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ABSTRACT

Tuberculosis (TB) recently surpassed HIV as the world’s leading infectious killer.
Because antibiotic therapy forms the cornerstone of TB control, prevention, and treatment,
it is important to apply TB drugs in a way that maximizes their potential benefits while
minimizing the risks of resistance. Here, | present three modeling analyses intended to
explore these tensions inherent in the use of TB drugs.

Preventive therapy involves the use of antimicrobials in asymptomatic and
noninfectious individuals, and has been applied to diseases ranging from TB to HIV to
malaria. In my first paper, I outline how population use of preventive therapy could
increase, decrease, or have non-monotonic effects on the prevalence of drug resistance,
depending on the relative contributions of resistance acquired as a result of preventive
therapy, resistance acquired as a result of treatment for active disease, and transmitted
resistance.

In my second paper, I consider the specific use of isoniazid preventive therapy (IPT)
to prevent active TB among people living with HIV. Previous models have suggested that
widespread IPT use could increase the prevalence of drug resistant TB by providing a
selective pressure in favor of resistant strains. In this paper, [ show that the impact of [PT
on drug resistance is highly dependent on the projected TB/HIV epidemic trends, and that
the risks of resistance are likely to remain low for even lifelong IPT durations as long as

transmission is already declining.
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Finally, in my third paper, I present a decision analytic model to determine the
optimal targeting of the new TB drug bedaquiline for patients with pre-existing resistance
to other available drugs. The optimal use strategy for this new drug depends on the
outcome being considered; whereas more liberal strategies would likely decrease
resistance to existing drugs as well as onward transmission, more restrictive strategies
would decrease resistance to bedaquiline. More research is needed to confirm that more
liberal bedaquiline use strategies would improve life expectancy.

Overall, these papers illustrate the complexity of the decisions surrounding optimal
TB drug use. Thoughtful antibiotic policies, coupled with continued innovation, are

needed to effectively combat the global burden of TB.
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PREFACE

An estimated 1.5 million people were killed by tuberculosis (TB) in 2014, exceeding
the number of deaths due to HIV [1]. These deaths represent only a fraction of the health
and economic impact of the 9.6 million estimated new cases of TB disease [1]. Because
only 5-10% of immunocompetent individuals infected with Mycobacterium tuberculosis
ever develop disease, the global prevalence of latent TB infection is much greater still [2].

Antibiotic therapy forms the basis of the global TB control strategy. Individuals
with uncomplicated active TB disease rapidly lose infectiousness after starting treatment,
and cure rates approach 95% in some settings [1, 3-5]. Antibiotics can also prevent the
progression from latent to active TB disease, and this intervention may be particularly
attractive among individuals at highest risk of progression, such as children and people
living with HIV [2, 6].

However, the reliance on antibiotics for TB prevention and treatment poses several
challenges at both the individual and population levels. First-line treatment requires four
drugs (isoniazid, rifampicin, pyrazinamide, and ethambutol) daily for two months, and
daily isoniazid and rifampicin therapy for the following four months; this long course of
combination therapy places a heavy burden on both patients and healthcare systems [7].
Suboptimal use of these drugs, combined with ongoing transmission, has resulted in global
spread of multi-drug resistant (MDR) TB, defined as resistance to both isoniazid and
rifampicin. In 2014, the World Health Organization estimated that nearly 500,000
individuals developed MDR TB, with only a quarter of these cases being detected and
reported [1]. Existing treatments for MDR TB are long (up to two years), poorly tolerated,

and ineffective; even among those diagnosed, global rates of successful treatment hover



around 50% [1]. The remaining patients experience high risks of dying or acquiring
additional resistance to second-line drugs.

The use of antibiotics for prevention also poses several potential issues when the
same drugs are needed for treatment of active disease. Daily isoniazid reduces the risk of
TB disease among people living with HIV, who are otherwise at very high risk of
progressing from latent to active TB. However, accumulating data suggest that the
standard 6-9 month regimen of isoniazid preventive therapy (IPT) is insufficient to reduce
long-term TB risks at both the individual and population levels in some settings [8-10].
Additionally, previous mathematical modeling studies have suggested that widespread IPT
use could dramatically increase the incidence of isoniazid resistant TB, thereby eroding the
effectiveness of this drug as a treatment for active disease [11, 12].

This question of using versus losing key antibiotics arises again when considering
how best to use new drugs for TB. The conditional approval of bedaquiline by the US FDA
marked the first new drug available for treatment of TB in over 40 years [13, 14].
However, physicians and policymakers have struggled to decide which patients should
receive this drug - in particular, whether it should be made available to all patients with
MDR TB, or reserved for patients with additional resistance [15-17].

My thesis aims to address questions related to optimal population-level of use of
anti-TB drugs. First, I consider the general mechanisms through which preventive or
prophylactic antimicrobial therapies could affect the population prevalence of drug
resistance. Second, I apply these considerations specifically to the issue of optimal IPT

duration and use among people living with HIV in Botswana. Finally, [ outline the potential



risks and benefits associated with different potential bedaquiline use strategies for patients
with MDR TB.

These analyses are all based on mathematical models that allow me to formalize an
understanding of disease dynamics and natural history derived from previous studies. The
first two papers of my thesis use transmission dynamic models to project the population-
level impacts of preventive therapy, while my third paper uses a decision analytic model to
estimate the direct impact of bedaquiline on a single generation of MDR TB patients and
their immediate contacts. Taken together, these papers demonstrate the utility of
mathematical modeling in determining the emergent properties of the complex systems
that govern optimal TB drug use at the population level.
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Abstract

Various forms of preventive and prophylactic antimicrobial therapies have been proposed to
combat HIV (e.g. pre-exposure prophylaxis), tuberculosis (e.g. isoniazid preventive therapy), and
malaria (e.g. intermittent preventive treatment). However, the potential population-level effects
of preventive therapy on the prevalence of drug resistance are not well understood. Preventive
therapy can directly affect the rate at which resistance is acquired among those receiving preventive
therapy. It can also indirectly affect resistance by altering the rate at which resistance is acquired
through treatment for active disease and by modifying the level of competition between transmission
of drug-resistant and drug-sensitive pathogens. We propose a general mathematical model to
explore the ways in which preventive therapy can affect the long-term prevalence of drug resistance.
Depending on the relative contributions of these three mechanisms, we find that increasing the level
of coverage of preventive therapy may result in increases, decreases, or non-monotonic changes in the
overall prevalence of drug resistance. These results demonstrate the complexity of the relationship
between preventive therapy and drug resistance in the population. Care should be taken when
predicting population-level changes in drug resistance from small pilot studies of preventive therapy

or estimates based solely on its direct effects.



Introduction

Preventive and prophylactic infectious disease therapies (we will refer to both collectively as
preventive therapy, PT) involve the use of chemotherapeutic agents in asymptomatic and nonin-
fectious individuals, with the goal of preventing future symptoms and infectiousness. PT may be
applied to individuals who are either uninfected or latently infected with a given pathogen. For
example, whereas isoniazid preventive therapy for TB can prevent disease progression in latently
infected individuals [1][2], pre-exposure prophylaxis for HIV is intended solely for use in uninfected
individuals [3]. Some interventions may include aspects of both treatment and preventive therapy;
for example, intermittent preventive treatment for malaria involves a full course of antimalarial
treatment applied irrespective of infection status [4].

Because PT prevents development of infectiousness as well as symptoms, PT has been pro-
posed as an element of public health strategies aimed at reducing the burden of TB, HIV, and
malaria [4][5][6]. However, such strategies have often been controversial, with concerns about drug
resistance forming one major barrier to implementation [7][8]. When the chemotherapeutic agents
that are used for prevention are also needed for treatment, any drug resistance produced or am-
plified as a result of PT may undermine future control efforts. Simulation models intended to
assess the potential effects of PT on the prevalence of drug resistance have produced sometimes
inconsistent results [9]. For example, Supervie et al. [10][11] predicted that rolling out pre-exposure
prophylaxis in Botswana would reduce the prevalence of drug resistant HIV, whereas Abbas et
al. [12][13] predicted that a similar programme in South Africa would increase the prevalence of
drug resistant HIV.

Models intended to predict the effects of specific PT programmes tend to be fairly complex, with
states and parameters chosen to reflect the natural history of the disease of interest, the operational
details of the proposed intervention, and the efficacy of the available drug. While this complexity
may improve the predictive accuracy of each individual model, it can complicate attempts to explain
differences in their predictions [9][11][13]. In this paper, we create a simplified, general model of PT
with the goal of better understanding the ways in which PT could alter the population prevalence
of drug resistance. We show that increasing PT coverage can have qualitatively different effects

on the prevalence of drug resistance depending on the relative importance of resistance acquired



as a result of preventive therapy, resistance acquired as a result of treatment, and the competitive
fitness of drug resistant strains.
Methods

We developed a simple mathematical model to demonstrate the ways in which preventive therapy
may alter the prevalence of drug resistance. Mathematical modelling provides a way to formally
encode our understanding of the individual-level effects of preventive therapy, some of which may
lead to drug resistance. Furthermore, mathematical modelling creates a conceptual framework to
explore how the effects of preventive therapy on drug resistance in the population may extend
beyond its immediate recipients.

Model Structure: Disease Course

A description of the states and parameters used in our model is given in Table 1.1. Figure 1.1
displays the structure of this compartmental model, with the health states and transitions among
individuals not receiving PT on the left-hand side and and among individuals receiving PT on the
right-hand side. We focus first on individuals not receiving PT, shown on the left. Although this
portion of the figure shows the rates at which individuals may begin and end preventive therapy
(PT states shown in dotted boxes), it does not display transitions between PT states.

Within the model, an individual may be infected by pathogen phenotypes that are either drug
sensitive (DS, indicated in the diagram by a subscript S) or drug resistant (DR, indicated in
the diagram by a subscript R), but not by both simultaneously. Not allowing for mixed infections
greatly simplifies our model, but introduces strong assumptions about competition between strains,
the implications of which are considered in the Discussion. Susceptible () persons who are infected
enter latency with either the DS strain (Lg) or the DR strain (Lg), depending on the source of
the infection. Latently infected individuals may be superinfected and move to the latent state
characterized by the drug sensitivity pattern of the most recently infecting strain. We assume the
degree of susceptibility to reinfection x does not depend on the identity of the initial or reinfecting
strain. We do allow the risks of infection and progression to active disease to differ based on the
drug sensitivity of the infecting strain, reflecting the potential fitness costs of resistance.

All actively infected individuals within our model, including those on treatment, contribute to

the overall force of infection. We assume that infectious individuals cannot be reinfected and cannot



recover except by treatment. We allow individuals receiving treatment for DS disease to acquire
resistance at rate a. We assume such acquired resistant cases are immediately detected and started
on treatment for DR disease, which we assume has a lower cure rate than treatment for DS disease.
We do not allow for disease-induced mortality or explicitly encode for treatment failure, though
the latter may be incorporated into the treatment cure rate. Once cured, individuals revert to a
recovered (R) state exhibiting the same level of immunity as that experienced by latently infected
individuals.

Though we omit arrows representing mortality from Fig 1.1, we assume a constant mortality rate
from each compartment and a constant population size. All individuals enter the model susceptible
to infection and not on PT. Because we assume a fixed population size, we express all states in
terms of proportion of the population.

Model Structure: Preventive Therapy

The right-hand side of Fig 1.1 displays the portion of our model pertaining to individuals
receiving preventive therapy. This portion of the figure again displays the rates at which individuals
may begin or end preventive therapy (non-PT states shown in dotted boxes), but omits arrows
indicating the transitions between states of individuals not receiving PT. We allow for individuals
who are uninfected, latently infected, or actively infected to potentially receive PT. Uninfected
individuals begin PT at rate f and cease therapy at rate w. Latently infected individuals begin
PT at rate f; and cease therapy at rate w. We allow the rates at which uninfected and latently
infected individuals initiate PT to differ, as the specific targeting of PT depends on the disease and
drug of interest. Pre-exposure prophylaxis for HIV, for example, is intended solely for uninfected
individuals [3], whereas isoniazid preventive therapy is typically targeted to individuals with latent
TB infection [1][2]. We assume that the PT initiation rate is the same for both DS and DR latently
infected individuals, assuming that the resistance phenotype of the infecting strain is not known
during latency. Actively infected individuals may also receive PT within our model. Though PT is
generally not intended for such individuals (except when the same drug is applied as both treatment
and prevention, e.g. intermittent preventive treatment for malaria [4]), individuals may progress
from latent to active infection while receiving PT (rate kgT) or initiate PT during active disease
as a result of imperfect screening (rate f;). We assume that the PT start rate is the same for

both DS and DR actively infected individuals, assuming the infection is not recognized prior to PT
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Not on preventive therapy On preventive therapy

po=-

R .

Figure 1.1: Left: All states and transitions involving individuals not on preventive therapy (solid
boxes), with transitions on and off PT shown via links to on-PT states (dashed boxes). Right: All
states and transitions involving individuals on preventive therapy (solid boxes), with transitions off

and on PT shown via links to off-PT states (dashed boxes).
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Table 1.1: Model states and parameters

State Name Description (All States: Proportion of Population)

S Susceptible Uninfected, negative infection history

Lg DS Latent Latently infected with DS strain
Lp DR Latent Latently infected with DR strain

Is DS Actively Infected Infectious with DS strain, not on treatment

Ir DR Actively Infected Infectious with DR strain, not on treatment

Ts DS Treated Infectious with DS strain, on treatment

Tr DR Treated Infectious with DR strain, on treatment

I Total DS Infectious Sum of DS infectious states: Ig + [ 5 T +Tg

Iy, Total DR Infectious Sum of DR infectious states: Ir + [ II;T + TR

R Recovered Uninfected, positive infection history

Parameter Name Description

Bs DS transmission parameter # DS effective contacts per susceptible per unit time
ORr DR transmission parameter # DR effective contacts per susceptible per unit time
ks DS progression rate Rate of progression from DS latent to DS actively infected
kr DR progression rate Rate of progression from DR latent to DR actively infected
c Case detection rate Rate at which actively infected individuals begin treatment
rs DS recovery rate Rate of recovery from DS treated to recovered

TR DR recovery rate Rate of recovery from DR treated to recovered

a Treated resistance rate Rate resistance is acquired due to treatment

ay PT latent resistance rate Rate resistance is acquired by DS latents on PT

a; PT active resistance rate Rate resistance is acquired by DS actively infecteds on PT
x Reinfection susceptibility Susceptibility retained after initial infection

w PT exit rate Reciprocal of average duration of PT

f PT uninfected start rate Start rate of PT for uninfected individuals

fi PT latent start rate Start rate of PT for latently infected individuals

fi PT active start rate Start rate of PT for actively infected individuals

Superscript Name Description

PT Preventive therapy State/parameter refers to individuals receiving PT

12



initiation. We assume that actively infected individuals cease preventive therapy routinely, at rate
w, or upon initiation of treatment, at the same case detection rate c as for individuals not receiving
PT.

The health states for individuals receiving PT are similar to those described for individuals not
receiving PT. We assume PT reduces the rate at which uninfected and latently infected individuals
are infected with the DS strain (857 < Bg), the rate at which DS latently infected individuals
progress to active disease (k:gT < kg), or the rates of both infection and progression with the DS
strain. Although we assume that preventive therapy has no direct effect on infection or progression
with the DR strain, it may affect the probability of progression with the DR strain by changing
the probability of reinfection with the DS strain. We allow DS latently infected individuals to
acquire resistance as a result of preventive therapy at rate a; and DS actively infected individuals
at rate a;. We assume PT does not cure or reduce the infectiousness of individuals with active
infection. We also assume that individuals cannot receive PT and treatment simultaneously, but
treated individuals again become eligible for PT upon recovery. Throughout our analysis, we do
not track which individuals receive PT and thus assume that the same individuals may receive
multiple courses of PT.

Outcome Measures

Throughout our analysis, we focus on the equilibrium behaviour of the model. Doing so simplifies
our analysis by removing its dependence on the initial model conditions. We begin each of our
analyses in the absence of PT (setting the PT start rates f = f; = f; = 0). For each of our
analyses, we choose a parameter set such that, in the absence of PT, the equilibrium prevalence of
the DS strain is nonzero and the basic reproductive number of the DR strain exceeds 1. Because
we allow for acquired resistance, the former requirement implies that the equilibrium prevalence of
the DR strain is also nonzero in the absence of PT (i.e. there is no DS only equilibrium). The latter
implies that the equilibrium prevalence of the DR strain will remain nonzero even if the equilibrium
prevalence of the DS strain does not.

Holding this parameter set fixed, including the rates of case detection and treatment for active
disease, we run a series of simulations at progressively higher values of the PT initiation rate. For
the purpose of our simulations, we assume the PT start rates among uninfected, latently infected,

and infectious individuals are proportional throughout, with f; = f and f; = f/10, and thus
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refer to the PT start rate using the single parameter f. For each individual simulation, we fix
the value of the PT initiation rate, run the model to equilibrium (i.e. until changes in population
composition between time steps become negligible), and record the resulting prevalence of the DR
strain. We repeat the simulation process for incrementally increasing values of f until the DS strain
is eliminated (the equilibrium prevalence of the DS strain equals 0), still holding the PT initiation
rate constant within each individual simulation. Because we do not allow DR strains to revert to
DS, such elimination of the DS strain is possible in our model even when the equilibrium prevalence
of the DR strain remains nonzero.

All of the results provided are based on model simulations created using the R differential
equation solver “ode” within package deSolve.
Results

In our model, increasing the intensity of preventive therapy directly affects the amount of re-
sistance acquired through preventive therapy. It also indirectly affects the amount of resistance
acquired through treatment for active disease and the competitive transmission advantage afforded
to DR strains. We find that the combined effects of these mechanisms can result in increasing,
decreasing, and non-monotonic relationships between the intensity of PT coverage and DR preva-
lence. Throughout the results, we use the word “treatment” to refer solely to treatment for active
disease.
PT coverage and resistance acquired through PT

In our model, preventive therapy may lead directly to acquired resistance among individuals
latently or actively infected with the DS strain. To demonstrate how it may do so, Fig 1.2 provides
a focused view of the relevant states and transitions from Fig 1.1. Unbolded arrows in Fig 1.2
show the transitions that may lead to individuals latently or actively infected with the DS strain
receiving PT. Bolded arrows show the acquisition of resistance among such individuals as a result
of PT. If no individuals are to acquire resistance as a result of preventive therapy, one of the
following scenarios must apply: 1) no individuals with active or latent infection ever receive PT,
2) no individuals with active infection ever receive PT, and PT never results in acquired resistance
among latently infected individuals, or 3) PT never results in acquired resistance among latently

or actively infected individuals. The first scenario assumes that PT is intended only for uninfected
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individuals, that screening for latent and active infection prior to PT initiation is perfect (f; = 0
and f; = 0), and that adherence and drug efficacy are sufficiently high that individuals receiving
PT never become infected (357 = 0). The second scenario assumes that PT never selects for
sporadically occurring resistant mutants among individuals with latent infection (a; = 0), that
screening for active infection prior to PT initiation is perfect (f; = 0), and that adherence and
drug efficacy are sufficiently high that individuals receiving PT never progress from latent to active
infection (kgT = 0). The third scenario assumes that PT is incapable of selecting for resistance
at the individual level among both latently and actively infected individuals (a¢; = 0 and a; = 0).
Even well-functioning preventive therapy programmes are unlikely to meet these stringent criteria,
and thus it is reasonable to expect that some individuals will directly acquire resistance as a result
of preventive therapy.

When we assume that some or all of these parameters are nonzero, reflecting the vast majority
of real-world PT applications, the relationship between PT coverage and resistance acquired as a
result of PT is shown in Fig 1.3. The level of resistance acquired through PT is a function of the
number of DS actively and latently infected individuals receiving PT (a;/ 5 Ty angT). When PT
coverage is low and insufficiently able to control the epidemic, increasing PT coverage increases
the number of latently and actively infected individuals receiving PT and thus the number of
people who acquire resistance as a result of preventive therapy. When PT coverage is high and
better able to control the epidemic, increasing PT coverage decreases the number of people who
acquire resistance as a result of preventive therapy (similar to an effect described in [14]). Under
such scenarios, although increasing the PT initiation rate still increases the total number of people
receiving P'T, the resulting reduction in the force of DS infection is sufficient to decrease the number
of people receiving PT who have latent or active DS infection. Because only DS infected individuals
are at risk of acquiring resistance as a result of PT, this results in a reduction of the rate at which
resistance is acquired as a result of PT.
PT coverage and resistance acquired through treatment

As is seen in Fig 1.1, our model allows individuals receiving treatment for active DS disease
(Ts) to acquire resistance at rate a. Increasing the coverage of PT in the population decreases the
number of people infected with the DS strain, and thus decreases the number of people who acquire

resistance through treatment for active disease. This relationship is shown in Fig 1.4.
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Figure 1.2: Subset of the model representing the rates at which individuals with latent or active

DS disease receiving preventive therapy (LgT and [ 5 T respectively) acquire resistance (bold) and

the transitions leading to these potentially at-risk states
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Figure 1.3: The relationship between PT start rate f and the rate at which resistance is acquired through
PT (a;IET +a;LET) at equilibrium. Parameters for this figure: u=0.02,7p = 1,rg =2,c=1,kg = 1,kg =
15,85 =2, 8r=1,2=1,a=03,a; = 0.5,a; = 0.1,w = 0.1, 35T = 0, kET = 0.

PT coverage and transmission of the DR strain

Our model assumes high levels of competition for susceptible hosts between strains, as we do not

allow for latent or active coinfection. As a result, increasing PT coverage may provide a selective
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Figure 1.4: The relationship between PT start rate f and the rate at which resistance is acquired through

treatment for DS disease (aTs) at equilibrium. Parameters for this figure are the same as those for Fig 1.3.

advantage to DR strains through two distinct mechanisms. First, increasing PT coverage increases
the probability that an individual latently infected with the DR strain will progress to active
DR infection. This relationship is a result of our assumption that DR latently infected individuals
could potentially be “rescued” from progressing to DR disease by superinfection with the DS strain.
As PT coverage increases, DR latently infected individuals are increasingly protected from such
superinfection and are therefore more likely to progress with their DR strain. Second, increasing
PT coverage increases the proportion of DR uninfected individuals who are susceptible to the DR
strain. In our model, the proportion of all individuals who are susceptible to the DR strain is given
by S+axLg+xR+STT + ngT +2RPT | which depends on the proportion of people uninfected by
the DR strain, the proportion of people with active DS infection, and the level of immunity afforded
by initial infection. To obtain the proportion of DR uninfected individuals who are susceptible to
DR infection, we divide this by the total proportion of individuals not actively or latently infected
with the DR strain (S + R+ Lg + STT + RFPT + LgT + Is + IgT + Ts). Increasing PT coverage
reduces the number of persons with active DS infection, and therefore increases the proportion of
DR uninfected individuals who are susceptible to the DR strain. These two effects are discussed in

more detail in the appendix.
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The effective reproductive number of the DR strain is a composite measure that allows us to
assess the combined effects of these mechanisms on the competitive fitness of the DR strain. The
effective reproductive number shows the number of secondary infectious cases produced by a single
infectious individual over the course of their infectious period. As opposed to the basic reproductive
number Ry, which assumes a wholly susceptible population, the effective reproductive number at a
given time point depends on the susceptibility pattern of the population at that point in time. In
a single strain model, the effective reproductive number at equilibrium is equal to 1. In our model,
however, the number of DR infected individuals is boosted by acquired resistance, and therefore the
DR strain may coexist with the DS strain in the population even when the effective reproductive
number of the DR strain is below 1.

Fig 1.5 shows how the effective reproductive number of the DR strain at equilibrium changes
as PT coverage increases. At low PT coverage levels, the DR effective reproductive number is less
than 1, indicating that acquired resistance is necessary for the persistence of the DR strain in the
population. As PT coverage increases, the reproductive fitness of the DR strain increases as well.
When PT coverage is sufficiently high, the DR effective reproductive number reaches 1, indicating
that resistance has become self-sustaining and the DR strain has overtaken the DS strain in the
population.

Composite effects of PT coverage on DR prevalence

Table 1.2: Summary of mechanisms through which PT may affect the prevalence of drug resistance. The
proportion susceptible to the DR strain and the reproductive number of the DR strain are discussed in more

detail in the appendix.

Source of Influence Driven by Effect on DR Prevalence for
Resistance Health States Parameters Low PT Coverage High PT Coverage
PT DS infected Rate resistance acquired " !
on PT (LET, IET) on PT (a;, a;)

Rate resistance acquired

Treatment DS Treated (Ts) on treatment (a) i} i}
. Susceptible to Reproductive number
Transmission DR strain of DR strain T T

Table 1.2 summarises the ways in which each of the resistance mechanisms outlined above will

tend to alter DR prevalence. While increasing PT coverage can decrease the rate of resistance
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Figure 1.5: The relationship between PT start rate f and the effective reproductive number of the DR
strain at equilibrium. Calculations are given in the appendix. Parameters for this figure are the same as

those for Fig 1.3.

acquired due to treatment, it can also increase the competitive transmission advantage of circu-
lating DR strains, and its effects on the rate of resistance acquired due to PT are non-monotonic.
Furthermore, in our model as in reality, none of these mechanisms exist in isolation. Rather, in-
creasing PT coverage acts simultaneously on the rate at which resistance is acquired through PT,
the rate at which resistance is acquired through treatment, and the competitive fitness of the DR
strain. In Fig 1.6 we show that the interactions between these mechanisms are sufficient to produce
a range of qualitatively distinct relationships between PT coverage and equilibrium DR prevalence.
Though the behaviours shown in this figure occur with varying frequencies and are not necessarily
exhaustive, they demonstrate the complexity of the changes in DR prevalence that may result from
PT.

All of the subplots in Fig 1.6 were created using the same model of preventive therapy under
different sets of parameters. The parameters used for each subplot are shown in the figure caption.
In Subplot A, DR prevalence increases monotonically with PT coverage. The parameters used to
produce this subplot were the same as those used to create the figures for the previous sections. In

Subplot B, DR prevalence increases with PT coverage when PT coverage is low, but decreases with
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increasing PT coverage if PT coverage exceeds a threshold value. To create this subplot, we lowered
the transmission parameter for the DR strain Sr. This decrease in the transmissibility of the DR
strain allows acquisition of resistance through PT and treatment to play a larger role in changing
DR prevalence. In Subplot C, DR prevalence decreases monotonically with increasing P'T coverage.
To create this subplot, we lowered the transmission parameter of the DR strain as in subplot B
and assumed that no resistance was acquired as a result of preventive therapy, allowing acquisition
of resistance by treatment alone to become the major driver of DR prevalence. Finally, in Subplot
D, DR prevalence decreases with increasing PT coverage when PT coverage is low, but increases
with increasing PT coverage if PT coverage exceeds a threshold value. To create this subplot, we
lowered the reinfection susceptibility of latently infected and recovered individuals, assumed no
resistance acquired as a result of preventive therapy, and assumed PT did not affect infection with
the DS strain (i.e. that it only affected disease progression). The resulting U-shaped curve indicates
that, at low coverage levels, PT primarily influences resistance acquired due to treatment for active
disease, whereas at high coverage levels, PT exerts more influence by allowing greater transmission
of the DR strain. This relationship may reflect the fact that lowering the progression rate affects the
prevalence of latent DS infection differently than the rate of active DS infection, complicating the
association between the prevalence of DS disease and the number of people susceptible to infection
with the DR strain. Note that the absolute changes in DR prevalence in this subplot are small;
nevertheless, this shape further reflects the complexity of the ways in which PT may cause changes
in DR prevalence.
Discussion

Mathematical models of varying complexity have been constructed to predict the effects of
pre-exposure prophylaxis for HIV [15][12][10], isoniazid preventive therapy for TB [16][17][18], and
intermittent preventive treatment for malaria [19][20] on the prevalence of drug resistance. Here, we
have used a more general model to provide an overall view of the ways in which preventive therapy
may influence the prevalence of drug resistance and the anticipated directions of these effects.

First, we have described the relationship between PT coverage and the amount of resistance
acquired directly as a result of PT. Previous models have demonstrated particular sensitivity to

assumptions surrounding the use of PT in infected individuals [21]. Our model shows that when
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Figure 1.6: Relationship between PT start rate f and DR prevalence (Ig + IET + Tx) at equilibrium.
Parameters for Subplot A are the same as those from Figs 1.3, 1.4, and 1.5: ¢ = 0.02,7rg = 1,rg = 2,c =
Lkg = L,ks = 15,85 = 2,r = L, = 1,a = 0.3,a; = 0.5,¢; = 0.1, w = 0.1,857 = 0,k{"T = 0.
Parameters for Subplot B: same as for Subplot A, except Sr = 0.55. Parameters for Subplot C: same as
for Subplot A, except Br = 0.55,a; = 0,a; = 0. Parameters for Subplot D: same as for Subplot A, except
r=04,a; =0,a; = O,ﬁgT = 2. The same range of PT start rates is shown for each subplot, though this

range is insufficient to cause elimination of the DS strain in subplot D.
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PT coverage is low, increasing PT coverage increases the amount of resistance acquired as a result
of PT. When PT coverage is high, however, further increasing PT coverage decreases the amount of
resistance acquired as a result of PT, resulting in an inverted U-shaped curve between PT coverage
and resistance acquired from PT. A similar relationship has been described between drug pressure
and the rate of resistance in the setting of treatment for active disease [14]. Notably, this resistance
mechanism is not a necessary consequence of the beneficial effects of PT. The number of people who
acquire resistance as a result of PT may be reduced by limiting the number of infected individuals
started on PT (e.g. through better screening programmes), the number of individuals receiving PT
who develop latent or active infection (e.g. through better adherence or more effective PT drugs),
and the rate at which infected individuals on PT acquire resistance (e.g. through drugs or drug
combinations more similar to those used for treatment).

Second, we have shown that increasing PT coverage decreases the amount of resistance acquired
as a result of treatment for active disease. This relationship occurs because PT decreases the
number of individuals with active DS disease. We would expect a similar relationship to hold for
non-therapeutic interventions that do not exclusively target DS disease, such as condom use in the
setting of HIV.

Third, we have demonstrated that increasing PT coverage provides a selective advantage to
circulating DR strains. We have found that increasing PT coverage increases the effective repro-
ductive number of the DR strain, which is consistent with predictions and observations for vaccines
targeting specific disease strains [22][23] and previous PT modelling papers that have used strain
competition to explain predicted increases in DR prevalence [17][18]. Increasing the intensity of PT
coverage increases the effective reproductive number of the DR strain by increasing the probability
that a DR latently infected individual will progress to active DR infection (before reinfection with
the DS strain) and by increasing the proportion of the DR uninfected population that is susceptible
to infection with the DR strain.

Finally, we have shown that PT may have a wide range of effects on overall DR prevalence,
depending on the interaction of these three mechanisms. Specifically, we have provided examples
of increasing, decreasing, U-shaped, and inverted U-shaped relationships between PT intensity
and equilibrium DR prevalence resulting from our model. These four shapes are not necessarily

exhaustive, but demonstrate that the relationship between PT coverage and DR prevalence may
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differ qualitatively depending on the disease and drug in question. In particular, predictions of the
effects of PT on drug resistance are sensitive to a number of properties of the system: the rate at
which resistance is acquired as a result of PT, the rate at which resistance is acquired as a result
of treatment, the fitness costs of resistance on disease transmissibility, the mechanisms of PT, and
the rate of reinfection. Reliable estimates of these parameters are needed to accurately predict
the effects of proposed PT programmes on DR prevalence. Our estimates are also sensitive to the
assumption that individuals cannot be reinfected throughout their infectious periods, illustrating
the importance of understanding within-host strain competition when predicting the population-
level effects of PT.

Understanding how each of these factors contribute to the relationship between preventive ther-
apy and drug resistance may aid in the interpretation of models with differing predictions about
the effects of PT on drug resistance. For example, our analysis sheds some additional light on the
observations made by Abbas et al. [13] on the sources of difference in the model predictions of
Supervie et al. [10] and Abbas et al. [12]. Abbas et al. [13] re-created both models to explore the
reasons for contrasting conclusions about the potential relationship between PrEP and HIV drug
resistance in sub-Saharan Africa. They suggest that a low value of Ry contributed to PrEP decreas-
ing the prevalence of drug resistance in [10], which accords with our demonstration that although
preventive therapy provides a competitive advantage to DR strains, it may still reduce the overall
prevalence of drug resistance when the transmissibility of the DR strain is low and resistance is
driven primarily by acquisition. Similarly, their observation that the differences between the two
models could be partially explained by differing PrEP coverage rates is supported by our finding
that the effects of increasing PT coverage may be non-monotonic. The authors also acknowledge
that resistance in the population occurs as a result of transmission and treatment (i.e. antiretroviral
therapy) as well as PrEP; as we have shown, the effects of preventive therapy on drug resistance
cannot be distilled to its effects on resistance acquired through PT alone.

We have presented a general model that may not perfectly reflect the natural history of any
particular infection. Though in reality the specific action and targeting of PT varies depending
on the disease and drug of interest, we assume PT protects both susceptible and latently infected
individuals from active DS disease. Our assumption of no latent or active mixed infections en-

codes a high level of competition between strains for susceptible hosts, the biological plausibility
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of which will depend on the disease of interest. Other models have demonstrated that allowing
for mixed infections may either heighten or mitigate the effective degree of competition between
strains depending on assumptions of how strains compete within and between hosts [24][25][26][27].
If we could assume DS and DR strains are perfectly non-competing, changing PT coverage may
not affect the effective reproductive number of the DR strain; however, we expect most pathogens
to exhibit some level of within-strain competition and therefore qualitative behaviours similar to
those described here. In addition to the assumption of no mixed infections, we assume a binary
designation of drug resistance that may not accurately represent the accumulation of resistance
mutations within a single host. Furthermore, we do not allow DR strains to revert to DS, though
this behaviour has been demonstrated for pathogens including HIV [28]. We assume that the ef-
fects of PT on disease progression cease immediately after PT is removed, and do not allow PT to
increase the cure rate or reduce the infectiousness of infectious individuals (as might occur if the
drugs used for PT are similar to those used for treatment). Similarly, we assume that PT has no
direct effects on immunity to future infection. Finally, we focus our analysis on the effects of PT on
drug resistance at equilibrium, even though policymakers may be most interested in its short-term
effects.

Nevertheless, we have provided a systematic account of both direct and indirect mechanisms
through which PT may affect DR prevalence. Depending on the relative contributions of these
resistance mechanisms, raising PT coverage could have increasing, decreasing, or non-monotonic
effects on long-term DR prevalence. Because these relationships may be non-monotonic, care should
be taken when extrapolating the effects of small PT programmes to larger efforts.
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APPENDIX S1
How could preventive therapy affect the prevalence of drug resistance? Causes and consequences

Amber Kunkel, Caroline Colijn, Marc Lipsitch, Ted Cohen

Equations
The states and parameters used here are the same as those described in Table 1.1 in the main

text.

=S —wStT — gLT (15 + IET + T5)STT — Br(Ig + IET 4 TR)STT — puSTT
Ls = Bs(Is + IET +Ts)(S + zLg + zR) — xBr(Ig + IET + Tr)Ls — (ks + u+ fi)Ls + wLET
Lr = Br(Ig+ I}.;T +Tr)(S + xLs 4+ zR) — 285(Is + I¥T + Ts)Lp — (kp + u+ fi)Lr + wLET
= LT (Ig + IET + 1) (STT + oL + 2RPT) — afr(Ig + IET + TR)LET
— (k5T + p+w+ ) LET + fiLs
= Br(Ip + IET + TR)(STT + 2 LET + zRPT) — oBET (Is + IET + Ts) LET
— (kp 4+ p+w)LET + fiLg + a;LET
Is = ksLs — (c+ p+ fi)Is + wIET
Ir =krLr — (c+ p+ fi)Ip + wIf"
IET = RETLET — (c+ p+ ai + w)IET + fils
IET = kLT + aidE" — (c+ p+w)IET + filg
Ts = c(Is + IET) — (rg + p+a)Ts
Tr=c(Ip+1E") — (re + p)Tr + aTs
R=wRFPT — fR+rgTs + rgTr — 28s(Is + I§T + Ts)R — xfr(Ig + IET + Tr)R — uR
= fR—wRPT — 2Bl T (Is + 157 4+ Ts)R'T — aBr(Ig + IET + Tr)R'T — uRFT
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Calculating DR Effective Reproductive Number
This section refers to states and parameters described in Table 1.1 in the main text. The effective
reproductive number is the number of secondary infectious cases produced by a single infectious

individual over the course of their infectious period. We derived the effective reproductive number
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of the DR strain Rprg at equilibrium from first principles using the following equation:

Rrp = BrD(PY0% + PPTHET),

We walk through each of the individual components of this equation below. Sg is the transmis-
sion parameter for the DR strain, as described in the main text.

D, the average duration of infectiousness with the DR strain, is the sum of two terms: 1) the
average length of stay in the untreated infectious compartment and 2) the average length of stay
in the treated infectious compartment given that the individual initiates treatment prior to death.

This expression is given below:

oo (o) )
D= + .
c+ u c+ u nw+TR

PO, the probability of progressing from latent to active disease for individuals not on preventive
therapy at the time of infection, is the sum of the probability of progressing before leaving L, the
probability of starting preventive therapy and then progressing before leaving LgT, the probability
of starting preventive therapy and then stopping preventive therapy and then progressing before

leaving L, and so on:

kr Si ke S w ke S w i ke

P’ = =
Dy Do Dpr DoDpr Dy Do Dpr Dy Dpr

kRoo<fl w>i fi kr OO(fl w>j
po— ) 4= gL
Dy Z Do Dpr Do Dpr Z Do Dpr

i=0 §=0

where Dy is the rate of exit from Lg
Do =kr+p+Bs(Is + 15" +Ts) + fi
and Dpr is the rate of exit from LgT
Dpr =kp+p+ LT (Is + IET +Ts) + w.

This expression for P? captures all of the possible paths from the latent state to the infectious
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state and hence captures the total probability of progression from latency to active DR disease. If

we let z = wf;/(DoDpr) then the expression for PY simplifies to

kr 2 Ji kr 2
PY= (1 AN 1 .
D0<+1—Z>+DODPT +1—Z

We can similarly derive the expression for PPT, the probability of progressing from latent to

active disease for individuals on preventive therapy at the time of infection, which simplifies to

kr z w kg z
PP = = (1 — =1 :
DPT< +1_Z>+DPTDO< +1—Z>

Finally, 6% is the fraction of individuals who are susceptible to infection with the DR strain and

not currently on PT:

0% =S +xR+2Lg

and GI];T is the fraction of individuals on PT who are susceptible to infection with the DR strain:
0" =S + R 4+ LT

Individuals already infected with the DR strain are not included here, even though they may be
reinfected with the DR strain, because they do not change states upon reinfection.
DR Effective Reproductive Number Components

Changing the coverage of preventive therapy changes the DR effective reproductive number in
two ways: by affecting the proportion of people infected with the DR strain who progress to active
DR disease, and by affecting the proportion of the population that is susceptible to the DR strain.
Here we show how each of these components are affected by changing PT coverage, using notation
defined earlier in the appendix and in Table 1.1 in the main text.

The proportion of people infected with the DR strain who progress to active DR infection
depends on the DS infection rate, which itself depends on the proportion of the population receiving
preventive therapy. To produce a population average, we used the formula

_ PY%% + PPTORT
09 + 05"
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The results are shown in Supplemental Figure S1.1. The proportion of DR infected persons who

progress to active infection with the DR strain increases with increasing PT coverage.
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Figure S1.1: The relationship between PT start rate f and the proportion of people infected with the DR
strain who progress to active DR infection. Parameters for this figure are the same as those for Fig 1.3 in

the main text.

The proportion of people susceptible to the DR strain depends on the number of people unin-
fected with the DR strain without active DS infection and the level of immunity afforded by initial
infection. To remove the effects of changing DR prevalence, we show here the proportion of DR
uninfected persons who are susceptible to the DR strain:

0% + 05"
_ rRTYR )
S+ R+Lg+ SPT + RPT + LET + Ig + ILT + T

Or

The results are shown in Supplemental Fig S1.2. The proportion of DR uninfected individuals who

are susceptible to the DR strain increases with increasing PT coverage.
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Figure S1.2: The relationship between PT start rate f and proportion of DR uninfected persons susceptible

to the DR strain. Parameters for this figure are the same as those for Fig 1.3 in the main text.
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Paper 2: Kunkel, A, Crawford, F.W., Shepherd, ]. & Cohen, T. Benefits of continuous
isoniazid preventive therapy may outweigh resistance risks in a declining TB/HIV co-

epidemic.
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Abstract

Objective: Extending the duration of isoniazid preventive therapy (IPT) among people
living with HIV (PLHIV) may improve its effectiveness at both the individual and
population level, but could also increase selective pressure in favor of isoniazid resistant
tuberculosis (TB) strains. The objective of this study was to determine the relative
importance of these two effects.

Methods: Transmission dynamic model

Design: We created a mathematical model of TB transmission incorporating HIV incidence
and treatment, mixed strain latent TB infections, and four different phenotypes of TB drug
resistance (pan-susceptible, isoniazid mono-resistant, rifampicin mono-resistant, and
multi-drug resistant). We used this model to project the effects of IPT duration on the
incidence of isoniazid-sensitive and -resistant TB as well as mortality among PLHIV. We
evaluated the sensitivity of our baseline model, which was calibrated to data from
Botswana, to different assumptions about the future trajectory of the TB epidemic.
Results: Our model suggests that, in the context of a declining TB epidemic such as that
currently observed in Botswana, the incidence and mortality benefits of continuous IPT for
PLHIV are likely to outweigh the potential resistance risks associated with long duration
IPT. However, in less well-controlled epidemics, the selective pressure imposed by
widespread use of continuous IPT on isoniazid resistant TB incidence may erode its initial
benefits.

Conclusions: Continuous IPT should be coupled with strong and effective HIV control, TB
case-finding and treatment, and drug resistance surveillance to maximize the expected

benefits of preventive therapy.
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Introduction

The World Health Organization currently recommends at least 6-9 months of
isoniazid preventive therapy (IPT) for all people living with HIV (PLHIV) deemed unlikely
to have active tuberculosis (TB) on the basis of symptom screening [1]. Several clinical
trials have demonstrated an individual-level efficacy of IPT for preventing TB among PLHIV
[2]. Longer follow-up studies on the risks of TB after stopping IPT, however, suggest that
the duration of protection post-IPT varies based on setting and may be lost almost
immediately [3-6]. Community-wide IPT was demonstrated to have no effect on TB
incidence within the Thibela study, an observation that has been at least partly attributed
to rapid loss of protection from re-infection after IPT and could also suggest that 9 months
of IPT are insufficient to clear latent TB strains among PLHIV [7-10].

A continuous, lifelong course of IPT has been suggested as a potential way to
increase the community-wide impact of IPT [7]. At the individual level, clinical trials have
shown an increased efficacy of 36 months of IPT, intended as a proxy for lifelong treatment,
compared to the standard 6-month regimen [11, 12]. Despite these potential benefits,
prolonging the course of IPT could exacerbate concerns about the risk of side effects and
potential for increased isoniazid resistance. Martinson et al. found a greater risk of serious
adverse effects on continuous IPT as compared to shorter duration regimens [13]. While
the analysis of published literature included in WHO IPT guidelines concluded that IPT
does not increase the risk of isoniazid-resistant TB among IPT recipients (graded “strong
recommendation, moderate quality of evidence”), this analysis was based on clinical trials
of IPT that used stricter criteria to exclude active TB than the WHO recommended

symptom-screening algorithm. Furthermore, the included studies were not powered to
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assess risks of resistance [1, 14]. This analysis also did not consider the potential
competitive advantage that community-wide IPT could confer to isoniazid resistant TB
strains at the population level [15-17].

Several modeling studies have previously assessed the potential impact of
widespread IPT use among PLHIV on the incidence of both isoniazid sensitive and isoniazid
resistant TB [16, 18, 19]. However, these studies have not specifically investigated the
impact of different IPT durations. They also have not accounted for multiple pathways to
multi-drug resistant (MDR) TB and have typically offered little guidance as to the
conditions under which the potential benefits of IPT are most likely to outweigh increased
risks of resistance. For this analysis, we created a mathematical model to assess the
potential impact of variable durations of IPT on overall mortality among PLHIV over a
range of epidemic scenarios. Unlike previous models, our analysis explicitly explores the
potential multi-faceted effects of IPT on the incidence of pan-sensitive, isoniazid mono-
resistant, rifampicin mono-resistant, and MDR TB. Our baseline scenario was chosen and
the most uncertain parameters were estimated based on historical trends and future
projections of the TB-HIV co-epidemic in Botswana.

Methods

To assess the potential impact of continuous vs. 6-month IPT on the incidence of
isoniazid resistant TB in Botswana, we created a compartmental transmission model
accounting for the natural history of TB, the incidence of HIV and uptake of antiretroviral
therapy (ART), and the acquisition and transmission of TB drug resistance in this setting.

Our modeling strategy is described briefly below and in more detail in the Appendix. The
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model was implemented in R version 3.2.0 as a series of delay differential equations
numerically integrated using package deSolve.
Model Overview

The basic structure of our model is shown in Fig 1. With respect to TB, individuals
in the model may be fully susceptible, latently infected, actively infected, or receiving
treatment. Initial infection moves individuals from the susceptible compartment to either
the active TB (fast progression) or latently infected (slow progression) compartment.
People who are latently infected may become actively infected via either reactivation or
reinfection. We assume that initial infection affords partial but incomplete protection

against future reinfection.
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Figure 2.1: Model structure
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Episodes of active TB in the model may result in death, spontaneous cure, or
initiation on treatment. Treatment episodes may result in successful cure, leading to
return to latent infection, or in treatment failure, resulting in relapse to active disease
either with or without acquired resistance. The treatment a patient receives depends on
their drug susceptibility profile and whether drug resistance is detected by their healthcare
provider. We assume that all newly diagnosed patients initially receive first-line TB
treatment, but starting in 2008 allow a proportion of individuals failing their initial
treatment course to receive drug susceptibility testing and appropriate retreatment [20].

With respect to HIV, individuals in the model may be uninfected, infected and
undetected (i.e. not receiving ART), or infected and detected (i.e. receiving ART if eligible).
Individuals with detected HIV are also eligible for IPT. Our model of HIV is not a
transmission model in that the number of new HIV infections does not reflect the
interaction between susceptible and infected individuals in the model, but is instead based
on UNAIDS Botswana HIV incidence projections (UNAIDS 2015, unpublished data).

We account for four phenotypes of drug resistant TB in this model: pan-sensitive,
isoniazid mono-resistant, rifampicin mono-resistant, and multi-drug resistant (MDR,
resistant to both isoniazid and rifampicin). We assume that patients receiving treatment
are at risk of developing resistance to both isoniazid and rifampicin. We also assume that
patients receiving IPT are at risk of developing resistance to isoniazid, with rates
depending on whether they are latently infected or have active TB disease (we assume
imperfect sensitivity of symptom screening such that a small number of individuals with
active disease may be initiated on IPT [21]). During the latent stage, individuals in the

model may be infected by multiple strains with the same or varying resistant types;
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however, we assume that progression to active infection acts as a bottleneck, with only one
strain dominating (as in [16]). Specifically, we assume that the dominant strain is
determined at the time of each (re)infection event, but may switch if IPT is applied to a
latently infected individual with a dominant strain that is isoniazid sensitive and non-
dominant strain that is isoniazid resistant.

All individuals are assumed to enter the model HIV susceptible at age 15. We allow
individuals to be latently infected with at most one TB strain at the time of model entry,
with rates determined by the annual risk of infection over the previous 15 years. We do
not include a detailed demographic model, and instead allow for a rate of entry that
maintains a fairly consistent population size throughout our predictions.

Historical IPT use in Botswana is incorporated from 2004-2008 by allowing patients
started on ARVs during that time to receive IPT for a mean duration of 3 months [22, 23].
Otherwise we assume no individuals receive IPT until 2017. We focus our analysis on the
potential impact of different IPT strategies from 2017 onwards.

Parameterization

We allow the rates of TB infection, progression, and other natural history
parameters to vary depending on whether a person is HIV uninfected, HIV infected and
undetected, or HIV infected and detected. Treatment success is also allowed to vary based
on both HIV status and resistance pattern. We assume that the majority of these
parameters are known with certainty, with values chosen based on a review of the
literature. The remaining 18 parameters were assigned prior distributions based on this
literature review. Our estimates of these parameters were then refined using Bayesian

melding [24, 25] by comparing model outputs to published estimates of TB incidence, TB
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prevalence, HIV prevalence, HIV prevalence in TB cases, and the coverage of antiretroviral
therapy in Botswana from 1990-2013, as well as data from four TB drug resistance surveys
conducted over the same time period [26-28].

Several of our parameters were allowed to vary over time to reflect observed trends
in TB and HIV control in Botswana. These parameters include the rate of HIV infection, the
rate at which PLHIV are started on ART, the TB case detection rate, and the rate of second-
line treatment, and are discussed in more detail in the Appendix.

IPT Implementation & Impact

Individuals receiving IPT experience several different effects. First, we assume that
individuals cannot be infected or reinfected by isoniazid sensitive TB strains while
receiving IPT. Second, we assume that the reactivation rate of pre-existing isoniazid
sensitive infections is reduced for individuals receiving IPT. IPT may either clear these
strains completely or suppress them only during the time that the individual is receiving
IPT [8, 9]. If IPT is able to clear these strains, individuals may either retain or lose partial
immunity to reinfection. Latently infected individuals may acquire resistance to isoniazid
at a low rate; this rate is much higher for individuals with active TB inadvertently receiving
IPT. Actively infected individuals receiving IPT may also be cured at low rates reflecting
those of the initial trials of isoniazid alone [29, 30]. We allow individuals receiving IPT to
experience a small excess mortality rate due to adverse effects.

Beginning in 2017, we implement and compare four different IPT scenarios: no IPT,
short-term IPT (mean duration 6 months plus additional dropout), realistic continuous IPT
accounting for dropout (median duration 4.7 years, similar to [13]), and perfect continuous

IPT assuming no dropout. We introduce a brief catch-up period in the beginning of 2017 to
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allow individuals already started on ART to receive IPT; from that point forward, people
may only receive IPT upon HIV detection. Individuals may choose not to receive IPT, and
those with active TB may be detected by symptom screening prior to IPT initiation and
instead started on treatment for active TB. We do not model the effect of secondary IPT
after completion of treatment for active disease.
Outcomes

The outcomes we investigated included TB incidence (both overall and by
resistance type), mortality rate among PLHIV, and cumulative mortality among PLHIV.
Results

Here we describe the results of our analysis both for our baseline Botswana
scenario, in which transmission is declining based on WHO estimates and our model
predictions, and for scenarios with higher transmission post-2017.
Baseline Botswana Results

Figure 2.2 shows the projected incidence of pan-sensitive, rifampicin mono-
resistant, isoniazid mono-resistant, and MDR TB in Botswana for the range of IPT
durations. Our model projects that longer IPT durations will decrease the incidence of pan-
sensitive and rifampicin mono-resistant TB through 2050. We also predict that longer

durations of IPT will increase the incidence of isoniazid mono-resistant and MDR TB.
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Figure 2.2: The effect of IPT duration on TB incidence by resistance phenotype under our
baseline Botswana scenario. Solid lines display means and shaded regions display 95%

quantiles of our posterior predictions.

IPT has the greatest impact in absolute terms on the incidence of drug sensitive TB.
Figure 2.3 shows projections of different IPT durations on overall TB incidence, mortality
rate among PLHIV, and cumulative mortality among PLHIV relative to no IPT. Under our
baseline scenario, we predict that longer durations of IPT will decrease the overall
incidence of TB through 2050 despite increases in the incidence of isoniazid mono-
resistant and MDR TB. We similarly predict that longer durations of IPT will provide

overall mortality benefits to our population through at least 2050, suggesting that the

42



projected increases in isoniazid resistance are not sufficient to outweigh the benefits of

decreased overall TB incidence under this scenario.
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Figure 2.3: The composite effects of IPT duration on overall TB incidence, mortality rate
among PLHIV, and cumulative mortality among PLHIV (relative to no IPT). Solid lines

display means and shaded regions display 95% quantiles of our posterior predictions.

The initial program providing IPT to PLHIV in Botswana beginning in 2004 was
stopped in 2008 after an observed increase in isoniazid resistance between the 2002 and
2008 drug resistance surveys; it was unclear, however, how much of this increase could be
attributed to the IPT program [22, 23, 26]. By comparing our baseline model results from
these two time periods with a counterfactual scenario under which no IPT was provided,
we estimate that 12.8% (95% quantiles 9.2%, 16.9%) of the increase in drug resistance
from 2002 to 2008 was a result of the IPT program, with the remainder reflecting trends in
treatment and transmission.

Sensitivity of Findings to Projected Epidemic Trajectory
Under our baseline scenario, we predict substantial decreases in overall TB

incidence through 2050 even in the absence of IPT, reflecting UNAIDS HIV incidence
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projections and expanded access to antiretroviral therapy. However, these observed
trends could be subject to unforeseen events or changes, whether technological, medical, or
political; they also may limit the generalizability of our results to other settings. Therefore,
we also explored the effect of IPT duration on the incidence of both isoniazid sensitive and
isoniazid resistant TB under assumptions of constant or increasing TB transmission after
2017.

Figure 2.4 shows the incidence of isoniazid resistant (mono-resistant plus MDR) and
overall TB under different durations of IPT when the transmission parameter is increased
1.25%, 1.5x%, or 1.75x that of our baseline scenario beginning in 2017. Longer durations of
IPT have a stronger effect on the incidence of isoniazid resistant TB under these higher
transmission scenarios. When transmission is sufficiently high, the expected increase in
isoniazid resistant TB outpaces the decrease in isoniazid sensitive TB within 25 years or
less. Figure 2.5 shows the impact of IPT duration on the mortality rate and cumulative
mortality (relative to no IPT) per 1,000 PLHIV under these higher transmission scenarios.
For all scenarios, longer IPT durations initially decrease the mortality rate among PLHIV,
yet for the highest transmission scenario this initial difference in mortality rates is lost
within the first 25 years of the applied IPT policy. The average cumulative mortality
remains lowest for the longest IPT duration scenario through 2050 even for the highest
transmission scenario; however, by 2050 the differences between the IPT policies are

beginning to close and there is considerable uncertainty in our mortality estimates.
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Figure 2.4: The effects of IPT duration on the incidence of isoniazid resistant and overall TB

when the transmission parameter post-2017 is increased 1.25x, 1.5%, and 1.75x compared

to our baseline scenario. When transmission is relatively high, longer durations of IPT can

produce large increases in the incidence of isoniazid resistant TB, eroding their initial

overall incidence benefits. Solid lines display means and shaded regions display 95%

quantiles of our posterior predictions.
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relative to no IPT per 1,000 PLHIV when the transmission parameter post-2017 is
increased 1.25x, 1.5%, and 1.75x compared to our baseline scenario. When transmission is
relatively high, the mortality benefits of continuous IPT among PLHIV may be short-lived.
Solid lines display means and shaded regions display 95% quantiles of our posterior

predictions.

Discussion

We created a mathematical model to examine the potential impact of implementing
IPT programs of varying durations among PLHIV in Botswana and explored the sensitivity
of these results to assumptions about future TB transmission trends. Our model
consistently predicts longer durations of IPT to decrease incidence of isoniazid sensitive TB

and increase incidence of isoniazid resistant TB. However the relative importance of these
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two effects varies depending on the future trajectory of the epidemic. In a declining
epidemic such as our baseline Botswana scenario, we predict the benefits of continuous IPT
for PLHIV to outweigh the risks of increases in isoniazid resistance through at least 2050.
In higher transmission settings or scenarios, however, the initial incidence and mortality
benefits of longer IPT durations may subsequently be eroded by substantial increases in
the incidence of isoniazid resistant TB, reflecting an increased importance of the selective
pressure imposed by IPT relative to other resistance mechanisms [17].

TB transmission trends may be affected by a large range of underlying parameters,
including potential changes in HIV transmission, population structure, and standards of
living, as well as the structural assumptions of our model. As a result, it is not possible to
predict future TB transmission trends in Botswana with certainty. Our initial assumption
was that the transmission parameter would remain fixed from 2017-2050, reflecting
continued projected advances in HIV diagnosis and treatment as well as TB case detection
and treatment policies that were assumed to be fairly well-functioning. If these
assumptions do not hold, or in other settings that are not yet reporting similar declines in
TB and HIV incidence, our higher transmission scenarios may provide more realistic
projections.

These results suggest that continuous IPT is likely to be most effective in preventing
future TB transmission when coupled with strong TB and HIV control programs. Using
continuous IPT in the absence of highly-effective TB and HIV case-finding and treatment,
however, may result in substantial increases in the incidence of isoniazid resistant TB.
Continuous IPT should be considered as one of a suite of tools that could be useful for more

rapidly reducing the burden of HIV-associated TB, and does not decrease the importance of
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other interventions. We also suggest that IPT programs providing widespread and/or
continuous IPT be accompanied by robust drug resistance surveillance, especially in
settings with a high prevalence of HIV or where TB transmission is believed to be stable or
increasing. Such surveillance programs should focus on the absolute incidence of isoniazid
resistant TB, rather than the proportion of TB cases that are isoniazid resistant, as
increases in the latter could also reflect expected declines in incidence of isoniazid sensitive
TB.

Even under our most pessimistic high transmission scenario, however, the risks of
increased isoniazid resistance seen in this analysis are not immediate. Longer durations of
IPT are predicted to lower overall TB incidence and the mortality rate among PLHIV for at
least 20 years on average, and the cumulative mortality advantage of continuous IPT could
last much longer. The risks of resistance driven by widespread, long duration IPT should
therefore be weighed against its potential immediate benefits. These future risks could be
mitigated by future trends in TB research and treatment, particularly in the area of TB drug
development. Though the use of different drugs for prevention and treatment may not
currently be possible given the limited number of TB drugs available, continued drug
development could make this a highly appealing option, either through the development of
an effective alternative first-line regimen without isoniazid or perhaps even the targeted
use of a new drug for prevention only [31, 32].

Our analysis has several limitations. Because IPT is a complicated intervention, with
population-level impacts potentially affected by trends in TB, HIV, and drug resistance, we
have presented a complex model with many parameters for which there is limited data to

inform their values. The detailed structure of our model afforded us the opportunity to
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account for complexities avoided in previous models, such as the stepwise accumulation of
mutations for resistance to isoniazid and rifampicin [16, 18, 19]. However, it also reduces
its transparency, and many of the parameters assumed fixed may not actually be known
with certainty. Similarly, the data used to estimate the most uncertain parameters were
both limited in scope and based primarily on country-wide estimates rather than actual
data points. Despite the complexity of the model, it also incorporates a number of strong
simplifying assumptions and structural elements that may constrain the sorts of
predictions we can make. In particular, this analysis does not incorporate a detailed model
of demographic trends in Botswana. The HIV model is also simplified and does not fully
account for the natural history of HIV infection. Furthermore, we relied on UNAIDS HIV
incidence estimates rather than creating a full transmission model of HIV. These
limitations suggest caution should be used in relying on the quantitative projections
provided in this paper, but are less likely to affect the qualitative trends we report here. s
In summary, our results suggest that if interventions using longer duration IPT
among PLHIV could be brought to scale in Botswana, we would observe a decrease the
incidence of isoniazid sensitive (including rifampicin mono-resistant) TB through at least
2050. However, the projected effects of widespread continuous IPT on the incidence of
isoniazid resistant TB vary depending on future transmission trends. In settings with
declining transmission of TB and HIV, we predict the impact of IPT on isoniazid resistant
TB to be fairly small. In higher transmission settings, however, IPT could result in large
increases in the incidence of isoniazid resistant TB. Under such a scenario, the benefits of
IPT may be eroded such that the initial reductions in TB incidence may be lost within two

decades. The benefits of continuous IPT are most likely to outweigh the costs when
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coupled with strong HIV and TB case-finding and treatment programs, continued TB drug

development, and robust TB drug resistance surveillance.
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Benefits of continuous isoniazid preventive therapy may outweigh resistance risks in a
declining TB/HIV co-epidemic
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Comparisons of Data and Model Output

Here, we compare our model performance prior to IPT implementation in 2017 with the
data used to inform the likelihoods for our posterior predictions. Plots were created by

running the model forwards from 1980 over the range of considered parameter sets (see

Detailed Methods below for more details).

HIV Plots
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Figure S2.1: Comparison of model output (red) to UNAIDS (UNAIDS 2015, unpublished
data) estimates of HIV prevalence (black) from 1990-2013. Uncertainty in the estimates
was assumed to be the same as from UNAIDS AIDSinfo estimates of HIV prevalence [1].

Solid lines display means and shaded regions display 95% quantiles of our posterior

predictions.
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Figure S2.2: Comparison of model output (red) to UNAIDS AIDSinfo estimates of ARV
coverage (black) from 2010-2014 [1]. Solid lines display means and shaded regions
display 95% quantiles of our posterior predictions. ARVs were assumed to be unavailable

prior to 2003, except for individuals with active TB.

(o)
o
1

D
o
1

0 -

| | | |
1980 1990 2000 2010
Year

HIV prevalence in TB cases (%)

Figure S2.3: Comparison of model output (red) to WHO global TB program estimates of HIV
prevalence in TB cases (black) from 1990-2013 [2]. Solid lines display means and shaded

regions display 95% quantiles of our posterior predictions.
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TB Plots
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Figure S2.4: Comparison of model output (red) to WHO global TB program estimates of TB
incidence (black) from 1990-2013 [2]. Solid lines display means and shaded regions

display 95% quantiles of our posterior predictions.
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Figure S2.5: Comparison of model output (red) to WHO global TB program estimates of TB
prevalence (black) from 1990-2013 [2]. Solid lines display means and shaded regions

display 95% quantiles of our posterior predictions.
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Figure S2.6: Comparison of model output (solid and shaded lines) to the results of the TB

drug resistance surveys from 1995, 1999, 2002, and 2008 in Botswana [3]. Solid lines

display means and shaded regions display 95% quantiles of our posterior predictions.
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Detailed Methods Narrative

To assess the effects of varying IPT duration, we created a deterministic delay
differential equation model with compartments representing both TB and HIV states. The
model was parameterized to the TB and HIV epidemics in Botswana using Bayesian
melding [4, 5].
HIV Model States

The model includes four distinct HIV states: HIV susceptible, infected with
undetected HIV, infected with detected HIV and on IPT, and infected with detected HIV, not
on IPT (here on, “HIV susceptible,” “HIV undetected,” “on IPT,” and “HIV detected”). The
HIV undetected state represents individuals whose HIV status is unknown and who cannot
access antiretroviral treatment. To simplify the model, we combine the effects of HIV
detection and antiretroviral treatment, such that people with detected HIV experience
better outcomes than those whose HIV remains undetected. Within the model, HIV
increases the mortality rate, the probability of fast progression among individuals newly
infected with TB, and the TB reactivation rate, and reduces the immunity produced by
previous TB infection, rate of self cure from active TB, and infectiousness of TB cases per
unit time. We assume that the proportion of TB cases detected prior to death or self cure is
independent of HIV status; as a result, TB cases with HIV infection are detected faster on
average than those without HIV infection.

All individuals enter the model HIV susceptible and are infected with rates reflecting
UNAIDS estimates of historical HIV incidence in Botswana (UNAIDS 2015, unpublished
data). If infected, they first enter the HIV undetected compartment. Their HIV may be

detected either through routine testing or upon presentation for treatment of active TB. We
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assume that all people will receive symptom screening for TB upon routine HIV detection
and that actively infected individuals detected through such screening will receive
treatment. Otherwise, individuals either begin [PT or move directly into the HIV detected
class. No individuals revert from detected to undetected HIV. A brief catch-up IPT
campaign in the first 6 months of 2017 is modeled to allow 75% of people already receiving
ARVs to receive IPT; thereafter, only people initiating ARV treatment are eligible for IPT.
TB Model States

The TB portion of the model includes states for individuals who are TB susceptible,
latently infected, actively infected, and on TB treatment. Infections may be fast-progressing,
moving individuals from the susceptible class directly to active disease, or slow-
progressing, moving individuals from the susceptible class into latency. Latent infections
may lead to active infection through reactivation or reinfection. Latency provides partial
immunity against reinfection. Individuals with active TB experience increased mortality
rates, and may return to latency either through self-cure or treatment. People may receive
either first-line treatment or appropriate treatment tailored to their resistance pattern. We
assume only first-line treatment is available prior to 2008, and that after 2008 alternative
treatments are only available to individuals who have failed their initial treatment course
[6]. Both actively infected, untreated individuals and the proportion of treated individuals
who fail to achieve treatment success despite surviving therapy contribute to the force of
TB infection.

We assume individuals enter the model at age 15. We allow them to have been
previously latently infected during childhood with at most 1 TB strain based on the annual

risk of infection over the 15 years prior to model entry. The calculations used to estimate
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the proportion of individuals entering the model in each latently infected compartments
are provided in the parameter table below.
TB Drug Resistance

We include four TB resistance phenotypes: drug susceptible (DS), isoniazid (INH)
mono-resistant, rifampicin (RMP) mono-resistant, and multi-drug resistant (MDR). Our
model allows for mixed infections with an unlimited number of TB strains during latency,
but assumes that progression to active infection acts as a bottleneck with only a single
dominant strain surviving and progressing to active disease.

Within the model, each individual is initially infected with only one TB strain, and
may be reinfected from the latent compartment with any strain. Upon reinfection, the
individual either immediately transitions to active disease with the infecting strain, or
enters a latent state in which both strains are present. Theoretically, this process may be
repeated any number of times, so that a single latently infected person could contain any
number of strains with any pattern of resistance. We simplify the analysis by assuming the
progression to active disease acts as a bottleneck, with only the dominant strain surviving
and causing disease (similar to [7]). The dominant strain may be probabilistically
determined at the time of each infecting event; for this analysis, we assume that the newly
infecting strain always dominates any previously existing strains. We also assume that [PT
is the only condition under which a non-dominant strain may become dominant, and that
this will only occur in individuals with both dominant isoniazid sensitive and non-
dominant isoniazid resistant strains. At any given time, each person has at most two strains
of interest: the strain that will dominate under normal conditions, and (potentially) a

second strain that will dominate under the selective pressure of I[PT. We therefore restrict
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our latent states to eight resistance classes (see Table 1) and our active states to four
resistance classes representing the four strain types. We assume individuals with active

infection cannot be reinfected until they are cured and return to latency.

Table S2.1: Description of TB Latency States

Dominant strain resistance (no IPT)
DS INH-r RMP-r MDR
Dominant DS Ly - - -

strain INH-r | Ly L, L, -
(IPT) RMP-r | - - L, -
MDR | L, - Ly, Ly,

Parameter Inference Summary

Uncertain model parameters (see Table 2 below) were inferred using data from the
HIV and TB epidemics in Botswana using Bayesian melding [4, 5]. The posterior
probability of each parameter set is proportional to the product of the prior probability of
each parameter set and the likelihood of the observed data given those parameters. Prior
distributions for each parameter were determined based on a review of the literature and
are described in more detail in Table 2. We assumed that these parameters were
independent except as otherwise specified. The data used to define likelihoods are
described in more detail below. We used importance sampling to derive an estimate of the
posterior probability distribution for each of the variable parameters.
Likelihoods

This section describes the data and procedures used to define likelihood functions
for our calibration procedure.

TB prevalence and incidence
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We compared model outputs for TB prevalence with WHO global TB program
estimates of TB prevalence per 100,000 in Botswana from 1990-2013 [2]. Following [8],
we assumed that the uncertainty around the TB prevalence estimates was distributed
normally, with standard deviation estimated from the width of the reported confidence
intervals. These standard deviations were used to calculate the likelihood of observing the
WHO prevalence estimates given the model parameters. The same procedure was used to
derive the likelihood of observing WHO TB incidence estimates for the same years.

HIV parameters

Model estimates of HIV prevalence in TB patients were calculated for 1990-2013
and compared with WHO global TB program estimates [2]. As for TB incidence and
prevalence, we assumed uncertainty around these estimates was normally distributed.

Model estimates of HIV prevalence in the general population were calculated for
1990-2013 and compared to UNAIDS estimates of HIV prevalence age 15+ (UNAIDS 2015,
unpublished data). The uncertainty was again assumed to be normally distributed and
estimated based on the uncertainty from UNAIDS AIDSinfo estimates of HIV prevalence for
the same years [1].

We estimated the rate at which people with HIV were started on ARVs from 2003-
2009 based on the data reported in [9]. From 2010-2014, we compared model estimates to
UNAIDS AIDSinfo estimates of adult coverage of antiretrovirals in Botswana, assuming the
uncertainty was normally distributed as above [1].

Drug resistance

The prevalence of rifampicin mono-resistance, isoniazid mono-resistance, and

multi-drug resistance among treatment-naive patients were obtained from four drug
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resistance surveys among new TB cases in Botswana (from 1995, 1999, 2002, and 2008)
[3]. We assumed that survey observations were drawn from a multinomial distribution,
with the number of observations given by the number of individuals sampled in each
survey. The likelihood of the model parameters was calculated by comparing the
proportion of each resistance level among incident TB cases in the model at the time of
each survey and the observed probabilities of isoniazid resistance (except MDR), rifampicin
resistance (except MDR), and multi-drug resistance from each survey.
Model Initialization

We assume that TB prevalence had reached an equilibrium value in the pre-
treatment, pre-HIV era. The inferred parameter “equil_prev” represents the equilibrium
prevalence of active TB that we would expect in the absence of TB treatment and HIV. This
parameter is then used to derive both the TB transmission parameter and the prevalence of
latent TB for a given parameter set. The model is started in 1980 with initial conditions
given by these pre-HIV, pre-treatment equilibrium values.

The equations used to relate the equilibrium prevalence of TB to the transmission
parameter and prevalence of latent TB are as follows (with parameters as defined in the

following parameter tables):

§=ne 158 _ oS — BS (%) =0
L= A<1 - e_153(§)> + (1 —py)BS <%> — MyqoPoBL <%> —ToL—poL +0l =0

; I 1
I'=poBS <N> + Mo qopoBL <N> + 7oL —pd —0l =0

N=S+L+1
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Implementation

The model was numerically integrated forward from the initial conditions above in
R using the function “dede” for delay differential equations in package deSolve.

Initial importance sampling distributions were derived based on the conditional
distributions along each variable parameter near the mode of the posterior. These
distributions were refined based on the shape of the resulting marginal posterior
distributions. Our final results are based on 100,000 initial samples of the importance
distributions, followed by 10,000 parameter sets resampled (with replacement) according
to the importance weights. Our final marginal posterior distributions for each parameter
are provided below. Throughout the paper, we report mean projected outcomes for these

10,000 parameter sets as well as 2.5t and 97.5th percentiles.
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Figure S2.7: Marginal prior and posterior distributions (see also Table 2)
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Effect of assumed susceptibility to reinfection on the relationship between IPT
and drug resistance

As a secondary analysis, we explored how the assumed susceptibility to TB
reinfection might affect the projected relationship between IPT and drug resistance.
Previous papers have shown that competition between drug sensitive and drug
resistant strains is the major mechanism through which IPT might increase the
prevalence of drug resistance [7, 62]. The degree of immunity after initial TB
infection is a likely major driver of competition, and unlike other parameters such as
fitness costs of resistance [57], its potential impact on resistance resulting from IPT
has not yet been explored.

For Figure S2.8, we set the susceptibility to TB reinfection to 30%, 60%, or
90% among people uninfected with HIV, and 90% for PLHIV. All other parameters
were re-estimated for these different reinfection values. The incidence of isoniazid
resistant TB is given as isoniazid mono-resistant plus MDR. In the absence of IPT,
overall TB incidence continues to decline for all values of assumed susceptibility to
reinfection, following the trends seen in Figure 2.2 of the main text. Increasing
durations of IPT do appear to increase the incidence of isoniazid resistant TB.
However, the extent to which this occurs varies depending on the assumed
susceptibility to reinfection. If we assume susceptibility to reinfection is high
(90%), the increase in incidence of isoniazid resistance resulting from IPT is
negligible even for perfect lifelong IPT. If we assume susceptibility to reinfection is
low (30%), the effect of IPT duration on the incidence of isoniazid resistant TB is

more noticeable. However, in this context of declining transmission, the increase in
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isoniazid resistant TB resulting from IPT is still minor compared to the
corresponding decrease in isoniazid sensitive TB. As a result, the incidence of
overall TB through 2050 decreases with increasing IPT duration regardless of the

assumed susceptibility to reinfection.

Isoniazid Resistant Strains (Including MDR)
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Figure S2.8: Incidence of isoniazid resistant and overall TB by assumed

susceptibility to reinfection

Figure S2.9 shows how the effect of varying IPT duration depends on the assumed
susceptibility to reinfection in the context of higher transmission. To create this
figure, we added a multiplier to the transmission parameter after 2017 that would
result in a prevalence of isoniazid resistant TB of approximately 150 per 100,000 in
the absence of IPT. The applied multipliers were 1.85 for 30% susceptibility to
reinfection, 1.4 for 60% susceptibility to reinfection, and 1.35 for 90% susceptibility

to reinfection, reflecting the differences in the inferred parameters for each value.
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As in the low transmission scenario, longer IPT durations increase the prevalence of
isoniazid resistance for low and moderate values of susceptibility to reinfection.
There is no observable effect of IPT duration on resistance of isoniazid when the
assumed susceptibility to reinfection is high (90%). For all values of the
susceptibility to reinfection, IPT produces an initial decrease in the overall incidence
of TB, again as seen in the low transmission setting. However, when susceptibility
to reinfection is low (30%), this drop in overall TB incidence is short-lived. In this
relatively high immunity, high transmission scenario, the decline in isoniazid
sensitive TB cases resulting from IPT is quickly counteracted by the corresponding
increase in isoniazid resistant cases, such that by 2035 the overall incidence of TB is

the same or slightly higher for longer durations of IPT.
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Isoniazid Resistant Strains (Including MDR)
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Figure S2.9: Incidence of isoniazid resistant and overall TB by assumed

susceptibility to reinfection, assuming greater transmission

In summary, IPT is predicted to have a greater impact on the incidence of
isoniazid resistant TB when initial TB infection provides strong protection against
future infection. This difference is less likely to be clinically relevant in the context

of a declining epidemic.
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Model equations

# R code containing model equations
# Does not include time dependent parameters
# Can by run via R function "dede" from package deSolve

IPT_model_mixed <- function(times, yinit, pars) {
with(as.list(c(yinit,pars)), {

U HHHHHHHHHHHHH AR R R R R R R R BB R BB SRS S RS HH
# Sums
U HHHHHHHHHHHHHHH R R R R R R BB R BB R SRS S RS HH

Ln =Ln_s + Ln_si + Ln_sm + Ln_r + Ln_ri + Ln_rm + Ln_i + Ln_m;
Lu =Lu_s + Lu_si + Lu_sm + Lu_r + Lu_ri + Lu_rm + Lu_i + Lu_m;
Lipt = Lipt_s + Lipt_i + Lipt_r + Lipt_m;

Ld = Ld_s + Ld_si + Ld_sm + Ld_r + Ld_ri + Ld_rm + Ld_i + Ld_m;

In=1In_s + In_r + In_i + In_m;
lu=1lu_s + lu_r + lu_i + lu_m;
lipt = lipt_s + lipt_r + lipt_i + lipt_m;
Id =1d_s + Id_r +Id_i + Id_m;

Tln=Tln_s+ Tln_r+ Tln_i + Tln_m;
Tld =T1ld s+ Tld r + T1ld_i + T1d_m;

T2n =T2n_r + T2n_i + T2n_m;
T2d = T2d_r + T2d_i + T2d_m;

N = Sn + Su + Sipt + Sd + Ln + Lu + Lipt + Ld +
In + lu + lipt + Id +
Tln + T1ld + T2n + T2d + Sipt_postipt + Sd_postipt;

N_hiv = Su + Sipt + Sd + Lu + Lipt + Ld +
lu + lipt + Id +
T1d + T2d + Sipt_postipt + Sd_postipt;

s
# Force of infection by resistance type
s

beta_h = b*beta_0;

lambda_s = (beta_h*(lu_s + lipt_s + Id_s + (1-gamma_s)*T1d_s) +
beta_0*(In_s + (1- gamma_s)*T1n_s))/N;

lambda_i = x_i*(beta_h*(lu_i + lipt_i + Id_i + (1-gamma_il)*T1d_i +
(1-gamma_i2)*T2d_i) + beta_0*(In_i + (1-gamma_il)*T1n_i +
(L-gamma_i2)*T2n_i))/N;

lambda_r = x_r*(beta_h*(lu_r + lipt_r + Id_r + (1-gamma_r1)*T1d_r +

(1-gamma_r2)*T2d_r) + beta_0*(In_r + (1-gamma_r1)*T1n_r +
(L-gamma_r2)*T2n_r))/N;
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lambda_m = x_m*(beta_h*(lu_m + lipt_m + Id_m +
(1-gamma_m1)*T1ld_m + (1-gamma_m2)*T2d_m) +
beta_0*(In_m + (1-gamma_m1)*T1ln_m + (1-gamma_m2)*T2n_m ))/N;

lambda = lambda_s + lambda_i + lambda_r + lambda_m;

i e i i e e
# Recruitment rate (age 15+)
i e i i e e i

dCum_ARI = lambda; # force of infection per capita
dCum_ARI_s = lambda_s;

dCum_ARIL_r = lambda_r;

dCum_ARL_i = lambda_i;

dCum_ARI_m = lambda_m;

year_15 = 1995 # assume starting code in 1980

# Cum_ARI is variable 54
if (times>year_15) { # if have run model for >15 years
# latent infections determined by force of infection over previous 15 years
Lambda_l = Lambda*(1-exp(-(Cum_ARI - lagvalue(times-15,54))))
Lambda_s = Lambda-Lambda_l
prop_s = Cum_ARIL_s - lagvalue(times-15,55)
prop_r = Cum_ARIL_r - lagvalue(times-15,56)
prop_i = Cum_ARLi - lagvalue(times-15,57)
prop_m = Cum_ARI_m - lagvalue(times-15,58)
}else {
# assume were at equilibrium prevalence before starting code in 1980
Lambda_| = Lambda*(1-exp(-(Cum_ARI +
(year_15-times)*equil_prev*beta_0)))
Lambda_s = Lambda-Lambda_l
prop_s = Cum_ARIL_s + (year_15-times)*equil_prev*beta_0
prop_r = Cum_ARI_r # no resistance prior to 1980
prop_i = Cum_ARLi
prop_m = Cum_ARI_m

}
tot_prop <- prop_s + prop_r + prop_i + prop_m

# Assume everyone enters with only one strain, proportional to the
# amount that they have seen each
if (prop_s > 0) {
Lambda_ls <- prop_s/tot_prop*Lambda_l
} else {Lambda_ls<-0
}
if (prop_i > 0) {
Lambda_li <- prop_i/tot_prop*Lambda_l
} else {Lambda_li=0

if (prop_r > 0) {

Lambda_lr <- prop_r/tot_prop*Lambda_l
} else {Lambda_lr=0
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if (prop_m > 0) {
Lambda_Ilm <- prop_m/tot_prop*Lambda_l
}else {Lambda_Im=0

s
# TB susceptibles
s

dSn = Sn*(-lambda - mu_0 - h) + Lambda_s
dSu = Su*(-lambda - mu_u - z) + h*Sn;

dSipt = Sipt*(-lambda_i - lambda_m - mu_i - w) +
theta_s*z*Su + theta_s*e*Sd;

dSd = Sd*(-lambda - mu_d) + (1 - theta_s)*z*Su +
w*Sipt - theta_s*e*Sd;

# Strains cleared through IPT - also calling "S"

dSipt_postipt = gamma_lipt*(Lipt_s+Lipt_r) +
Sipt_postipt*(-m_ipt*lambda_i - m_ipt*lambda_m - mu_i - w) +
theta_s*e*Sd_postipt;

dSd_postipt = Sd_postipt*(-m_ipt*lambda - mu_d) +
w*Sipt_postipt - theta_s*e*Sd_postipt;

s
# TB latently infected
s

# HIV uninfected

dLn_s = Lambda_ls + (1-rho_0)*Sn*lambda_s +
m_0*q_0*(Ln_s*(-lambda_r - rho_O*lambda_s) +
(1-rho_0)*Ln_r*lambda_s) + gamma_s*k_1*T1n_s + sigma*In_s +
Ln_s*(-tau_ 0 - mu_0 - h - m_O*(lambda_m + lambda_i)) ;

dLn_si = Ln_si*(-tau_0 - mu_0 - h) +

m_0*q_0*(Ln_si*(-lambda_r - lambda_i - lambda_m - rho_0*lambda_s) +
(1-rho_0)*(Ln_i + Ln_ri)*lambda_s) +

m_0*(1-q_0)*(-r*Ln_si*lambda_m + lambda_i*(Ln_s + r*Ln_sm));

dLn_sm = Ln_sm*(-tau_0 - mu_0 - h) +

m_0*q_0*(Ln_sm*(-lambda_r - lambda_i - lambda_m - rho_0*lambda_s) +
(1-rho_0)*(Ln_m + Ln_rm)*lambda_s) +

m_0*(1-q_0)*(-r*Ln_sm*lambda_i + lambda_m™*(Ln_s + r*Ln_si));

dLn_r = Lambda_lr + (1-rho_0)*Sn*lambda_r + gamma_r2*k_r*T2n_r -

m_0*Ln_r*(lambda_m + lambda_i) +
m_0*g_0*(Ln_r*(~-lambda_s - rho_0*lambda_r) + (1-rho_0)*Ln_s*lambda_r) +
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Ln_r*(-tau_0 - mu_0 - h) + sigma*In_r + gamma_r1*k_1*T1n_r;

dLn_ri = Ln_ri*(-tau_0 - mu_0 - h) +

m_0*q_0*(Ln_ri*(-lambda_s - lambda_i - lambda_m - rho_O*lambda_r) +
(1-rho_0)*(Ln_i + Ln_si)*lambda_r) +

m_0*(1-q_0)*(-r*Ln_ri*lambda_m + lambda_i*(Ln_r + r*Ln_rm)) ;

dLn_rm = Ln_rm*(-tau_0 - mu_0 - h) +

m_0*q_0*(Ln_rm* (-lambda_s - lambda_i - lambda_m - rho_0O*lambda_r) +
(1-rho_0)*(Ln_m + Ln_sm)*lambda_r) +

m_0*(1-q_0)*(-r*Ln_rm*lambda_i + lambda_m*(Ln_r + r*Ln_ri));

dLn_i = Lambda_li + (1-rho_0)*Sn*lambda_i +
m_0*q_0*((1-rho_0)*(Ln - Ln_i)*lambda_i + gamma_i2*k_i*T2n_i +
Ln_i*(-lambda_s - lambda_r - lambda_m - rho_O*lambda_i)) +
Ln_i*(-tau_0 - mu_0 - h) + sigma*In_i + gamma_il*k_1*T1n_i;

dLn_m = Lambda_Im + (1-rho_0)*Sn*lambda_m +
m_0*q_0*((1-rho_0)*(Ln - Ln_m)*lambda_m +

Lh_m*(- lambda_s - lambda_i - lambda_r - rho_O*lambda_m)) +
Ln_m*(-tau_0 - mu_0 - h) + sigma*In_m + gamma_m1*k_1*T1ln_m +
gamma_m2*k_m*T2n_m,;

# HIV undetected

dLu_s = (1-rho_u)*Su*lambda_s - m_u*Lu_s*(lambda_i + lambda_m) +
m_u*q_u*(Lu_s*(-lambda_r - rho_u*lambda_s) +
(1-rho_u)*Lu_r*lambda_s) + Lu_s*(-tau_u - mu_u - z) + h*Ln_s;

dLu_si = Lu_si*(-tau_u - mu_u - z) + h*Ln_si +
m_u*g_u*(Lu_si*(-lambda_r - lambda_i - lambda_m - rho_u*lambda_s) +
(1-rho_u)*(Lu_i + Lu_ri)*lambda_s) +

m_u*(1-g_u)*(-r*Lu_si*lambda_m + lambda_i*(Lu_s + r*Lu_sm));

dLu_sm = Lu_sm*(-tau_u - mu_u - z) + h*Ln_sm +
m_u*g_u*(Lu_sm*(-lambda_r - lambda_i - lambda_m - rho_u*lambda_s) +
(1-rho_u)*(Lu_m + Lu_rm)*lambda_s) +

m_u*(1-g_u)*(-r*Lu_sm*lambda_i + lambda_m™*(Lu_s + r*Lu_si));

dLu_r = (1-rho_u)*Su*lambda_r - m_u*Lu_r*(lambda_m + lambda_i) +
m_u*g_u*(Lu_r*(-lambda_s - rho_u*lambda_r) + (1-rho_u)*Lu_s*lambda_r) +
Lu_r*(-tau_u - mu_u - z) + h*Ln_r;

dLu_ri = Lu_ri*(-tau_u - mu_u - z) +

m_u*g_u*(Lu_ri*(-lambda_s - lambda_i - lambda_m -rho_u*lambda_r) +
(1-rho_u)*(Lu_i + Lu_si)*lambda_r) + h*Ln_ri +
m_u*(1-g_u)*(-r*Lu_ri*lambda_m + lambda_i*(Lu_r + r*Lu_rm));

dLu_rm = Lu_rm*(-tau_u - mu_u - z) +

m_u*q_u*(Lu_rm*(-lambda_s - lambda_i - lambda_m -rho_u*lambda_r) +
(1-rho_u)*(Lu_m + Lu_sm)*lambda_r) + h*Ln_rm +
m_u*(1-g_u)*(-r*Lu_rm*lambda_i + lambda_m*(Lu_r + r*Lu_ri));

dLu_i = (1-rho_u)*Su*lambda_i + Lu_i*(-tau_u - mu_u - z) + h*Ln_i +
m_u*q_u*((1-rho_u)*(Lu - Lu_i)*lambda_i +
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Lu_i*(-lambda_s - lambda_r - lambda_m - rho_u*lambda_i));

dLu_m = (1-rho_u)*Su*lambda_m +Lu_m*(-tau_u - mu_u - z) + h*Ln_m +
m_u*q_u*((1-rho_u)*(Lu - Lu_m)*lambda_m +
Lu_m*(- lambda_s - lambda_i - lambda_r - rho_u*lambda_m)) ;

# on IPT

dLipt_s = -m_d*Lipt_s*(lambda_m +lambda_i) -

v*tau_d*Lipt_s - mu_i*Lipt_s + gamma_ipt*lipt_s -

a_lipt*Lipt_s + phi*gamma_s*k_1*T1d_s +

theta_l*z*Lu_s - w*Lipt_s - gamma_lipt*Lipt_s + theta_l*e*Ld_s;

dLipt_r = -m_d*Lipt_r*(lambda_m +lambda_i) - v*tau_d*Lipt_r -
mu_i*Lipt_r + gamma_ipt*lipt_r - a_lipt*Lipt_r +
phi*gamma_r1*k_1*T1d_r + theta_l*z*Lu_r - w*Lipt_r -
gamma_lipt*Lipt_r + phi*gamma_r2*k_r*T2d_r + theta_|*e*Ld_r;

dLipt_i = (1-rho_d)*Sipt*lambda_i +

(1-rho_d)*m_ipt*Sipt_postipt*lambda_i +

m_d*q_d*(1-rho_d)*(Lipt_r + Lipt_s + Lipt_m)*lambda_i +
m_d*(1-q_d)*(Lipt_r + Lipt_s)*lambda_i - m_d*q_d*Lipt_i*lambda_m -
m_d*q_d*rho_d*Lipt_i*lambda_i - tau_d*Lipt_i - mu_i*Lipt_i +
sigma_d*lipt_i +a_lipt*Lipt_s + phi*gamma_il*k_1*T1d_i +

theta_l*z*(Lu_i + Lu_si + Lu_ri) - w*Lipt_i + theta_l*e*(Ld_i + Ld_si + Ld_ri);

dLipt_m = (1-rho_d)*Sipt*lambda_m +
(1-rho_d)*m_ipt*Sipt_postipt*lambda_m +

m_d*q_d*(1-rho_d)*(Lipt_r + Lipt_s + Lipt_i)*lambda_m +
m_d*(1-q_d)*(Lipt_r + Lipt_s)*lambda_m - m_d*qg_d*Lipt_m*lambda_i -
m_d*q_d*rho_d*Lipt_m*lambda_m - tau_d*Lipt_m - mu_i*Lipt_m +
sigma_d*lipt_m + a_lipt*Lipt_r + phi*gamma_m1*k_1*T1d_m +
theta_I*z*(Lu_m + Lu_sm + Lu_rm) -

w*Lipt_m + theta_l*e*(Ld_m + Ld_sm + Ld_rm);

# HIV detected

dLd_s = (1-rho_d)*Sd*lambda_s - m_d*Ld_s*(lambda_i+lambda_m) +
(1-rho_d)*m_ipt*Sd_postipt*lambda_s + w*Lipt_s - theta_l*e*Ld_s +
m_d*q_d*(Ld_s*(-lambda_r - rho_d*lambda_s) +
(1-rho_d)*Ld_r*lambda_s) + Ld_s*(-tau_d - mu_d) +

sigma_d*ld_s + k_1*(1-phi)*gamma_s*T1d_s + (1 - theta_l)*z*Lu_s;

dLd_si = (1 - theta_l)*z*Lu_si - theta_l*e*Ld_si +

m_d*q_d*(Ld_si*(-lambda_r - lambda_i - lambda_m - rho_d*lambda_s) +

(1- h _d)*(Ld_i+Ld_ri)*lambda_s) + Ld_si*(-tau_d - mu_d) +
m_d*(1-q_d)*(-r*Ld_si*lambda_m + lambda_i*(Ld_s + r*Ld_sm)) ;

dLd_sm = (1 - theta_l)*z*Lu_sm - theta_l*e*Ld_sm +
m_d*q_d*(Ld_sm*(-lambda_r - lambda_i - lambda_m - rho_d*lambda_s) +
(1-rho_d)*(Ld_m+Ld_rm)*lambda_s) + Ld_sm*(-tau_d - mu_d) +
m_d*(1-q_d)*(-r*Ld_sm*lambda_i + lambda_m™*(Ld_s + r*Ld_si)) ;

dLd_r = (1-rho_d)*Sd*lambda_r - m_d*Ld_r*(lambda_m+lambda_i) +

(1-rho_d)*m_ipt*Sd_postipt*lambda_r +
m_d*q_d*(Ld_r*(-lambda_s - rho_d*lambda_r) +
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(1-rho_d)*Ld_s*lambda_r) + (1-phi)*gamma_r2*k_r*T2d_r +
Ld_r*(-tau_d - mu_d) + sigma_d*Ild_r + k_1*(1-phi)*gamma_r1*T1d_r +
(1 - theta_l)*z*Lu_r + w*Lipt_r - theta_l*e*Ld_r;

dLd_ri = (1 - theta_l)*z*Lu_ri - theta_l*e*Ld_ri +
m_d*q_d*(Ld_ri*(-lambda_s - lambda_i - lambda_m - rho_d*lambda_r) +
(1-rho_d)*(Ld_i+Ld_si)*lambda_r) + Ld_ri*(-tau_d - mu_d) +
m_d*(1-q_d)*(-r*Ld_ri*lambda_m + lambda_i*(Ld_r + r*Ld_rm));

dLd_rm = (1 - theta_l)*z*Lu_rm - theta_l*e*Ld_rm +
m_d*q_d*(Ld_rm*(-lambda_s - lambda_i - lambda_m - rho_d*lambda_r) +
(1-rho_d)*(Ld_m+Ld_sm)*lambda_r) + Ld_rm*(-tau_d - mu_d) +
m_d*(1-q_d)*(-r*Ld_rm*lambda_i + lambda_m™*(Ld_r + r*Ld_ri)) ;

dLd_i = (1-rho_d)*Sd*lambda_i + (1 - theta_l)*z*Lu_i +
(1-rho_d)*m_ipt*Sd_postipt*lambda_i+

m_d*q_d*((1-rho_d)*(Ld - Ld_i)*lambda_i +

Ld_i*(-lambda_s - lambda_r - lambda_m - rho_d*lambda_i)) +
Ld_i*(-tau_d - mu_d) + sigma_d*Id_i + k_1*(1-phi)*gamma_i1*T1d_i +
w*Lipt_i + gamma_i2*k_i*T2d_i - theta_l*e*Ld_i;

dLd_m = (1-rho_d)*Sd*lambda_m + (1 - theta_l)*z*Lu_m +
(1-rho_d)*m_ipt*Sd_postipt*lambda_m+

m_d*q_d*((1-rho_d)*(Ld - Ld_m)*lambda_m +

Ld_m*(- lambda_s - lambda_i - lambda_r -rho_d*lambda_m)) +
Ld_m*(-tau_d - mu_d) + sigma_d*ld_m + k_1*(1-phi)*gamma_m1*T1d_m +
w*Lipt_m + gamma_m2*k_m*T2d_m - theta_l*e*Ld_m;

HHHHRHHBHH SRR R BB SRS RS
# Infectious
HHHHRHHBHHH BB R AR RHH RS

# HIV negative

din_s = lambda_s*rho_0*(Sn + m_0*q_0*Ln) +
tau_0*(Ln_s + Ln_si + Ln_sm) + In_s*(-mu_t - c_0 - sigma -h) +
(1-epsilon)*k_1*(1-a_si-a_sr-a_sm)*(1-gamma_s)*T1ln_s;

din_r = lambda_r*rho_0*(Sn + m_0*q_0*Ln) +

tau_O*(Ln_r + Ln_ri + Ln_rm) + In_r*(-mu_t - c_0O - sigma -h) +
(1-epsilon)*k_1*(a_sr*(1-gamma_s)*T1ln_s +
(I-a_rm)*(1-gamma_r1)*T1ln_r) +
(1-epsilon)*(1-a_si)*(1-gamma_r2)*k_r*T2n_r;

din_i = lambda_i*rho_0*(Sn + m_0*q_0*Ln) + tau_O*Ln_i +
In_i*(-mu_t - c_0 - sigma -h) +
(1-epsilon)*k_1*(a_si*(1-gamma_s)*Tln_s +
(I-a_im)*(1-gamma_il)*T1n_i) +
(1-epsilon)*(1-a_sr)*(1-gamma_i2)*k_i*T2n_i;

din_m = lambda_m*rho_0*(Sn + m_0*q_0*Ln) + tau_O*Ln_m +
In_m*(-mu_t - c_0 - sigma -h) +
(1-epsilon)*k_1*((1-gamma_m1)*T1ln_m + a_sm*(1-gamma_s)*T1ln_s +
a_rm*(l-gamma_r1)*T1ln_r + a_im*(1-gamma_il)*T1ln_i) +
(1-epsilon)*a_sr*(1-gamma_i2)*k_i*T2n_i +
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(1-epsilon)*a_si*(1-gamma_r2)*k_r*T2n_r +
(1-epsilon)*(1-gamma_m2)*k_m*T2n_m:;

# HIV undetected

dlu_s = lambda_s*rho_u*(Su + m_u*q_u*Lu) +
tau_u*(Lu_s + Lu_si + Lu_sm) + lu_s*(-mu_tu - c_u - z) + h*In_s;

dlu_r = lambda_r*rho_u*(Su + m_u*g_u*Lu) +
tau_u*(Lu_r + Lu_ri + Lu_rm) + lu_r*(-mu_tu - c_u - z) + h*In_r;

dlu_i = lambda_i*rho_u*(Su + m_u*qg_u*Lu) + tau_u*Lu_i +
lu_i*(-mu_tu - c_u - z) + h*In_i;

dlu_m = lambda_m*rho_u*(Su + m_u*qg_u*Lu) + tau_u*Lu_m +
lu m*(-mu_tu - c_u - 2z) + h*ln_m;

# on IPT

dlipt_s = v*tau_d*Lipt_s - mu_ti*lipt_s - c_d*lipt_s -
gamma_ipt*lipt_s - a_ipt*lipt_s +

(1-epsilon_i)*theta_l*z*lu_s - w*lipt_s +
phi*(1-epsilon)*(1-a_si-a_sr-a_sm)*(1-gamma_s)*k_1*T1d_s +
(1-epsilon_i)*theta_l*e*ld_s;

dlipt_r = v*tau_d*Lipt_r - mu_ti*lipt_r - c_d*lipt_r -
gamma_ipt*lipt_r - a_ipt*lipt_r + (1-epsilon_i)*theta_l*z*lu_r -
w*lipt_r + phi*(1-epsilon)*a_sr*(1-gamma_s)*k_1*T1d_s +
phi*(1-epsilon)*(1-a_rm)*(1-gamma_r1)*k_1*T1d_r +
phi*(1-epsilon)*(1-a_si)*(1-gamma_r2)*k_r*T2d_r +
(1-epsilon_i)*theta_l*e*ld_r;

dlipt_i = rho_d*Sipt*lambda_i + rho_d*m_ipt*Sipt_postipt*lambda_i +
m_d*q_d*rho_d*Lipt*lambda_i + tau_d*Lipt_i -

mu_td*lipt_i - c_d*lipt_i - sigma_d*lipt_i + a_ipt*lipt_s +
(1-epsilon_i)*theta_l*z*lu_i - w*lipt_i +
phi*(1-epsilon)*a_si*(1-gamma_s)*k_1*T1d_s +
phi*(1-epsilon)*(1-a_im)*(1-gamma_il)*k_1*T1d_i +
(1-epsilon_i)*theta_l*e*ld_i;

dlipt_m = rho_d*Sipt*lambda_m + rho_d*m_ipt*Sipt_postipt*lambda_m +
m_d*q_d*rho_d*Lipt*lambda_m + tau_d*Lipt_m -

mu_td*lipt_m - c_d*lipt_m - sigma_d*lipt_m + a_ipt*lipt_r +
(1-epsilon_i)*theta_l*z*lu_m - w*lipt_m +
phi*(1-epsilon)*(1-gamma_m1)*k_1*T1d_m +
phi*(1-epsilon)*a_sm*(1-gamma_s)*k_1*T1d_s +
phi*(1-epsilon)*a_rm*(1-gamma_r1)*k_1*T1d_r +
phi*(1-epsilon)*a_im*(1-gamma_il)*k_1*T1d_i +
phi*(1-epsilon)*a_si*(1-gamma_r2)*k_r*T2d_r +
(1-epsilon_i)*theta_l*e*ld_m;

# HIV detected
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did_s = lambda_s*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +
tau_d*(Ld_s + Ld_si + Ld_sm) + Id_s*(-mu_td - c_d - sigma_d) +
(1-phi)*(1-epsilon)*k_1*(1-a_si-a_sr-a_sm)*(1-gamma_s)*T1ld_s +
(1-epsilon_i)*(1-theta_l)*z*lu_s + w*lipt_s -
(1-epsilon_i)*theta_l*e*ld_s - epsilon_i*e*ld_s;

did_r = lambda_r*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +
tau_d*(Ld_r + Ld_ri + Ld_rm) + Id_r*(-mu_td - c_d - sigma_d) +
(1-phi)*(1-epsilon)*k_1*(a_sr*(1-gamma_s)*T1d_s +
(1-a_rm)*(1-gamma_r1)*T1d_r) + (1-epsilon_i)*(1-theta_l)*z*lu_r+
(1-phi)*(1-epsilon)*(1-a_si)*(1-gamma_r2)*k_r*T2d_r -
(1-epsilon_i)*theta_l*e*ld_r - epsilon_i*e*ld_r + w*lipt_r ;

did_i = lambda_i*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +
tau_d*Ld_i + Id_i* (-mu_td - c_d - sigma_d) +
(1-phi)*(1-epsilon)*k_1*(a_si*(1-gamma_s)*T1d_s +
(1-a_im)*(1-gamma_il)*T1d_i) +

(1-epsilon_i)*(1-theta_l)*z*lu_i + w*lipt_i +
(1-epsilon)*(1-a_sr)*(1-gamma_i2)*k_i*T2d_i -
(1-epsilon_i)*theta_l*e*ld_i - epsilon_i*e*ld_i;

dld_m = lambda_m*rho_d*(Sd + m_d*q_d*Ld + m_ipt*Sd_postipt) +
tau_d*Ld_m + Id_m*(-mu_td - c_d - sigma_d) +
(1-phi)*(1-epsilon)*k_1*((1-gamma_m1)*T1ld_m +
a_sm*(l-gamma_s)*T1d_s + a_rm*(1-gamma_r1)*T1d_r +
a_im*(1-gamma_il)*T1d_i) + (1-epsilon_i)*(1-theta_)*z*lu_m+
w*lipt_m + (1-epsilon)*a_sr*(1-gamma_i2)*k_i*T2d_i +
(1-phi)*(1-epsilon)*a_si*(1-gamma_r2)*k_r*T2d_r +
(1-epsilon)*(1-gamma_m2)*k_m*T2d_m -
(1-epsilon_i)*theta_l*e*ld_m - epsilon_i*e*Id_m:;

HHHHRHHBHHH RSB R AR RHH R
# Treated First-Line
HHHHRHHBHH BB R AR RS

# HIV negative

dTln s = Tln_s*(-mu_ts - k_1) + c_ 0O*In_s +
epsilon*k_1*(1-a_si-a_sr-a_sm)*(1-gamma_s)*T1ln_s;

dTln_r = Tln_r*(-mu_trl - k_1) + f r*c_O*In_r +
g_r*epsilon*k_1*(a_sr*(1-gamma_s)*T1ln_s +
(I-a_rm)*(1-gamma_r1)*T1ln_r);

dTln_i = T1ln_i*(-mu_til - k_1) + f_i*c_0*In_i +
g_i*epsilon*k_1*(a_si*(1-gamma_s)*T1ln_s +
(I-a_im)*(1-gamma_il)*T1n_i);

dTln_m = Tln_m*(-mu_t - k_1) + f m*c_0*In_m +
g_m=*epsilon*k_1*((1-gamma_m1)*T1ln_m +

a_sm*(l-gamma_s)*T1ln_s + a_rm*(1-gamma_r1)*T1n_r +
a_im*(l-gamma_il)*T1n_i)

# HIV detected
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dT1ld s = Tld _s*(-mu_ths - k_1 +
epsilon*(1-a_si-a_sr-a_sm)*(1-gamma_s)*k_1) +
c_d*(Id_s + lipt_s) + c_u*lu_s + epsilon_i*z*lu_s +
epsilon_i*e*Id_s;

dTld_r = Tld_r*(-mu_thrl - k_1) +

f re(c_d*(Id_r + lipt_r) + c_u*lu_r) + f_r*epsilon_i*z*lu_r +
g_r*epsilon*k_1*(a_sr*(1-gamma_s)*T1d_s +
(1-a_rm)*(1-gamma_r1)*T1d_r) + f_r*epsilon_i*e*Id_r;

dT1ld_i = T1d_i*(-mu_thil - k_1) +

f i*(c_d*(d_i + lipt_i) + c_u*lu_i) + f_i*epsilon_i*z*lu_i +
g_i*epsilon*k_1*(a_si*(1-gamma_s)*T1d_s +
(1-a_im)*(1-gamma_il)*T1d_i) + f_i*epsilon_i*e*Id_i;

dTld m =Tld_m*(-mu_td - k_1) +

f m*(c_d*(ld_m + lipt_m) + c_u*lu_m) + f_m*epsilon_i*z*lu_m +
g_m*epsilon*k_1*((1-gamma_m1)*T1ld_m +
a_sm*(l-gamma_s)*T1d_s + a_rm*(1-gamma_r1)*T1d_r +
a_im*(1-gamma_il)*T1d_i) + f_m*epsilon_i*e*ld_m;

HHHHRHHBHHHRHH BB BB RHH B H
# Treated Second-Line
HHHHRHHBHHH RSB RRH RS RHHR AR

# HIV negative

dT2n_r = -mu_tr2*T2n_r + (1-f_r)*c_0*In_r - k_r*T2n_r +
(1-g_r)*epsilon*a_sr*(1-gamma_s)*k_1*T1ln_s +
(1-g_r)*epsilon*(1-a_rm)*(1-gamma_r1)*k_1*T1n_r +
epsilon*(1-a_si)*(1-gamma_r2)*k_r*T2n_r;

dT2n_i = -mu_ti2*T2n_i + (1-f_i)*c_0*In_i - k_i*T2n_i +
(1-g_i)*epsilon*a_si*(1-gamma_s)*k_1*T1n_s +
(1-g_i)*epsilon*(1-a_im)*(1-gamma_il)*k_1*T1n_i +

epsilon*(1-a_sr)*(1-gamma_i2)*k_i*T2n_i;

dT2n_m = -mu_tm2*T2n_m + (1-f_m)*c_0*In_m - k_m*T2n_m +
(1-g_m)*epsilon*(1-gamma_m1)*k_1*T1ln_m +
(1-g_m)*epsilon*a_sm*(1-gamma_s)*k_1*T1ln_s +
(1-g_m)*epsilon*a_rm*(1-gamma_r1)*k_1*T1n_r +
(1-g_m)*epsilon*a_im*(1-gamma_il)*k_1*T1n_i +
epsilon*a_sr*(1-gamma_i2)*k_i*T2n_i +
epsilon*a_si*(1-gamma_r2)*k_r*T2n_r +
epsilon*(1-gamma_m2)*k_m*T2n_m;

# HIV detected

dT2d_r = -mu_thr2*T2d_r - k_r*T2d_r +
(1-f_r*(c_d*ld_r + c_d*lipt_r + c_u*lu_r) +
(1-g_r)*epsilon*a_sr*(1-gamma_s)*k_1*T1d_s +
(1-g_r)*epsilon*(1-a_rm)*(1-gamma_r1)*k_1*T1d_r +
epsilon*(1-a_si)*(1-gamma_r2)*k_r*T2d_r +
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)

(1-f_n*epsilon_i*z*lu_r + (1-f_r)*epsilon_i*e*Id_r;

dT2d_i = -mu_thi2*T2d_i - k_i*T2d_i +
(1-f_i)*(c_d*Id_i + c_d*lipt_i + c_u*lu_i) +
(1-g_i)*epsilon*a_si*(1-gamma_s)*k_1*T1d_s +
(1-g_i)*epsilon*(1-a_im)*(1-gamma_il)*k_1*T1d_i +
epsilon*(1-a_sr)*(1-gamma_i2)*k_i*T2d_i +
(1-f_i)*epsilon_i*z*lu_i + (1-f_i)*epsilon_i*e*Id_i;

dT2d_m = -mu_thm2*T2d_m - k_m*T2d_m +
(1-f_m)*(c_d*ld_m + c_d*lipt_m + c_u*lu_m) +
(1-g_m)*epsilon*(1-gamma_m1)*k_1*T1d_m +
(1-g_m)*epsilon*a_sm*(1-gamma_s)*k_1*T1d_s +
(1-g_m)*epsilon*a_rm*(1-gamma_r1)*k_1*T1d_r +
(1-g_m)*epsilon*a_im*(1-gamma_il)*k_1*T1d_i +
epsilon*a_sr*(1-gamma_i2)*k_i*T2d_i +
epsilon*a_si*(1-gamma_r2)*k_r*T2d_r +
epsilon*(1-gamma_m2)*k_m*T2d_m +
(1-f_m)*epsilon_i*z*lu_m + (1-f_m)*epsilon_i*e*ld_m,;

e
# Mortality
e
# HIV deaths
# ALL deaths to people with HIV
# Per 1000 people with HIV
if (N_hiv > 1) {
dM_hiv = (mu_u*(Su + Lu) + mu_i*(Sipt + Sipt_postipt + Lipt) +
mu_d*(Sd + Sd_postipt + Ld) + mu_tu*lu +
mu_ti*(lipt_s + lipt_r) + mu_td*(lipt_m + lipt_i + Id + T1ld_m) +
mu_ths*T1d_s + mu_thil*T1d_i + mu_thr1*T1d_r +
mu_thr2*T2d_r + mu_thi2*T2d_i + mu_thm2*T2d_m)/N_hiv¥*1000
}else {
dM_hiv=20
}

return(list(c(dSn, dSu, dSd, #3
dLn_s, dLn_si, dLn_sm, dLn_i, dLn_r, dLn_ri, dLn_rm, dLn_m, #11
dLu_s, dLu_si, dLu_sm, dLu_i, dLu_r, dLu_ri, dLu_rm, dLu_m, #19
dLd_s, dLd_si, dLd_sm, dLd_i, dLd_r, dLd_ri, dLd_rm, dLd_m, #27
din_s, din_r, dIn_i, din_m, #31
dlu_s, dlu_r, dlu_i, dlu_m, #35
did_s, did_r, did_i, dld_m, #39
dT1ln_s, dT1ln_r, dT1n_i, dT1n_m, #43
dT1ld_s, dT1d r, dT1d_ i, dT1d_m, #47
dT2n_r, dT2n_i, dT2n_m, #50
dT2d_r, dT2d_i, dT2d_m, #53
dCum_ARI, dCum_ARI_s, dCum_ARI_r, dCum_ARI_i, dCum_ARI_m, #58
dSipt, dLipt_s, dLipt_i, dLipt_r, dLipt_m,
dlipt_s, dlipt_r, dlipt_i, dlipt_m,
dSipt_postipt,dSd_postipt, dM_hiv)))
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Abstract

Background: New drugs for the treatment of tuberculosis (TB) are becoming available for
the first time in over 40 years. Optimal strategies for introducing these drugs have not yet
been established. The objective of this study was to compare different strategies for
introducing the new TB drug bedaquiline based on patients’ resistance patterns.

Methods and Findings: We created a Markov decision model to follow a hypothetical cohort
of multidrug resistant (MDR) TB patients under different bedaquiline use strategies. The
explored strategies included making bedaquiline available to all patients with MDR TB,
restricting bedaquiline usage to patients with MDR plus additional resistance, and
withholding bedaquiline introduction completely. We compared these strategies according
to life expectancy, risks of acquired resistance, and the expected number and health
outcomes of secondary cases. Providing bedaquiline to all MDR patients maximized the life
expectancy of our initial cohort in 76-8% of 5,000 simulations. In 22-6% of simulations,
however, life expectancy was maximized by withholding bedaquiline completely, reflecting
assumed uncertainty in bedaquiline safety and efficacy. The most liberal bedaquiline use
strategies consistently increased the risk of bedaquiline resistance, but decreased the risk
of resistance to other MDR drugs. In almost all cases, more liberal bedaquiline use
strategies reduced the expected number of and life years lost to secondary cases.
Conclusions: Continued research on bedaquiline is necessary to verify an overall mortality
benefit in programmatic settings. Once established, the desire to prevent bedaquiline
resistance by restricting its use should be weighed against the possibility of extending

current patients’ lives and protecting existing drugs through expanded use.
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Introduction

Only approximately 50% of the 111,000 people started on treatment for multidrug
resistant tuberculosis (MDR TB) in 2014 are likely to be successfully treated [1]. The
remainder will experience high mortality, risk acquisition of extensively drug resistant
(XDR) TB, and may continue to infect others. New antibiotics have the potential to
revolutionize both prevention and treatment of highly drug resistant TB. Bedaquiline and
delamanid recently became the first new drugs approved for TB treatment in over 40 years
[2, 3], and other promising drugs such as pretomanid are in development [4]. Effective drug
use policies will be necessary to obtain maximal benefit from these new drugs while also
managing risks of resistance.

Although clinical management of TB relies on strong multidrug regimens, the initial
discovery and development of new TB drugs often occur in isolation. Optimizing multidrug
regimens is complicated in both theory (e.g. by the number of drugs, limited data on drug
efficacy and interactions, and the prevalence of existing resistance) and practice (e.g. by
lack of access to patients’ full drug susceptibility profiles and limited opportunity for
controlled trials) [5, 6]. Thus, decisions about how best to introduce and combine new TB
drugs have relied heavily on expert opinion. Limited guidance exists beyond common-
sense strategies, such as never to add a single drug to a failing regimen, and broad
considerations, such as the number of drugs and their side-effect profiles [5, 7].

Here, we present a Markov decision model to begin formalizing a rational basis for
decisions about drug introduction. Using the model, we outline the tradeoffs involved in
deciding which patients should receive a new anti-TB drug, based on both their outcomes

and those of their immediate contacts. We explore a continuum of policies ranging from
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most conservative (i.e. restricting the new drug entirely or for use only among the most
highly resistant patients) to most liberal (i.e. allowing all patients with MDR TB to receive
the new drug). Though the general framework of our analysis is broadly generalizable, we
focus this paper specifically on the new TB drug bedaquiline. Bedaquiline was approved by
the FDA in 2012 for use in MDR TB patients without other treatment options on the basis of
its Phase IIb trial culture conversion results. However, concerns about resistance and a
mortality imbalance observed in the pivotal Phase IIb trial have generated controversy
about the appropriate role of this new drug [8-11]. A formal approach to assessing
potential bedaquiline use strategies is therefore especially appropriate.
Methods

To evaluate the impact and potential tradeoffs of different bedaquiline introduction
strategies, we created a Markov decision model following a hypothetical cohort of patients
initiating MDR TB treatment and their immediate contacts. A model description is provided
below, with full details available in the S1 Appendix.
Population

Our assumed population was a cohort of European men initiating MDR TB
treatment at age 30. All men were assumed to be bedaquiline susceptible at baseline and
have either MDR TB without additional resistance (“MDR” from here), MDR TB with
additional resistance to either at least one fluoroquinolone or at least one second-line
injectable, but not both (“PreXDR”), or MDR TB with additional resistance to at least one
fluoroquinolone and at least one second-line injectable (“XDR”). The distributions of
patients’ initiating resistance patterns were informed by a published cohort [12].

Health States and Transitions
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Modeled health states were defined based on TB culture status (positive, negative,
or stable cure), treatment regimen (optimized background regimen, OBR; OBR plus
bedaquiline; or no treatment), and resistance pattern (to bedaquiline and background
drugs). Transitions between these states included culture conversion, relapse, routine or
premature cessation of treatment, treatment re-initiation after cessation, regimen change,
resistance acquisition, and death. We assumed that resistance was acquired in a stepwise
fashion (i.e. to one drug at a time) and that patients could only relapse after treatment (i.e.
culture conversions were only modeled if sustained through the end of treatment). We also
assumed that TB-related mortality and acquired resistance rates applied only to patients
who were culture-positive, and that some patients self-cured even in the absence of TB
treatment.

Cycle Length

We used a cycle length of one week within our model to capture potentially rapid
changes in infectiousness, prognosis, and resistance patterns.
Treatment Strategies

We considered the following treatment strategies: withholding bedaquiline from all
patients, providing bedaquiline to patients with XDR TB only, providing bedaquiline to
patients with PreXDR or XDR TB, or providing bedaquiline to all patients with at least MDR
TB. We did not allow treatment to differ based on bedaquiline resistance patterns,
reflecting the current lack of a validated test with breakpoints defining clinically relevant
bedaquiline resistance [5].

For the strategy in which all patients with MDR TB were eligible for bedaquiline, we

assumed that all patients received bedaquiline from the beginning of treatment. For the
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more conservative strategies, we assumed a 13 week average lag time after acquisition of
or treatment initiation with the relevant resistance pattern to account for a delay in
obtaining results of second-line drug susceptibility testing (DST). We compared these
results to an analysis assuming no lag time, reflecting the potential impact of widespread
rapid second-line DST availability.

Secondary cases were subjected to the same treatment strategy as the initial cohort.
We assumed secondary cases were initially undetected at the time of disease initiation, but
recognized as MDR TB upon presentation to the health system. Detection of additional
resistance was subject to the same delays as for the index patients.
Outcomes

We considered mortality, resistance, and transmission outcomes. To assess
mortality, we compared the average life expectancy from initiation of MDR TB treatment
across the different bedaquiline use strategies, and to assess resistance, we recorded the
number of patients who acquired particular resistance patterns under each treatment
strategy. To assess transmission, we calculated the number of secondary cases infected by
our initial cohort based on the expected number of transmission events per year
(accounting for treatment status, fitness costs of resistance, and the duration of
infectiousness) and the probability of progressing to active disease. The life expectancy of
each secondary case was calculated based on the resistance pattern of the index case at the
time of the infection event. These estimates were combined to give the expected number of
life years lost to secondary cases under each treatment scenario.

Parameterization
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Parameters describing TB natural history and outcomes in the absence of
bedaquiline were taken from published cohorts, clinical trials, and meta-analyses [13-15].
These parameters were held fixed throughout our analysis. Parameters describing the
effect of bedaquiline were derived from the bedaquiline pivotal trials [8, 16] and more
recent cohorts [3, 17, 18]. Because only small numbers of patients receiving bedaquiline-
containing regimens had completed treatment at the time of this analysis, we explored

wide ranges of values for key bedaquiline associated parameters as described in Table 3.1.

Table 3.1: Bedaquiline-associated parameter ranges

Parameter Distribution References/Explanation
Default rate on Unif(-10%,+10%) [19, 20]
bedaquiline (vs. OBR)
Risk of relapse on Unif(0-4,1) [15, 21, 16]
bedaquiline (ratio to
OBR)
Median time to culture Unif(0-4,1) [8,16-18, 22, 23]
conversion on
bedaquiline (ratio to
OBR)
Bedaquiline-associated Unif(0, 5 per 100 [8]: 3 deaths in BDQ arm in
mortality rate (addition person-years) overall treatment phase. 79
to TB or background people assigned to BDQ, 50
mortality) completed treatment (~2
years); [18, 17, 24]
Risk of acquired Unif(0-1,0-5) for XDR | [13, 8, 16]
bedaquiline resistance 4x lower for PreXDR
16x lower for MDR
Risk of acquired Unif(1-05,8) [13,8,16]
resistance to background
drugs on OBR (ratio to on
bedaquiline)
Transmission fitness of Unif(0-7,1) Similar to other TB drugs
bedaquiline resistance [25-28]
(ratio to bedaquiline
sensitive)
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Calculation & Value of Information

All analyses were performed in TreeAge Pro 2015 R2.2. Monte Carlo probabilistic
sensitivity analyses with 5,000 samples were performed to estimate the life expectancy,
resistance acquisition patterns, and number and outcomes of secondary cases expected
under each treatment scenario. For our life expectancy outcome, we calculated the
expected value of perfect information, or the additional life expectancy that one would
expect to gain on average if there was no uncertainty in our bedaquiline-related
parameters. We also calculated the expected value of partial perfect information separately
for each of the bedaquiline parameters, sampling 200 values in the outer loop of the
parameter of interest and 1000 values in the inner loop of the remaining parameters.
Results

Figure 3.1 summarizes the optimal bedaquiline use strategies from each simulation
for a range of mortality, resistance, and transmission outcomes. An overview of these

results and additional analyses for each outcome are provided below.
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Policy

Outcome of Interest

Maximize Health

Minimize Acquired Resistance

Minimize Secondary Cases

BDQ Available for|

Life Expectancy XDR BDQR XDR+BDQR Total Number Life Years Lost To
None 22.6% I 0.0% 100.0% . 100.0% . 0.0% *0.0%
XDR Only 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%
PreXDR+XDR 0.4% 0.0% 0.0% 0.0% 0.0% 0.0%
All MDR 76.8% . 100.0% . 0.0% 0.0% 100.0% . 100.0% .
Policy Outcome of Interest

BDQ Available for|

Maximize Health

Minimize Acquired Resistance

Minimize Secondary Cases

Life Expectancy XDR BDQR XDR+BDQR Total Number Life Years Lost To
XDR Only 20.8% 0.0% 100.0% 10.8% 0.0% *0.0%
PreXDR+XDR 1.1% 0.0% 0.0% 85.6% 0.0% 0.0%
All MDR 78.1% 100.0% 0.0% 3.6% 100.0% 100.0%

Figure 3.1: Optimal bedaquiline use strategy for different outcomes based on 5,000

simulation runs. The top half of the figure shows the results across all four potential

bedaquiline use strategies. The bottom half shows results assuming bedaquiline is made

available for at least some patients (i.e. no “none” strategy). The * indicates that one

simulation run resulted in this simulation being optimal
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Life Expectancy

Providing bedaquiline to all patients with MDR TB maximized the life expectancy of
our initial cohort in 76-8% of 5,000 simulations (Figure 3.1). In nearly all remaining
simulations, the optimal strategy was to withhold bedaquiline from all patients, suggesting
that the benefits of bedaquiline did not outweigh potential added mortality risks.
Intermediate bedaquiline use strategies were optimal in fewer than 1% of simulations. The
average difference in life expectancy between the best and worst strategies was 1-45 years.

Table 3.2 displays the effect of the DST methods available to detect PreXDR and XDR
TB on life expectancy under the different bedaquiline use strategies. The rapid DST
method, which shortens the lag time for eligible individuals to receive bedaquiline,
increased the average life expectancy for both the “XDR only” and “PreXDR+XDR”
strategies. However, the average life expectancies for these two scenarios remained smaller
than that of the “all MDR” scenario, suggesting that the potential benefits of making
bedaquiline available for all patients with MDR TB extend beyond simply shortening the

time to bedaquiline initiation for patients with more extensive resistance.

Table 3.2: Life expectancy comparing bedaquiline use strategies when under our baseline
scenario (conventional DST to identify PreXDR and XDR cases) and a scenario with rapid
DST for fluoroquinolones and injectables. Results are given as simulation mean (2-5

percentile, 97-5 percentile)

Life Expectancy when BDQ Available for
DST Method All MDR PreXDR+XDR XDR Only None
Conventional (Baseline) | 36-0 (335, 38:7) | 35-1(34-4, 35-8) | 34-9 (346, 35:2) | 348
Rapid 36-0 (335, 38:7) | 35-5(34'5,36:7) | 35-:0(34-6,35-5) | 34-8
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The results of our value of information analysis are provided in Table 3.3. The
expected value of perfect information for all parameters is 0-153 life years (per patient).
The expected value of partial perfect information was 0 for all parameters except the ratio
of median time to culture conversion on vs. off bedaquiline (0-074) and the bedaquiline-
associated mortality rate (0-006). These results indicate that uncertainty in the estimated
mortality benefits of bedaquiline reflects assumptions about efficacy and (possible) drug-

related mortality, but not resistance.

Table 3.3: Expected increase in life expectancy (in years) if perfect information was

available for all or particular bedaquiline-related parameters

Expected Value of Perfect Information
Overall ‘ 0-153
Expected Value of Partial Perfect Information (BDQ Parameters)
Default rate on BDQ 0
Relapse risk on BDQ 0
Time to culture conversion on BDQ 0-074
BDQ-Related Mortality 0-006
Protection from Resistance to OBR 0
Rate of Resistance to BDQ 0

Acquired Resistance

Figure 3.1 and Table 3.4 show the impact of different drug use strategies on
acquired resistance to the new and existing drugs in our initial cohort. The best strategy to
avoid resistance to bedaquiline was to strictly constrain bedaquiline availability. The
simulation mean percentage of people acquiring resistance to bedaquiline was 5-88%
(2-5t% percentile 2-18%, 97-5t% percentile 9-45%) in the scenario providing bedaquiline to

all patients with MDR TB, compared with 3-50% (1:30%, 5-62%) when restricting
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bedaquiline for patients with XDR TB only. However, expanding bedaquiline availability is
predicted to reduce the rate of acquired XDR TB by providing additional protection to the
existing drugs. The percentage of people acquiring XDR TB was 2:56% (1:09%, 7-:68%) in
the scenario providing bedaquiline to all patients with MDR TB, compared with 9-82% (no
variability, as non-bedaquiline parameters are assumed fixed) when restricting

bedaquiline for patients with XDR TB only.

Table 3.4: Proportion of the initial cohort acquiring different resistance patterns. We only
count patients who did not begin with the listed resistance pattern (e.g. patients who are
initially XDR may be counted as acquiring “XDR+BDQR” but not “XDR”). Resistance
patterns that are unspecified may have any value (e.g. “BDQR” identifies resistance to
bedaquiline in combination with any pattern of OBR resistance). Results are given as

simulation mean (2-5 percentile, 97-5 percentile)

BDQ Available for
% Acquiring All MDR PreXDR+XDR XDR Only None
BDQR 5-88(2:18,9:45) | 3-91(1-44,6-29) | 3-50(1-30, 5-62) 0
PreXDR 2:50(1-16, 6-43) 7-66 7-66 7-66
PreXDR+BDQR | 1-93(0-39,3:69) | 1-00 (0-16, 1-99) 0 0
XDR 2:56 (1-09, 7-68) | 6-59 (5-84, 8-:94) 9-82 9-82
XDR+BDQR 3-44 (1-29, 6-15) | 3-20(1-20,5-23) | 3-50(1-65,5-62) 0

When we only consider scenarios in which at least some patients are eligible for
bedaquiline, complete resistance to the new and existing drugs (XDR+BDQR) was
minimized most often by the intermediate strategy of providing bedaquiline to patients
with PreXDR and XDR TB only. However, the “XDR only” strategy is preferred in 10-8% of
the 5,000 simulation runs and the “all MDR” strategy in 3-6% of runs, indicating that the

optimal decision for this outcome is parameter-dependent. This pattern reflects the
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differential effects of the bedaquiline use strategies on patients with different initial
resistance patterns. For many (though not all) parameter sets, providing bedaquiline to all
patients with MDR TB minimized the number of cases of acquired XDR+BDQR among
patients with initial MDR or PreXDR TB, but maximized the number of cases of acquired
XDR+BDQR among patients with initial XDR TB. However, the absolute differences in the
number of cases of acquired XDR+BDQR across scenarios are small when bedaquiline is
provided to at least some categories of patients, indicating that the costs of making a
suboptimal decision with respect to this variable may be limited.
Secondary Cases

The total number of secondary cases produced from the time of MDR TB treatment
initiation was low (<1 per person) across all treatment strategies, as shown in Table 3.5.
This number was higher but remained below 1 if we assumed individuals were initially
untreated, reflecting the high mortality rate and lack of diagnostic delay in our model.
Making bedaquiline available to all patients with MDR TB was the preferred strategy to
minimize the number of secondary cases for all 5,000 simulation parameter sets, and the

years of life lost amongst secondary cases for all but one.

Table 3.5: Impact of different bedaquiline use strategies on the number and health
outcomes of secondary TB cases. Results are given as simulation mean (2-5 percentile,

97-5 percentile)

BDQ Available for

Outcome per 100 Initial Patients All MDR PreXDR+XDR XDR Only None
Number of Secondary Cases 14 (10, 17) 17 (16, 18) 18 (18, 19) 19

Life Years Lost to Secondary Cases 243 (164, 317) 315 (290, 336) 333 (320, 343) 346
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Discussion

New anti-TB drugs such as bedaquiline hold much promise to reduce morbidity and
mortality associated with drug resistance. In this paper, we performed a decision analysis
to explore the potential impact of different bedaquiline use strategies on a range of
individual and public health outcomes. Different strategies may be preferred based on the
outcome of primary interest (e.g. minimize resistance, minimize years of life lost),
illustrating the tradeoffs involved in decision-making for the introduction of new
antibiotics.

When considering whether and how to introduce a new drug, we assert that
individual patient health considerations should prevail. Drugs for which the risk of
mortality due to adverse events exceeds expected reductions in mortality should not be
used regardless of their potential public health benefits. Our model predicted the risks of
bedaquiline to outweigh the benefits of its use in any patients for 22:6% of parameter sets
tested. For 76-8% of parameter sets, we predicted that the optimal strategy would be to
provide bedaquiline for all patients with MDR TB. These results primarily reflect the
assumed uncertainty in rates of mortality and culture conversion associated with
bedaquiline and demonstrate the vital importance of continued research into bedaquiline
safety and efficacy. Thus far, interim cohort analyses of patients receiving bedaquiline
outside of trial settings have not identified excess bedaquiline-associated mortality [17,
18]; however, continued research and in particular Phase III trial results are needed to
verify that the unexplained mortality imbalance of the pivotal phase IIb trial was not drug

related.
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Antibiotic introduction strategies may affect rates of acquired resistance to the new
drug, existing drugs, or both. In general, we would expect more expansive access to a new
drug to promote resistance to the new drug, while preventing resistance to existing drugs.
These expectations are reflected in our results. Acquired bedaquiline resistance occurred
most often under the most liberal bedaquiline use policy (providing bedaquiline to all
patients with MDR TB); however, this same policy was most effective at preventing new
cases of PreXDR and XDR TB. The effects of expanding access to a new drug on composite
resistance to new and existing drugs are less clear-cut. When considering only strategies
providing bedaquiline to at least some categories of patients, the majority of our
simulations predicted an intermediate strategy targeting bedaquiline to patients with
PreXDR and XDR TB only to minimize the combination of XDR plus bedaquiline resistance.
However, both the “All MDR” and “XDR only” strategies were preferred for some
combinations of parameter values, and differences in the proportions of people acquiring
XDR+BDQR across different strategies were small.

From a public health perspective, optimal use of a new antibiotic should also
account for future transmission. For this paper, we limited our attention to the second
generation of infected patients. We found that, for all but one of the 5,000 parameter sets
tested, making bedaquiline available to all patients with MDR TB would minimize the total
number of and expected number of life years lost to secondary cases. This relationship can
be explained by the correlation between severe and highly infectious disease within our
model. For diseases and treatments for which this assumption does not hold, associations
may appear in the opposite direction [29]. Future drug development and policy changes

may also affect the relationship between new drug use strategies and outcomes among
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potential secondary cases. Bedaquiline use strategies chosen now could alter the
effectiveness of potential future TB regimens incorporating both bedaquiline (e.g. the NC-
005 trial of bedaquiline, pyrazinamide, and pretomanid) and background drugs such as
pyrazinamide and the fluoroquinolones (e.g. the STAND trial of pretomanid, moxifloxacin,
and pyrazinamide) [3]. Of course, the desire to be prepared for the range of outcomes that
could result from these trials must be weighed against the need to provide the best
available care to patients presenting today. A full modeling analysis of these costs and
benefits would require a transmission dynamic structure not included here.

This study has several limitations. We have not explored the full range of potential
bedaquiline use strategies, for example as an early drug substitution method to prevent
hearing loss during MDR TB treatment. For simplicity, we held the natural history and
treatment parameters unrelated to bedaquiline fixed throughout our analysis, which does
not reflect the potential uncertainty and heterogeneity in these parameters. Many of these
estimates were based on large meta-analyses with data from multiple countries, allowing
us to average over but not fully address the variability expected in e.g. settings with
standardized vs. individualized treatment regimes. We assumed that our initial cohort was
comprised of 30-year-old European men, which may differ from the target population of
bedaquiline in many settings; however, as this assumption was used only in defining
background mortality rates, it is most likely to affect the magnitude rather than the
direction of the observed effects. Similarly, the effects of our particular background
distribution of resistance are likely mitigated by the range of explored scenarios, which
incrementally account for expanded access of bedaquiline to patients with XDR, then

PreXDR+XDR, and finally all MDR. Changing the HIV status of this cohort could have greater
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effects if bedaquiline is found to have differential impact on HIV-positive and negative
individuals. Similarly, we may see differential effects of bedaquiline if the background
regimen varies substantially from the data on which our model was based, as in the
STREAM II trial of shorter MDR regimens [3].

Overall, we have used a common-sense decision-analytic framework to outline the
types of tradeoffs involved in the introduction of new TB drugs such as bedaquiline.
Though our quantitative predictions are limited by the available data, our results
demonstrate the range of considerations involved in deciding whether to provide a drug to
or beyond patients with the most highly resistant TB strains. These results may be used to
guide future discussion around the appropriate use of new antibiotics, particularly about
the relative costs and benefits of more restrictive policies that may protect a new drug at

the cost of promoting existing background resistance.
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APPENDIX S3
Tradeoffs in new anti-tuberculosis drug introduction policies: a model based analysis

Amber Kunkel, Frank G. Cobelens, Ted Cohen

Partial Model Diagrams

MDR Pre-XDR XDR

MDR +
BDQ resistance

Pre-XDR +
BDQ resistance

XDR
BDQ resistance

Figure S3.1: Transitions between resistance levels. We assume individuals can only acquire resistance while

culture positive and receiving the drug of interest.
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BDQ+OBR BDQ+OBR

BDQ+OBR

Culture+ Culture- Cured

OBR only OBR only

OBR only

Culture+ Culture- Cured

No treatment

Culture+

BDQ+OBR BDQ+OBR

BDQ-+OBR
Cured

OBR only

Culture+ Culture-

OBR only

OBR only

Culture- Cured

Culture+

Figure S3.2: Transitions between TB health states (top) and regimen type (bottom). In the top figure,
movements right indicate culture conversion or cure, while movements left indicate relapse. Only individuals
who are untreated and culture negative are at risk of relapse. Untreated individuals may self-cure from
active disease, but only long-term stable cures are counted. In the bottom figure, movements down indicate
stopping treatment (routinely or default). Movements up indicate starting treatment (if untreated) or
starting bedaquiline (if eligible and untreated or on OBR only). Changes in health status and regimen may

occur simultaneously within one time step.
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General Calculation Principles

Accounting for conditional probabilities

In constructing the model, the potential events for each week were modeled in sequence. For each weekly
cycle we gave priority to events in an order that reflected the way they would be recorded as treatment
outcomes. For example, for people receiving treatment we first we recorded all deaths. Those people who
did not die could end treatment routinely, or if not they could end treatment prematurely (default). We
assumed only patients who remained on treatment could have culture converted, and only those who did not
culture convert could have acquired resistance (to at most one drug per week). To account for ordering, we
input the probability of each event conditional on not experiencing any of the events earlier in the calculation
sequence that week.

Examples:

e Weekly probability of culture conversion - input conditional on not dying, defaulting, or finishing

treatment that week
e Weekly probability of stopping treatment routinely - conditional on not dying that week

e Weekly probability of default - conditional on not dying or stopping treatment routinely that week

Converting rates to weekly probabilities
To convert rates to weekly probabilities (p), we first converted them to rates per week. We then used the

following formula:

p=1—exp(—rate)

Examples:
e Added mortality BDQ (rate 5 per 100 person-years, weekly probability 0.00096)

Resistance and relapse probabilities
To convert the probability of acquiring resistance prior to death, conversion, default, or stopping treat-
ment (Q) into weekly probabilities, we used the following equation with the weekly probabilities of each

event (p):

Dres
Pdie + Pdefault + Pstop + Pconvert + Pres

Qres =

Examples:
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e Probability acquired BDQ resistance given XDR
e Probability acquired XDR given pre-XDR, not on BDQ
e All other acquired resistance parameters (but may include additional considerations below)

A similar equation was used to relate the weekly cure rate to the probability of moving from “culture
negative” (high risk of relapse immediately after treatment) to “stable cure” prior to death, default, or

stopping treatment.

Median time to culture conversion

Based on our literature review, we estimated the median time to culture conversion (if no one had died
or stopped treatment) to be approximately 13 weeks for people initially MDR, 18 weeks for people initially
pre-XDR, and 26 weeks for people initially XDR. We used TreeAge to estimate a weekly probability of
conversion based on these targets and our fixed weekly probabilities of acquiring pre-XDR and XDR TB.

To simplify our sensitivity analyses, we chose to consider the effect of BDQ on the median time to culture
conversion if no one had died, stopped treatment, or acquired resistance. We did this by calculating the
weekly probabilities of conversion from above to the median time of culture conversion if no one had died,
stopped treatment, or acquired resistance. Our bedaquiline multiplier was then applied to these values.

We converted median time to event parameters (in weeks) to weekly probabilities using the geometric
distribution:

P=1-2"/M

Probability acquiring pre-XDR without BDQ

From the literature, we estimated that the probability of acquiring resistance to any fluoroquinolone given
initial MDR was approximately 0.065, and that the probability of acquiring resistance to any second-line
injectable was similar. We also determined that the risk of XDR given pre-XDR was approximately 0.26.
Note the informal notation: P(PreXDR|M DR) is the probability of developing at least PreXDR for an
individual who is initially MDR, and not receiving bedaquiline.

P(PreXDR|MDR) = P(FQR|MDR) + P(2LIR|[MDR) — P(XDR|MDR)
P(PreXDR|MDR) = P(FQR|MDR)+ P2LIRIMDR) — P(PreXDR|/MDR)P(XDR|PreXDR)

P(PreXDR|MDR) = .065 %2 — 0.26 + P(PreXDR|MDR)

P(PreXDR|MDR) = 0.103
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Probability acquiring pre-XDR with BDQ

This is similar to the section above, except we also need to account for the potential to acquire resistance
to bedaquiline. Note the informal notation: P(PreXDR|MDR) is the probability of developing at least
PreXDR for an individual who is initially MDR (and BDQ sensitive), on bedaquiline.

P(PreXDR|MDR) = P(FQR|MDR) + P(2LIR|MDR) — P(XDR|MDR)

P(PreXDR|MDR) = P(FQR|MDR)+ P(2LIR|M DR) — P(PreX DR|MDR)P(X DR|develop PreX DR)

The issue here is that P(X DR|develop PreX DR) depends on whether the individual already has resis-

tance to BDQ at the time they become PreXDR or not.

P(XDR|develop PreX DR) = P(already BDQR)|develop PreX DR)P(XDR|PreXDR, BDQR)

+ (1 — P(already BDQR|develop PreXDR)) P(XDR|PreXDR, BDQS)

To solve for P(already BDQR|develop PreX DR), we can use our knowledge of the risk of resistance to

bedaquiline for people who are initially MDR vs preXDR.

P(BDQR|MDR) = P(BDQR prior to/without PreX DR)

+ (1 — P(already BDQR)|develop PreX DR)) P(PreXDR|BDQS, MDR)P(BDQR|PreXDR, BDQS5)

BDQR priorto/without PreX DR)P(PreXDR|M DR, BDQR)
P(PreXDR|MDR)

P
P(already BDQR)|develop PreXDR) = (

Let X be the probability of developing bedaquiline resistance either prior to or without developing pre-
XDR for people initially MDR on BDQ. Let Y be the probability of ever developing pre-XDR for people
initially MDR on BDQ.

Let Q¢ be the probability of ever developing FQ resistance given MDR on BDQ. Let Q5 be the
probability of ever developing XDR given pre-XDR and BDQ resistance. Let Q);,, be the probability of ever
developing XDR given pre-XDR and BDQ sensitivity. Let Qp,, be the probability of developing bedaquiline
resistance given initially MDR and BDQ sensitive. Let Qp, be the probability of developing bedaquiline

resistance given initially pre-XDR and BDQ sensitive. Let Qpmp be the probability of developing pre-XDR
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given initially MDR and bedaquiline resistant.

Y = 2Qfm e <XQM;I;Q;Dmb + (1 _ X%me)sz>
Qun =X +(1- 2% )vq,

Solving the first equation for X:

Qbm - Ypr =X - Xmebep

Qbm - Ypr = X(l - mebep)

Qbm - Ypr - X
1- mebep
Substituting into the first equation:
XQJE bQ mb XQ mb
Y:2Qfm_y<1;/p+(l_ )f )inﬂ

Y = 2Qfm - XQazprpmb - YQmp + Xszmeb

Y = QQ‘fm — Xmeb(prb - pr) - YQ:vp

Qbm - Ypr

Y =2Qm —
Qf 1- mebep

meb(Qmpb - Qrp) - YQrp

We used Matlab’s symbolic toolbox to solve this equation for Y. We checked this equation by verifying
that our TreeAge model gave similar results for X and the probability of developing XDR given initially

MDR and BDQ sensitive for a typical parameter set.

Probability acquiring XDR or BDQ resistance - from pre-XDR receiving BDQ

People can develop XDR without or prior to developing BDQ resistance, or they can acquire BDQ
resistance first, increasing their chances of developing XDR. Similarly people can develop BDQ resistance
without, prior to, or after developing XDR.

Let X be the weekly probability of developing BDQ resistance given pre-XDR. Let Y be the weekly
probability of developing XDR given pre-XDR. Let A be the weekly probability of any other possible event
(probability of dying or defaulting or finishing treatment or culture converting).

Let Qpp be the probability of ever developing BDQ resistance starting pre-XDR, on BDQ. Let Q,, be the

probability of ever developing XDR starting pre-XDR, BDQ-sensitive, on BDQ. Let Qp, be the probability
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of ever developing BDQ resistance starting XDR. Let Qg be the proportion of people with pre-XDR and
BDQ resistance who acquire XDR prior to death, default, finishing treatment, or culture conversion.

We can then use the following equations to solve for X and Y.

o) _LJFQ Y

T XY +A "X fYv A
Y X

pr_X+Y+A+Q”””pX+Y+A

Therefore

QX +Y +A) =X+ QpY

Solving for X first:

(pr) - 1)X = beY - pr(y + A)

(Qbaﬁ - pr)Y - prA
pr -1

X =

Plugging into the equation for Y:

Qmp(X +Y+A4) =Y+ szpX

(pr - wap)X + prA =Y - Qa:py

(Qbm - pr)Y - prA
pr -1

(sz - Qxbp) < ) + prA =Y - szY

;a: ‘1 Q Q P i/ QZ‘Q’,‘ Q Y
p ( zp xbp) (Q ]> - Qaf;p) - (pr — Qxbp) ((bp))
Qmpll_ ( ) ! =Y ( -0 (QJUP QIbp)(wa _pr))

Qy 1 Tp o

Qa:pA(Qb;D — 1) — (sz — Q:pbp)prA

Y= (pr - 1)(1 - pr) - (Q:cp - Qa:bp)(@bx - pr)
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