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NOTES

THE VARIANCE OF NON-PARAMETRIC TREATMENT EFFECT ESTIMATORS IN
THE PRESENCE OF CLUSTERING∗

Samuel G. Hanson and Adi Sunderam*

Abstract—Nonparametric estimators of treatment effects are often applied
in settings where clustering may be important. We provide a general
methodology for consistently estimating the variance of a large class of
nonparametric estimators, including the simple matching estimator, in the
presence of clustering. Software for implementing our variance estimator
is available in Stata.

I. Introduction

AVERAGE treatment effects (ATEs) can be estimated using a
variety of nonparametric techniques, including matching and

propensity score–based estimators. These methods are usually applied
in settings, such as program evaluation, where cross-sectional data have
been collected. With such data, geographic shocks or omitted common
factors may induce correlation across observations, even after control-
ling for treatment status and the covariates used in the research design.
In other words, there may be a clustering problem. While a large litera-
ture has studied the consistency of nonparametric ATE estimators (see
Imbens, 2004), there has been little discussion of the effects of clus-
tering on the variance of these estimators. This is surprising given the
significant attention devoted to clustering in parametric settings. Given
the popularity of nonparametric estimators, and matching estimators in
particular, the ability to compute cluster-robust standard errors for them
is important.

In this note, we consider a setting where both residuals and treatment
effects may be correlated within clusters. We provide a methodol-
ogy for estimating the variance of matching estimators in this setting.
There are two main challenges. First, matching estimators are highly
nonsmooth functionals of the data and, as discussed further below,
standard asymptotic arguments for smooth functionals (e.g., method-
of-moments estimators) cannot be applied (Abadie & Imbens, 2006).
Second, since they do not rely on consistent estimation of the underlying
regression functions, matching methods do not generate estimated resid-
uals, which are crucial to standard clustering adjustments (Moulton,
1990; Wooldridge, 2002). We surmount these challenges by extending
the approach of Abadie and Imbens (2006, 2008). Our methodology
generates quasi-residuals, which we use to compute a cluster-robust
variance estimator that is consistent as the number of clusters grows
large. While we focus on the matching estimator in this note, our
methodology can easily be extended to a broader class of nonparametric
treatment effect estimators.

The remainder of the paper is organized as follows. Section II defines
the relevant class of matching estimators for the ATE and derives the
clustering correction. Section III details our methodology for cluster
robust variance estimation. In section IV, we explore the finite sample
behavior of our variance estimator using a short Monte Carlo study.
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Section V briefly discusses extensions of our basic methodology and
section VI concludes.

II. Preliminaries

A. Setup and Notation

We consider matching estimators for the average effect of a binary
treatment on some outcome. Let j = 1, . . . , J index clusters, i =
1, . . . , Ij index individuals in cluster j, and N = ∑

j Ij be the total number
of individuals. Let Xij denote the vector of covariates and Wij ∈ {0, 1}
the treatment status of individual ij. Also, let X denote the matrix of
covariates and W the vector of treatment indicators for all N individuals.
Let (Yij(0), Yij(1)) denote the potential outcomes given the control treat-
ment or the active treatment, respectively, for individual ij. Of course,
only Yij = Yij(Wij) is observed. Under the standard unconfounded-
ness assumption that Wij is independent of (Yij(0), Yij(1)) conditional
on Xij , we can write the conditional expectation of the outcome given
treatment w and covariates X = x as μw(x) = E[Y(w)|X = x].
The average treatment effect for the subpopulation with X = x is
τ(x) = E[Y(1) − Y(0)|X = x] = μ1(x) − μ0(x). The population aver-
age treatment effect (PATE) is τ = E[τ(X)], and the sample average
treatment effect (SATE), conditional on X, is τ(X) = N−1 ∑

i,j τ(Xij).
The matching estimator imputes unobserved potential outcomes for

each individual by matching that individual with M individuals of the
opposite treatment status. Specifically, let JM(ij) be the set of indices
of the M closest matches to unit ij with the opposite treatment status:
#JM(ij) = M and for all st ∈ JM(ij), Wst = 1 − Wij and ||Xij −
Xst || ≤ ||Xij −Xs′t′ || for all s′t′ /∈ JM(ij). The estimator imputes missing
outcomes as

Ŷij(0) =

⎧⎪⎨⎪⎩
Yij if Wij = 0

1

M

∑
st∈JM (ij) Yst if Wij = 1

and Ŷij(1) =

⎧⎪⎨⎪⎩
1

M

∑
st∈JM (ij) Yst if Wij = 0

Yij if Wij = 1
.

When we define KM(ij) = ∑
st 1{i, j ∈ JM(st)} as the number of times

observation ij is used as a match, the simple matching estimator is

τ̂M = N−1
∑

i,j
(Ŷij(1) − Ŷij(0))

= N−1
∑

i,j
(2Wij − 1)

(
1 + KM(ij)

M

)
Yij .

We consider a random-effects type setting in the sense that individ-
ual treatment effects, Yij(1) − Yij(0), are assumed to be independent
of the cluster-level shocks. Specifically, we assume that all mem-
bers of cluster j are subject to the same cluster-level shock regardless
of treatment status. Thus, potential outcomes can be decomposed as
Yij(w) = μw(Xij) + ηj + ωij(w), and we have Yij(1) − Yij(0) =
τ(Xij) + ωij(1) − ωij(0), which is independent of ηj . In what follows,
we suppress the ωij(w) notation and simply write observed outcomes
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as Yij = μWij (Xij) + εij = μWij (Xij) + ηj + ωij . For simplicity,
we assume that the cluster-level shocks are homoskedastic but the
individual-specifics shocks may be heteroskedastic. That is, we assume

εij = ηj + ωij , where ηj
iid∼ (0, σ2

η) and ωij
iid∼ (0, σ2

ω(Xij , Wij)).1 In
addition to cluster-level correlation of the residuals, in many empirical
settings it is likely that the individual treatment effects are correlated
within clusters. Therefore, we also allow the covariates Xij , and hence
the treatment effects τ(Xij), to be correlated within clusters, but we
assume they are independent across clusters.

Many empirical settings fit the assumptions laid out here. For
instance, it would be sensible to assume clustering of both treatment
effects and shocks at the school level for program evaluation exer-
cises with school-level pay-for-grades treatments within school districts
(Fryer, 2010). Clustering at the county level would be expected when
evaluating individual specific job training treatments within counties
(Hotz, Imbens, & Klerman, 2006).

B. The Variance of Matching Estimators with Clustering

Following Abadie and Imbens (2006), we write the difference
between τ̂M and τ as τ̂M − τ = (τ(X) − τ) + E + B, where τ(X) =
N−1 ∑

i,j τ(Xij) is the sample average treatment effect conditional on X
and

E = N−1
∑

i,j
(2Wij − 1)

(
1 + KM(ij)

M

)
εij

B = N−1
∑

i,j

[
(2Wij − 1)

(
1 + KM(ij)

M

)
μWij (Xij)

− (μ1(Xij) − μ0(Xij))

]
.

Here E is a weighted sum of the residuals, and B is a conditional bias
term.

As Imbens (2004) pointed out, the variance of the matching esti-
mator depends on the quantity we are trying to estimate. If the SATE
is the estimand of interest, then the normalized variance of the esti-
mator is given by the conditional variance: V E ≡ Var[√N τ̂M |X, W] =
Var[√NE|X, W]. If the PATE (τ = E[τ(X)]) is the estimand of interest,
then the normalized variance of the estimator is the marginal variance
V = V E + V τ(X), where V τ(X) ≡ Var[√N τ(X)] is the normalized vari-
ance of the SATE. In this note, we provide cluster-robust estimators for
both the conditional and marginal variance.

Under our assumed error structure, we can write the conditional
variance as

V E = N−1
∑

i,j

(
1 + KM(ij)

M

)2

σ2
ε (Xij , Wij)

+ N−1 ∑
j

[∑
i

∑
i′ 	=i(2Wij − 1)(2Wi′j − 1)

×
(

1 + KM (ij)
M

) (
1 + KM (i′j)

M

)
σ2

η

]
︸ ︷︷ ︸

Clustering correction

(1)

1 While we assume ηj
iid∼ (0, σ2

η) for simplicity, our approach can accomo-
date certain forms of heteroskedasticity for the ηj . For instance, suppose
that Xij = (X1′

j , X2′
ij )′, where X1

j is a vector of covariates that is constant
within clusters and X2

ij is a vector of covariates that varies within clusters.
Our approach is robust to forms of heteroskedasticity where the variance
of the group-level shock is a function of the X1

j and the variance individ-
ual specific errors depends on both Xij and Wij (i.e., where σ2

ε (Xij , Wij) =
σ2

η(X
1
j ) + σ2

ω(Xij , Wij)).

where σ2
ε (Xij , Wij) = σ2

η+σ2
ω(Xij , Wij). The first term represents the con-

ditional variance if we ignore the impact of clustering. The second term
is the contribution of error clustering to the conditional variance. From
equation (1) we see that the clustering correction is largest when all
units in a given cluster have the same treatment status (when Wij = Wi′j
for all i and i′ in cluster j) so that all of the terms in the correction
are positive. This parallels the linear OLS case where clustering mat-
ters more when covariates are more highly correlated within clusters
(Greenwald, 1983; & Moulton, 1986).

The marginal variance of the matching estimator also depends on
V τ(X) = Var[√N τ(X)]. If the Xij , and hence the τ(Xij), were drawn
independently within each cluster, then we would have V τ(X) =
E[(τ(Xij) − τ)2]. However, under our assumption that the Xij are corre-
lated within cluster, the identity

√
N(τ(X)−τ) = N−1/2 ∑

j

∑
i(τ(Xij)−

τ) implies that V τ(X) = N−1J · E[(∑i(τ(Xij) − τ))2] where the
expectation is taken across clusters.2

III. Cluster-Robust Variance Estimators

A. Why Standard Variance Estimation Methods Fail

Before outlining our estimation approach, we explain why traditional
techniques for estimating cluster-robust variances, such as those from
the literature on the generalized method of moments (GMM) (Bhat-
tacharya, 2005; Wooldridge, 2006), are not applicable here. GMM is
based on the assumption that we have a population moment condition
such that E[g(zi, θ)] = 0 ⇔ θ = θ0 for some known function g(zi, θ)
that is specified a priori and does not depend on the sample under
consideration. The GMM estimator is then defined using the sample
analog of the population moment condition: N−1 ∑

i g(zi, θ̂) = 0. Tra-
ditional GMM asymptotics and cluster-robust variance estimators are
based on the assumption that g(z, θ) is continuously differentiable in
θ. The literature has extended these results to settings where E[g(z, θ)]
is continuously differentiable even though g(z, θ) may not be. In these
cases, the estimator will typically have an asymptotically linear repre-
sentation, and existing techniques can be used to consistently estimate
a cluster-robust variance.

Can we use these methods to estimate a cluster-robust variance
for the matching estimator? For instance, one might reason that
τ̂M satisfies the sample moment condition N−1 ∑

i,j[(2Wi,j − 1)(1 +
M−1KM(ij|X, W))Yi,j −τ̂M ] = 0. Here we write KM(ij|X, W) to empha-
size that KM(ij) depends on all the covariates and treatment assign-
ments, not just those for unit ij. As we add observations, KM(ij|X, W)

can rise or fall discretely, so the KM(ij|X, W), and hence τ̂M , are highly
nonsmooth functionals of the data (Abadie & Imbens, 2006).3 As a
result, this condition is not based on the sample average of some known
function, so matching estimators are not traditional GMM estimators.

However, one might still wonder whether existing techniques for
asymptotically linear estimators might be used in this setting. Applied
researchers often favor matching estimators with small, fixed M due to
concerns about the conditional bias of estimators with large M. When
the number of matches M is fixed, there is no evidence that matching
estimators become asymptotically linear, which may explain the failure
of standard bootstrapping methods for inference (Abadie & Imbens,

2 Although we do not explore such an extension here for simplicity, our
framework could easily be extended to allow for multiway clustering as in
Cameron, Gelbach, and Miller (2011).

3 This should be contrasted with nonparametric kernel regressions con-
sidered by Bhattacharya (2005), which are typically smooth functionals of
the data.
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2008). Thus, in our setting, standard techniques may not be valid and
hence should not be used.

B. Estimating the Conditional Variance

The main difficulty in estimating the conditional variance (1) of the
matching estimator is that we do not have estimated residuals since we
are not directly estimating the regression functions μ0(x) and μ1(x).
We follow the approach of Abadie and Imbens (2006, 2008) who
generate quasi-residuals by matching each individual to the most sim-
ilar individual with the same treatment status. Specifically, they define
ε̃ij = Yij−Yg(ij)h(ij), where (g(ij), h(ij)) = arg ming,h|Wgh=Wij ‖Xij−Xgh‖.
Note that this is a different matching from that used to compute τ̂M

above. Abadie and Imbens then show that these quasi-residuals can be
used to compute a heteroskedasticity-robust variance estimator in the
absence of clustering.

The problem is more difficult in our setting because the presence of
clustering means that we also need a consistent estimate of σ2

η. Fur-
thermore, following the clustering literature, we seek an estimator that
requires only J → ∞ for consistency. Therefore, we consider matching
across clusters. Specifically, let l(ij) and k(ij) index the individual and
cluster, respectively, of the closest match to ij with the same treatment
status in a different cluster: (l(ij), k(ij)) = arg minl,k 	=j|Wlk=Wij ‖Xij −
Xlk‖. Define the quasi-residuals

ε̂ij = Yij − Yl(ij)k(ij) = μWij (Xij) − μWij (Xl(ij)k(ij))︸ ︷︷ ︸
Matching discrepancy

+ ωij − ωl(ij)k(ij) + ηj − ηk(ij). (2)

The matching discrepancy, μWij (Xij) − μWij Xl(ij)k(ij), will vanish as the
number of potential matches grows. Thus, we can ignore these terms as
J → ∞.4

Expanding a within-cluster cross-product of these quasi-residuals,
ε̂iĵεi′j , and ignoring the matching discrepancy terms yields

ε̂iĵεi′j = η2
j + ηj(ωij − ωl(ij)k(ij)

− ηk(ij) + ωi′j − ωl(i′j)k(i′j) − ηk(i′j))

+ (ωij − ωl(ij)k(ij) − ηk(ij))(ωi′j − ωl(i′j)k(i′j) − ηk(i′j)).

Since we match across clusters and the ηs are independent of the ωs, it
follows that

E [̂εiĵεi′j|Xij , Xi′j] = σ2
η + E[ηk(ij)ηk(i′j)]

+ E[ωl(ij)k(ij)ωl(i′j)k(i′j)] + E[ωijωi′j].
If i = i′, we have E [̂εiĵεi′j|Xij] = 2(σ2

η + σ2
ω(Xij , Wij)) =

2σ2
ε (Xij , Wij). For i 	= i′, E[ηk(ij)ηk(i′j)|Xij , Xi′j] = 0 if i and i′

are matched to units in distinct clusters (i.e., k(ij) 	= k(i′j));
by contrast, E[ηk(ij)ηk(i′j)|Xij , Xi′j] = σ2

η if k(ij) = k(i′j). Sim-
ilarly, E[ωl(ij)k(ij)ωl(i′j)k(i′j)] = 0 unless i and i′ are matched to
the exact same unit, in which case E[ωl(ij)k(ij)ωl(i′j)k(i′j)|Xij , Xi′j] =
σ2

ω(Xl(ij)k(ij), Wl(ij)k(ij)). Thus, in the absence of these duplicative match-
ings, the cross-product ε̂iĵεi′j for i 	= i′ is an unbiased estimator for
σ2

η.

4 Note that if we were to allow matches within clusters (i.e., if k(ij) = j),
the η terms would drop out, leaving ε̂ij = μWij (Xij) − μWij (Xl(ij)k(ij)) +
ωij − ωl(ij)k(ij). Although such matches would generally vanish and could
be ignored as J → ∞, they would impart a downward bias on the vari-
ance estimator in small samples. As a result, we would want to keep track
of and correct for the occurence of within-cluster matching, which would
unnecessarily complicate our methodology.

We can correct for duplicative matchings by defining

σ̂2(Xij , Xi′j)

=

⎧⎪⎪⎨⎪⎪⎩
ε̂iĵεi′j if k(ij) 	= k(i′j)

ε̂iĵεi′j/2 if k(ij) = k(i′j) and if l(ij) 	= l(i′j)
ε̂iĵεi′j − (̂εi′j)2/2 if k(ij) = k(i′j) and if l(ij) = l(i′j)

. (3)

If we ignore the matching discrepancy (i.e., assume that both ij and i′j
are perfectly matched), it follows that

E [̂σ2(Xij , Xi′j)|Xij , Xi′j] =
{

σ2
ε (Xij , Wij) if i = i′

σ2
η if i 	= i′

,

so we sometimes write σ̂2(Xij , Xij) = (̂εij)
2/2 = σ̂2

ε (Xij , Wij).
Let P = limJ→∞ J−1 ∑

j[(Ij(Ij − 1))−1 ∑
i

∑
i′ 	=i 1{k(ij) = k(i′j)}]

be the probability of duplicative matchings as J → ∞. It is worth noting
that under many sampling arrangements, P = 0. In such circumstances,
correcting for duplicative matchings is unnecessary asymptotically.
However, the probability of duplicative matchings need not vanish as
J → ∞.5 By defining σ̂2(Xij , Xi′j) as we have above, we ensure that our
estimator is robust for any limiting probability of duplicative matchings.

Formally, we need the following assumptions:

Assumption 1 (Unconfoundedness). W is independent of (Y(1), Y(0))

conditional on X. (Overlap) 0 < Pr(W = 1|X) < 1.

Assumption 2. The Xij are chosen from some bounded set X ⊂ R
m,

and there is an upper bound I on cluster size.

Assumption 3. The conditional expectation and conditional variance
functions are Lipschitz on X: |μW (X) − μW (X ′)| ≤ Cμ,W ‖X − X ′‖ and
|σ2

ω(X, W) − σ2
ω(X ′, W)| ≤ Cσ,W ‖X − X ′‖ for W ∈ {0, 1}.

Assumption 4. E[η4] and E[ω4] are bounded.

Assumption 1 is needed to ensure that τ̂M
p→ τ. As shown in the

appendix, assumptions 2 and 3 ensure that the average matching dis-
crepancy vanishes as the number of clusters increases. Assumption 4
ensures that the variances of η2 and ω2 are defined.

Proposition 1. Suppose assumptions 1 through 5 hold, and let

V̂ E = N−1
∑

j

[∑
i

∑
i′(2Wij − 1)(2Wi′j − 1)

×
(

1 + KM(ij)

M

) (
1 + KM(i′j)

M

)
σ̂2(Xij , Xi′j)

]
. (4)

Then, holding fixed cluster sizes, as J → ∞, we have V̂ E p→ V E.

While both the clustering correction term in V E in equation (1) and
its estimate V̂ E in equation (4) are similar in form to the standard case
(i.e., a weighted average of the cross-product of residuals), it is worth
emphasizing that the construction of these residuals is quite distinct.

5 For instance, suppose that there is a finite number of cluster types, each
associated with a nondegenerate distribution of continuous covariates. If
clusters are sampled i.i.d. from this set of types, then as J → ∞, there will
be many clusters of each type, and the probability of duplicative matchings
will vanish (i.e., P = 0). Now suppose that there is a single continuous
covariate that is constant within clusters. Ignoring ties, all units in a cluster
j will be matched to units in a single cluster k (i.e., P = 1).
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As a result, the consistency proof underlying proposition 1 is quite
different from the proof in the standard case. However, we believe it is
a strength of our approach that similar formulas are shown to apply in
this nonstandard setting.

C. Estimating the Marginal Variance

In this section we show how to estimate V τ(X) = N−1J ×
E[(∑i(τ(Xij) − τ))2]. Obviously if we knew the τ(Xij), an estimate of
V τ(X) could be based on N−1 ∑

j[
∑

i(τ(Xij)−τ(X))]2. For the matching

estimator, the imputed outcome Ŷij(1)− Ŷij(0) can serve as an estimator
of τ(Xij). As J → ∞, the matching discrepancy vanishes, and we have

E

[(∑
i
(Ŷij(1) − Ŷij(0) − τ)

)2
]

≈ E

[(∑
i
(τ(Xij) − τ)

)2
]

+ E

[(∑
i
(2Wij − 1)εij

)2
]

− 2E
[(∑

i
(2Wij − 1)εij

)
×

(
M−1

∑
i′
∑

st∈JM (i′j)(2Wi′j − 1)εst

)]
+ E

[(
M−1

∑
i

∑
st∈JM (ij)

(2Wij − 1)εst

)2
]

.

In the presence of clustering, this expectation is somewhat more com-
plicated than the case considered in Abadie and Imbens (2006). First
and most important, the εij within a given cluster will be correlated due
to the shared component, ηj . In addition, the issue of duplicative match-
ings we saw above also arises in estimating V τ(X).6 Specifically, the εij

will be correlated with the εst if units in cluster j are used to impute
missing outcomes for other units in cluster j (i.e., if any element of
JM(i′j) is in cluster j for some i′). Moreover, the εst will be correlated
with each other if multiple units in some different cluster j′ 	= j are used
to impute missing outcomes for units in cluster j.

If P = 0, the last two sources of correlation will vanish asymptoti-
cally, but the first will always be present. Below, we present a simple
estimator of V τ(X) that is consistent in this case. However, for certain
empirical applications, it will be important to have an estimator that is
valid even if the probability of duplicative matchings does not vanish
as J → ∞. This estimator, which contains additional terms to correct
for duplicative matchings, is given by equation (1) in the appendix.

Proposition 2. Suppose assumptions 1 through 4 hold and that P = 0,
and let

V̂ τ(X) = N−1
∑

j

[∑
i
(Ŷij(1) − Ŷij(0) − τ̂M)

]2

− N−1
∑

i,j

KM(ij)

M2
σ̂2

ε (Xij , Wij)

− N−1
∑

j

[∑
i

∑
i′(2Wij − 1)(2Wi′j − 1)̂σ2(Xij , Xi′j)

]
. (5)

6 Here we are referring to the probability of duplicative matchings for the
matching used in the matching estimator (indexed st), not the matching
used to compute the quasi-residuals (indexed lk). However, the asymptotic
probability of duplicative matchings is a function of the distribution of
covariates, so the probability of duplicative matchings will generally be
either zero or nonzero for both matchings.

Table 1.—Coverage Probabilities of 95% CI

J

10 20 50

2 0.90 0.93 0.94
I 10 0.91 0.92 0.95

50 0.92 0.94 0.95

Then, holding fixed cluster sizes, as J → ∞, V̂ τ(X) p→ V τ(X). An
estimate of the marginal variance can then be computed as V̂ =
V̂ τ(X) + V̂ E .

Combining the results in propositions 1 and 2, we have

V̂ = N−1
∑

i,j
(Ŷij(1) − Ŷij(0) − τ̂M)2

+ N−1
∑

i,j

((
KM(ij)

M

)2

+ 2M − 1

M

KM(ij)

M

)
× σ̂2

ε (Xij , Wij)

+ N−1
∑

i,j

∑
i′ 	=i

[
(Ŷij(1) − Ŷij(0) − τ̂M)(Ŷi′j(1)

− Ŷi′j(0) − τ̂M)
]

+ N−1
∑

i,j

∑
i′ 	=i

(2Wij−1)(2Wi′j−1)

×
(

KM(ij) + KM(i′j)
M

+ KM(ij)

M

KM(i′j)
M

)
× σ̂2(Xij , Xi′j). (6)

The first two terms are the estimator of V E + V τ(X) given in Abadie and
Imbens (2006), which is valid in the absence of clustering. The second
pair of terms is the combined clustering correction, which is valid in
the case where P = 0.

IV. A Short Monte Carlo Study

To get a sense of the finite sample properties of our variance estima-
tor, we examine the confidence intervals it generates. We assume there
is a single covariate, Xij

iid� N(0, 5), and that μ0(x) = 0 and μ1(x) = x.
It follows that τ(x) = x, and the observed outcome is Yij = WijXij + εij .
We assume that half the clusters are treated and that σ2

η = 1.5 and
σ2

ω = 1.5. For each replication, we draw a new set of covariates Xij , as
well as error components ηj and ωij . We then estimate the PATE using
the simple matching estimator, τ̂1 with M = 1 matches to impute unob-
served outcomes. Clustering-corrected 95% confidence intervals for the
estimator are computed as (̂τ1 − 1.96(V̂/N)1/2, τ̂1 + 1.96(V̂/N)1/2),
where V̂ = V̂ τ(X) + V̂ E , V̂ E is given by equation (4), and V̂ τ(X) is given
by equation (1) in the appendix. We carry out R = 1, 000 replications
and report the fraction of replications where E[τ(x)] = 0 is covered by
the resulting confidence intervals.

The results are shown in table 1. Our marginal variance estimator has
very good finite sample performance. Although it shows slight under-
coverage in very small samples, its coverage reaches 95% quickly as J
increases. Furthermore, while the coverage of an estimator that did not
correct for clustering would decline to approximately 0.70 for I = 10
and 0.40 for I = 50, the performance of our estimator is nearly constant
as a function of I . Similar coverage probabilities obtain if we allow the
Xij to be correlated within clusters.
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V. Other Nonparametric Treatment Effect Estimators

First, as discussed in the appendix, it is straightforward to use our
approach to compute cluster-robust variances for matching estimators
of the average treatment effect for the treated (ATT). Second, while
this note has focused on the matching estimators, the methodology
we have described can be extended to a broader class of nonpara-
metric treatment effect estimators. A number of estimators for average
treatment effects, including propensity score–based estimators, can be
written as

τ̂ =
∑

Wij=1
γij(X, W)Yij −

∑
Wij=0

γij(X, W)Yij

=
∑

i,j
(2Wij − 1)γij(X, W)Yij , (7)

where γij(X, W) is a set of data-dependent weights. For estimators of
the form (7), the conditional variance can be estimated using equa-
tion (4) and replacing N−1(1 + KM(ij)/M) with γij . Similarly, for
estimators that impute treatment effects Ŷij(1)− Ŷij(0) for each unit, we
can estimate V τ(X) using an expression analogous to equation (5).

VI. Conclusion

In this note, we develop a methodology to estimate the conditional
and marginal variances of the matching estimator in the presence of
clustering. Our cluster-robust variance estimators are consistent as the
number of clusters grows large, holding the size of clusters fixed.

Furthermore, our methodology can easily be extended to a broader class
of nonparametric treatment effect estimators.
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