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ABSTRACT	

	 Tuberculosis	(TB)	recently	surpassed	HIV	as	the	world’s	leading	infectious	killer.		

Because	antibiotic	therapy	forms	the	cornerstone	of	TB	control,	prevention,	and	treatment,	

it	is	important	to	apply	TB	drugs	in	a	way	that	maximizes	their	potential	benefits	while	

minimizing	the	risks	of	resistance.		Here,	I	present	three	modeling	analyses	intended	to	

explore	these	tensions	inherent	in	the	use	of	TB	drugs.	

	 Preventive	therapy	involves	the	use	of	antimicrobials	in	asymptomatic	and	

noninfectious	individuals,	and	has	been	applied	to	diseases	ranging	from	TB	to	HIV	to	

malaria.		In	my	first	paper,	I	outline	how	population	use	of	preventive	therapy	could	

increase,	decrease,	or	have	non-monotonic	effects	on	the	prevalence	of	drug	resistance,	

depending	on	the	relative	contributions	of	resistance	acquired	as	a	result	of	preventive	

therapy,	resistance	acquired	as	a	result	of	treatment	for	active	disease,	and	transmitted	

resistance.			

	 In	my	second	paper,	I	consider	the	specific	use	of	isoniazid	preventive	therapy	(IPT)	

to	prevent	active	TB	among	people	living	with	HIV.	Previous	models	have	suggested	that	

widespread	IPT	use	could	increase	the	prevalence	of	drug	resistant	TB	by	providing	a	

selective	pressure	in	favor	of	resistant	strains.		In	this	paper,	I	show	that	the	impact	of	IPT	

on	drug	resistance	is	highly	dependent	on	the	projected	TB/HIV	epidemic	trends,	and	that	

the	risks	of	resistance	are	likely	to	remain	low	for	even	lifelong	IPT	durations	as	long	as	

transmission	is	already	declining.	
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	 Finally,	in	my	third	paper,	I	present	a	decision	analytic	model	to	determine	the	

optimal	targeting	of	the	new	TB	drug	bedaquiline	for	patients	with	pre-existing	resistance	

to	other	available	drugs.			The	optimal	use	strategy	for	this	new	drug	depends	on	the	

outcome	being	considered;	whereas	more	liberal	strategies	would	likely	decrease	

resistance	to	existing	drugs	as	well	as	onward	transmission,	more	restrictive	strategies	

would	decrease	resistance	to	bedaquiline.		More	research	is	needed	to	confirm	that	more	

liberal	bedaquiline	use	strategies	would	improve	life	expectancy.	

	 Overall,	these	papers	illustrate	the	complexity	of	the	decisions	surrounding	optimal	

TB	drug	use.			Thoughtful	antibiotic	policies,	coupled	with	continued	innovation,	are	

needed	to	effectively	combat	the	global	burden	of	TB.		
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PREFACE	

	 An	estimated	1.5	million	people	were	killed	by	tuberculosis	(TB)	in	2014,	exceeding	

the	number	of	deaths	due	to	HIV	[1].		These	deaths	represent	only	a	fraction	of	the	health	

and	economic	impact	of	the	9.6	million	estimated	new	cases	of	TB	disease	[1].		Because	

only	5-10%	of	immunocompetent	individuals	infected	with	Mycobacterium	tuberculosis	

ever	develop	disease,	the	global	prevalence	of	latent	TB	infection	is	much	greater	still	[2].	

Antibiotic	therapy	forms	the	basis	of	the	global	TB	control	strategy.		Individuals	

with	uncomplicated	active	TB	disease	rapidly	lose	infectiousness	after	starting	treatment,	

and	cure	rates	approach	95%	in	some	settings	[1,	3-5].		Antibiotics	can	also	prevent	the	

progression	from	latent	to	active	TB	disease,	and	this	intervention	may	be	particularly	

attractive	among	individuals	at	highest	risk	of	progression,	such	as	children	and	people	

living	with	HIV	[2,	6].		

However,	the	reliance	on	antibiotics	for	TB	prevention	and	treatment	poses	several	

challenges	at	both	the	individual	and	population	levels.		First-line	treatment	requires	four	

drugs	(isoniazid,	rifampicin,	pyrazinamide,	and	ethambutol)	daily	for	two	months,	and	

daily	isoniazid	and	rifampicin	therapy	for	the	following	four	months;	this	long	course	of	

combination	therapy	places	a	heavy	burden	on	both	patients	and	healthcare	systems	[7].		

Suboptimal	use	of	these	drugs,	combined	with	ongoing	transmission,	has	resulted	in	global	

spread	of	multi-drug	resistant	(MDR)	TB,	defined	as	resistance	to	both	isoniazid	and	

rifampicin.		In	2014,	the	World	Health	Organization	estimated	that	nearly	500,000	

individuals	developed	MDR	TB,	with	only	a	quarter	of	these	cases	being	detected	and	

reported	[1].		Existing	treatments	for	MDR	TB	are	long	(up	to	two	years),	poorly	tolerated,	

and	ineffective;	even	among	those	diagnosed,	global	rates	of	successful	treatment	hover	
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around	50%	[1].		The	remaining	patients	experience	high	risks	of	dying	or	acquiring	

additional	resistance	to	second-line	drugs.		

	 The	use	of	antibiotics	for	prevention	also	poses	several	potential	issues	when	the	

same	drugs	are	needed	for	treatment	of	active	disease.		Daily	isoniazid	reduces	the	risk	of	

TB	disease	among	people	living	with	HIV,	who	are	otherwise	at	very	high	risk	of	

progressing	from	latent	to	active	TB.			However,	accumulating	data	suggest	that	the	

standard	6-9	month	regimen	of	isoniazid	preventive	therapy	(IPT)	is	insufficient	to	reduce	

long-term	TB	risks	at	both	the	individual	and	population	levels	in	some	settings	[8-10].		

Additionally,	previous	mathematical	modeling	studies	have	suggested	that	widespread	IPT	

use	could	dramatically	increase	the	incidence	of	isoniazid	resistant	TB,	thereby	eroding	the	

effectiveness	of	this	drug	as	a	treatment	for	active	disease	[11,	12].			

	 This	question	of	using	versus	losing	key	antibiotics	arises	again	when	considering	

how	best	to	use	new	drugs	for	TB.		The	conditional	approval	of	bedaquiline	by	the	US	FDA	

marked	the	first	new	drug	available	for	treatment	of	TB	in	over	40	years	[13,	14].		

However,	physicians	and	policymakers	have	struggled	to	decide	which	patients	should	

receive	this	drug	-	in	particular,	whether	it	should	be	made	available	to	all	patients	with	

MDR	TB,	or	reserved	for	patients	with	additional	resistance	[15-17].	

	 My	thesis	aims	to	address	questions	related	to	optimal	population-level	of	use	of	

anti-TB	drugs.		First,	I	consider	the	general	mechanisms	through	which	preventive	or	

prophylactic	antimicrobial	therapies	could	affect	the	population	prevalence	of	drug	

resistance.		Second,	I	apply	these	considerations	specifically	to	the	issue	of	optimal	IPT	

duration	and	use	among	people	living	with	HIV	in	Botswana.		Finally,	I	outline	the	potential	
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risks	and	benefits	associated	with	different	potential	bedaquiline	use	strategies	for	patients	

with	MDR	TB.	

	 These	analyses	are	all	based	on	mathematical	models	that	allow	me	to	formalize	an	

understanding	of	disease	dynamics	and	natural	history	derived	from	previous	studies.		The	

first	two	papers	of	my	thesis	use	transmission	dynamic	models	to	project	the	population-

level	impacts	of	preventive	therapy,	while	my	third	paper	uses	a	decision	analytic	model	to	

estimate	the	direct	impact	of	bedaquiline	on	a	single	generation	of	MDR	TB	patients	and	

their	immediate	contacts.		Taken	together,	these	papers	demonstrate	the	utility	of	

mathematical	modeling	in	determining	the	emergent	properties	of	the	complex	systems	

that	govern	optimal	TB	drug	use	at	the	population	level.		
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Abstract

Various forms of preventive and prophylactic antimicrobial therapies have been proposed to

combat HIV (e.g. pre-exposure prophylaxis), tuberculosis (e.g. isoniazid preventive therapy), and

malaria (e.g. intermittent preventive treatment). However, the potential population-level e↵ects

of preventive therapy on the prevalence of drug resistance are not well understood. Preventive

therapy can directly a↵ect the rate at which resistance is acquired among those receiving preventive

therapy. It can also indirectly a↵ect resistance by altering the rate at which resistance is acquired

through treatment for active disease and by modifying the level of competition between transmission

of drug-resistant and drug-sensitive pathogens. We propose a general mathematical model to

explore the ways in which preventive therapy can a↵ect the long-term prevalence of drug resistance.

Depending on the relative contributions of these three mechanisms, we find that increasing the level

of coverage of preventive therapy may result in increases, decreases, or non-monotonic changes in the

overall prevalence of drug resistance. These results demonstrate the complexity of the relationship

between preventive therapy and drug resistance in the population. Care should be taken when

predicting population-level changes in drug resistance from small pilot studies of preventive therapy

or estimates based solely on its direct e↵ects.
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Introduction

Preventive and prophylactic infectious disease therapies (we will refer to both collectively as

preventive therapy, PT) involve the use of chemotherapeutic agents in asymptomatic and nonin-

fectious individuals, with the goal of preventing future symptoms and infectiousness. PT may be

applied to individuals who are either uninfected or latently infected with a given pathogen. For

example, whereas isoniazid preventive therapy for TB can prevent disease progression in latently

infected individuals [1][2], pre-exposure prophylaxis for HIV is intended solely for use in uninfected

individuals [3]. Some interventions may include aspects of both treatment and preventive therapy;

for example, intermittent preventive treatment for malaria involves a full course of antimalarial

treatment applied irrespective of infection status [4].

Because PT prevents development of infectiousness as well as symptoms, PT has been pro-

posed as an element of public health strategies aimed at reducing the burden of TB, HIV, and

malaria [4][5][6]. However, such strategies have often been controversial, with concerns about drug

resistance forming one major barrier to implementation [7][8]. When the chemotherapeutic agents

that are used for prevention are also needed for treatment, any drug resistance produced or am-

plified as a result of PT may undermine future control e↵orts. Simulation models intended to

assess the potential e↵ects of PT on the prevalence of drug resistance have produced sometimes

inconsistent results [9]. For example, Supervie et al. [10][11] predicted that rolling out pre-exposure

prophylaxis in Botswana would reduce the prevalence of drug resistant HIV, whereas Abbas et

al. [12][13] predicted that a similar programme in South Africa would increase the prevalence of

drug resistant HIV.

Models intended to predict the e↵ects of specific PT programmes tend to be fairly complex, with

states and parameters chosen to reflect the natural history of the disease of interest, the operational

details of the proposed intervention, and the e�cacy of the available drug. While this complexity

may improve the predictive accuracy of each individual model, it can complicate attempts to explain

di↵erences in their predictions [9][11][13]. In this paper, we create a simplified, general model of PT

with the goal of better understanding the ways in which PT could alter the population prevalence

of drug resistance. We show that increasing PT coverage can have qualitatively di↵erent e↵ects

on the prevalence of drug resistance depending on the relative importance of resistance acquired
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as a result of preventive therapy, resistance acquired as a result of treatment, and the competitive

fitness of drug resistant strains.

Methods

We developed a simple mathematical model to demonstrate the ways in which preventive therapy

may alter the prevalence of drug resistance. Mathematical modelling provides a way to formally

encode our understanding of the individual-level e↵ects of preventive therapy, some of which may

lead to drug resistance. Furthermore, mathematical modelling creates a conceptual framework to

explore how the e↵ects of preventive therapy on drug resistance in the population may extend

beyond its immediate recipients.

Model Structure: Disease Course

A description of the states and parameters used in our model is given in Table 1.1. Figure 1.1

displays the structure of this compartmental model, with the health states and transitions among

individuals not receiving PT on the left-hand side and and among individuals receiving PT on the

right-hand side. We focus first on individuals not receiving PT, shown on the left. Although this

portion of the figure shows the rates at which individuals may begin and end preventive therapy

(PT states shown in dotted boxes), it does not display transitions between PT states.

Within the model, an individual may be infected by pathogen phenotypes that are either drug

sensitive (DS, indicated in the diagram by a subscript S) or drug resistant (DR, indicated in

the diagram by a subscript R), but not by both simultaneously. Not allowing for mixed infections

greatly simplifies our model, but introduces strong assumptions about competition between strains,

the implications of which are considered in the Discussion. Susceptible (S) persons who are infected

enter latency with either the DS strain (LS) or the DR strain (LR), depending on the source of

the infection. Latently infected individuals may be superinfected and move to the latent state

characterized by the drug sensitivity pattern of the most recently infecting strain. We assume the

degree of susceptibility to reinfection x does not depend on the identity of the initial or reinfecting

strain. We do allow the risks of infection and progression to active disease to di↵er based on the

drug sensitivity of the infecting strain, reflecting the potential fitness costs of resistance.

All actively infected individuals within our model, including those on treatment, contribute to

the overall force of infection. We assume that infectious individuals cannot be reinfected and cannot
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recover except by treatment. We allow individuals receiving treatment for DS disease to acquire

resistance at rate a. We assume such acquired resistant cases are immediately detected and started

on treatment for DR disease, which we assume has a lower cure rate than treatment for DS disease.

We do not allow for disease-induced mortality or explicitly encode for treatment failure, though

the latter may be incorporated into the treatment cure rate. Once cured, individuals revert to a

recovered (R) state exhibiting the same level of immunity as that experienced by latently infected

individuals.

Though we omit arrows representing mortality from Fig 1.1, we assume a constant mortality rate

from each compartment and a constant population size. All individuals enter the model susceptible

to infection and not on PT. Because we assume a fixed population size, we express all states in

terms of proportion of the population.

Model Structure: Preventive Therapy

The right-hand side of Fig 1.1 displays the portion of our model pertaining to individuals

receiving preventive therapy. This portion of the figure again displays the rates at which individuals

may begin or end preventive therapy (non-PT states shown in dotted boxes), but omits arrows

indicating the transitions between states of individuals not receiving PT. We allow for individuals

who are uninfected, latently infected, or actively infected to potentially receive PT. Uninfected

individuals begin PT at rate f and cease therapy at rate w. Latently infected individuals begin

PT at rate fl and cease therapy at rate w. We allow the rates at which uninfected and latently

infected individuals initiate PT to di↵er, as the specific targeting of PT depends on the disease and

drug of interest. Pre-exposure prophylaxis for HIV, for example, is intended solely for uninfected

individuals [3], whereas isoniazid preventive therapy is typically targeted to individuals with latent

TB infection [1][2]. We assume that the PT initiation rate is the same for both DS and DR latently

infected individuals, assuming that the resistance phenotype of the infecting strain is not known

during latency. Actively infected individuals may also receive PT within our model. Though PT is

generally not intended for such individuals (except when the same drug is applied as both treatment

and prevention, e.g. intermittent preventive treatment for malaria [4]), individuals may progress

from latent to active infection while receiving PT (rate k

PT
S ) or initiate PT during active disease

as a result of imperfect screening (rate fi). We assume that the PT start rate is the same for

both DS and DR actively infected individuals, assuming the infection is not recognized prior to PT
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Figure 1.1: Left: All states and transitions involving individuals not on preventive therapy (solid

boxes), with transitions on and o↵ PT shown via links to on-PT states (dashed boxes). Right: All

states and transitions involving individuals on preventive therapy (solid boxes), with transitions o↵

and on PT shown via links to o↵-PT states (dashed boxes).
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Table 1.1: Model states and parameters

State Name Description (All States: Proportion of Population)
S Susceptible Uninfected, negative infection history
LS DS Latent Latently infected with DS strain
LR DR Latent Latently infected with DR strain
IS DS Actively Infected Infectious with DS strain, not on treatment
IR DR Actively Infected Infectious with DR strain, not on treatment
TS DS Treated Infectious with DS strain, on treatment
TR DR Treated Infectious with DR strain, on treatment
I

⇤
S Total DS Infectious Sum of DS infectious states: IS + I

PT
S + TS

I

⇤
R Total DR Infectious Sum of DR infectious states: IR + I

PT
R + TR

R Recovered Uninfected, positive infection history
Parameter Name Description

�S DS transmission parameter # DS e↵ective contacts per susceptible per unit time
�R DR transmission parameter # DR e↵ective contacts per susceptible per unit time
kS DS progression rate Rate of progression from DS latent to DS actively infected
kR DR progression rate Rate of progression from DR latent to DR actively infected
c Case detection rate Rate at which actively infected individuals begin treatment
rS DS recovery rate Rate of recovery from DS treated to recovered
rR DR recovery rate Rate of recovery from DR treated to recovered
a Treated resistance rate Rate resistance is acquired due to treatment
al PT latent resistance rate Rate resistance is acquired by DS latents on PT
ai PT active resistance rate Rate resistance is acquired by DS actively infecteds on PT
x Reinfection susceptibility Susceptibility retained after initial infection
w PT exit rate Reciprocal of average duration of PT
f PT uninfected start rate Start rate of PT for uninfected individuals
fl PT latent start rate Start rate of PT for latently infected individuals
fi PT active start rate Start rate of PT for actively infected individuals

Superscript Name Description
PT Preventive therapy State/parameter refers to individuals receiving PT
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initiation. We assume that actively infected individuals cease preventive therapy routinely, at rate

w, or upon initiation of treatment, at the same case detection rate c as for individuals not receiving

PT.

The health states for individuals receiving PT are similar to those described for individuals not

receiving PT. We assume PT reduces the rate at which uninfected and latently infected individuals

are infected with the DS strain (�PT
S < �S), the rate at which DS latently infected individuals

progress to active disease (kPT
S < kS), or the rates of both infection and progression with the DS

strain. Although we assume that preventive therapy has no direct e↵ect on infection or progression

with the DR strain, it may a↵ect the probability of progression with the DR strain by changing

the probability of reinfection with the DS strain. We allow DS latently infected individuals to

acquire resistance as a result of preventive therapy at rate al and DS actively infected individuals

at rate ai. We assume PT does not cure or reduce the infectiousness of individuals with active

infection. We also assume that individuals cannot receive PT and treatment simultaneously, but

treated individuals again become eligible for PT upon recovery. Throughout our analysis, we do

not track which individuals receive PT and thus assume that the same individuals may receive

multiple courses of PT.

Outcome Measures

Throughout our analysis, we focus on the equilibrium behaviour of the model. Doing so simplifies

our analysis by removing its dependence on the initial model conditions. We begin each of our

analyses in the absence of PT (setting the PT start rates f = fl = fi = 0). For each of our

analyses, we choose a parameter set such that, in the absence of PT, the equilibrium prevalence of

the DS strain is nonzero and the basic reproductive number of the DR strain exceeds 1. Because

we allow for acquired resistance, the former requirement implies that the equilibrium prevalence of

the DR strain is also nonzero in the absence of PT (i.e. there is no DS only equilibrium). The latter

implies that the equilibrium prevalence of the DR strain will remain nonzero even if the equilibrium

prevalence of the DS strain does not.

Holding this parameter set fixed, including the rates of case detection and treatment for active

disease, we run a series of simulations at progressively higher values of the PT initiation rate. For

the purpose of our simulations, we assume the PT start rates among uninfected, latently infected,

and infectious individuals are proportional throughout, with fl = f and fi = f/10, and thus
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refer to the PT start rate using the single parameter f . For each individual simulation, we fix

the value of the PT initiation rate, run the model to equilibrium (i.e. until changes in population

composition between time steps become negligible), and record the resulting prevalence of the DR

strain. We repeat the simulation process for incrementally increasing values of f until the DS strain

is eliminated (the equilibrium prevalence of the DS strain equals 0), still holding the PT initiation

rate constant within each individual simulation. Because we do not allow DR strains to revert to

DS, such elimination of the DS strain is possible in our model even when the equilibrium prevalence

of the DR strain remains nonzero.

All of the results provided are based on model simulations created using the R di↵erential

equation solver “ode” within package deSolve.

Results

In our model, increasing the intensity of preventive therapy directly a↵ects the amount of re-

sistance acquired through preventive therapy. It also indirectly a↵ects the amount of resistance

acquired through treatment for active disease and the competitive transmission advantage a↵orded

to DR strains. We find that the combined e↵ects of these mechanisms can result in increasing,

decreasing, and non-monotonic relationships between the intensity of PT coverage and DR preva-

lence. Throughout the results, we use the word “treatment” to refer solely to treatment for active

disease.

PT coverage and resistance acquired through PT

In our model, preventive therapy may lead directly to acquired resistance among individuals

latently or actively infected with the DS strain. To demonstrate how it may do so, Fig 1.2 provides

a focused view of the relevant states and transitions from Fig 1.1. Unbolded arrows in Fig 1.2

show the transitions that may lead to individuals latently or actively infected with the DS strain

receiving PT. Bolded arrows show the acquisition of resistance among such individuals as a result

of PT. If no individuals are to acquire resistance as a result of preventive therapy, one of the

following scenarios must apply: 1) no individuals with active or latent infection ever receive PT,

2) no individuals with active infection ever receive PT, and PT never results in acquired resistance

among latently infected individuals, or 3) PT never results in acquired resistance among latently

or actively infected individuals. The first scenario assumes that PT is intended only for uninfected
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individuals, that screening for latent and active infection prior to PT initiation is perfect (fi = 0

and fl = 0), and that adherence and drug e�cacy are su�ciently high that individuals receiving

PT never become infected (�PT
S = 0). The second scenario assumes that PT never selects for

sporadically occurring resistant mutants among individuals with latent infection (al = 0), that

screening for active infection prior to PT initiation is perfect (fi = 0), and that adherence and

drug e�cacy are su�ciently high that individuals receiving PT never progress from latent to active

infection (kPT
S = 0). The third scenario assumes that PT is incapable of selecting for resistance

at the individual level among both latently and actively infected individuals (al = 0 and ai = 0).

Even well-functioning preventive therapy programmes are unlikely to meet these stringent criteria,

and thus it is reasonable to expect that some individuals will directly acquire resistance as a result

of preventive therapy.

When we assume that some or all of these parameters are nonzero, reflecting the vast majority

of real-world PT applications, the relationship between PT coverage and resistance acquired as a

result of PT is shown in Fig 1.3. The level of resistance acquired through PT is a function of the

number of DS actively and latently infected individuals receiving PT (aiIPT
S + alL

PT
S ). When PT

coverage is low and insu�ciently able to control the epidemic, increasing PT coverage increases

the number of latently and actively infected individuals receiving PT and thus the number of

people who acquire resistance as a result of preventive therapy. When PT coverage is high and

better able to control the epidemic, increasing PT coverage decreases the number of people who

acquire resistance as a result of preventive therapy (similar to an e↵ect described in [14]). Under

such scenarios, although increasing the PT initiation rate still increases the total number of people

receiving PT, the resulting reduction in the force of DS infection is su�cient to decrease the number

of people receiving PT who have latent or active DS infection. Because only DS infected individuals

are at risk of acquiring resistance as a result of PT, this results in a reduction of the rate at which

resistance is acquired as a result of PT.

PT coverage and resistance acquired through treatment

As is seen in Fig 1.1, our model allows individuals receiving treatment for active DS disease

(TS) to acquire resistance at rate a. Increasing the coverage of PT in the population decreases the

number of people infected with the DS strain, and thus decreases the number of people who acquire

resistance through treatment for active disease. This relationship is shown in Fig 1.4.
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the transitions leading to these potentially at-risk states

0.0000

0.0005

0.0010

0.0015

0.0020

0.00 0.05 0.10 0.15 0.20
PT start rate (f)

R
e

si
st

a
n

ce
 a

cq
u

ir
e

d
 f

ro
m

 P
T

Figure 1.3: The relationship between PT start rate f and the rate at which resistance is acquired through

PT (aiIPT
S +alL

PT
S ) at equilibrium. Parameters for this figure: µ = 0.02, rR = 1, rS = 2, c = 1, kR = 1, kS =

1.5,�S = 2,�R = 1, x = 1, a = 0.3, ai = 0.5, al = 0.1, w = 0.1,�PT
S = 0, kPT

S = 0.

PT coverage and transmission of the DR strain

Our model assumes high levels of competition for susceptible hosts between strains, as we do not

allow for latent or active coinfection. As a result, increasing PT coverage may provide a selective
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Figure 1.4: The relationship between PT start rate f and the rate at which resistance is acquired through

treatment for DS disease (aTS) at equilibrium. Parameters for this figure are the same as those for Fig 1.3.

advantage to DR strains through two distinct mechanisms. First, increasing PT coverage increases

the probability that an individual latently infected with the DR strain will progress to active

DR infection. This relationship is a result of our assumption that DR latently infected individuals

could potentially be “rescued” from progressing to DR disease by superinfection with the DS strain.

As PT coverage increases, DR latently infected individuals are increasingly protected from such

superinfection and are therefore more likely to progress with their DR strain. Second, increasing

PT coverage increases the proportion of DR uninfected individuals who are susceptible to the DR

strain. In our model, the proportion of all individuals who are susceptible to the DR strain is given

by S+xLS +xR+S

PT +xL

PT
S +xR

PT , which depends on the proportion of people uninfected by

the DR strain, the proportion of people with active DS infection, and the level of immunity a↵orded

by initial infection. To obtain the proportion of DR uninfected individuals who are susceptible to

DR infection, we divide this by the total proportion of individuals not actively or latently infected

with the DR strain (S + R + LS + S

PT + R

PT + L

PT
S + IS + I

PT
S + TS). Increasing PT coverage

reduces the number of persons with active DS infection, and therefore increases the proportion of

DR uninfected individuals who are susceptible to the DR strain. These two e↵ects are discussed in

more detail in the appendix.
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The e↵ective reproductive number of the DR strain is a composite measure that allows us to

assess the combined e↵ects of these mechanisms on the competitive fitness of the DR strain. The

e↵ective reproductive number shows the number of secondary infectious cases produced by a single

infectious individual over the course of their infectious period. As opposed to the basic reproductive

number R0, which assumes a wholly susceptible population, the e↵ective reproductive number at a

given time point depends on the susceptibility pattern of the population at that point in time. In

a single strain model, the e↵ective reproductive number at equilibrium is equal to 1. In our model,

however, the number of DR infected individuals is boosted by acquired resistance, and therefore the

DR strain may coexist with the DS strain in the population even when the e↵ective reproductive

number of the DR strain is below 1.

Fig 1.5 shows how the e↵ective reproductive number of the DR strain at equilibrium changes

as PT coverage increases. At low PT coverage levels, the DR e↵ective reproductive number is less

than 1, indicating that acquired resistance is necessary for the persistence of the DR strain in the

population. As PT coverage increases, the reproductive fitness of the DR strain increases as well.

When PT coverage is su�ciently high, the DR e↵ective reproductive number reaches 1, indicating

that resistance has become self-sustaining and the DR strain has overtaken the DS strain in the

population.

Composite e↵ects of PT coverage on DR prevalence

Table 1.2: Summary of mechanisms through which PT may a↵ect the prevalence of drug resistance. The

proportion susceptible to the DR strain and the reproductive number of the DR strain are discussed in more

detail in the appendix.

Source of Influence Driven by E↵ect on DR Prevalence for

Resistance Health States Parameters Low PT Coverage High PT Coverage

PT
DS infected Rate resistance acquired " #

on PT (LPT
S , IPT

S ) on PT (al, ai)

Treatment DS Treated (TS)
Rate resistance acquired # #

on treatment (a)

Transmission
Susceptible to Reproductive number " "
DR strain of DR strain

Table 1.2 summarises the ways in which each of the resistance mechanisms outlined above will

tend to alter DR prevalence. While increasing PT coverage can decrease the rate of resistance
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Figure 1.5: The relationship between PT start rate f and the e↵ective reproductive number of the DR

strain at equilibrium. Calculations are given in the appendix. Parameters for this figure are the same as

those for Fig 1.3.

acquired due to treatment, it can also increase the competitive transmission advantage of circu-

lating DR strains, and its e↵ects on the rate of resistance acquired due to PT are non-monotonic.

Furthermore, in our model as in reality, none of these mechanisms exist in isolation. Rather, in-

creasing PT coverage acts simultaneously on the rate at which resistance is acquired through PT,

the rate at which resistance is acquired through treatment, and the competitive fitness of the DR

strain. In Fig 1.6 we show that the interactions between these mechanisms are su�cient to produce

a range of qualitatively distinct relationships between PT coverage and equilibrium DR prevalence.

Though the behaviours shown in this figure occur with varying frequencies and are not necessarily

exhaustive, they demonstrate the complexity of the changes in DR prevalence that may result from

PT.

All of the subplots in Fig 1.6 were created using the same model of preventive therapy under

di↵erent sets of parameters. The parameters used for each subplot are shown in the figure caption.

In Subplot A, DR prevalence increases monotonically with PT coverage. The parameters used to

produce this subplot were the same as those used to create the figures for the previous sections. In

Subplot B, DR prevalence increases with PT coverage when PT coverage is low, but decreases with
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increasing PT coverage if PT coverage exceeds a threshold value. To create this subplot, we lowered

the transmission parameter for the DR strain �R. This decrease in the transmissibility of the DR

strain allows acquisition of resistance through PT and treatment to play a larger role in changing

DR prevalence. In Subplot C, DR prevalence decreases monotonically with increasing PT coverage.

To create this subplot, we lowered the transmission parameter of the DR strain as in subplot B

and assumed that no resistance was acquired as a result of preventive therapy, allowing acquisition

of resistance by treatment alone to become the major driver of DR prevalence. Finally, in Subplot

D, DR prevalence decreases with increasing PT coverage when PT coverage is low, but increases

with increasing PT coverage if PT coverage exceeds a threshold value. To create this subplot, we

lowered the reinfection susceptibility of latently infected and recovered individuals, assumed no

resistance acquired as a result of preventive therapy, and assumed PT did not a↵ect infection with

the DS strain (i.e. that it only a↵ected disease progression). The resulting U-shaped curve indicates

that, at low coverage levels, PT primarily influences resistance acquired due to treatment for active

disease, whereas at high coverage levels, PT exerts more influence by allowing greater transmission

of the DR strain. This relationship may reflect the fact that lowering the progression rate a↵ects the

prevalence of latent DS infection di↵erently than the rate of active DS infection, complicating the

association between the prevalence of DS disease and the number of people susceptible to infection

with the DR strain. Note that the absolute changes in DR prevalence in this subplot are small;

nevertheless, this shape further reflects the complexity of the ways in which PT may cause changes

in DR prevalence.

Discussion

Mathematical models of varying complexity have been constructed to predict the e↵ects of

pre-exposure prophylaxis for HIV [15][12][10], isoniazid preventive therapy for TB [16][17][18], and

intermittent preventive treatment for malaria [19][20] on the prevalence of drug resistance. Here, we

have used a more general model to provide an overall view of the ways in which preventive therapy

may influence the prevalence of drug resistance and the anticipated directions of these e↵ects.

First, we have described the relationship between PT coverage and the amount of resistance

acquired directly as a result of PT. Previous models have demonstrated particular sensitivity to

assumptions surrounding the use of PT in infected individuals [21]. Our model shows that when
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Figure 1.6: Relationship between PT start rate f and DR prevalence (IR + I

PT
R + TR) at equilibrium.

Parameters for Subplot A are the same as those from Figs 1.3, 1.4, and 1.5: µ = 0.02, rR = 1, rS = 2, c =

1, kR = 1, kS = 1.5,�S = 2,�R = 1, x = 1, a = 0.3, ai = 0.5, al = 0.1, w = 0.1,�PT
S = 0, kPT

S = 0.

Parameters for Subplot B: same as for Subplot A, except �R = 0.55. Parameters for Subplot C: same as

for Subplot A, except �R = 0.55, ai = 0, al = 0. Parameters for Subplot D: same as for Subplot A, except

x = 0.4, ai = 0, al = 0,�PT
S = 2. The same range of PT start rates is shown for each subplot, though this

range is insu�cient to cause elimination of the DS strain in subplot D.
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PT coverage is low, increasing PT coverage increases the amount of resistance acquired as a result

of PT. When PT coverage is high, however, further increasing PT coverage decreases the amount of

resistance acquired as a result of PT, resulting in an inverted U-shaped curve between PT coverage

and resistance acquired from PT. A similar relationship has been described between drug pressure

and the rate of resistance in the setting of treatment for active disease [14]. Notably, this resistance

mechanism is not a necessary consequence of the beneficial e↵ects of PT. The number of people who

acquire resistance as a result of PT may be reduced by limiting the number of infected individuals

started on PT (e.g. through better screening programmes), the number of individuals receiving PT

who develop latent or active infection (e.g. through better adherence or more e↵ective PT drugs),

and the rate at which infected individuals on PT acquire resistance (e.g. through drugs or drug

combinations more similar to those used for treatment).

Second, we have shown that increasing PT coverage decreases the amount of resistance acquired

as a result of treatment for active disease. This relationship occurs because PT decreases the

number of individuals with active DS disease. We would expect a similar relationship to hold for

non-therapeutic interventions that do not exclusively target DS disease, such as condom use in the

setting of HIV.

Third, we have demonstrated that increasing PT coverage provides a selective advantage to

circulating DR strains. We have found that increasing PT coverage increases the e↵ective repro-

ductive number of the DR strain, which is consistent with predictions and observations for vaccines

targeting specific disease strains [22][23] and previous PT modelling papers that have used strain

competition to explain predicted increases in DR prevalence [17][18]. Increasing the intensity of PT

coverage increases the e↵ective reproductive number of the DR strain by increasing the probability

that a DR latently infected individual will progress to active DR infection (before reinfection with

the DS strain) and by increasing the proportion of the DR uninfected population that is susceptible

to infection with the DR strain.

Finally, we have shown that PT may have a wide range of e↵ects on overall DR prevalence,

depending on the interaction of these three mechanisms. Specifically, we have provided examples

of increasing, decreasing, U-shaped, and inverted U-shaped relationships between PT intensity

and equilibrium DR prevalence resulting from our model. These four shapes are not necessarily

exhaustive, but demonstrate that the relationship between PT coverage and DR prevalence may
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di↵er qualitatively depending on the disease and drug in question. In particular, predictions of the

e↵ects of PT on drug resistance are sensitive to a number of properties of the system: the rate at

which resistance is acquired as a result of PT, the rate at which resistance is acquired as a result

of treatment, the fitness costs of resistance on disease transmissibility, the mechanisms of PT, and

the rate of reinfection. Reliable estimates of these parameters are needed to accurately predict

the e↵ects of proposed PT programmes on DR prevalence. Our estimates are also sensitive to the

assumption that individuals cannot be reinfected throughout their infectious periods, illustrating

the importance of understanding within-host strain competition when predicting the population-

level e↵ects of PT.

Understanding how each of these factors contribute to the relationship between preventive ther-

apy and drug resistance may aid in the interpretation of models with di↵ering predictions about

the e↵ects of PT on drug resistance. For example, our analysis sheds some additional light on the

observations made by Abbas et al. [13] on the sources of di↵erence in the model predictions of

Supervie et al. [10] and Abbas et al. [12]. Abbas et al. [13] re-created both models to explore the

reasons for contrasting conclusions about the potential relationship between PrEP and HIV drug

resistance in sub-Saharan Africa. They suggest that a low value of R0 contributed to PrEP decreas-

ing the prevalence of drug resistance in [10], which accords with our demonstration that although

preventive therapy provides a competitive advantage to DR strains, it may still reduce the overall

prevalence of drug resistance when the transmissibility of the DR strain is low and resistance is

driven primarily by acquisition. Similarly, their observation that the di↵erences between the two

models could be partially explained by di↵ering PrEP coverage rates is supported by our finding

that the e↵ects of increasing PT coverage may be non-monotonic. The authors also acknowledge

that resistance in the population occurs as a result of transmission and treatment (i.e. antiretroviral

therapy) as well as PrEP; as we have shown, the e↵ects of preventive therapy on drug resistance

cannot be distilled to its e↵ects on resistance acquired through PT alone.

We have presented a general model that may not perfectly reflect the natural history of any

particular infection. Though in reality the specific action and targeting of PT varies depending

on the disease and drug of interest, we assume PT protects both susceptible and latently infected

individuals from active DS disease. Our assumption of no latent or active mixed infections en-

codes a high level of competition between strains for susceptible hosts, the biological plausibility
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of which will depend on the disease of interest. Other models have demonstrated that allowing

for mixed infections may either heighten or mitigate the e↵ective degree of competition between

strains depending on assumptions of how strains compete within and between hosts [24][25][26][27].

If we could assume DS and DR strains are perfectly non-competing, changing PT coverage may

not a↵ect the e↵ective reproductive number of the DR strain; however, we expect most pathogens

to exhibit some level of within-strain competition and therefore qualitative behaviours similar to

those described here. In addition to the assumption of no mixed infections, we assume a binary

designation of drug resistance that may not accurately represent the accumulation of resistance

mutations within a single host. Furthermore, we do not allow DR strains to revert to DS, though

this behaviour has been demonstrated for pathogens including HIV [28]. We assume that the ef-

fects of PT on disease progression cease immediately after PT is removed, and do not allow PT to

increase the cure rate or reduce the infectiousness of infectious individuals (as might occur if the

drugs used for PT are similar to those used for treatment). Similarly, we assume that PT has no

direct e↵ects on immunity to future infection. Finally, we focus our analysis on the e↵ects of PT on

drug resistance at equilibrium, even though policymakers may be most interested in its short-term

e↵ects.

Nevertheless, we have provided a systematic account of both direct and indirect mechanisms

through which PT may a↵ect DR prevalence. Depending on the relative contributions of these

resistance mechanisms, raising PT coverage could have increasing, decreasing, or non-monotonic

e↵ects on long-term DR prevalence. Because these relationships may be non-monotonic, care should

be taken when extrapolating the e↵ects of small PT programmes to larger e↵orts.
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APPENDIX S1

How could preventive therapy a↵ect the prevalence of drug resistance? Causes and consequences

Amber Kunkel, Caroline Colijn, Marc Lipsitch, Ted Cohen

Equations

The states and parameters used here are the same as those described in Table 1.1 in the main

text.
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Calculating DR E↵ective Reproductive Number

This section refers to states and parameters described in Table 1.1 in the main text. The e↵ective

reproductive number is the number of secondary infectious cases produced by a single infectious

individual over the course of their infectious period. We derived the e↵ective reproductive number
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of the DR strain RRE at equilibrium from first principles using the following equation:

RRE = �RD(P 0
✓

0
R + P

PT
✓

PT
R ).

We walk through each of the individual components of this equation below. �R is the transmis-

sion parameter for the DR strain, as described in the main text.

D, the average duration of infectiousness with the DR strain, is the sum of two terms: 1) the

average length of stay in the untreated infectious compartment and 2) the average length of stay

in the treated infectious compartment given that the individual initiates treatment prior to death.

This expression is given below:
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0, the probability of progressing from latent to active disease for individuals not on preventive

therapy at the time of infection, is the sum of the probability of progressing before leaving LR, the

probability of starting preventive therapy and then progressing before leaving L

PT
R , the probability

of starting preventive therapy and then stopping preventive therapy and then progressing before

leaving LR, and so on:
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where D0 is the rate of exit from LR

D0 = kR + µ+ �S(IS + I

PT
S + TS) + fl

and DPT is the rate of exit from L

PT
R

DPT = kR + µ+ �

PT
S (IS + I
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S + TS) + w.

This expression for P 0 captures all of the possible paths from the latent state to the infectious

29



state and hence captures the total probability of progression from latency to active DR disease. If

we let z = wfl/(D0DPT ) then the expression for P 0 simplifies to

P
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We can similarly derive the expression for P

PT , the probability of progressing from latent to

active disease for individuals on preventive therapy at the time of infection, which simplifies to

P
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Finally, ✓0R is the fraction of individuals who are susceptible to infection with the DR strain and

not currently on PT:

✓

0
R = S + xR+ xLS

and ✓

PT
R is the fraction of individuals on PT who are susceptible to infection with the DR strain:

✓

PT
R = S

PT + xR

PT + xL

PT
S .

Individuals already infected with the DR strain are not included here, even though they may be

reinfected with the DR strain, because they do not change states upon reinfection.

DR E↵ective Reproductive Number Components

Changing the coverage of preventive therapy changes the DR e↵ective reproductive number in

two ways: by a↵ecting the proportion of people infected with the DR strain who progress to active

DR disease, and by a↵ecting the proportion of the population that is susceptible to the DR strain.

Here we show how each of these components are a↵ected by changing PT coverage, using notation

defined earlier in the appendix and in Table 1.1 in the main text.

The proportion of people infected with the DR strain who progress to active DR infection

depends on the DS infection rate, which itself depends on the proportion of the population receiving

preventive therapy. To produce a population average, we used the formula

P =
P
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.
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The results are shown in Supplemental Figure S1.1. The proportion of DR infected persons who

progress to active infection with the DR strain increases with increasing PT coverage.
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Figure S1.1: The relationship between PT start rate f and the proportion of people infected with the DR

strain who progress to active DR infection. Parameters for this figure are the same as those for Fig 1.3 in

the main text.

The proportion of people susceptible to the DR strain depends on the number of people unin-

fected with the DR strain without active DS infection and the level of immunity a↵orded by initial

infection. To remove the e↵ects of changing DR prevalence, we show here the proportion of DR

uninfected persons who are susceptible to the DR strain:

✓R =
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0
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PT
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PT +R
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PT
S + IS + I

PT
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.

The results are shown in Supplemental Fig S1.2. The proportion of DR uninfected individuals who

are susceptible to the DR strain increases with increasing PT coverage.
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Figure S1.2: The relationship between PT start rate f and proportion of DR uninfected persons susceptible

to the DR strain. Parameters for this figure are the same as those for Fig 1.3 in the main text.
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Abstract	

Objective:		Extending	the	duration	of	isoniazid	preventive	therapy	(IPT)	among	people	

living	with	HIV	(PLHIV)	may	improve	its	effectiveness	at	both	the	individual	and	

population	level,	but	could	also	increase	selective	pressure	in	favor	of	isoniazid	resistant	

tuberculosis	(TB)	strains.		The	objective	of	this	study	was	to	determine	the	relative	

importance	of	these	two	effects.	

Methods:	Transmission	dynamic	model		

Design:	We	created	a	mathematical	model	of	TB	transmission	incorporating	HIV	incidence	

and	treatment,	mixed	strain	latent	TB	infections,	and	four	different	phenotypes	of	TB	drug	

resistance	(pan-susceptible,	isoniazid	mono-resistant,	rifampicin	mono-resistant,	and	

multi-drug	resistant).		We	used	this	model	to	project	the	effects	of	IPT	duration	on	the	

incidence	of	isoniazid-sensitive	and	-resistant	TB	as	well	as	mortality	among	PLHIV.		We	

evaluated	the	sensitivity	of	our	baseline	model,	which	was	calibrated	to	data	from	

Botswana,	to	different	assumptions	about	the	future	trajectory	of	the	TB	epidemic.		

Results:	Our	model	suggests	that,	in	the	context	of	a	declining	TB	epidemic	such	as	that	

currently	observed	in	Botswana,	the	incidence	and	mortality	benefits	of	continuous	IPT	for	

PLHIV	are	likely	to	outweigh	the	potential	resistance	risks	associated	with	long	duration	

IPT.		However,	in	less	well-controlled	epidemics,	the	selective	pressure	imposed	by	

widespread	use	of	continuous	IPT	on	isoniazid	resistant	TB	incidence	may	erode	its	initial	

benefits.	

Conclusions:	Continuous	IPT	should	be	coupled	with	strong	and	effective	HIV	control,	TB	

case-finding	and	treatment,	and	drug	resistance	surveillance	to	maximize	the	expected	

benefits	of	preventive	therapy.	



	

	 35	

Introduction	

The	World	Health	Organization	currently	recommends	at	least	6-9	months	of	

isoniazid	preventive	therapy	(IPT)	for	all	people	living	with	HIV	(PLHIV)	deemed	unlikely	

to	have	active	tuberculosis	(TB)	on	the	basis	of	symptom	screening	[1].		Several	clinical	

trials	have	demonstrated	an	individual-level	efficacy	of	IPT	for	preventing	TB	among	PLHIV	

[2].		Longer	follow-up	studies	on	the	risks	of	TB	after	stopping	IPT,	however,	suggest	that	

the	duration	of	protection	post-IPT	varies	based	on	setting	and	may	be	lost	almost	

immediately	[3-6].		Community-wide	IPT	was	demonstrated	to	have	no	effect	on	TB	

incidence	within	the	Thibela	study,	an	observation	that	has	been	at	least	partly	attributed	

to	rapid	loss	of	protection	from	re-infection	after	IPT	and	could	also	suggest	that	9	months	

of	IPT	are	insufficient	to	clear	latent	TB	strains	among	PLHIV	[7-10].		

A	continuous,	lifelong	course	of	IPT	has	been	suggested	as	a	potential	way	to	

increase	the	community-wide	impact	of	IPT	[7].		At	the	individual	level,	clinical	trials	have	

shown	an	increased	efficacy	of	36	months	of	IPT,	intended	as	a	proxy	for	lifelong	treatment,	

compared	to	the	standard	6-month	regimen	[11,	12].	Despite	these	potential	benefits,	

prolonging	the	course	of	IPT	could	exacerbate	concerns	about	the	risk	of	side	effects	and	

potential	for	increased	isoniazid	resistance.	Martinson	et	al.	found	a	greater	risk	of	serious	

adverse	effects	on	continuous	IPT	as	compared	to	shorter	duration	regimens	[13].	While	

the	analysis	of	published	literature	included	in	WHO	IPT	guidelines	concluded	that	IPT	

does	not	increase	the	risk	of	isoniazid-resistant	TB	among	IPT	recipients	(graded	“strong	

recommendation,	moderate	quality	of	evidence”),	this	analysis	was	based	on	clinical	trials	

of	IPT	that	used	stricter	criteria	to	exclude	active	TB	than	the	WHO	recommended	

symptom-screening	algorithm.	Furthermore,	the	included	studies	were	not	powered	to	
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assess	risks	of	resistance	[1,	14].		This	analysis	also	did	not	consider	the	potential	

competitive	advantage	that	community-wide	IPT	could	confer	to	isoniazid	resistant	TB	

strains	at	the	population	level	[15-17].			

Several	modeling	studies	have	previously	assessed	the	potential	impact	of	

widespread	IPT	use	among	PLHIV	on	the	incidence	of	both	isoniazid	sensitive	and	isoniazid	

resistant	TB	[16,	18,	19].		However,	these	studies	have	not	specifically	investigated	the	

impact	of	different	IPT	durations.	They	also	have	not	accounted	for	multiple	pathways	to	

multi-drug	resistant	(MDR)	TB	and	have	typically	offered	little	guidance	as	to	the	

conditions	under	which	the	potential	benefits	of	IPT	are	most	likely	to	outweigh	increased	

risks	of	resistance.	For	this	analysis,	we	created	a	mathematical	model	to	assess	the	

potential	impact	of	variable	durations	of	IPT	on	overall	mortality	among	PLHIV	over	a	

range	of	epidemic	scenarios.	Unlike	previous	models,	our	analysis	explicitly	explores	the	

potential	multi-faceted	effects	of	IPT	on	the	incidence	of	pan-sensitive,	isoniazid	mono-

resistant,	rifampicin	mono-resistant,	and	MDR	TB.		Our	baseline	scenario	was	chosen	and	

the	most	uncertain	parameters	were	estimated	based	on	historical	trends	and	future	

projections	of	the	TB-HIV	co-epidemic	in	Botswana.	

Methods	

To	assess	the	potential	impact	of	continuous	vs.	6-month	IPT	on	the	incidence	of	

isoniazid	resistant	TB	in	Botswana,	we	created	a	compartmental	transmission	model	

accounting	for	the	natural	history	of	TB,	the	incidence	of	HIV	and	uptake	of	antiretroviral	

therapy	(ART),	and	the	acquisition	and	transmission	of	TB	drug	resistance	in	this	setting.		

Our	modeling	strategy	is	described	briefly	below	and	in	more	detail	in	the	Appendix.		The	



	

	 37	

model	was	implemented	in	R	version	3.2.0	as	a	series	of	delay	differential	equations	

numerically	integrated	using	package	deSolve.	

Model	Overview	

The	basic	structure	of	our	model	is	shown	in	Fig	1.		With	respect	to	TB,	individuals	

in	the	model	may	be	fully	susceptible,	latently	infected,	actively	infected,	or	receiving	

treatment.		Initial	infection	moves	individuals	from	the	susceptible	compartment	to	either	

the	active	TB	(fast	progression)	or	latently	infected	(slow	progression)	compartment.		

People	who	are	latently	infected	may	become	actively	infected	via	either	reactivation	or	

reinfection.		We	assume	that	initial	infection	affords	partial	but	incomplete	protection	

against	future	reinfection.	

	

	

Figure	2.1:	Model	structure	
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Episodes	of	active	TB	in	the	model	may	result	in	death,	spontaneous	cure,	or	

initiation	on	treatment.		Treatment	episodes	may	result	in	successful	cure,	leading	to	

return	to	latent	infection,	or	in	treatment	failure,	resulting	in	relapse	to	active	disease	

either	with	or	without	acquired	resistance.	The	treatment	a	patient	receives	depends	on	

their	drug	susceptibility	profile	and	whether	drug	resistance	is	detected	by	their	healthcare	

provider.		We	assume	that	all	newly	diagnosed	patients	initially	receive	first-line	TB	

treatment,	but	starting	in	2008	allow	a	proportion	of	individuals	failing	their	initial	

treatment	course	to	receive	drug	susceptibility	testing	and	appropriate	retreatment	[20].			

With	respect	to	HIV,	individuals	in	the	model	may	be	uninfected,	infected	and	

undetected	(i.e.	not	receiving	ART),	or	infected	and	detected	(i.e.	receiving	ART	if	eligible).		

Individuals	with	detected	HIV	are	also	eligible	for	IPT.		Our	model	of	HIV	is	not	a	

transmission	model	in	that	the	number	of	new	HIV	infections	does	not	reflect	the	

interaction	between	susceptible	and	infected	individuals	in	the	model,	but	is	instead	based	

on	UNAIDS	Botswana	HIV	incidence	projections	(UNAIDS	2015,	unpublished	data).		

We	account	for	four	phenotypes	of	drug	resistant	TB	in	this	model:	pan-sensitive,	

isoniazid	mono-resistant,	rifampicin	mono-resistant,	and	multi-drug	resistant	(MDR,	

resistant	to	both	isoniazid	and	rifampicin).		We	assume	that	patients	receiving	treatment	

are	at	risk	of	developing	resistance	to	both	isoniazid	and	rifampicin.		We	also	assume	that	

patients	receiving	IPT	are	at	risk	of	developing	resistance	to	isoniazid,	with	rates	

depending	on	whether	they	are	latently	infected	or	have	active	TB	disease	(we	assume	

imperfect	sensitivity	of	symptom	screening	such	that	a	small	number	of	individuals	with	

active	disease	may	be	initiated	on	IPT	[21]).		During	the	latent	stage,	individuals	in	the	

model	may	be	infected	by	multiple	strains	with	the	same	or	varying	resistant	types;	
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however,	we	assume	that	progression	to	active	infection	acts	as	a	bottleneck,	with	only	one	

strain	dominating	(as	in	[16]).		Specifically,	we	assume	that	the	dominant	strain	is	

determined	at	the	time	of	each	(re)infection	event,	but	may	switch	if	IPT	is	applied	to	a	

latently	infected	individual	with	a	dominant	strain	that	is	isoniazid	sensitive	and	non-

dominant	strain	that	is	isoniazid	resistant.			

All	individuals	are	assumed	to	enter	the	model	HIV	susceptible	at	age	15.		We	allow	

individuals	to	be	latently	infected	with	at	most	one	TB	strain	at	the	time	of	model	entry,	

with	rates	determined	by	the	annual	risk	of	infection	over	the	previous	15	years.		We	do	

not	include	a	detailed	demographic	model,	and	instead	allow	for	a	rate	of	entry	that	

maintains	a	fairly	consistent	population	size	throughout	our	predictions.	

Historical	IPT	use	in	Botswana	is	incorporated	from	2004-2008	by	allowing	patients	

started	on	ARVs	during	that	time	to	receive	IPT	for	a	mean	duration	of	3	months	[22,	23].		

Otherwise	we	assume	no	individuals	receive	IPT	until	2017.		We	focus	our	analysis	on	the	

potential	impact	of	different	IPT	strategies	from	2017	onwards.	

Parameterization	

We	allow	the	rates	of	TB	infection,	progression,	and	other	natural	history	

parameters	to	vary	depending	on	whether	a	person	is	HIV	uninfected,	HIV	infected	and	

undetected,	or	HIV	infected	and	detected.		Treatment	success	is	also	allowed	to	vary	based	

on	both	HIV	status	and	resistance	pattern.		We	assume	that	the	majority	of	these	

parameters	are	known	with	certainty,	with	values	chosen	based	on	a	review	of	the	

literature.		The	remaining	18	parameters	were	assigned	prior	distributions	based	on	this	

literature	review.		Our	estimates	of	these	parameters	were	then	refined	using	Bayesian	

melding	[24,	25]	by	comparing	model	outputs	to	published	estimates	of	TB	incidence,	TB	
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prevalence,	HIV	prevalence,	HIV	prevalence	in	TB	cases,	and	the	coverage	of	antiretroviral	

therapy	in	Botswana	from	1990-2013,	as	well	as	data	from	four	TB	drug	resistance	surveys	

conducted	over	the	same	time	period	[26-28].	

Several	of	our	parameters	were	allowed	to	vary	over	time	to	reflect	observed	trends	

in	TB	and	HIV	control	in	Botswana.		These	parameters	include	the	rate	of	HIV	infection,	the	

rate	at	which	PLHIV	are	started	on	ART,	the	TB	case	detection	rate,	and	the	rate	of	second-

line	treatment,	and	are	discussed	in	more	detail	in	the	Appendix.		

IPT	Implementation	&	Impact	

Individuals	receiving	IPT	experience	several	different	effects.		First,	we	assume	that	

individuals	cannot	be	infected	or	reinfected	by	isoniazid	sensitive	TB	strains	while	

receiving	IPT.		Second,	we	assume	that	the	reactivation	rate	of	pre-existing	isoniazid	

sensitive	infections	is	reduced	for	individuals	receiving	IPT.		IPT	may	either	clear	these	

strains	completely	or	suppress	them	only	during	the	time	that	the	individual	is	receiving	

IPT	[8,	9].		If	IPT	is	able	to	clear	these	strains,	individuals	may	either	retain	or	lose	partial	

immunity	to	reinfection.		Latently	infected	individuals	may	acquire	resistance	to	isoniazid	

at	a	low	rate;	this	rate	is	much	higher	for	individuals	with	active	TB	inadvertently	receiving	

IPT.		Actively	infected	individuals	receiving	IPT	may	also	be	cured	at	low	rates	reflecting	

those	of	the	initial	trials	of	isoniazid	alone	[29,	30].		We	allow	individuals	receiving	IPT	to	

experience	a	small	excess	mortality	rate	due	to	adverse	effects.	

Beginning	in	2017,	we	implement	and	compare	four	different	IPT	scenarios:	no	IPT,	

short-term	IPT	(mean	duration	6	months	plus	additional	dropout),	realistic	continuous	IPT	

accounting	for	dropout	(median	duration	4.7	years,	similar	to	[13]),	and	perfect	continuous	

IPT	assuming	no	dropout.		We	introduce	a	brief	catch-up	period	in	the	beginning	of	2017	to	
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allow	individuals	already	started	on	ART	to	receive	IPT;	from	that	point	forward,	people	

may	only	receive	IPT	upon	HIV	detection.		Individuals	may	choose	not	to	receive	IPT,	and	

those	with	active	TB	may	be	detected	by	symptom	screening	prior	to	IPT	initiation	and	

instead	started	on	treatment	for	active	TB.		We	do	not	model	the	effect	of	secondary	IPT	

after	completion	of	treatment	for	active	disease.	

Outcomes	

The	outcomes	we	investigated	included	TB	incidence	(both	overall	and	by	

resistance	type),	mortality	rate	among	PLHIV,	and	cumulative	mortality	among	PLHIV.	

Results	

Here	we	describe	the	results	of	our	analysis	both	for	our	baseline	Botswana	

scenario,	in	which	transmission	is	declining	based	on	WHO	estimates	and	our	model	

predictions,	and	for	scenarios	with	higher	transmission	post-2017.	

Baseline	Botswana	Results		

Figure	2.2	shows	the	projected	incidence	of	pan-sensitive,	rifampicin	mono-

resistant,	isoniazid	mono-resistant,	and	MDR	TB	in	Botswana	for	the	range	of	IPT	

durations.	Our	model	projects	that	longer	IPT	durations	will	decrease	the	incidence	of	pan-

sensitive	and	rifampicin	mono-resistant	TB	through	2050.		We	also	predict	that	longer	

durations	of	IPT	will	increase	the	incidence	of	isoniazid	mono-resistant	and	MDR	TB.		
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Figure	2.2:	The	effect	of	IPT	duration	on	TB	incidence	by	resistance	phenotype	under	our	

baseline	Botswana	scenario.		Solid	lines	display	means	and	shaded	regions	display	95%	

quantiles	of	our	posterior	predictions.	

	

IPT	has	the	greatest	impact	in	absolute	terms	on	the	incidence	of	drug	sensitive	TB.	

Figure	2.3	shows	projections	of	different	IPT	durations	on	overall	TB	incidence,	mortality	

rate	among	PLHIV,	and	cumulative	mortality	among	PLHIV	relative	to	no	IPT.		Under	our	

baseline	scenario,	we	predict	that	longer	durations	of	IPT	will	decrease	the	overall	

incidence	of	TB	through	2050	despite	increases	in	the	incidence	of	isoniazid	mono-

resistant	and	MDR	TB.		We	similarly	predict	that	longer	durations	of	IPT	will	provide	

overall	mortality	benefits	to	our	population	through	at	least	2050,	suggesting	that	the	
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projected	increases	in	isoniazid	resistance	are	not	sufficient	to	outweigh	the	benefits	of	

decreased	overall	TB	incidence	under	this	scenario.	

	

	

Figure	2.3:	The	composite	effects	of	IPT	duration	on	overall	TB	incidence,	mortality	rate	

among	PLHIV,	and	cumulative	mortality	among	PLHIV	(relative	to	no	IPT).	Solid	lines	

display	means	and	shaded	regions	display	95%	quantiles	of	our	posterior	predictions.	
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treatment	and	transmission.		
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projections	and	expanded	access	to	antiretroviral	therapy.		However,	these	observed	

trends	could	be	subject	to	unforeseen	events	or	changes,	whether	technological,	medical,	or	

political;	they	also	may	limit	the	generalizability	of	our	results	to	other	settings.		Therefore,	

we	also	explored	the	effect	of	IPT	duration	on	the	incidence	of	both	isoniazid	sensitive	and	

isoniazid	resistant	TB	under	assumptions	of	constant	or	increasing	TB	transmission	after	

2017.	

Figure	2.4	shows	the	incidence	of	isoniazid	resistant	(mono-resistant	plus	MDR)	and	

overall	TB	under	different	durations	of	IPT	when	the	transmission	parameter	is	increased	

1.25x,	1.5x,	or	1.75x	that	of	our	baseline	scenario	beginning	in	2017.		Longer	durations	of	

IPT	have	a	stronger	effect	on	the	incidence	of	isoniazid	resistant	TB	under	these	higher	

transmission	scenarios.		When	transmission	is	sufficiently	high,	the	expected	increase	in	

isoniazid	resistant	TB	outpaces	the	decrease	in	isoniazid	sensitive	TB	within	25	years	or	

less.		Figure	2.5	shows	the	impact	of	IPT	duration	on	the	mortality	rate	and	cumulative	

mortality	(relative	to	no	IPT)	per	1,000	PLHIV	under	these	higher	transmission	scenarios.		

For	all	scenarios,	longer	IPT	durations	initially	decrease	the	mortality	rate	among	PLHIV,	

yet	for	the	highest	transmission	scenario	this	initial	difference	in	mortality	rates	is	lost	

within	the	first	25	years	of	the	applied	IPT	policy.		The	average	cumulative	mortality	

remains	lowest	for	the	longest	IPT	duration	scenario	through	2050	even	for	the	highest	

transmission	scenario;	however,	by	2050	the	differences	between	the	IPT	policies	are	

beginning	to	close	and	there	is	considerable	uncertainty	in	our	mortality	estimates.		
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Figure	2.4:	The	effects	of	IPT	duration	on	the	incidence	of	isoniazid	resistant	and	overall	TB	

when	the	transmission	parameter	post-2017	is	increased	1.25x,	1.5x,	and	1.75x	compared	

to	our	baseline	scenario.		When	transmission	is	relatively	high,	longer	durations	of	IPT	can	

produce	large	increases	in	the	incidence	of	isoniazid	resistant	TB,	eroding	their	initial	

overall	incidence	benefits.	Solid	lines	display	means	and	shaded	regions	display	95%	

quantiles	of	our	posterior	predictions.	
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Figure	2.5:	The	effects	of	IPT	duration	on	the	mortality	rate	and	cumulative	mortality	

relative	to	no	IPT	per	1,000	PLHIV	when	the	transmission	parameter	post-2017	is	

increased	1.25x,	1.5x,	and	1.75x	compared	to	our	baseline	scenario.		When	transmission	is	

relatively	high,	the	mortality	benefits	of	continuous	IPT	among	PLHIV	may	be	short-lived.	

Solid	lines	display	means	and	shaded	regions	display	95%	quantiles	of	our	posterior	

predictions.	

	

Discussion	
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of	these	results	to	assumptions	about	future	TB	transmission	trends.		Our	model	
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two	effects	varies	depending	on	the	future	trajectory	of	the	epidemic.		In	a	declining	

epidemic	such	as	our	baseline	Botswana	scenario,	we	predict	the	benefits	of	continuous	IPT	

for	PLHIV	to	outweigh	the	risks	of	increases	in	isoniazid	resistance	through	at	least	2050.		

In	higher	transmission	settings	or	scenarios,	however,	the	initial	incidence	and	mortality	

benefits	of	longer	IPT	durations	may	subsequently	be	eroded	by	substantial	increases	in	

the	incidence	of	isoniazid	resistant	TB,	reflecting	an	increased	importance	of	the	selective	

pressure	imposed	by	IPT	relative	to	other	resistance	mechanisms	[17].	

TB	transmission	trends	may	be	affected	by	a	large	range	of	underlying	parameters,	

including	potential	changes	in	HIV	transmission,	population	structure,	and	standards	of	

living,	as	well	as	the	structural	assumptions	of	our	model.		As	a	result,	it	is	not	possible	to	

predict	future	TB	transmission	trends	in	Botswana	with	certainty.		Our	initial	assumption	

was	that	the	transmission	parameter	would	remain	fixed	from	2017-2050,	reflecting	

continued	projected	advances	in	HIV	diagnosis	and	treatment	as	well	as	TB	case	detection	

and	treatment	policies	that	were	assumed	to	be	fairly	well-functioning.		If	these	

assumptions	do	not	hold,	or	in	other	settings	that	are	not	yet	reporting	similar	declines	in	

TB	and	HIV	incidence,	our	higher	transmission	scenarios	may	provide	more	realistic	

projections.	

These	results	suggest	that	continuous	IPT	is	likely	to	be	most	effective	in	preventing	

future	TB	transmission	when	coupled	with	strong	TB	and	HIV	control	programs.		Using	

continuous	IPT	in	the	absence	of	highly-effective	TB	and	HIV	case-finding	and	treatment,	

however,	may	result	in	substantial	increases	in	the	incidence	of	isoniazid	resistant	TB.		

Continuous	IPT	should	be	considered	as	one	of	a	suite	of	tools	that	could	be	useful	for	more	

rapidly	reducing	the	burden	of	HIV-associated	TB,	and	does	not	decrease	the	importance	of	
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other	interventions.		We	also	suggest	that	IPT	programs	providing	widespread	and/or	

continuous	IPT	be	accompanied	by	robust	drug	resistance	surveillance,	especially	in	

settings	with	a	high	prevalence	of	HIV	or	where	TB	transmission	is	believed	to	be	stable	or	

increasing.		Such	surveillance	programs	should	focus	on	the	absolute	incidence	of	isoniazid	

resistant	TB,	rather	than	the	proportion	of	TB	cases	that	are	isoniazid	resistant,	as	

increases	in	the	latter	could	also	reflect	expected	declines	in	incidence	of	isoniazid	sensitive	

TB.		

Even	under	our	most	pessimistic	high	transmission	scenario,	however,	the	risks	of	

increased	isoniazid	resistance	seen	in	this	analysis	are	not	immediate.		Longer	durations	of	

IPT	are	predicted	to	lower	overall	TB	incidence	and	the	mortality	rate	among	PLHIV	for	at	

least	20	years	on	average,	and	the	cumulative	mortality	advantage	of	continuous	IPT	could	

last	much	longer.		The	risks	of	resistance	driven	by	widespread,	long	duration	IPT	should	

therefore	be	weighed	against	its	potential	immediate	benefits.		These	future	risks	could	be	

mitigated	by	future	trends	in	TB	research	and	treatment,	particularly	in	the	area	of	TB	drug	

development.		Though	the	use	of	different	drugs	for	prevention	and	treatment	may	not	

currently	be	possible	given	the	limited	number	of	TB	drugs	available,	continued	drug	

development	could	make	this	a	highly	appealing	option,	either	through	the	development	of	

an	effective	alternative	first-line	regimen	without	isoniazid	or	perhaps	even	the	targeted	

use	of	a	new	drug	for	prevention	only	[31,	32].		

Our	analysis	has	several	limitations.		Because	IPT	is	a	complicated	intervention,	with	

population-level	impacts	potentially	affected	by	trends	in	TB,	HIV,	and	drug	resistance,	we	

have	presented	a	complex	model	with	many	parameters	for	which	there	is	limited	data	to	

inform	their	values.		The	detailed	structure	of	our	model	afforded	us	the	opportunity	to	
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account	for	complexities	avoided	in	previous	models,	such	as	the	stepwise	accumulation	of	

mutations	for	resistance	to	isoniazid	and	rifampicin	[16,	18,	19].		However,	it	also	reduces	

its	transparency,	and	many	of	the	parameters	assumed	fixed	may	not	actually	be	known	

with	certainty.		Similarly,	the	data	used	to	estimate	the	most	uncertain	parameters	were	

both	limited	in	scope	and	based	primarily	on	country-wide	estimates	rather	than	actual	

data	points.		Despite	the	complexity	of	the	model,	it	also	incorporates	a	number	of	strong	

simplifying	assumptions	and	structural	elements	that	may	constrain	the	sorts	of	

predictions	we	can	make.		In	particular,	this	analysis	does	not	incorporate	a	detailed	model	

of	demographic	trends	in	Botswana.		The	HIV	model	is	also	simplified	and	does	not	fully	

account	for	the	natural	history	of	HIV	infection.		Furthermore,	we	relied	on	UNAIDS	HIV	

incidence	estimates	rather	than	creating	a	full	transmission	model	of	HIV.		These	

limitations	suggest	caution	should	be	used	in	relying	on	the	quantitative	projections	

provided	in	this	paper,	but	are	less	likely	to	affect	the	qualitative	trends	we	report	here.	s	

In	summary,	our	results	suggest	that	if	interventions	using	longer	duration	IPT	

among	PLHIV	could	be	brought	to	scale	in	Botswana,	we	would	observe	a	decrease	the	

incidence	of	isoniazid	sensitive	(including	rifampicin	mono-resistant)	TB	through	at	least	

2050.		However,	the	projected	effects	of	widespread	continuous	IPT	on	the	incidence	of	

isoniazid	resistant	TB	vary	depending	on	future	transmission	trends.		In	settings	with	

declining	transmission	of	TB	and	HIV,	we	predict	the	impact	of	IPT	on	isoniazid	resistant	

TB	to	be	fairly	small.		In	higher	transmission	settings,	however,	IPT	could	result	in	large	

increases	in	the	incidence	of	isoniazid	resistant	TB.		Under	such	a	scenario,	the	benefits	of	

IPT	may	be	eroded	such	that	the	initial	reductions	in	TB	incidence	may	be	lost	within	two	

decades.		The	benefits	of	continuous	IPT	are	most	likely	to	outweigh	the	costs	when	
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coupled	with	strong	HIV	and	TB	case-finding	and	treatment	programs,	continued	TB	drug	

development,	and	robust	TB	drug	resistance	surveillance.	
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APPENDIX	S2	

Benefits	of	continuous	isoniazid	preventive	therapy	may	outweigh	resistance	risks	in	a	

declining	TB/HIV	co-epidemic	

Amber	Kunkel,	Forrest	W.	Crawford,	James	Shepherd,	Ted	Cohen	
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Comparisons	of	Data	and	Model	Output	

Here,	we	compare	our	model	performance	prior	to	IPT	implementation	in	2017	with	the	

data	used	to	inform	the	likelihoods	for	our	posterior	predictions.		Plots	were	created	by	

running	the	model	forwards	from	1980	over	the	range	of	considered	parameter	sets	(see	

Detailed	Methods	below	for	more	details).		

HIV	Plots	

	

Figure	S2.1:	Comparison	of	model	output	(red)	to	UNAIDS	(UNAIDS	2015,	unpublished	

data)	estimates	of	HIV	prevalence	(black)	from	1990-2013.		Uncertainty	in	the	estimates	

was	assumed	to	be	the	same	as	from	UNAIDS	AIDSinfo	estimates	of	HIV	prevalence	[1].	

Solid	lines	display	means	and	shaded	regions	display	95%	quantiles	of	our	posterior	

predictions.	
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Figure	S2.2:	Comparison	of	model	output	(red)	to	UNAIDS	AIDSinfo	estimates	of	ARV	

coverage	(black)	from	2010-2014	[1].		Solid	lines	display	means	and	shaded	regions	

display	95%	quantiles	of	our	posterior	predictions.		ARVs	were	assumed	to	be	unavailable	

prior	to	2003,	except	for	individuals	with	active	TB.	

	

	

Figure	S2.3:	Comparison	of	model	output	(red)	to	WHO	global	TB	program	estimates	of	HIV	

prevalence	in	TB	cases	(black)	from	1990-2013	[2].		Solid	lines	display	means	and	shaded	

regions	display	95%	quantiles	of	our	posterior	predictions.			
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TB	Plots	

	

Figure	S2.4:	Comparison	of	model	output	(red)	to	WHO	global	TB	program	estimates	of	TB	

incidence	(black)	from	1990-2013	[2].		Solid	lines	display	means	and	shaded	regions	

display	95%	quantiles	of	our	posterior	predictions.			

	

Figure	S2.5:	Comparison	of	model	output	(red)	to	WHO	global	TB	program	estimates	of	TB	

prevalence	(black)	from	1990-2013	[2].		Solid	lines	display	means	and	shaded	regions	

display	95%	quantiles	of	our	posterior	predictions.			
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Figure	S2.6:	Comparison	of	model	output	(solid	and	shaded	lines)	to	the	results	of	the	TB	

drug	resistance	surveys	from	1995,	1999,	2002,	and	2008	in	Botswana	[3].		Solid	lines	

display	means	and	shaded	regions	display	95%	quantiles	of	our	posterior	predictions.			
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Detailed	Methods	Narrative	

To	assess	the	effects	of	varying	IPT	duration,	we	created	a	deterministic	delay	

differential	equation	model	with	compartments	representing	both	TB	and	HIV	states.	The	

model	was	parameterized	to	the	TB	and	HIV	epidemics	in	Botswana	using	Bayesian	

melding	[4,	5].		

HIV	Model	States	

The	model	includes	four	distinct	HIV	states:	HIV	susceptible,	infected	with	

undetected	HIV,	infected	with	detected	HIV	and	on	IPT,	and	infected	with	detected	HIV,	not	

on	IPT	(here	on,	“HIV	susceptible,”	“HIV	undetected,”	“on	IPT,”	and	“HIV	detected”).	The	

HIV	undetected	state	represents	individuals	whose	HIV	status	is	unknown	and	who	cannot	

access	antiretroviral	treatment.	To	simplify	the	model,	we	combine	the	effects	of	HIV	

detection	and	antiretroviral	treatment,	such	that	people	with	detected	HIV	experience	

better	outcomes	than	those	whose	HIV	remains	undetected.	Within	the	model,	HIV	

increases	the	mortality	rate,	the	probability	of	fast	progression	among	individuals	newly	

infected	with	TB,	and	the	TB	reactivation	rate,	and	reduces	the	immunity	produced	by	

previous	TB	infection,	rate	of	self	cure	from	active	TB,	and	infectiousness	of	TB	cases	per	

unit	time.		We	assume	that	the	proportion	of	TB	cases	detected	prior	to	death	or	self	cure	is	

independent	of	HIV	status;	as	a	result,	TB	cases	with	HIV	infection	are	detected	faster	on	

average	than	those	without	HIV	infection.		

All	individuals	enter	the	model	HIV	susceptible	and	are	infected	with	rates	reflecting	

UNAIDS	estimates	of	historical	HIV	incidence	in	Botswana	(UNAIDS	2015,	unpublished	

data).	If	infected,	they	first	enter	the	HIV	undetected	compartment.	Their	HIV	may	be	

detected	either	through	routine	testing	or	upon	presentation	for	treatment	of	active	TB.	We	
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assume	that	all	people	will	receive	symptom	screening	for	TB	upon	routine	HIV	detection	

and	that	actively	infected	individuals	detected	through	such	screening	will	receive	

treatment.	Otherwise,	individuals	either	begin	IPT	or	move	directly	into	the	HIV	detected	

class.	No	individuals	revert	from	detected	to	undetected	HIV.		A	brief	catch-up	IPT	

campaign	in	the	first	6	months	of	2017	is	modeled	to	allow	75%	of	people	already	receiving	

ARVs	to	receive	IPT;	thereafter,	only	people	initiating	ARV	treatment	are	eligible	for	IPT.	

TB	Model	States	

The	TB	portion	of	the	model	includes	states	for	individuals	who	are	TB	susceptible,	

latently	infected,	actively	infected,	and	on	TB	treatment.	Infections	may	be	fast-progressing,	

moving	individuals	from	the	susceptible	class	directly	to	active	disease,	or	slow-

progressing,	moving	individuals	from	the	susceptible	class	into	latency.	Latent	infections	

may	lead	to	active	infection	through	reactivation	or	reinfection.	Latency	provides	partial	

immunity	against	reinfection.	Individuals	with	active	TB	experience	increased	mortality	

rates,	and	may	return	to	latency	either	through	self-cure	or	treatment.	People	may	receive	

either	first-line	treatment	or	appropriate	treatment	tailored	to	their	resistance	pattern.		We	

assume	only	first-line	treatment	is	available	prior	to	2008,	and	that	after	2008	alternative	

treatments	are	only	available	to	individuals	who	have	failed	their	initial	treatment	course	

[6].	Both	actively	infected,	untreated	individuals	and	the	proportion	of	treated	individuals	

who	fail	to	achieve	treatment	success	despite	surviving	therapy	contribute	to	the	force	of	

TB	infection.			

We	assume	individuals	enter	the	model	at	age	15.	We	allow	them	to	have	been	

previously	latently	infected	during	childhood	with	at	most	1	TB	strain	based	on	the	annual	

risk	of	infection	over	the	15	years	prior	to	model	entry.		The	calculations	used	to	estimate	
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the	proportion	of	individuals	entering	the	model	in	each	latently	infected	compartments	

are	provided	in	the	parameter	table	below.	

TB	Drug	Resistance	

We	include	four	TB	resistance	phenotypes:	drug	susceptible	(DS),	isoniazid		(INH)	

mono-resistant,	rifampicin	(RMP)	mono-resistant,	and	multi-drug	resistant	(MDR).		Our	

model	allows	for	mixed	infections	with	an	unlimited	number	of	TB	strains	during	latency,	

but	assumes	that	progression	to	active	infection	acts	as	a	bottleneck	with	only	a	single	

dominant	strain	surviving	and	progressing	to	active	disease.			

Within	the	model,	each	individual	is	initially	infected	with	only	one	TB	strain,	and	

may	be	reinfected	from	the	latent	compartment	with	any	strain.		Upon	reinfection,	the	

individual	either	immediately	transitions	to	active	disease	with	the	infecting	strain,	or	

enters	a	latent	state	in	which	both	strains	are	present.	Theoretically,	this	process	may	be	

repeated	any	number	of	times,	so	that	a	single	latently	infected	person	could	contain	any	

number	of	strains	with	any	pattern	of	resistance.	We	simplify	the	analysis	by	assuming	the	

progression	to	active	disease	acts	as	a	bottleneck,	with	only	the	dominant	strain	surviving	

and	causing	disease	(similar	to	[7]).	The	dominant	strain	may	be	probabilistically	

determined	at	the	time	of	each	infecting	event;	for	this	analysis,	we	assume	that	the	newly	

infecting	strain	always	dominates	any	previously	existing	strains.	We	also	assume	that	IPT	

is	the	only	condition	under	which	a	non-dominant	strain	may	become	dominant,	and	that	

this	will	only	occur	in	individuals	with	both	dominant	isoniazid	sensitive	and	non-

dominant	isoniazid	resistant	strains.	At	any	given	time,	each	person	has	at	most	two	strains	

of	interest:	the	strain	that	will	dominate	under	normal	conditions,	and	(potentially)	a	

second	strain	that	will	dominate	under	the	selective	pressure	of	IPT.	We	therefore	restrict	
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our	latent	states	to	eight	resistance	classes	(see	Table	1)	and	our	active	states	to	four	

resistance	classes	representing	the	four	strain	types.		We	assume	individuals	with	active	

infection	cannot	be	reinfected	until	they	are	cured	and	return	to	latency.	

	

Table	S2.1:	Description	of	TB	Latency	States	

	

Parameter	Inference	Summary	

Uncertain	model	parameters	(see	Table	2	below)	were	inferred	using	data	from	the	

HIV	and	TB	epidemics	in	Botswana	using	Bayesian	melding	[4,	5].		The	posterior	

probability	of	each	parameter	set	is	proportional	to	the	product	of	the	prior	probability	of	

each	parameter	set	and	the	likelihood	of	the	observed	data	given	those	parameters.		Prior	

distributions	for	each	parameter	were	determined	based	on	a	review	of	the	literature	and	

are	described	in	more	detail	in	Table	2.		We	assumed	that	these	parameters	were	

independent	except	as	otherwise	specified.		The	data	used	to	define	likelihoods	are	

described	in	more	detail	below.		We	used	importance	sampling	to	derive	an	estimate	of	the	

posterior	probability	distribution	for	each	of	the	variable	parameters.			

Likelihoods	

This	section	describes	the	data	and	procedures	used	to	define	likelihood	functions	

for	our	calibration	procedure.			

TB	prevalence	and	incidence	

1.1.3 TB Resistance

We include four TB resistance types: drug susceptible (DS), isoniazid monoresistant (INH-
R), rifampicin monoresistant (RMP-R), and multi-drug resistant (MDR). Each individual is
initially infected with only one TB strain. From the latent compartment, individuals may be
reinfected with any strain. Upon reinfection, the individual either immediately transitions
to active disease with the infecting strain, or enters a latent state in which both strains are
present. Theoretically, this process may be repeated any number of times, so that a single
latently infected person could contain any number of strains with any pattern of resistance.
We simplify the analysis by assuming the progression to active disease acts as a bottleneck,
with only the dominant strain surviving and causing disease (similar to [?]). We assume
the dominant strain is probabilistically determined at the time of each infecting event. We
also assume that IPT is the only condition under which a non-dominant strain may become
dominant, and that this will only occur in individuals with both dominant isoniazid sensitive
and non-dominant isoniazid resistant strains. At any given time, each person has at most two
strains of interest: the strain that will dominate under normal conditions, and (potentially) a
second strain that will dominate under the selective pressure of IPT. We therefore restrict our
latent states to eight resistance classes (see Table 1) and our active states to four resistance
classes representing the four strain types.

Table 1: Description of TB Latency States

Dominant strain resistance (no IPT)

Dominant
strain
(IPT)

DS INH-r RMP-r MDR
DS Ls - - -

INH-r Lsi Li Lri -
RMP-r - - Lr -
MDR Lsm - Lrm Lm

1.1.4 Model Entry

To simplify the model, we explicitly model adults only. People enter the model at age 15,
and are assumed to be HIV-negative. We assume that people below age 15 do not contribute
to the force of TB infection, or measured TB incidence and prevalence; these assumptions
reflect the low probability of smear positivity among pediatric TB cases. Individuals may
enter the model either TB-susceptible or latently infected with at most one TB strain. The
probability of being TB-susceptible at model entry is assumed to be equal to the probability
of zero infection events, where the number of infections follows a Poisson distribution with
parameter derived by integrating over the annual risk of infection for the previous 15 years.
For simplicity, individuals entering the model are assumed to be infected with at most one
strain, with proportions of strain types determined by the relative force of infection of each
strain over the past 15 years.

2
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We	compared	model	outputs	for	TB	prevalence	with	WHO	global	TB	program	

estimates	of	TB	prevalence	per	100,000	in	Botswana	from	1990-2013	[2].	Following	[8],	

we	assumed	that	the	uncertainty	around	the	TB	prevalence	estimates	was	distributed	

normally,	with	standard	deviation	estimated	from	the	width	of	the	reported	confidence	

intervals.	These	standard	deviations	were	used	to	calculate	the	likelihood	of	observing	the	

WHO	prevalence	estimates	given	the	model	parameters.		The	same	procedure	was	used	to	

derive	the	likelihood	of	observing	WHO	TB	incidence	estimates	for	the	same	years.	

HIV	parameters	

Model	estimates	of	HIV	prevalence	in	TB	patients	were	calculated	for	1990-2013	

and	compared	with	WHO	global	TB	program	estimates	[2].	As	for	TB	incidence	and	

prevalence,	we	assumed	uncertainty	around	these	estimates	was	normally	distributed.	

Model	estimates	of	HIV	prevalence	in	the	general	population	were	calculated	for		

1990-2013	and	compared	to	UNAIDS	estimates	of	HIV	prevalence	age	15+	(UNAIDS	2015,	

unpublished	data).		The	uncertainty	was	again	assumed	to	be	normally	distributed	and	

estimated	based	on	the	uncertainty	from	UNAIDS	AIDSinfo	estimates	of	HIV	prevalence	for	

the	same	years	[1].		

We	estimated	the	rate	at	which	people	with	HIV	were	started	on	ARVs	from	2003-

2009	based	on	the	data	reported	in	[9].		From	2010-2014,	we	compared	model	estimates	to	

UNAIDS	AIDSinfo	estimates	of	adult	coverage	of	antiretrovirals	in	Botswana,	assuming	the	

uncertainty	was	normally	distributed	as	above	[1].	

Drug	resistance	

The	prevalence	of	rifampicin	mono-resistance,	isoniazid	mono-resistance,	and	

multi-drug	resistance	among	treatment-naive	patients	were	obtained	from	four	drug	
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resistance	surveys	among	new	TB	cases	in	Botswana	(from	1995,	1999,	2002,	and	2008)	

[3].		We	assumed	that	survey	observations	were	drawn	from	a	multinomial	distribution,	

with	the	number	of	observations	given	by	the	number	of	individuals	sampled	in	each	

survey.		The	likelihood	of	the	model	parameters	was	calculated	by	comparing	the	

proportion	of	each	resistance	level	among	incident	TB	cases	in	the	model	at	the	time	of	

each	survey	and	the	observed	probabilities	of	isoniazid	resistance	(except	MDR),	rifampicin	

resistance	(except	MDR),	and	multi-drug	resistance	from	each	survey.	

Model	Initialization		

We	assume	that	TB	prevalence	had	reached	an	equilibrium	value	in	the	pre-

treatment,	pre-HIV	era.		The	inferred	parameter	“equil_prev”	represents	the	equilibrium	

prevalence	of	active	TB	that	we	would	expect	in	the	absence	of	TB	treatment	and	HIV.		This	

parameter	is	then	used	to	derive	both	the	TB	transmission	parameter	and	the	prevalence	of	

latent	TB	for	a	given	parameter	set.		The	model	is	started	in	1980	with	initial	conditions	

given	by	these	pre-HIV,	pre-treatment	equilibrium	values.	

The	equations	used	to	relate	the	equilibrium	prevalence	of	TB	to	the	transmission	

parameter	and	prevalence	of	latent	TB	are	as	follows	(with	parameters	as	defined	in	the	

following	parameter	tables):	
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	Implementation	

The	model	was	numerically	integrated	forward	from	the	initial	conditions	above	in	

R	using	the	function	“dede”	for	delay	differential	equations	in	package	deSolve.	

Initial	importance	sampling	distributions	were	derived	based	on	the	conditional	

distributions	along	each	variable	parameter	near	the	mode	of	the	posterior.		These	

distributions	were	refined	based	on	the	shape	of	the	resulting	marginal	posterior	

distributions.		Our	final	results	are	based	on	100,000	initial	samples	of	the	importance	

distributions,	followed	by	10,000	parameter	sets	resampled	(with	replacement)	according	

to	the	importance	weights.		Our	final	marginal	posterior	distributions	for	each	parameter	

are	provided	below.	Throughout	the	paper,	we	report	mean	projected	outcomes	for	these	

10,000	parameter	sets	as	well	as	2.5th	and	97.5th	percentiles.
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Figure	S2.7:	Marginal	prior	and	posterior	distributions	(see	also	Table	2)	
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Figure	S2.7	(Continued)	
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Figure	S2.7	(Continued)	
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Effect	of	assumed	susceptibility	to	reinfection	on	the	relationship	between	IPT	

and	drug	resistance	

As	a	secondary	analysis,	we	explored	how	the	assumed	susceptibility	to	TB	

reinfection	might	affect	the	projected	relationship	between	IPT	and	drug	resistance.		

Previous	papers	have	shown	that	competition	between	drug	sensitive	and	drug	

resistant	strains	is	the	major	mechanism	through	which	IPT	might	increase	the	

prevalence	of	drug	resistance	[7,	62].		The	degree	of	immunity	after	initial	TB	

infection	is	a	likely	major	driver	of	competition,	and	unlike	other	parameters	such	as	

fitness	costs	of	resistance	[57],	its	potential	impact	on	resistance	resulting	from	IPT	

has	not	yet	been	explored.	

For	Figure	S2.8,	we	set	the	susceptibility	to	TB	reinfection	to	30%,	60%,	or	

90%	among	people	uninfected	with	HIV,	and	90%	for	PLHIV.		All	other	parameters	

were	re-estimated	for	these	different	reinfection	values.		The	incidence	of	isoniazid	

resistant	TB	is	given	as	isoniazid	mono-resistant	plus	MDR.	In	the	absence	of	IPT,	

overall	TB	incidence	continues	to	decline	for	all	values	of	assumed	susceptibility	to	

reinfection,	following	the	trends	seen	in	Figure	2.2	of	the	main	text.		Increasing	

durations	of	IPT	do	appear	to	increase	the	incidence	of	isoniazid	resistant	TB.		

However,	the	extent	to	which	this	occurs	varies	depending	on	the	assumed	

susceptibility	to	reinfection.		If	we	assume	susceptibility	to	reinfection	is	high	

(90%),	the	increase	in	incidence	of	isoniazid	resistance	resulting	from	IPT	is	

negligible	even	for	perfect	lifelong	IPT.		If	we	assume	susceptibility	to	reinfection	is	

low	(30%),	the	effect	of	IPT	duration	on	the	incidence	of	isoniazid	resistant	TB	is	

more	noticeable.		However,	in	this	context	of	declining	transmission,	the	increase	in	
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isoniazid	resistant	TB	resulting	from	IPT	is	still	minor	compared	to	the	

corresponding	decrease	in	isoniazid	sensitive	TB.		As	a	result,	the	incidence	of	

overall	TB	through	2050	decreases	with	increasing	IPT	duration	regardless	of	the	

assumed	susceptibility	to	reinfection.	

	

	

Figure	S2.8:	Incidence	of	isoniazid	resistant	and	overall	TB	by	assumed	

susceptibility	to	reinfection	

	

Figure	S2.9	shows	how	the	effect	of	varying	IPT	duration	depends	on	the	assumed	

susceptibility	to	reinfection	in	the	context	of	higher	transmission.		To	create	this	

figure,	we	added	a	multiplier	to	the	transmission	parameter	after	2017	that	would	

result	in	a	prevalence	of	isoniazid	resistant	TB	of	approximately	150	per	100,000	in	

the	absence	of	IPT.		The	applied	multipliers	were	1.85	for	30%	susceptibility	to	

reinfection,	1.4	for	60%	susceptibility	to	reinfection,	and	1.35	for	90%	susceptibility	

to	reinfection,	reflecting	the	differences	in	the	inferred	parameters	for	each	value.			
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As	in	the	low	transmission	scenario,	longer	IPT	durations	increase	the	prevalence	of	

isoniazid	resistance	for	low	and	moderate	values	of	susceptibility	to	reinfection.	

There	is	no	observable	effect	of	IPT	duration	on	resistance	of	isoniazid	when	the	

assumed	susceptibility	to	reinfection	is	high	(90%).		For	all	values	of	the	

susceptibility	to	reinfection,	IPT	produces	an	initial	decrease	in	the	overall	incidence	

of	TB,	again	as	seen	in	the	low	transmission	setting.		However,	when	susceptibility	

to	reinfection	is	low	(30%),	this	drop	in	overall	TB	incidence	is	short-lived.		In	this	

relatively	high	immunity,	high	transmission	scenario,	the	decline	in	isoniazid	

sensitive	TB	cases	resulting	from	IPT	is	quickly	counteracted	by	the	corresponding	

increase	in	isoniazid	resistant	cases,	such	that	by	2035	the	overall	incidence	of	TB	is	

the	same	or	slightly	higher	for	longer	durations	of	IPT.			
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Figure	S2.9:	Incidence	of	isoniazid	resistant	and	overall	TB	by	assumed	

susceptibility	to	reinfection,	assuming	greater	transmission	

	

In	summary,	IPT	is	predicted	to	have	a	greater	impact	on	the	incidence	of	

isoniazid	resistant	TB	when	initial	TB	infection	provides	strong	protection	against	

future	infection.		This	difference	is	less	likely	to	be	clinically	relevant	in	the	context	

of	a	declining	epidemic.	
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Model	equations	

# R code containing model equations  
# Does not include time dependent parameters 
# Can by run via R function "dede" from package deSolve 
 
IPT_model_mixed <- function(times, yinit, pars) { 
  
 with(as.list(c(yinit,pars)), { 
 
  ##################################### 
  # Sums 
  ##################################### 
   
  Ln = Ln_s + Ln_si + Ln_sm + Ln_r + Ln_ri + Ln_rm + Ln_i + Ln_m; 
  Lu = Lu_s + Lu_si + Lu_sm + Lu_r + Lu_ri + Lu_rm + Lu_i + Lu_m; 
  Lipt = Lipt_s + Lipt_i + Lipt_r + Lipt_m; 
  Ld = Ld_s + Ld_si + Ld_sm + Ld_r + Ld_ri + Ld_rm + Ld_i + Ld_m; 
   
  In = In_s + In_r + In_i + In_m; 
  Iu = Iu_s + Iu_r + Iu_i + Iu_m; 
  Iipt = Iipt_s + Iipt_r + Iipt_i + Iipt_m; 
  Id = Id_s + Id_r +Id_i + Id_m; 
   
  T1n = T1n_s + T1n_r + T1n_i + T1n_m; 
  T1d = T1d_s + T1d_r + T1d_i + T1d_m; 
   
  T2n = T2n_r + T2n_i + T2n_m; 
  T2d = T2d_r + T2d_i + T2d_m; 
   
  N = Sn + Su + Sipt +  Sd + Ln + Lu + Lipt + Ld + 
   In + Iu + Iipt + Id + 
   T1n + T1d + T2n + T2d + Sipt_postipt + Sd_postipt; 
   
  N_hiv = Su + Sipt +  Sd + Lu + Lipt + Ld + 
   Iu + Iipt + Id + 
   T1d + T2d + Sipt_postipt + Sd_postipt; 
   
  #################################### 
  # Force of infection by resistance type 
  #################################### 
   
  beta_h = b*beta_0; 
   
  lambda_s = (beta_h*(Iu_s + Iipt_s + Id_s + (1-gamma_s)*T1d_s) + 
  beta_0*(In_s + (1- gamma_s)*T1n_s))/N; 
   
  lambda_i = x_i*(beta_h*(Iu_i + Iipt_i + Id_i + (1-gamma_i1)*T1d_i +  
  (1-gamma_i2)*T2d_i) + beta_0*(In_i + (1-gamma_i1)*T1n_i +  
  (1-gamma_i2)*T2n_i))/N; 
    
  lambda_r = x_r*(beta_h*(Iu_r + Iipt_r + Id_r + (1-gamma_r1)*T1d_r +  
  (1-gamma_r2)*T2d_r) + beta_0*(In_r + (1-gamma_r1)*T1n_r +  
  (1-gamma_r2)*T2n_r))/N; 
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  lambda_m = x_m*(beta_h*(Iu_m + Iipt_m + Id_m +  
  (1-gamma_m1)*T1d_m + (1-gamma_m2)*T2d_m) +  
  beta_0*(In_m + (1-gamma_m1)*T1n_m + (1-gamma_m2)*T2n_m ))/N; 
     
    lambda = lambda_s + lambda_i + lambda_r + lambda_m; 
     
     
  #################################### 
  # Recruitment rate (age 15+) 
  #################################### 
   
    dCum_ARI = lambda; # force of infection per capita 
    dCum_ARI_s = lambda_s; 
    dCum_ARI_r = lambda_r; 
    dCum_ARI_i = lambda_i; 
    dCum_ARI_m = lambda_m; 
     
    year_15 = 1995 # assume starting code in 1980 
 
   # Cum_ARI is variable 54 
   if (times>year_15) { # if have run model for >15 years 
    # latent infections determined by force of infection over previous 15 years 
    Lambda_l = Lambda*(1-exp(-(Cum_ARI - lagvalue(times-15,54))))  
    Lambda_s = Lambda-Lambda_l 
    prop_s = Cum_ARI_s - lagvalue(times-15,55) 
    prop_r = Cum_ARI_r - lagvalue(times-15,56) 
    prop_i = Cum_ARI_i - lagvalue(times-15,57) 
    prop_m = Cum_ARI_m - lagvalue(times-15,58) 
   } else {  
    # assume were at equilibrium prevalence before starting code in 1980 
    Lambda_l = Lambda*(1-exp(-(Cum_ARI +  
    (year_15-times)*equil_prev*beta_0)))  
    Lambda_s = Lambda-Lambda_l 
    prop_s = Cum_ARI_s + (year_15-times)*equil_prev*beta_0 
    prop_r = Cum_ARI_r # no resistance prior to 1980 
    prop_i = Cum_ARI_i  
    prop_m = Cum_ARI_m  
   } 
      
   tot_prop <- prop_s + prop_r + prop_i + prop_m 
    
   # Assume everyone enters with only one strain, proportional to the 
   # amount that they have seen each 
   if (prop_s > 0) { 
   Lambda_ls <- prop_s/tot_prop*Lambda_l 
    } else {Lambda_ls<-0 
  } 
   if (prop_i > 0) { 
   Lambda_li <- prop_i/tot_prop*Lambda_l 
    } else {Lambda_li=0 
} 
   if (prop_r > 0) { 
   Lambda_lr <- prop_r/tot_prop*Lambda_l 
    } else {Lambda_lr=0 
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} 
   if (prop_m > 0) { 
   Lambda_lm <- prop_m/tot_prop*Lambda_l 
    } else {Lambda_lm=0 
} 
    
   
   
  #################################### 
  # TB susceptibles 
  #################################### 
   
  dSn = Sn*(-lambda - mu_0 - h) + Lambda_s 
   
  dSu = Su*(-lambda - mu_u - z) + h*Sn; 
   
  dSipt = Sipt*(-lambda_i - lambda_m - mu_i - w) + 
   theta_s*z*Su + theta_s*e*Sd; 
   
  dSd = Sd*(-lambda - mu_d) + (1 - theta_s)*z*Su +  
  w*Sipt  - theta_s*e*Sd; 
   
  # Strains cleared through IPT - also calling "S" 
   
  dSipt_postipt = gamma_lipt*(Lipt_s+Lipt_r) +  
  Sipt_postipt*(-m_ipt*lambda_i - m_ipt*lambda_m - mu_i - w) +  
  theta_s*e*Sd_postipt; 
   
  dSd_postipt = Sd_postipt*(-m_ipt*lambda - mu_d) + 
   w*Sipt_postipt - theta_s*e*Sd_postipt; 
   
  #################################### 
  # TB latently infected 
  #################################### 
 
  # HIV uninfected 
   
  dLn_s = Lambda_ls + (1-rho_0)*Sn*lambda_s  +  
   m_0*q_0*(Ln_s*(-lambda_r - rho_0*lambda_s) +  
   (1-rho_0)*Ln_r*lambda_s) + gamma_s*k_1*T1n_s + sigma*In_s + 
   Ln_s*(-tau_0 - mu_0 - h - m_0*(lambda_m + lambda_i)) ; 
   
  dLn_si = Ln_si*(-tau_0 - mu_0 - h) + 
  m_0*q_0*(Ln_si*(-lambda_r - lambda_i - lambda_m - rho_0*lambda_s) +  
  (1-rho_0)*(Ln_i + Ln_ri)*lambda_s) + 
  m_0*(1-q_0)*(-r*Ln_si*lambda_m + lambda_i*(Ln_s + r*Ln_sm)); 
    
   dLn_sm = Ln_sm*(-tau_0 - mu_0 - h) + 
   m_0*q_0*(Ln_sm*(-lambda_r - lambda_i - lambda_m - rho_0*lambda_s)  +  
   (1-rho_0)*(Ln_m + Ln_rm)*lambda_s) + 
    m_0*(1-q_0)*(-r*Ln_sm*lambda_i + lambda_m*(Ln_s + r*Ln_si)); 
    
   dLn_r = Lambda_lr + (1-rho_0)*Sn*lambda_r + gamma_r2*k_r*T2n_r -  
   m_0*Ln_r*(lambda_m + lambda_i) + 
   m_0*q_0*(Ln_r*(-lambda_s - rho_0*lambda_r) + (1-rho_0)*Ln_s*lambda_r) + 
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   Ln_r*(-tau_0 - mu_0 - h) + sigma*In_r + gamma_r1*k_1*T1n_r; 
    
   dLn_ri = Ln_ri*(-tau_0 - mu_0 - h) + 
   m_0*q_0*(Ln_ri*(-lambda_s - lambda_i - lambda_m - rho_0*lambda_r)  + 
   (1-rho_0)*(Ln_i + Ln_si)*lambda_r) +  
   m_0*(1-q_0)*(-r*Ln_ri*lambda_m + lambda_i*(Ln_r + r*Ln_rm)) ; 
   
  dLn_rm = Ln_rm*(-tau_0 - mu_0 - h) + 
  m_0*q_0*(Ln_rm* (-lambda_s - lambda_i - lambda_m - rho_0*lambda_r) +  
  (1-rho_0)*(Ln_m + Ln_sm)*lambda_r) + 
    m_0*(1-q_0)*(-r*Ln_rm*lambda_i + lambda_m*(Ln_r + r*Ln_ri)); 
    
   dLn_i = Lambda_li + (1-rho_0)*Sn*lambda_i +  
   m_0*q_0*((1-rho_0)*(Ln - Ln_i)*lambda_i +  gamma_i2*k_i*T2n_i + 
   Ln_i*(-lambda_s - lambda_r - lambda_m - rho_0*lambda_i)) + 
  Ln_i*(-tau_0 - mu_0 - h) + sigma*In_i + gamma_i1*k_1*T1n_i; 
    
   dLn_m = Lambda_lm + (1-rho_0)*Sn*lambda_m +  
   m_0*q_0*((1-rho_0)*(Ln - Ln_m)*lambda_m +  
   Ln_m*(- lambda_s - lambda_i - lambda_r - rho_0*lambda_m)) + 
  Ln_m*(-tau_0 - mu_0 - h) + sigma*In_m + gamma_m1*k_1*T1n_m +  
  gamma_m2*k_m*T2n_m; 
    
   # HIV undetected 
    
   dLu_s = (1-rho_u)*Su*lambda_s - m_u*Lu_s*(lambda_i + lambda_m) +  
   m_u*q_u*(Lu_s*(-lambda_r - rho_u*lambda_s) +  
   (1-rho_u)*Lu_r*lambda_s) + Lu_s*(-tau_u - mu_u - z) + h*Ln_s; 
    
   dLu_si = Lu_si*(-tau_u - mu_u - z) + h*Ln_si + 
   m_u*q_u*(Lu_si*(-lambda_r - lambda_i - lambda_m - rho_u*lambda_s) +  
   (1-rho_u)*(Lu_i + Lu_ri)*lambda_s) +  
  m_u*(1-q_u)*(-r*Lu_si*lambda_m  + lambda_i*(Lu_s + r*Lu_sm)); 
   
  dLu_sm = Lu_sm*(-tau_u - mu_u - z) + h*Ln_sm + 
  m_u*q_u*(Lu_sm*(-lambda_r - lambda_i - lambda_m - rho_u*lambda_s) +  
  (1-rho_u)*(Lu_m + Lu_rm)*lambda_s) + 
   m_u*(1-q_u)*(-r*Lu_sm*lambda_i  + lambda_m*(Lu_s + r*Lu_si)); 
    
   dLu_r = (1-rho_u)*Su*lambda_r - m_u*Lu_r*(lambda_m + lambda_i) + 
   m_u*q_u*(Lu_r*(-lambda_s - rho_u*lambda_r) + (1-rho_u)*Lu_s*lambda_r) + 
   Lu_r*(-tau_u - mu_u - z) + h*Ln_r; 
    
   dLu_ri =  Lu_ri*(-tau_u - mu_u - z) + 
   m_u*q_u*(Lu_ri*(-lambda_s - lambda_i - lambda_m -rho_u*lambda_r) +  
   (1-rho_u)*(Lu_i + Lu_si)*lambda_r) + h*Ln_ri + 
   m_u*(1-q_u)*(-r*Lu_ri*lambda_m  + lambda_i*(Lu_r + r*Lu_rm)); 
    
   dLu_rm =  Lu_rm*(-tau_u - mu_u - z) + 
   m_u*q_u*(Lu_rm*(-lambda_s - lambda_i - lambda_m -rho_u*lambda_r) +  
   (1-rho_u)*(Lu_m + Lu_sm)*lambda_r) + h*Ln_rm + 
   m_u*(1-q_u)*(-r*Lu_rm*lambda_i + lambda_m*(Lu_r + r*Lu_ri)); 
   
  dLu_i = (1-rho_u)*Su*lambda_i + Lu_i*(-tau_u - mu_u - z) + h*Ln_i + 
  m_u*q_u*((1-rho_u)*(Lu - Lu_i)*lambda_i +  
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  Lu_i*(-lambda_s - lambda_r - lambda_m - rho_u*lambda_i)); 
   
  dLu_m = (1-rho_u)*Su*lambda_m +Lu_m*(-tau_u - mu_u - z) + h*Ln_m + 
   m_u*q_u*((1-rho_u)*(Lu - Lu_m)*lambda_m +  
   Lu_m*(- lambda_s - lambda_i - lambda_r - rho_u*lambda_m)) ; 
   
  # on IPT   
  dLipt_s = -m_d*Lipt_s*(lambda_m +lambda_i) -  
  v*tau_d*Lipt_s - mu_i*Lipt_s + gamma_ipt*Iipt_s -  
  a_lipt*Lipt_s +  phi*gamma_s*k_1*T1d_s +  
  theta_l*z*Lu_s - w*Lipt_s - gamma_lipt*Lipt_s  + theta_l*e*Ld_s; 
   
  dLipt_r = -m_d*Lipt_r*(lambda_m +lambda_i) - v*tau_d*Lipt_r -  
  mu_i*Lipt_r + gamma_ipt*Iipt_r - a_lipt*Lipt_r +  
  phi*gamma_r1*k_1*T1d_r + theta_l*z*Lu_r - w*Lipt_r - 
   gamma_lipt*Lipt_r + phi*gamma_r2*k_r*T2d_r + theta_l*e*Ld_r; 
   
  dLipt_i = (1-rho_d)*Sipt*lambda_i +  
  (1-rho_d)*m_ipt*Sipt_postipt*lambda_i +  
  m_d*q_d*(1-rho_d)*(Lipt_r + Lipt_s + Lipt_m)*lambda_i +  
  m_d*(1-q_d)*(Lipt_r + Lipt_s)*lambda_i - m_d*q_d*Lipt_i*lambda_m -  
  m_d*q_d*rho_d*Lipt_i*lambda_i - tau_d*Lipt_i - mu_i*Lipt_i +  
  sigma_d*Iipt_i +a_lipt*Lipt_s + phi*gamma_i1*k_1*T1d_i +  
  theta_l*z*(Lu_i + Lu_si + Lu_ri) - w*Lipt_i  + theta_l*e*(Ld_i + Ld_si + Ld_ri); 
   
  dLipt_m = (1-rho_d)*Sipt*lambda_m +  
  (1-rho_d)*m_ipt*Sipt_postipt*lambda_m + 
  m_d*q_d*(1-rho_d)*(Lipt_r + Lipt_s + Lipt_i)*lambda_m  +  
  m_d*(1-q_d)*(Lipt_r + Lipt_s)*lambda_m - m_d*q_d*Lipt_m*lambda_i -  
  m_d*q_d*rho_d*Lipt_m*lambda_m - tau_d*Lipt_m - mu_i*Lipt_m +  
  sigma_d*Iipt_m + a_lipt*Lipt_r + phi*gamma_m1*k_1*T1d_m + 
   theta_l*z*(Lu_m + Lu_sm + Lu_rm) - 
    w*Lipt_m + theta_l*e*(Ld_m + Ld_sm + Ld_rm); 
   
  # HIV detected 
   
  dLd_s = (1-rho_d)*Sd*lambda_s - m_d*Ld_s*(lambda_i+lambda_m) +  
  (1-rho_d)*m_ipt*Sd_postipt*lambda_s + w*Lipt_s  - theta_l*e*Ld_s + 
  m_d*q_d*(Ld_s*(-lambda_r - rho_d*lambda_s) +  
  (1-rho_d)*Ld_r*lambda_s) + Ld_s*(-tau_d - mu_d) +  
  sigma_d*Id_s + k_1*(1-phi)*gamma_s*T1d_s + (1 - theta_l)*z*Lu_s; 
   
  dLd_si =  (1 - theta_l)*z*Lu_si - theta_l*e*Ld_si + 
  m_d*q_d*(Ld_si*(-lambda_r - lambda_i - lambda_m - rho_d*lambda_s) + 
   (1-rho_d)*(Ld_i+Ld_ri)*lambda_s) + Ld_si*(-tau_d - mu_d) + 
  m_d*(1-q_d)*(-r*Ld_si*lambda_m + lambda_i*(Ld_s + r*Ld_sm))  ; 
   
  dLd_sm =  (1 - theta_l)*z*Lu_sm - theta_l*e*Ld_sm + 
  m_d*q_d*(Ld_sm*(-lambda_r - lambda_i - lambda_m - rho_d*lambda_s) +  
  (1-rho_d)*(Ld_m+Ld_rm)*lambda_s) + Ld_sm*(-tau_d - mu_d) + 
  m_d*(1-q_d)*(-r*Ld_sm*lambda_i + lambda_m*(Ld_s + r*Ld_si)) ;  
   
  dLd_r = (1-rho_d)*Sd*lambda_r - m_d*Ld_r*(lambda_m+lambda_i) +  
  (1-rho_d)*m_ipt*Sd_postipt*lambda_r +  
  m_d*q_d*(Ld_r*(-lambda_s - rho_d*lambda_r) +  
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  (1-rho_d)*Ld_s*lambda_r) + (1-phi)*gamma_r2*k_r*T2d_r + 
  Ld_r*(-tau_d - mu_d) + sigma_d*Id_r + k_1*(1-phi)*gamma_r1*T1d_r +  
  (1 - theta_l)*z*Lu_r + w*Lipt_r - theta_l*e*Ld_r; 
   
  dLd_ri = (1 - theta_l)*z*Lu_ri - theta_l*e*Ld_ri + 
  m_d*q_d*(Ld_ri*(-lambda_s - lambda_i - lambda_m - rho_d*lambda_r) +  
  (1-rho_d)*(Ld_i+Ld_si)*lambda_r) + Ld_ri*(-tau_d - mu_d) + 
  m_d*(1-q_d)*(-r*Ld_ri*lambda_m  + lambda_i*(Ld_r + r*Ld_rm)); 
   
  dLd_rm = (1 - theta_l)*z*Lu_rm - theta_l*e*Ld_rm + 
  m_d*q_d*(Ld_rm*(-lambda_s - lambda_i - lambda_m - rho_d*lambda_r) +  
  (1-rho_d)*(Ld_m+Ld_sm)*lambda_r) + Ld_rm*(-tau_d - mu_d) + 
  m_d*(1-q_d)*(-r*Ld_rm*lambda_i + lambda_m*(Ld_r + r*Ld_ri)) ; 
   
  dLd_i = (1-rho_d)*Sd*lambda_i + (1 - theta_l)*z*Lu_i +  
  (1-rho_d)*m_ipt*Sd_postipt*lambda_i+  
  m_d*q_d*((1-rho_d)*(Ld - Ld_i)*lambda_i +  
  Ld_i*(-lambda_s - lambda_r - lambda_m - rho_d*lambda_i)) + 
  Ld_i*(-tau_d - mu_d) + sigma_d*Id_i + k_1*(1-phi)*gamma_i1*T1d_i +  
  w*Lipt_i + gamma_i2*k_i*T2d_i - theta_l*e*Ld_i; 
   
  dLd_m = (1-rho_d)*Sd*lambda_m + (1 - theta_l)*z*Lu_m +  
  (1-rho_d)*m_ipt*Sd_postipt*lambda_m+ 
  m_d*q_d*((1-rho_d)*(Ld - Ld_m)*lambda_m +  
  Ld_m*(- lambda_s - lambda_i - lambda_r -rho_d*lambda_m)) + 
  Ld_m*(-tau_d - mu_d) + sigma_d*Id_m + k_1*(1-phi)*gamma_m1*T1d_m +  
  w*Lipt_m + gamma_m2*k_m*T2d_m - theta_l*e*Ld_m; 
   
  #################################### 
  # Infectious 
  #################################### 
   
  # HIV negative 
   
  dIn_s = lambda_s*rho_0*(Sn + m_0*q_0*Ln) +  
  tau_0*(Ln_s + Ln_si + Ln_sm) + In_s*(-mu_t - c_0 - sigma -h) +  
  (1-epsilon)*k_1*(1-a_si-a_sr-a_sm)*(1-gamma_s)*T1n_s; 
   
  dIn_r = lambda_r*rho_0*(Sn + m_0*q_0*Ln) +  
  tau_0*(Ln_r + Ln_ri + Ln_rm) + In_r*(-mu_t - c_0 - sigma -h) +  
  (1-epsilon)*k_1*(a_sr*(1-gamma_s)*T1n_s +  
  (1-a_rm)*(1-gamma_r1)*T1n_r) + 
  (1-epsilon)*(1-a_si)*(1-gamma_r2)*k_r*T2n_r; 
   
  dIn_i = lambda_i*rho_0*(Sn + m_0*q_0*Ln) + tau_0*Ln_i +  
  In_i*(-mu_t - c_0 - sigma -h) +  
  (1-epsilon)*k_1*(a_si*(1-gamma_s)*T1n_s + 
  (1-a_im)*(1-gamma_i1)*T1n_i) + 
  (1-epsilon)*(1-a_sr)*(1-gamma_i2)*k_i*T2n_i; 
   
  dIn_m = lambda_m*rho_0*(Sn + m_0*q_0*Ln) + tau_0*Ln_m +  
  In_m*(-mu_t - c_0 - sigma -h) +  
  (1-epsilon)*k_1*((1-gamma_m1)*T1n_m + a_sm*(1-gamma_s)*T1n_s +  
  a_rm*(1-gamma_r1)*T1n_r + a_im*(1-gamma_i1)*T1n_i) +  
  (1-epsilon)*a_sr*(1-gamma_i2)*k_i*T2n_i +  
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  (1-epsilon)*a_si*(1-gamma_r2)*k_r*T2n_r +  
  (1-epsilon)*(1-gamma_m2)*k_m*T2n_m; 
   
 
  # HIV undetected 
   
  dIu_s = lambda_s*rho_u*(Su + m_u*q_u*Lu) +  
  tau_u*(Lu_s + Lu_si + Lu_sm) + Iu_s*(-mu_tu - c_u - z) + h*In_s; 
    
   dIu_r = lambda_r*rho_u*(Su + m_u*q_u*Lu) +  
   tau_u*(Lu_r + Lu_ri + Lu_rm) + Iu_r*(-mu_tu - c_u - z) + h*In_r; 
   
  dIu_i =  lambda_i*rho_u*(Su + m_u*q_u*Lu) + tau_u*Lu_i +  
  Iu_i*(-mu_tu - c_u - z) + h*In_i; 
   
  dIu_m = lambda_m*rho_u*(Su + m_u*q_u*Lu) + tau_u*Lu_m +  
  Iu_m*(-mu_tu - c_u - z) + h*In_m; 
   
   
  # on IPT 
   
  dIipt_s = v*tau_d*Lipt_s - mu_ti*Iipt_s - c_d*Iipt_s -  
  gamma_ipt*Iipt_s - a_ipt*Iipt_s + 
  (1-epsilon_i)*theta_l*z*Iu_s - w*Iipt_s +  
  phi*(1-epsilon)*(1-a_si-a_sr-a_sm)*(1-gamma_s)*k_1*T1d_s  +  
  (1-epsilon_i)*theta_l*e*Id_s; 
   
  dIipt_r = v*tau_d*Lipt_r - mu_ti*Iipt_r - c_d*Iipt_r -  
  gamma_ipt*Iipt_r - a_ipt*Iipt_r + (1-epsilon_i)*theta_l*z*Iu_r -  
  w*Iipt_r + phi*(1-epsilon)*a_sr*(1-gamma_s)*k_1*T1d_s + 
  phi*(1-epsilon)*(1-a_rm)*(1-gamma_r1)*k_1*T1d_r +  
  phi*(1-epsilon)*(1-a_si)*(1-gamma_r2)*k_r*T2d_r  +  
  (1-epsilon_i)*theta_l*e*Id_r; 
   
  dIipt_i = rho_d*Sipt*lambda_i + rho_d*m_ipt*Sipt_postipt*lambda_i +  
  m_d*q_d*rho_d*Lipt*lambda_i + tau_d*Lipt_i - 
  mu_td*Iipt_i - c_d*Iipt_i - sigma_d*Iipt_i + a_ipt*Iipt_s +  
  (1-epsilon_i)*theta_l*z*Iu_i - w*Iipt_i + 
  phi*(1-epsilon)*a_si*(1-gamma_s)*k_1*T1d_s +  
  phi*(1-epsilon)*(1-a_im)*(1-gamma_i1)*k_1*T1d_i  +  
  (1-epsilon_i)*theta_l*e*Id_i; 
   
  dIipt_m = rho_d*Sipt*lambda_m + rho_d*m_ipt*Sipt_postipt*lambda_m +  
  m_d*q_d*rho_d*Lipt*lambda_m + tau_d*Lipt_m - 
  mu_td*Iipt_m - c_d*Iipt_m - sigma_d*Iipt_m + a_ipt*Iipt_r +  
  (1-epsilon_i)*theta_l*z*Iu_m - w*Iipt_m + 
  phi*(1-epsilon)*(1-gamma_m1)*k_1*T1d_m +  
  phi*(1-epsilon)*a_sm*(1-gamma_s)*k_1*T1d_s + 
  phi*(1-epsilon)*a_rm*(1-gamma_r1)*k_1*T1d_r +  
  phi*(1-epsilon)*a_im*(1-gamma_i1)*k_1*T1d_i + 
  phi*(1-epsilon)*a_si*(1-gamma_r2)*k_r*T2d_r  +  
  (1-epsilon_i)*theta_l*e*Id_m; 
  
  # HIV detected 
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  dId_s = lambda_s*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +  
  tau_d*(Ld_s + Ld_si + Ld_sm) + Id_s*(-mu_td - c_d - sigma_d) +  
  (1-phi)*(1-epsilon)*k_1*(1-a_si-a_sr-a_sm)*(1-gamma_s)*T1d_s + 
  (1-epsilon_i)*(1-theta_l)*z*Iu_s + w*Iipt_s  -  
  (1-epsilon_i)*theta_l*e*Id_s - epsilon_i*e*Id_s; 
   
  dId_r = lambda_r*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +  
  tau_d*(Ld_r + Ld_ri + Ld_rm) + Id_r*(-mu_td - c_d - sigma_d) +  
  (1-phi)*(1-epsilon)*k_1*(a_sr*(1-gamma_s)*T1d_s + 
  (1-a_rm)*(1-gamma_r1)*T1d_r) + (1-epsilon_i)*(1-theta_l)*z*Iu_r+ 
  (1-phi)*(1-epsilon)*(1-a_si)*(1-gamma_r2)*k_r*T2d_r  -  
  (1-epsilon_i)*theta_l*e*Id_r - epsilon_i*e*Id_r + w*Iipt_r ; 
   
  dId_i =  lambda_i*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +  
  tau_d*Ld_i + Id_i* (-mu_td - c_d - sigma_d) +  
  (1-phi)*(1-epsilon)*k_1*(a_si*(1-gamma_s)*T1d_s +  
  (1-a_im)*(1-gamma_i1)*T1d_i) + 
  (1-epsilon_i)*(1-theta_l)*z*Iu_i + w*Iipt_i +  
  (1-epsilon)*(1-a_sr)*(1-gamma_i2)*k_i*T2d_i  -  
  (1-epsilon_i)*theta_l*e*Id_i - epsilon_i*e*Id_i; 
   
  dId_m = lambda_m*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +  
  tau_d*Ld_m + Id_m*(-mu_td - c_d - sigma_d) + 
  (1-phi)*(1-epsilon)*k_1*((1-gamma_m1)*T1d_m +  
  a_sm*(1-gamma_s)*T1d_s + a_rm*(1-gamma_r1)*T1d_r + 
  a_im*(1-gamma_i1)*T1d_i) + (1-epsilon_i)*(1-theta_l)*z*Iu_m+  
  w*Iipt_m + (1-epsilon)*a_sr*(1-gamma_i2)*k_i*T2d_i + 
  (1-phi)*(1-epsilon)*a_si*(1-gamma_r2)*k_r*T2d_r +  
  (1-epsilon)*(1-gamma_m2)*k_m*T2d_m -  
  (1-epsilon_i)*theta_l*e*Id_m - epsilon_i*e*Id_m; 
   
  #################################### 
  # Treated First-Line 
  #################################### 
   
  # HIV negative 
   
  dT1n_s = T1n_s*(-mu_ts - k_1) + c_0*In_s +  
  epsilon*k_1*(1-a_si-a_sr-a_sm)*(1-gamma_s)*T1n_s; 
   
  dT1n_r = T1n_r*(-mu_tr1 - k_1) + f_r*c_0*In_r  +  
  g_r*epsilon*k_1*(a_sr*(1-gamma_s)*T1n_s +  
  (1-a_rm)*(1-gamma_r1)*T1n_r); 
   
  dT1n_i = T1n_i*(-mu_ti1 - k_1) + f_i*c_0*In_i +  
  g_i*epsilon*k_1*(a_si*(1-gamma_s)*T1n_s +  
  (1-a_im)*(1-gamma_i1)*T1n_i); 
   
  dT1n_m = T1n_m*(-mu_t - k_1) + f_m*c_0*In_m  +  
  g_m*epsilon*k_1*((1-gamma_m1)*T1n_m + 
  a_sm*(1-gamma_s)*T1n_s + a_rm*(1-gamma_r1)*T1n_r +  
  a_im*(1-gamma_i1)*T1n_i)  
   
   
  # HIV detected 
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  dT1d_s = T1d_s*(-mu_ths - k_1 +  
  epsilon*(1-a_si-a_sr-a_sm)*(1-gamma_s)*k_1) +  
  c_d*(Id_s + Iipt_s) + c_u*Iu_s + epsilon_i*z*Iu_s +  
  epsilon_i*e*Id_s; 
   
  dT1d_r = T1d_r*(-mu_thr1 - k_1) +  
  f_r*(c_d*(Id_r + Iipt_r) + c_u*Iu_r)  + f_r*epsilon_i*z*Iu_r + 
  g_r*epsilon*k_1*(a_sr*(1-gamma_s)*T1d_s +  
  (1-a_rm)*(1-gamma_r1)*T1d_r) + f_r*epsilon_i*e*Id_r; 
   
  dT1d_i = T1d_i*(-mu_thi1 - k_1) +  
  f_i*(c_d*(Id_i + Iipt_i) + c_u*Iu_i) + f_i*epsilon_i*z*Iu_i + 
  g_i*epsilon*k_1*(a_si*(1-gamma_s)*T1d_s +  
  (1-a_im)*(1-gamma_i1)*T1d_i) + f_i*epsilon_i*e*Id_i; 
   
  dT1d_m = T1d_m*(-mu_td - k_1) +  
  f_m*(c_d*(Id_m + Iipt_m) + c_u*Iu_m)  + f_m*epsilon_i*z*Iu_m + 
  g_m*epsilon*k_1*((1-gamma_m1)*T1d_m +  
  a_sm*(1-gamma_s)*T1d_s + a_rm*(1-gamma_r1)*T1d_r +  
  a_im*(1-gamma_i1)*T1d_i) + f_m*epsilon_i*e*Id_m; 
   
   
  #################################### 
  # Treated Second-Line 
  #################################### 
   
  # HIV negative 
   
  dT2n_r = -mu_tr2*T2n_r + (1-f_r)*c_0*In_r - k_r*T2n_r +  
  (1-g_r)*epsilon*a_sr*(1-gamma_s)*k_1*T1n_s + 
  (1-g_r)*epsilon*(1-a_rm)*(1-gamma_r1)*k_1*T1n_r +  
  epsilon*(1-a_si)*(1-gamma_r2)*k_r*T2n_r; 
   
  dT2n_i = -mu_ti2*T2n_i + (1-f_i)*c_0*In_i - k_i*T2n_i +  
  (1-g_i)*epsilon*a_si*(1-gamma_s)*k_1*T1n_s + 
  (1-g_i)*epsilon*(1-a_im)*(1-gamma_i1)*k_1*T1n_i +  
  epsilon*(1-a_sr)*(1-gamma_i2)*k_i*T2n_i; 
   
  dT2n_m = -mu_tm2*T2n_m + (1-f_m)*c_0*In_m - k_m*T2n_m +  
  (1-g_m)*epsilon*(1-gamma_m1)*k_1*T1n_m + 
  (1-g_m)*epsilon*a_sm*(1-gamma_s)*k_1*T1n_s +  
  (1-g_m)*epsilon*a_rm*(1-gamma_r1)*k_1*T1n_r +  
  (1-g_m)*epsilon*a_im*(1-gamma_i1)*k_1*T1n_i +  
  epsilon*a_sr*(1-gamma_i2)*k_i*T2n_i + 
  epsilon*a_si*(1-gamma_r2)*k_r*T2n_r +  
  epsilon*(1-gamma_m2)*k_m*T2n_m; 
   
  # HIV detected 
   
  dT2d_r = -mu_thr2*T2d_r - k_r*T2d_r + 
  (1-f_r)*(c_d*Id_r + c_d*Iipt_r + c_u*Iu_r)  +  
  (1-g_r)*epsilon*a_sr*(1-gamma_s)*k_1*T1d_s +  
  (1-g_r)*epsilon*(1-a_rm)*(1-gamma_r1)*k_1*T1d_r +  
  epsilon*(1-a_si)*(1-gamma_r2)*k_r*T2d_r +  
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  (1-f_r)*epsilon_i*z*Iu_r + (1-f_r)*epsilon_i*e*Id_r; 
   
  dT2d_i = -mu_thi2*T2d_i  - k_i*T2d_i +  
  (1-f_i)*(c_d*Id_i + c_d*Iipt_i + c_u*Iu_i) +  
  (1-g_i)*epsilon*a_si*(1-gamma_s)*k_1*T1d_s +  
  (1-g_i)*epsilon*(1-a_im)*(1-gamma_i1)*k_1*T1d_i +  
  epsilon*(1-a_sr)*(1-gamma_i2)*k_i*T2d_i +  
  (1-f_i)*epsilon_i*z*Iu_i + (1-f_i)*epsilon_i*e*Id_i; 
   
  dT2d_m = -mu_thm2*T2d_m - k_m*T2d_m +  
  (1-f_m)*(c_d*Id_m + c_d*Iipt_m + c_u*Iu_m)  +  
  (1-g_m)*epsilon*(1-gamma_m1)*k_1*T1d_m +  
  (1-g_m)*epsilon*a_sm*(1-gamma_s)*k_1*T1d_s +  
  (1-g_m)*epsilon*a_rm*(1-gamma_r1)*k_1*T1d_r +  
  (1-g_m)*epsilon*a_im*(1-gamma_i1)*k_1*T1d_i +  
  epsilon*a_sr*(1-gamma_i2)*k_i*T2d_i +  
  epsilon*a_si*(1-gamma_r2)*k_r*T2d_r +  
  epsilon*(1-gamma_m2)*k_m*T2d_m +  
  (1-f_m)*epsilon_i*z*Iu_m  + (1-f_m)*epsilon_i*e*Id_m; 
   
   
  #################################### 
  # Mortality 
  ####################################  
      # HIV deaths 
   # ALL deaths to people with HIV 
   # Per 1000 people with HIV 
   if (N_hiv > 1) { 
   dM_hiv = (mu_u*(Su + Lu) + mu_i*(Sipt + Sipt_postipt + Lipt) + 
    mu_d*(Sd + Sd_postipt + Ld) + mu_tu*Iu +  
    mu_ti*(Iipt_s + Iipt_r) + mu_td*(Iipt_m + Iipt_i + Id + T1d_m) +  
    mu_ths*T1d_s + mu_thi1*T1d_i + mu_thr1*T1d_r +  
    mu_thr2*T2d_r + mu_thi2*T2d_i + mu_thm2*T2d_m)/N_hiv*1000 
   } else { 
    dM_hiv = 0 
   } 
    
  return(list(c(dSn, dSu, dSd, #3 
    dLn_s, dLn_si, dLn_sm, dLn_i, dLn_r, dLn_ri, dLn_rm, dLn_m, #11 
    dLu_s, dLu_si, dLu_sm, dLu_i, dLu_r, dLu_ri, dLu_rm, dLu_m, #19 
    dLd_s, dLd_si, dLd_sm, dLd_i, dLd_r, dLd_ri, dLd_rm, dLd_m, #27 
    dIn_s, dIn_r, dIn_i, dIn_m, #31 
    dIu_s, dIu_r, dIu_i, dIu_m, #35 
    dId_s, dId_r, dId_i, dId_m, #39 
    dT1n_s, dT1n_r, dT1n_i, dT1n_m, #43 
    dT1d_s, dT1d_r, dT1d_i, dT1d_m, #47 
    dT2n_r, dT2n_i, dT2n_m, #50 
    dT2d_r, dT2d_i, dT2d_m, #53 
    dCum_ARI, dCum_ARI_s, dCum_ARI_r, dCum_ARI_i, dCum_ARI_m, #58 
    dSipt, dLipt_s, dLipt_i, dLipt_r, dLipt_m, 
    dIipt_s, dIipt_r, dIipt_i, dIipt_m, 
    dSipt_postipt,dSd_postipt, dM_hiv)))  
 })  
  
} 
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Abstract	
	
Background:	New	drugs	for	the	treatment	of	tuberculosis	(TB)	are	becoming	available	for	

the	first	time	in	over	40	years.	Optimal	strategies	for	introducing	these	drugs	have	not	yet	

been	established.		The	objective	of	this	study	was	to	compare	different	strategies	for	

introducing	the	new	TB	drug	bedaquiline	based	on	patients’	resistance	patterns.	

Methods	and	Findings:	We	created	a	Markov	decision	model	to	follow	a	hypothetical	cohort	

of	multidrug	resistant	(MDR)	TB	patients	under	different	bedaquiline	use	strategies.		The	

explored	strategies	included	making	bedaquiline	available	to	all	patients	with	MDR	TB,	

restricting	bedaquiline	usage	to	patients	with	MDR	plus	additional	resistance,	and	

withholding	bedaquiline	introduction	completely.		We	compared	these	strategies	according	

to	life	expectancy,	risks	of	acquired	resistance,	and	the	expected	number	and	health	

outcomes	of	secondary	cases.	Providing	bedaquiline	to	all	MDR	patients	maximized	the	life	

expectancy	of	our	initial	cohort	in	76·8%	of	5,000	simulations.		In	22·6%	of	simulations,	

however,	life	expectancy	was	maximized	by	withholding	bedaquiline	completely,	reflecting	

assumed	uncertainty	in	bedaquiline	safety	and	efficacy.		The	most	liberal	bedaquiline	use	

strategies	consistently	increased	the	risk	of	bedaquiline	resistance,	but	decreased	the	risk	

of	resistance	to	other	MDR	drugs.		In	almost	all	cases,	more	liberal	bedaquiline	use	

strategies	reduced	the	expected	number	of	and	life	years	lost	to	secondary	cases.			

Conclusions:	Continued	research	on	bedaquiline	is	necessary	to	verify	an	overall	mortality	

benefit	in	programmatic	settings.		Once	established,	the	desire	to	prevent	bedaquiline	

resistance	by	restricting	its	use	should	be	weighed	against	the	possibility	of	extending	

current	patients’	lives	and	protecting	existing	drugs	through	expanded	use.	
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Introduction	

Only	approximately	50%	of	the	111,000	people	started	on	treatment	for	multidrug	

resistant	tuberculosis	(MDR	TB)	in	2014	are	likely	to	be	successfully	treated	[1].	The	

remainder	will	experience	high	mortality,	risk	acquisition	of	extensively	drug	resistant	

(XDR)	TB,	and	may	continue	to	infect	others.	New	antibiotics	have	the	potential	to	

revolutionize	both	prevention	and	treatment	of	highly	drug	resistant	TB.	Bedaquiline	and	

delamanid	recently	became	the	first	new	drugs	approved	for	TB	treatment	in	over	40	years	

[2,	3],	and	other	promising	drugs	such	as	pretomanid	are	in	development	[4].	Effective	drug	

use	policies	will	be	necessary	to	obtain	maximal	benefit	from	these	new	drugs	while	also	

managing	risks	of	resistance.	

Although	clinical	management	of	TB	relies	on	strong	multidrug	regimens,	the	initial	

discovery	and	development	of	new	TB	drugs	often	occur	in	isolation.	Optimizing	multidrug	

regimens	is	complicated	in	both	theory	(e.g.	by	the	number	of	drugs,	limited	data	on	drug	

efficacy	and	interactions,	and	the	prevalence	of	existing	resistance)	and	practice	(e.g.	by	

lack	of	access	to	patients’	full	drug	susceptibility	profiles	and	limited	opportunity	for	

controlled	trials)	[5,	6].	Thus,	decisions	about	how	best	to	introduce	and	combine	new	TB	

drugs	have	relied	heavily	on	expert	opinion.		Limited	guidance	exists	beyond	common-

sense	strategies,	such	as	never	to	add	a	single	drug	to	a	failing	regimen,	and	broad	

considerations,	such	as	the	number	of	drugs	and	their	side-effect	profiles	[5,	7].			

Here,	we	present	a	Markov	decision	model	to	begin	formalizing	a	rational	basis	for	

decisions	about	drug	introduction.	Using	the	model,	we	outline	the	tradeoffs	involved	in	

deciding	which	patients	should	receive	a	new	anti-TB	drug,	based	on	both	their	outcomes	

and	those	of	their	immediate	contacts.	We	explore	a	continuum	of	policies	ranging	from	
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most	conservative	(i.e.	restricting	the	new	drug	entirely	or	for	use	only	among	the	most	

highly	resistant	patients)	to	most	liberal	(i.e.	allowing	all	patients	with	MDR	TB	to	receive	

the	new	drug).	Though	the	general	framework	of	our	analysis	is	broadly	generalizable,	we	

focus	this	paper	specifically	on	the	new	TB	drug	bedaquiline.	Bedaquiline	was	approved	by	

the	FDA	in	2012	for	use	in	MDR	TB	patients	without	other	treatment	options	on	the	basis	of	

its	Phase	IIb	trial	culture	conversion	results.	However,	concerns	about	resistance	and	a	

mortality	imbalance	observed	in	the	pivotal	Phase	IIb	trial	have	generated	controversy	

about	the	appropriate	role	of	this	new	drug	[8-11].	A	formal	approach	to	assessing	

potential	bedaquiline	use	strategies	is	therefore	especially	appropriate.			

Methods	

To	evaluate	the	impact	and	potential	tradeoffs	of	different	bedaquiline	introduction	

strategies,	we	created	a	Markov	decision	model	following	a	hypothetical	cohort	of	patients	

initiating	MDR	TB	treatment	and	their	immediate	contacts.	A	model	description	is	provided	

below,	with	full	details	available	in	the	S1	Appendix.	

Population	

Our	assumed	population	was	a	cohort	of	European	men	initiating	MDR	TB	

treatment	at	age	30.	All	men	were	assumed	to	be	bedaquiline	susceptible	at	baseline	and	

have	either	MDR	TB	without	additional	resistance	(“MDR”	from	here),	MDR	TB	with	

additional	resistance	to	either	at	least	one	fluoroquinolone	or	at	least	one	second-line	

injectable,	but	not	both	(“PreXDR”),	or	MDR	TB	with	additional	resistance	to	at	least	one	

fluoroquinolone	and	at	least	one	second-line	injectable	(“XDR”).	The	distributions	of	

patients’	initiating	resistance	patterns	were	informed	by	a	published	cohort	[12].		

Health	States	and	Transitions	
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Modeled	health	states	were	defined	based	on	TB	culture	status	(positive,	negative,	

or	stable	cure),	treatment	regimen	(optimized	background	regimen,	OBR;	OBR	plus	

bedaquiline;	or	no	treatment),	and	resistance	pattern	(to	bedaquiline	and	background	

drugs).	Transitions	between	these	states	included	culture	conversion,	relapse,	routine	or	

premature	cessation	of	treatment,	treatment	re-initiation	after	cessation,	regimen	change,	

resistance	acquisition,	and	death.	We	assumed	that	resistance	was	acquired	in	a	stepwise	

fashion	(i.e.	to	one	drug	at	a	time)	and	that	patients	could	only	relapse	after	treatment	(i.e.	

culture	conversions	were	only	modeled	if	sustained	through	the	end	of	treatment).	We	also	

assumed	that	TB-related	mortality	and	acquired	resistance	rates	applied	only	to	patients	

who	were	culture-positive,	and	that	some	patients	self-cured	even	in	the	absence	of	TB	

treatment.		

Cycle	Length	

We	used	a	cycle	length	of	one	week	within	our	model	to	capture	potentially	rapid	

changes	in	infectiousness,	prognosis,	and	resistance	patterns.		

Treatment	Strategies	

We	considered	the	following	treatment	strategies:	withholding	bedaquiline	from	all	

patients,	providing	bedaquiline	to	patients	with	XDR	TB	only,	providing	bedaquiline	to	

patients	with	PreXDR	or	XDR	TB,	or	providing	bedaquiline	to	all	patients	with	at	least	MDR	

TB.		We	did	not	allow	treatment	to	differ	based	on	bedaquiline	resistance	patterns,	

reflecting	the	current	lack	of	a	validated	test	with	breakpoints	defining	clinically	relevant	

bedaquiline	resistance	[5].		

For	the	strategy	in	which	all	patients	with	MDR	TB	were	eligible	for	bedaquiline,	we	

assumed	that	all	patients	received	bedaquiline	from	the	beginning	of	treatment.	For	the	
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more	conservative	strategies,	we	assumed	a	13	week	average	lag	time	after	acquisition	of	

or	treatment	initiation	with	the	relevant	resistance	pattern	to	account	for	a	delay	in	

obtaining	results	of	second-line	drug	susceptibility	testing	(DST).	We	compared	these	

results	to	an	analysis	assuming	no	lag	time,	reflecting	the	potential	impact	of	widespread	

rapid	second-line	DST	availability.	

Secondary	cases	were	subjected	to	the	same	treatment	strategy	as	the	initial	cohort.		

We	assumed	secondary	cases	were	initially	undetected	at	the	time	of	disease	initiation,	but	

recognized	as	MDR	TB	upon	presentation	to	the	health	system.	Detection	of	additional	

resistance	was	subject	to	the	same	delays	as	for	the	index	patients.	

Outcomes	

We	considered	mortality,	resistance,	and	transmission	outcomes.	To	assess	

mortality,	we	compared	the	average	life	expectancy	from	initiation	of	MDR	TB	treatment	

across	the	different	bedaquiline	use	strategies,	and	to	assess	resistance,	we	recorded	the	

number	of	patients	who	acquired	particular	resistance	patterns	under	each	treatment	

strategy.	To	assess	transmission,	we	calculated	the	number	of	secondary	cases	infected	by	

our	initial	cohort	based	on	the	expected	number	of	transmission	events	per	year	

(accounting	for	treatment	status,	fitness	costs	of	resistance,	and	the	duration	of	

infectiousness)	and	the	probability	of	progressing	to	active	disease.	The	life	expectancy	of	

each	secondary	case	was	calculated	based	on	the	resistance	pattern	of	the	index	case	at	the	

time	of	the	infection	event.	These	estimates	were	combined	to	give	the	expected	number	of	

life	years	lost	to	secondary	cases	under	each	treatment	scenario.		

Parameterization		
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Parameters	describing	TB	natural	history	and	outcomes	in	the	absence	of	

bedaquiline	were	taken	from	published	cohorts,	clinical	trials,	and	meta-analyses	[13-15].	

These	parameters	were	held	fixed	throughout	our	analysis.	Parameters	describing	the	

effect	of	bedaquiline	were	derived	from	the	bedaquiline	pivotal	trials	[8,	16]	and	more	

recent	cohorts	[3,	17,	18].	Because	only	small	numbers	of	patients	receiving	bedaquiline-

containing	regimens	had	completed	treatment	at	the	time	of	this	analysis,	we	explored	

wide	ranges	of	values	for	key	bedaquiline	associated	parameters	as	described	in	Table	3.1.	

	
Table	3.1:	Bedaquiline-associated	parameter	ranges		
	
Parameter	 Distribution	 References/Explanation	
Default	rate	on	
bedaquiline	(vs.	OBR)	

Unif(-10%,+10%)	 [19,	20]	

Risk	of	relapse	on	
bedaquiline	(ratio	to	
OBR)	

Unif(0·4,1)	 [15,	21,	16]	
	

Median	time	to	culture	
conversion	on	
bedaquiline	(ratio	to	
OBR)	

Unif(0·4,1)	 [8,	16-18,	22,	23]	

Bedaquiline-associated	
mortality	rate	(addition	
to	TB	or	background	
mortality)	

Unif(0,	5	per	100	
person-years)	

[8]:	3	deaths	in	BDQ	arm	in	
overall	treatment	phase.		79	
people	assigned	to	BDQ,	50	
completed	treatment	(~2	
years);	[18,	17,	24]	

Risk	of	acquired	
bedaquiline	resistance		

Unif(0·1,0·5)	for	XDR	
4x	lower	for	PreXDR	
16x	lower	for	MDR	

[13,	8,	16]	

Risk	of	acquired	
resistance	to	background	
drugs	on	OBR	(ratio	to	on	
bedaquiline)	

Unif(1·05,8)	 [13,	8,	16]	

Transmission	fitness	of	
bedaquiline	resistance	
(ratio	to	bedaquiline	
sensitive)	

Unif(0·7,1)	 Similar	to	other	TB	drugs	
[25-28]		
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Calculation	&	Value	of	Information		

All	analyses	were	performed	in	TreeAge	Pro	2015	R2.2.		Monte	Carlo	probabilistic	

sensitivity	analyses	with	5,000	samples	were	performed	to	estimate	the	life	expectancy,	

resistance	acquisition	patterns,	and	number	and	outcomes	of	secondary	cases	expected	

under	each	treatment	scenario.	For	our	life	expectancy	outcome,	we	calculated	the	

expected	value	of	perfect	information,	or	the	additional	life	expectancy	that	one	would	

expect	to	gain	on	average	if	there	was	no	uncertainty	in	our	bedaquiline-related	

parameters.	We	also	calculated	the	expected	value	of	partial	perfect	information	separately	

for	each	of	the	bedaquiline	parameters,	sampling	200	values	in	the	outer	loop	of	the	

parameter	of	interest	and	1000	values	in	the	inner	loop	of	the	remaining	parameters.	

Results	

Figure	3.1	summarizes	the	optimal	bedaquiline	use	strategies	from	each	simulation	

for	a	range	of	mortality,	resistance,	and	transmission	outcomes.	An	overview	of	these	

results	and	additional	analyses	for	each	outcome	are	provided	below.	
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	Figure	3.1:	Optimal	bedaquiline	use	strategy	for	different	outcomes	based	on	5,000	

simulation	runs.		The	top	half	of	the	figure	shows	the	results	across	all	four	potential	

bedaquiline	use	strategies.		The	bottom	half	shows	results	assuming	bedaquiline	is	made	

available	for	at	least	some	patients	(i.e.	no	“none”	strategy).		The	*	indicates	that	one	

simulation	run	resulted	in	this	simulation	being	optimal	
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Life	Expectancy	

Providing	bedaquiline	to	all	patients	with	MDR	TB	maximized	the	life	expectancy	of	

our	initial	cohort	in	76·8%	of	5,000	simulations	(Figure	3.1).	In	nearly	all	remaining	

simulations,	the	optimal	strategy	was	to	withhold	bedaquiline	from	all	patients,	suggesting	

that	the	benefits	of	bedaquiline	did	not	outweigh	potential	added	mortality	risks.		

Intermediate	bedaquiline	use	strategies	were	optimal	in	fewer	than	1%	of	simulations.		The	

average	difference	in	life	expectancy	between	the	best	and	worst	strategies	was	1·45	years.	

Table	3.2	displays	the	effect	of	the	DST	methods	available	to	detect	PreXDR	and	XDR	

TB	on	life	expectancy	under	the	different	bedaquiline	use	strategies.	The	rapid	DST	

method,	which	shortens	the	lag	time	for	eligible	individuals	to	receive	bedaquiline,	

increased	the	average	life	expectancy	for	both	the	“XDR	only”	and	“PreXDR+XDR”	

strategies.	However,	the	average	life	expectancies	for	these	two	scenarios	remained	smaller	

than	that	of	the	“all	MDR”	scenario,	suggesting	that	the	potential	benefits	of	making	

bedaquiline	available	for	all	patients	with	MDR	TB	extend	beyond	simply	shortening	the	

time	to	bedaquiline	initiation	for	patients	with	more	extensive	resistance.	

	

Table	3.2:	Life	expectancy	comparing	bedaquiline	use	strategies	when	under	our	baseline	

scenario	(conventional	DST	to	identify	PreXDR	and	XDR	cases)	and	a	scenario	with	rapid	

DST	for	fluoroquinolones	and	injectables.			Results	are	given	as	simulation	mean	(2·5	

percentile,	97·5	percentile)	

		 Life	Expectancy	when	BDQ	Available	for	
DST	Method	 All	MDR	 PreXDR+XDR	 XDR	Only	 None	

Conventional	(Baseline)	 36·0	(33·5,	38·7)	 35·1	(34·4,	35·8)	 34·9	(34·6,	35·2)	 34·8	
Rapid	 36·0	(33·5,	38·7)	 35·5	(34·5,	36·7)	 35·0	(34·6,	35·5)	 34·8	
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	The	results	of	our	value	of	information	analysis	are	provided	in	Table	3.3.	The	

expected	value	of	perfect	information	for	all	parameters	is	0·153	life	years	(per	patient).		

The	expected	value	of	partial	perfect	information	was	0	for	all	parameters	except	the	ratio	

of	median	time	to	culture	conversion	on	vs.	off	bedaquiline	(0·074)	and	the	bedaquiline-

associated	mortality	rate	(0·006).	These	results	indicate	that	uncertainty	in	the	estimated	

mortality	benefits	of	bedaquiline	reflects	assumptions	about	efficacy	and	(possible)	drug-

related	mortality,	but	not	resistance.	

	

Table	3.3:	Expected	increase	in	life	expectancy	(in	years)	if	perfect	information	was	

available	for	all	or	particular	bedaquiline-related	parameters	

Expected	Value	of	Perfect	Information	
Overall	 0·153	

Expected	Value	of	Partial	Perfect	Information	(BDQ	Parameters)	
Default	rate	on	BDQ	 0		
Relapse	risk	on	BDQ	 0		

Time	to	culture	conversion	on	BDQ	 0·074		
BDQ-Related	Mortality	 0·006	

Protection	from	Resistance	to	OBR	 0		
Rate	of	Resistance	to	BDQ	 	0	

	

Acquired	Resistance	

Figure	3.1	and	Table	3.4	show	the	impact	of	different	drug	use	strategies	on	

acquired	resistance	to	the	new	and	existing	drugs	in	our	initial	cohort.	The	best	strategy	to	

avoid	resistance	to	bedaquiline	was	to	strictly	constrain	bedaquiline	availability.		The	

simulation	mean	percentage	of	people	acquiring	resistance	to	bedaquiline	was	5·88%	

(2·5th	percentile	2·18%,	97·5th	percentile	9·45%)	in	the	scenario	providing	bedaquiline	to	

all	patients	with	MDR	TB,	compared	with	3·50%	(1·30%,	5·62%)	when	restricting	
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bedaquiline	for	patients	with	XDR	TB	only.	However,	expanding	bedaquiline	availability	is	

predicted	to	reduce	the	rate	of	acquired	XDR	TB	by	providing	additional	protection	to	the	

existing	drugs.	The	percentage	of	people	acquiring	XDR	TB	was	2·56%	(1·09%,	7·68%)	in	

the	scenario	providing	bedaquiline	to	all	patients	with	MDR	TB,	compared	with	9·82%	(no	

variability,	as	non-bedaquiline	parameters	are	assumed	fixed)	when	restricting	

bedaquiline	for	patients	with	XDR	TB	only.			

	
Table	3.4:	Proportion	of	the	initial	cohort	acquiring	different	resistance	patterns.		We	only	

count	patients	who	did	not	begin	with	the	listed	resistance	pattern	(e.g.	patients	who	are	

initially	XDR	may	be	counted	as	acquiring	“XDR+BDQR”	but	not	“XDR”).		Resistance	

patterns	that	are	unspecified	may	have	any	value	(e.g.	“BDQR”	identifies	resistance	to	

bedaquiline	in	combination	with	any	pattern	of	OBR	resistance).		Results	are	given	as	

simulation	mean	(2·5	percentile,	97·5	percentile)	

		 BDQ	Available	for	
%	Acquiring	 All	MDR	 PreXDR+XDR	 XDR	Only	 None	

BDQR	 5·88	(2·18,	9·45)	 3·91	(1·44,	6·29)	 3·50	(1·30,	5·62)	 0	
PreXDR	 2·50	(1·16,	6·43)	 7·66	 7·66	 7·66	

PreXDR+BDQR	 1·93	(0·39,	3·69)	 1·00	(0·16,	1·99)	 0	 0	
XDR	 2·56	(1·09,	7·68)	 6·59	(5·84,	8·94)	 9·82	 9·82	

XDR+BDQR	 3·44	(1·29,	6·15)	 3·20	(1·20,	5·23)	 3·50	(1·65,5·62)	 0	
	

When	we	only	consider	scenarios	in	which	at	least	some	patients	are	eligible	for	

bedaquiline,	complete	resistance	to	the	new	and	existing	drugs	(XDR+BDQR)	was	

minimized	most	often	by	the	intermediate	strategy	of	providing	bedaquiline	to	patients	

with	PreXDR	and	XDR	TB	only.	However,	the	“XDR	only”	strategy	is	preferred	in	10·8%	of	

the	5,000	simulation	runs	and	the	“all	MDR”	strategy	in	3·6%	of	runs,	indicating	that	the	

optimal	decision	for	this	outcome	is	parameter-dependent.	This	pattern	reflects	the	
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differential	effects	of	the	bedaquiline	use	strategies	on	patients	with	different	initial	

resistance	patterns.	For	many	(though	not	all)	parameter	sets,	providing	bedaquiline	to	all	

patients	with	MDR	TB	minimized	the	number	of	cases	of	acquired	XDR+BDQR	among	

patients	with	initial	MDR	or	PreXDR	TB,	but	maximized	the	number	of	cases	of	acquired	

XDR+BDQR	among	patients	with	initial	XDR	TB.		However,	the	absolute	differences	in	the	

number	of	cases	of	acquired	XDR+BDQR	across	scenarios	are	small	when	bedaquiline	is	

provided	to	at	least	some	categories	of	patients,	indicating	that	the	costs	of	making	a	

suboptimal	decision	with	respect	to	this	variable	may	be	limited.			

Secondary	Cases	

The	total	number	of	secondary	cases	produced	from	the	time	of	MDR	TB	treatment	

initiation	was	low	(<1	per	person)	across	all	treatment	strategies,	as	shown	in	Table	3.5.	

This	number	was	higher	but	remained	below	1	if	we	assumed	individuals	were	initially	

untreated,	reflecting	the	high	mortality	rate	and	lack	of	diagnostic	delay	in	our	model.	

Making	bedaquiline	available	to	all	patients	with	MDR	TB	was	the	preferred	strategy	to	

minimize	the	number	of	secondary	cases	for	all	5,000	simulation	parameter	sets,	and	the	

years	of	life	lost	amongst	secondary	cases	for	all	but	one.	

	

Table	3.5:	Impact	of	different	bedaquiline	use	strategies	on	the	number	and	health	

outcomes	of	secondary	TB	cases.		Results	are	given	as	simulation	mean	(2·5	percentile,	

97·5	percentile)	

		 BDQ	Available	for	
Outcome	per	100	Initial	Patients	 All	MDR	 PreXDR+XDR	 XDR	Only	 None	
Number	of	Secondary	Cases	 14	(10,	17)	 17	(16,	18)	 18	(18,	19)	 19	

Life	Years	Lost	to	Secondary	Cases		 243	(164,	317)	 315	(290,	336)	 333	(320,	343)	 346	
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Discussion	

New	anti-TB	drugs	such	as	bedaquiline	hold	much	promise	to	reduce	morbidity	and	

mortality	associated	with	drug	resistance.	In	this	paper,	we	performed	a	decision	analysis	

to	explore	the	potential	impact	of	different	bedaquiline	use	strategies	on	a	range	of	

individual	and	public	health	outcomes.	Different	strategies	may	be	preferred	based	on	the	

outcome	of	primary	interest	(e.g.	minimize	resistance,	minimize	years	of	life	lost),	

illustrating	the	tradeoffs	involved	in	decision-making	for	the	introduction	of	new	

antibiotics.	

When	considering	whether	and	how	to	introduce	a	new	drug,	we	assert	that	

individual	patient	health	considerations	should	prevail.	Drugs	for	which	the	risk	of	

mortality	due	to	adverse	events	exceeds	expected	reductions	in	mortality	should	not	be	

used	regardless	of	their	potential	public	health	benefits.	Our	model	predicted	the	risks	of	

bedaquiline	to	outweigh	the	benefits	of	its	use	in	any	patients	for	22·6%	of	parameter	sets	

tested.	For	76·8%	of	parameter	sets,	we	predicted	that	the	optimal	strategy	would	be	to	

provide	bedaquiline	for	all	patients	with	MDR	TB.		These	results	primarily	reflect	the	

assumed	uncertainty	in	rates	of	mortality	and	culture	conversion	associated	with	

bedaquiline	and	demonstrate	the	vital	importance	of	continued	research	into	bedaquiline	

safety	and	efficacy.		Thus	far,	interim	cohort	analyses	of	patients	receiving	bedaquiline	

outside	of	trial	settings	have	not	identified	excess	bedaquiline-associated	mortality	[17,	

18];	however,	continued	research	and	in	particular	Phase	III	trial	results	are	needed	to	

verify	that	the	unexplained	mortality	imbalance	of	the	pivotal	phase	IIb	trial	was	not	drug	

related.		
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Antibiotic	introduction	strategies	may	affect	rates	of	acquired	resistance	to	the	new	

drug,	existing	drugs,	or	both.	In	general,	we	would	expect	more	expansive	access	to	a	new	

drug	to	promote	resistance	to	the	new	drug,	while	preventing	resistance	to	existing	drugs.		

These	expectations	are	reflected	in	our	results.	Acquired	bedaquiline	resistance	occurred	

most	often	under	the	most	liberal	bedaquiline	use	policy	(providing	bedaquiline	to	all	

patients	with	MDR	TB);	however,	this	same	policy	was	most	effective	at	preventing	new	

cases	of	PreXDR	and	XDR	TB.		The	effects	of	expanding	access	to	a	new	drug	on	composite	

resistance	to	new	and	existing	drugs	are	less	clear-cut.	When	considering	only	strategies	

providing	bedaquiline	to	at	least	some	categories	of	patients,	the	majority	of	our	

simulations	predicted	an	intermediate	strategy	targeting	bedaquiline	to	patients	with	

PreXDR	and	XDR	TB	only	to	minimize	the	combination	of	XDR	plus	bedaquiline	resistance.	

However,	both	the	“All	MDR”	and	“XDR	only”	strategies	were	preferred	for	some	

combinations	of	parameter	values,	and	differences	in	the	proportions	of	people	acquiring	

XDR+BDQR	across	different	strategies	were	small.	

From	a	public	health	perspective,	optimal	use	of	a	new	antibiotic	should	also	

account	for	future	transmission.		For	this	paper,	we	limited	our	attention	to	the	second	

generation	of	infected	patients.	We	found	that,	for	all	but	one	of	the	5,000	parameter	sets	

tested,	making	bedaquiline	available	to	all	patients	with	MDR	TB	would	minimize	the	total	

number	of	and	expected	number	of	life	years	lost	to	secondary	cases.		This	relationship	can	

be	explained	by	the	correlation	between	severe	and	highly	infectious	disease	within	our	

model.	For	diseases	and	treatments	for	which	this	assumption	does	not	hold,	associations	

may	appear	in	the	opposite	direction	[29].	Future	drug	development	and	policy	changes	

may	also	affect	the	relationship	between	new	drug	use	strategies	and	outcomes	among	
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potential	secondary	cases.	Bedaquiline	use	strategies	chosen	now	could	alter	the	

effectiveness	of	potential	future	TB	regimens	incorporating	both	bedaquiline	(e.g.	the	NC-

005	trial	of	bedaquiline,	pyrazinamide,	and	pretomanid)	and	background	drugs	such	as	

pyrazinamide	and	the	fluoroquinolones	(e.g.	the	STAND	trial	of	pretomanid,	moxifloxacin,	

and	pyrazinamide)	[3].	Of	course,	the	desire	to	be	prepared	for	the	range	of	outcomes	that	

could	result	from	these	trials	must	be	weighed	against	the	need	to	provide	the	best	

available	care	to	patients	presenting	today.	A	full	modeling	analysis	of	these	costs	and	

benefits	would	require	a	transmission	dynamic	structure	not	included	here.		

This	study	has	several	limitations.	We	have	not	explored	the	full	range	of	potential	

bedaquiline	use	strategies,	for	example	as	an	early	drug	substitution	method	to	prevent	

hearing	loss	during	MDR	TB	treatment.	For	simplicity,	we	held	the	natural	history	and	

treatment	parameters	unrelated	to	bedaquiline	fixed	throughout	our	analysis,	which	does	

not	reflect	the	potential	uncertainty	and	heterogeneity	in	these	parameters.	Many	of	these	

estimates	were	based	on	large	meta-analyses	with	data	from	multiple	countries,	allowing	

us	to	average	over	but	not	fully	address	the	variability	expected	in	e.g.	settings	with	

standardized	vs.	individualized	treatment	regimes.	We	assumed	that	our	initial	cohort	was	

comprised	of	30-year-old	European	men,	which	may	differ	from	the	target	population	of	

bedaquiline	in	many	settings;	however,	as	this	assumption	was	used	only	in	defining	

background	mortality	rates,	it	is	most	likely	to	affect	the	magnitude	rather	than	the	

direction	of	the	observed	effects.	Similarly,	the	effects	of	our	particular	background	

distribution	of	resistance	are	likely	mitigated	by	the	range	of	explored	scenarios,	which	

incrementally	account	for	expanded	access	of	bedaquiline	to	patients	with	XDR,	then	

PreXDR+XDR,	and	finally	all	MDR.	Changing	the	HIV	status	of	this	cohort	could	have	greater	
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effects	if	bedaquiline	is	found	to	have	differential	impact	on	HIV-positive	and	negative	

individuals.	Similarly,	we	may	see	differential	effects	of	bedaquiline	if	the	background	

regimen	varies	substantially	from	the	data	on	which	our	model	was	based,	as	in	the	

STREAM	II	trial	of	shorter	MDR	regimens	[3].			

Overall,	we	have	used	a	common-sense	decision-analytic	framework	to	outline	the	

types	of	tradeoffs	involved	in	the	introduction	of	new	TB	drugs	such	as	bedaquiline.		

Though	our	quantitative	predictions	are	limited	by	the	available	data,	our	results	

demonstrate	the	range	of	considerations	involved	in	deciding	whether	to	provide	a	drug	to	

or	beyond	patients	with	the	most	highly	resistant	TB	strains.	These	results	may	be	used	to	

guide	future	discussion	around	the	appropriate	use	of	new	antibiotics,	particularly	about	

the	relative	costs	and	benefits	of	more	restrictive	policies	that	may	protect	a	new	drug	at	

the	cost	of	promoting	existing	background	resistance.			
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APPENDIX S3

Tradeo↵s in new anti-tuberculosis drug introduction policies: a model based analysis

Amber Kunkel, Frank G. Cobelens, Ted Cohen

Partial Model Diagrams

MDR Pre-XDR XDR

MDR +
BDQ resistance

Pre-XDR +
BDQ resistance

XDR
BDQ resistance

Figure S3.1: Transitions between resistance levels. We assume individuals can only acquire resistance while

culture positive and receiving the drug of interest.
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Figure S3.2: Transitions between TB health states (top) and regimen type (bottom). In the top figure,

movements right indicate culture conversion or cure, while movements left indicate relapse. Only individuals

who are untreated and culture negative are at risk of relapse. Untreated individuals may self-cure from

active disease, but only long-term stable cures are counted. In the bottom figure, movements down indicate

stopping treatment (routinely or default). Movements up indicate starting treatment (if untreated) or

starting bedaquiline (if eligible and untreated or on OBR only). Changes in health status and regimen may

occur simultaneously within one time step.
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General Calculation Principles

Accounting for conditional probabilities

In constructing the model, the potential events for each week were modeled in sequence. For each weekly

cycle we gave priority to events in an order that reflected the way they would be recorded as treatment

outcomes. For example, for people receiving treatment we first we recorded all deaths. Those people who

did not die could end treatment routinely, or if not they could end treatment prematurely (default). We

assumed only patients who remained on treatment could have culture converted, and only those who did not

culture convert could have acquired resistance (to at most one drug per week). To account for ordering, we

input the probability of each event conditional on not experiencing any of the events earlier in the calculation

sequence that week.

Examples:

• Weekly probability of culture conversion - input conditional on not dying, defaulting, or finishing

treatment that week

• Weekly probability of stopping treatment routinely - conditional on not dying that week

• Weekly probability of default - conditional on not dying or stopping treatment routinely that week

Converting rates to weekly probabilities

To convert rates to weekly probabilities (p), we first converted them to rates per week. We then used the

following formula:

p = 1� exp(�rate)

Examples:

• Added mortality BDQ (rate 5 per 100 person-years, weekly probability 0.00096)

Resistance and relapse probabilities

To convert the probability of acquiring resistance prior to death, conversion, default, or stopping treat-

ment (Q) into weekly probabilities, we used the following equation with the weekly probabilities of each

event (p):

Q

res

=
p

res

p

die

+ p

default

+ p

stop

+ p

convert

+ p

res

Examples:
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• Probability acquired BDQ resistance given XDR

• Probability acquired XDR given pre-XDR, not on BDQ

• All other acquired resistance parameters (but may include additional considerations below)

A similar equation was used to relate the weekly cure rate to the probability of moving from “culture

negative” (high risk of relapse immediately after treatment) to “stable cure” prior to death, default, or

stopping treatment.

Median time to culture conversion

Based on our literature review, we estimated the median time to culture conversion (if no one had died

or stopped treatment) to be approximately 13 weeks for people initially MDR, 18 weeks for people initially

pre-XDR, and 26 weeks for people initially XDR. We used TreeAge to estimate a weekly probability of

conversion based on these targets and our fixed weekly probabilities of acquiring pre-XDR and XDR TB.

To simplify our sensitivity analyses, we chose to consider the e↵ect of BDQ on the median time to culture

conversion if no one had died, stopped treatment, or acquired resistance. We did this by calculating the

weekly probabilities of conversion from above to the median time of culture conversion if no one had died,

stopped treatment, or acquired resistance. Our bedaquiline multiplier was then applied to these values.

We converted median time to event parameters (in weeks) to weekly probabilities using the geometric

distribution:

P = 1� 2�1/M

Probability acquiring pre-XDR without BDQ

From the literature, we estimated that the probability of acquiring resistance to any fluoroquinolone given

initial MDR was approximately 0.065, and that the probability of acquiring resistance to any second-line

injectable was similar. We also determined that the risk of XDR given pre-XDR was approximately 0.26.

Note the informal notation: P (PreXDR|MDR) is the probability of developing at least PreXDR for an

individual who is initially MDR, and not receiving bedaquiline.

P (PreXDR|MDR) = P (FQR|MDR) + P (2LIR|MDR)� P (XDR|MDR)

P (PreXDR|MDR) = P (FQR|MDR) + P (2LIR|MDR)� P (PreXDR|MDR)P (XDR|PreXDR)

P (PreXDR|MDR) = .065 ⇤ 2� 0.26 ⇤ P (PreXDR|MDR)

P (PreXDR|MDR) = 0.103
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Probability acquiring pre-XDR with BDQ

This is similar to the section above, except we also need to account for the potential to acquire resistance

to bedaquiline. Note the informal notation: P (PreXDR|MDR) is the probability of developing at least

PreXDR for an individual who is initially MDR (and BDQ sensitive), on bedaquiline.

P (PreXDR|MDR) = P (FQR|MDR) + P (2LIR|MDR)� P (XDR|MDR)

P (PreXDR|MDR) = P (FQR|MDR)+P (2LIR|MDR)�P (PreXDR|MDR)P (XDR|developPreXDR)

The issue here is that P (XDR|developPreXDR) depends on whether the individual already has resis-

tance to BDQ at the time they become PreXDR or not.

P (XDR|developPreXDR) = P (already BDQR|developPreXDR)P (XDR|PreXDR,BDQR)

+ (1� P (already BDQR|developPreXDR))P (XDR|PreXDR,BDQS)

To solve for P (already BDQR|developPreXDR), we can use our knowledge of the risk of resistance to

bedaquiline for people who are initially MDR vs preXDR.

P (BDQR|MDR) = P (BDQRprior to/without PreXDR)

+ (1� P (already BDQR|developPreXDR))P (PreXDR|BDQS,MDR)P (BDQR|PreXDR,BDQS)

P (already BDQR|developPreXDR) =
P (BDQRprior to/without PreXDR)P (PreXDR|MDR,BDQR)

P (PreXDR|MDR)

Let X be the probability of developing bedaquiline resistance either prior to or without developing pre-

XDR for people initially MDR on BDQ. Let Y be the probability of ever developing pre-XDR for people

initially MDR on BDQ.

Let Q

fm

be the probability of ever developing FQ resistance given MDR on BDQ. Let Q

xpb

be the

probability of ever developing XDR given pre-XDR and BDQ resistance. Let Q
xp

be the probability of ever

developing XDR given pre-XDR and BDQ sensitivity. Let Q
bm

be the probability of developing bedaquiline

resistance given initially MDR and BDQ sensitive. Let Q

bp

be the probability of developing bedaquiline

resistance given initially pre-XDR and BDQ sensitive. Let Q
pmb

be the probability of developing pre-XDR

141



given initially MDR and bedaquiline resistant.

Y = 2Q
fm

� Y

✓
XQ

xpb

Q

pmb

Y

+ (1� XQ

pmb

Y

)Q
xp

◆

Q

bm

= X + (1� XQ

pmb

Y

)Y Q

bp

Solving the first equation for X:

Q

bm

� Y Q

bp

= X �XQ

pmb

Q

bp

Q

bm

� Y Q

bp

= X(1�Q

pmb

Q

bp

)

Q

bm

� Y Q

bp

1�Q

pmb

Q

bp

= X

Substituting into the first equation:

Y = 2Q
fm

� Y

✓
XQ

xpb

Q

pmb

Y

+ (1� XQ

pmb

Y

)Q
xp

◆

Y = 2Q
fm

�XQ

xpb

Q

pmb

� Y Q

xp

+XQ

xp

Q

pmb

Y = 2Q
fm

�XQ

pmb

(Q
xpb

�Q

xp

)� Y Q

xp

Y = 2Q
fm

� Q

bm

� Y Q

bp

1�Q

pmb

Q

bp

Q

pmb

(Q
xpb

�Q

xp

)� Y Q

xp

We used Matlab’s symbolic toolbox to solve this equation for Y. We checked this equation by verifying

that our TreeAge model gave similar results for X and the probability of developing XDR given initially

MDR and BDQ sensitive for a typical parameter set.

Probability acquiring XDR or BDQ resistance - from pre-XDR receiving BDQ

People can develop XDR without or prior to developing BDQ resistance, or they can acquire BDQ

resistance first, increasing their chances of developing XDR. Similarly people can develop BDQ resistance

without, prior to, or after developing XDR.

Let X be the weekly probability of developing BDQ resistance given pre-XDR. Let Y be the weekly

probability of developing XDR given pre-XDR. Let A be the weekly probability of any other possible event

(probability of dying or defaulting or finishing treatment or culture converting).

Let Q
bp

be the probability of ever developing BDQ resistance starting pre-XDR, on BDQ. Let Q
xp

be the

probability of ever developing XDR starting pre-XDR, BDQ-sensitive, on BDQ. Let Q
bx

be the probability
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of ever developing BDQ resistance starting XDR. Let Q
xpb

be the proportion of people with pre-XDR and

BDQ resistance who acquire XDR prior to death, default, finishing treatment, or culture conversion.

We can then use the following equations to solve for X and Y .

Q

bp

=
X

X + Y +A

+Q

bx

Y

X + Y +A

Q

xp

=
Y

X + Y +A

+Q

xbp

X

X + Y +A

Therefore

Q

bp

(X + Y +A) = X +Q

bx

Y

Q

xp

(X + Y +A) = Y +Q

xbp

X

Solving for X first:

(Q
bp

)� 1)X = Q

bx

Y �Q

bp

(Y +A)

X =
(Q

bx

�Q

bp

)Y �Q

bp

A

Q

bp

� 1

Plugging into the equation for Y:

Q

xp

(X + Y +A) = Y +Q

xbp

X

(Q
xp

�Q

xbp

)X +Q

xp

A = Y �Q

xp

Y

(Q
xp

�Q

xbp

)

✓
(Q

bx

�Q
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)Y �Q

bp

A

Q

bp

� 1

◆
+Q

xp

A = Y �Q

xp

Y

Q
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A� (Q
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�Q
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)

✓
Q
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A

Q

bp

� 1

◆
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