly reactive hydroxyl radicals using Fenton chemistry (Figure 2B). 

In this context both G. trabeum and P. medulla-panis use non-enzymatic redox chemistry as 

a strategy to replace the function of lignin peroxidase, the enzyme used by other microbes to 

degrade lignin. The humic acids released in this process serve as a primary source of carbon 

and as terminal electron acceptors for a variety of organisms in nutrient and oxygen-poor 

soil and aquatic environments.

3.1 Developing non-enzymatic chemistry to control biological function

The ability of chemists to develop chemical reactions that extend beyond what is available 

to living organisms in natural environments opens up the possibility of developing new ways 

of linking microbial metabolism to non-enzymatic chemistry. Specifically, biocompatible 

non-enzymatic chemistry could enable the chemical manipulation of small organic 

molecules such as cofactors and metabolites in ways that could impact cellular function. 
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Indeed, chemists have achieved this goal by harnessing the reactivity of both stoichiometric 

small organic reagents and transition metal catalysts.

Much of the seminal work in this area has focused on using non-enzymatic redox chemistry 

to manipulate the redox state of cellular components. In 1969, Kosower reported the 

stoichiometric use of the organic reagent diamide to oxidize the endogenous antioxidant 

glutathione (GSH) to glutathione disulfide (GSSG) in vivo in E. coli. (Figure 3A) [35]. In 

addition to detoxifying reactive oxygen species and free radicals in the cell, GSH also serves 

as a cofactor for enzymes that mediate redox chemistry. Under normal cellular conditions 

over 90% of GSH is in its reduced form. In vivo manipulation of GSH and GSSG levels 

impacts a variety of cellular functions, especially in cells recovering from oxidative damage. 

In 2014, Ward and coworkers also employed stoichiometric diamide to oxidize the GSH 

present in E. coli cell lysates, improving the efficiency of transition metal mediated reactions 

in this environment [36]. Oxidation of GSH in vivo has also been accomplished using 

transitional metal complexes (Figure 3B). Sadler and coworkers have shown the ruthenium 

piano-stool complexes efficiently oxidize GSH to GSSG without issues of poisoning for 

living human ovarian and lung cancer cell lines [37]. The same group has also reported an 

iridium-catalyzed transfer-hydrogenation that can operate in vivo to modulate redox balance 

in cells by converting the co-factor NADH to NAD+ and hydrogen [38]. The non-enzymatic 

oxidation of NADH has the potential to impact the functions of enzymes that use this redox 

cofactor and may enhance or reduce growth depending on an organism’s mode of 

metabolism. Such catalysts could also potentially alter redox balance in ways that could be 

beneficial in the context of engineered metabolic pathways.

While the chemistry mentioned above affects the homeostasis of organisms by oxidizing 

cellular reductants, researchers have also been interested in developing catalytic anti-

oxidants to reduce the strain placed on organisms and cells by excess reactive oxygen 

species [39]. The most prevalent catalytic antioxidants are manganese(II) porphyrin 

complexes that mimic the activity of superoxide dismutase (SOD), reducing superoxide, 

peroxynitrite, carbonate anion radical, hypochlorite, nitric oxide, lipid peroxyl radicals, and 

alkoxyl radicals, all of which can cause oxidative stress to cells [40]. There has been 

substantial interest in developing SOD mimics as pharmaceuticals, prompting many efforts 

to understand the in vivo activities of metalloporphyrins. SOD-deficient E. coli mutants have 

proven to be useful tools for investigating the minimal requirements of a functional SOD 

mimic [41]. Mutants lacking SOD enzymes exhibit growth defects in certain minimal media 

and restoration of growth is indicative of antioxidant activity. This system has enabled the 

efficient identification of catalytic antioxidants with high activity, low toxicity, and efficient 

cellular uptake.

Biocompatible chemistry can also be used to generate metabolites that play essential roles in 

metabolism. A recent study from our own laboratory has demonstrated the possibility of 

controlling microbial growth using non-enzymatic reactions (Figure 3C) [42]. In this report 

we were able to support the growth of multiple p-aminobenzoic acid auxotrophs via the 

[Cp*Ru(cod)Cl]-catalyzed deprotection of N-alloc-PABA in situ. Similarly, we used an 

iron-mediated hydroxylation reaction to rescue the growth of a p-hydroxybenzoic acid 

auxotroph. In both cases, the growth of the auxotrophic organism was dependent upon the 
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success of the non-enzymatic reaction. Rescued cultures retained their auxotrophies upon re-

inoculation into media lacking key nutrients, indicating that rescue was not the result of 

genetic changes in the organism over the course of the experiment. The product yields 

and/or isomer distributions were low for both reactions, highlighting how minor 

modulations of metabolite levels in a cell can have a dramatic impact on growth and 

function. Both of these transformations rescue auxotrophy by providing alternate routes to 

essential compounds and not by directly mimicking the missing biochemical function. The 

development of biocompatible catalysts that can replace the function of an essential 

metabolic enzyme is an important future goal that could also represent a new strategy for 

treating metabolic disorders.

4.1 Combining microbial metabolism and non-enzymatic chemistry for 

small molecule production

In addition to influencing core biological functions, the merging of biocompatible chemistry 

with microbial metabolism provides an opportunity to modify metabolites in ways that 

benefit efforts to utilize these organisms for chemical production. Advances in the field of 

synthetic biology have enabled the use of engineered microbes for the production of small 

molecules such as pharmaceuticals and commodity chemicals. Despite these achievements, 

many important chemical scaffolds cannot be accessed using this approach due to the 

differences in the scope of reactivity available to enzymes in comparison with that available 

to non-enzymatic catalysts and reagents [43]. A possible solution to this problem could 

involve combining biocompatible reactions with engineered metabolism for small molecule 

synthesis, a strategy that has been relatively underexplored [44]. To the best of our 

knowledge, the cooperative use of non-enzymatic chemistry from organic synthesis and 

microbial metabolism originated with Neuberg’s bisulfite-steered glycerol fermentations 

during the First World War [45,46]. Neuberg observed substantial overproduction of 

glycerol from glucose by Saccharomyces cerevisiae when sodium bisulfite was added to the 

fermentation. It was later discovered that the bisulfite anion formed a stable adduct with 

acetaldehyde, a metabolite generated en route to ethanol, the typical fermentation end 

product. Bisulfite adducts are used in organic chemistry as a method for protecting 

aldehydes [47]. This non-enzymatic reaction interfered with the reduction of acetaldehyde to 

ethanol, forcing accumulating NADH to be reoxidized to NAD+ via an alternate pathway, 

the reduction of dihydroxyacetone phosphate, which yielded glycerol as the primary 

product. This process contributed significantly to the German war effort by allowing the 

manufacture of glycerol from sugar for use in the production of explosives.

Our lab is developing new biocompatible chemical transformations that can be combined 

with microbial metabolism to enable chemical production. We have begun this work by 

identifying transition metal mediated reactions that can use metabolites generated in situ by 

living bacteria. Our initial studies focused on transformations that could engage the 

diffusible microbial metabolite hydrogen gas. Bacterially-produced hydrogen had previously 

been utilized for non-enzymatic chemistry on an analytical scale. Mountfort and co-workers 

demonstrated the use of hydrogenation chemistry to decouple the metabolism of the proton-

reducing syntrophic bacterium from a partner methanogen (Figure 4A) [48]. The syntrophic 
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bacterium Syntrophomonas wolfei and the methanogen Metanospirillum hungatei co-exist in 

an obligate metabolic partnership that couples the thermodynamically unfavorable oxidation 

of butyrate to acetate (acetogenesis) to the thermodynamically favorable production of 

methane from CO2 (methanogenesis) via the interspecies exchange of hydrogen. Culturing 

these organisms in the presence of ethylene gas and super-stoichiometric amounts of Pd-

BaSO4 resulted in the formation of ethane. This observation indicated that in the absence of 

a partner methanogen, S. wolfei was able to couple butyrate oxidation and hydrogen 

production to the reduction of ethylene by the palladium catalyst. This study demonstrated 

for the first time that it is possible to decouple the metabolic functions of two obligate 

syntrophs using a non-enzymatic transition metal catalyzed hydrogenation.

Inspired by this observation, our laboratory recently reported a biocompatible alkene 

hydrogenation reaction that utilizes hydrogen generated by living bacteria (Figure 4B) [49]. 

We used a strain of E. coli engineered to produce hydrogen via a single inducible pathway 

consisting of a pyruvate ferredoxin oxidoreductase, a ferredoxin, and a [Fe–Fe] hydrogenase 

(Figure 4C). After demonstrating that heterogeneous transition metal catalysts could 

promote alkene hydrogenation in growth media using bacterially-generated hydrogen, 

screening identified the Royer palladium catalyst (palladium on polyethyleneimine/SiO2) as 

an optimal hydrogenation catalyst. After further optimization, we identified conditions that 

could be applied to a range of alkene substrates and could be utilized for gram scale 

reactions. Growth of the hydrogen-producing E. coli cells was unaffected by the reaction 

components. To the best of our knowledge, this is the first time that the metabolic output of 

a living organism and a non-enzymatic chemical transformation have been directly 

combined for preparative scale chemical synthesis. Intended to compliment synthetic 

biology efforts, this study represents a crucial first step towards integrating biocompatible 

reactions with cellular metabolism for small molecule synthesis.

5.1 Outlook

The specific examples summarized here demonstrate the ability of non-enzymatic, 

biocompatible transformations to influence the metabolism of microorganisms. We believe 

that the timing is right for an expansion of this approach due to recent advances in organic 

chemistry and microbiology. Although discovering and optimizing biocompatible reactions 

poses technical challenges, many of these are conceptually identical to the obstacles faced 

by synthetic chemists in developing new reactions. Biocompatible chemistry may therefore 

take advantage of new, high-throughput approaches to reaction discovery that have been 

implemented by organic chemists [50–53]. Additionally, organic chemists are continuously 

developing mild bond-forming methods that operate under ambient and aqueous reaction 

conditions [54]. Access to increasingly powerful tools for synthesizing and assembling DNA 

has also made it possible to manipulate microbial metabolic pathways in new ways with 

unprecedented efficiency [55]. Microbial genome sequencing efforts are also rapidly 

expanding the ‘toolkit’ of enzymes available for metabolic engineering [56–59]. These 

advances will continue to expand the range of metabolites that can be accessed using 

microbial metabolism and interfaced with non-enzymatic chemistry, as well as enhance the 

speed with which such processes are developed.

Wallace et al. Page 6

Curr Opin Chem Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



What are the most exciting potential future applications of interfaced chemistry and 

metabolism? In the context of chemical production, interfacing biocompatible reactions with 

the products of engineered microbial metabolism could rapidly diversify the structures of 

metabolites. The ability to access a range of potentially new chemical scaffolds directly 

from fermentations could change the way engineered organisms are used for chemical 

production, making microbial metabolism a useful source of new molecular scaffolds that 

could be evaluated for desired properties in addition to providing a route to chemicals of 

established importance. Engineered microbial metabolism could also be used to generate 

unstable, toxic, or inefficiently manufactured reagents directly in reaction mixtures, 

obviating the need to transport and store large quantities of these materials. Before this goal 

can be realized, biocompatible reactions must be optimized for process scale applications 

with regards to cost and efficiency.

Non-enzymatic reactions that can influence cellular metabolism may also have applications 

in microbiology and medicine. One can envision developing biocompatible reactions that 

modify the structures of metabolites exchanged in microbial communities. Transformations 

of this type could potentially alter community structure by disrupting cell-cell 

communication (quorum sensing) or manipulating metabolite exchange. This technology 

could be applied to reduce the susceptibility of communities like the human gut microbiota 

to dysbiosis or to invasion by pathogens. Reactions that interface with microbial metabolites 

could also perhaps aid in efforts to grow previously unculturable microbes by replacing 

essential metabolic interactions. Thinking beyond microorganisms, the development of 

biocompatible transformations that can directly replace the functions of metabolic enzymes 

could provide a new approach to treating human disease, particularly metabolic disorders 

that arise from deficiencies in enzyme function. Exploring both of these applications will 

require the identification of new catalysts that are not only functional and biocompatible, but 

also possess improved efficiency and selectivity.

6.1 Conclusion

The use of non-enzymatic, biocompatible reactions represents a new way to utilize, 

manipulate, and complement microbial metabolism. Small molecules synthesized by living 

organisms participate in and control an array of biological processes, making biocompatible 

chemistry a potentially powerful approach to influencing cellular function. Recent work has 

shown that reaction discovery and optimization efforts similar to those used in synthetic 

organic chemistry can access non-enzymatic transformations that function cooperatively 

with the metabolism of a living organism. We hope that these studies inspire future efforts to 

develop further transformations the can be utilized in this way, as well as new applications 

of natural and engineered metabolism in chemical manufacturing.
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Highlights

• Microorganisms have evolved to utilize non-enzymatic reactions to facilitate 

their survival in many environments.

• Non-enzymatic reactions developed by chemists can be interfaced with 

microbial metabolism and can have an influence on biological function.

• The products of engineered metabolism can be combined with non-enzymatic 

reactions to enable chemical synthesis.
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Figure 1. 
Approaches to interfacing biocompatible chemistry with microbial metabolism and potential 

applications of this technology.
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Figure 2. 
Non-enzymatic transformations that influence the survival of environmental microbes. A. 
Extracellular reduction of iron(II) by secreted phenazines enables the survival of 

Pseudomonas aeruginosa. B. Extracellular iron reduction by secreted quinones facilitates 

lignin degradation by fungi.
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Figure 3. 
Examples of non-enzymatic chemistry with the potential to control biological functions. A. 
Diamide can be used to oxidize glutathione in living organisms, altering intracellular redox 

chemistry and compromising cell membrane integrity. B. Ru-catalyzed oxidation of 

glutathione and Ir-catalyzed generation of oxidized nicotinamide via transfer hydrogenation. 

C. Generation of the essential metabolite (PABA) using a Ru-catalyzed alloc-deprotection 

reaction enables the growth of auxotrophic strains of E. coli.
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Figure 4. 
Chemical synthesis using biocompatible chemistry and microbial metabolism. A. A non-

enzymatic hydrogenation reaction can decouple microbial syntrophy. Acetogenesis by S. 

wolfei in the absence of interspecies hydrogen transfer is observed with the addition of 

ethylene and a heterogeneous palladium catalyst. B. Hydrogen produced by engineered E. 

coli can engage in non-enzymatic alkene reduction reactions using the Royer palladium 

catalyst. C. The engineered metabolic pathway in E. coli DD2 responsible for H2 production 

from D-glucose. Royer palladiums catalyst = 2.44% palladium on polyethyleneimine (PEI)/

silica gel.
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