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Abstract

Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a 

diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects 

who do not (controls) is often measured by the area under the receiver operating characteristic 

curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement 

error can cause biased estimation of AUC, which results in misleading interpretation of the 

efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for 

measurement error, most of which required the normality assumption for the distributions of 

diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement 

error and derive approximate confidence limits for the corrected AUC. The proposed method does 

not require the normality assumption. Both real data analyses and simulation studies show good 

performance of the proposed measurement error correction method.
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Introduction

Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of 

a diagnostic biomarker to discriminate between subjects who develop disease (cases) and 

subjects who do not (controls) is often measured by the area under the receiver operating 

characteristic curve (AUC), with values close to 1.0 indicating high diagnostic accuracy. The 

AUC can be interpreted as
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where Xobs is the value of the diagnostic biomarker for a randomly selected case and Yobs is 

the value of the diagnostic biomarker for a randomly selected control. AUC takes values 

between 0.5 and 1. AUC close to 0.5 indicates no diagnostic accuracy; AUC close to 1.0 

indicates high diagnostic accuracy.

Under the normality assumption that  and Xi 

and Yj, i = 1,…,m, j = 1,…,n, are all independent, AUC is calculated as [1]:

where

It is extensively documented in the medical literature that diagnostic biomarkers may be 

subject to errors of measurement [2], which may be attributed to variation in performance of 

laboratory equipment, variation between technicians, temporal changes, biologic variability, 

etc. It has been reported [1,2] that ignoring measurement error can cause biased estimation 

of AUC. In many cases, the biases can result in misleading interpretation of the efficacy of a 

diagnostic biomarker [3]. For example, not adjusting for measurement error can result in 

useful diagnostic biomarkers being overlooked. In general, an increase in measurement error 

moves the receiver operating characteristic (ROC) curve towards the diagonal (non-

informative) line, and the value of the AUC is decreased [4,5].

The biases of estimators usually can be corrected by resampling methods (e.g., jackknife or 

bootstrap). However, resampling methods are not appropriate when biases are caused by 

non-sampling errors, such as measurement error [2]. Several methods [1- 3,6] have been 

proposed in the literature to correct estimates of the AUC when accounting for measurement 

error. Coffin and Sukhatme [1] and Coffin and Sukhatme [2] assumed the following 

measurement error model:

(1)

where
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F (a,b) is a cumulative distribution function (CDF) with mean a and variance b, and Xi,true, 

Yj,true, εi, and ξj, i = 1,…,m, j = 1,…,n, are mutually independent. FY,true, AUCobs

Coffin and Sukhatme (1995) [1] assumed Fx,true, FY,true, Fε, and Fξ are CDFs from an 

exponential family and derived an approximate bias C of the observed AUC due to 

measurement error and then obtained estimates of the corrected AUC by adding this bias 

term to the observed AUC, i.e., AUCcorrected ≈ AUCobs +C. Coffin and Sukhatme's [1] 

Monte Carlo simulation studies showed that the bias of the corrected AUC (AUCcorrected) is 

generally an order of magnitude smaller than the bias of the AUC without measurement 

error correction (AUCobs). Also the corrected AUC estimate (AUCcorrected) has comparable 

mean square error (MSE) to AUCobs. Coffin and Sukhatme [2] noted that the AUC estimated 

by the Mann-Whitney U statistic is also subject to measurement error. Paralleling to Coffin 

and Sukhatme [1], Coffin and Sukhatme [2] used a non-parametric approach to derive an 

approximate bias C for the AUC estimated by the Mann-Whitney U statistic. The simulation 

studies in Coffin and Sukhatme [2] showed that for several families of distributions (normal, 

gamma, or t distributions), bias-corrected AUC have much smaller bias and comparable 

MSE to the AUC estimated by the Mann-Whitney U statistic.

Faraggi [3] derived an exact relationship between the observed AUC and the true AUC by 

assuming that Fx,true, FY,true, Fε, and Fξ are CDFs of normal distributions and by assuming 

equal variance (i.e.,  and ), whereby

(2)

where . Faraggi [3] also derived a 95% confidence interval (CI) for AUCtrue when 

θ2 is known. Faraggi [3] showed numerically that not taking measurement error into account 

can give seriously misleading results that understate the diagnostic effectiveness (i.e., the 

coverage probability of the unadjusted confidence interval can be far from its nominal value 

when measurement error is present).

The method proposed by Faraggi [3] requires that the ratio θ2 of intra-individual to inter-

individual variation was accurately known (e.g., based on prior experience). If θ2 is 

unknown, either repeated measurement or an external validation study is required to estimate 

θ2. Reiser [6] generalized the formula for θ2 by allowing different variances and provided an 

estimate of θ2 based on repeated measurements Xik,obs and Yjl,obs, where the subscripts k 

and l indicate the k-th and l-th replicates for the i-th case and the j-th control, respectively. 

The measurement error model that Reiser [6] assumed is
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(3)

where

and Xi,true, Yj,true, εik and ξjℓ, i = 1,…,m, k = 1,…,mi, j = 1,…,n, ℓ = 1,…,nj are mutually 

independent. Based on (??), it follows that

(4)

The relationship between AUCtrue and AUCobs again has the form (??), where

Reiser [6] used the delta method to obtain the approximate variance of the estimate δ̂true, 

then obtained the 95% CI for δtrue and AUCtrue = Φ (δtrue).

Li et al. [7] provided an alternative method to obtain the variance of the estimate δ̂true by 

using the method of variance estimates recovery (MOVER), which allows the variance 

estimate to change with the underlying parameter values.

Schisterman et al. [4] proposed a AUC correction method for the case where no repeated 

measurements are available, but an external validation data set is available. In addition to the 

normality assumption, Schisterman et al. [4] assumed that the distributions in the external 

validation data set are the same as those in the main study. Li et al.[7] method can also be 

used for the case where an external validation data set is available.

Tosteson et al. [5] extended the measurement error model (??) by assuming that Fx,true, and 

FY,true, are CDFs of normal distributions, but the error terms εi and ξj have non-normal 

distributions. They derived the measurement error correction for sensitivity, specificity, and 

sensitivity at a given value of specificity, but not for AUC.

Most of the aforementioned AUC measurement correction methods require the normality 

assumption. However, the normality assumption is often violated in real data analysis. Some 

of these methods assumed the location-shift hypothesis:
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for η ≠ 0, where Fx,true, and FY,true, are the cumulative distribution functions of the 

biomarker for cases and controls, respectively. The location-shift hypothesis is reasonable 

for symmetric distributions, but may not be ideal for skewed distributions as the mean is no 

longer a good summary of the distribution center.

In this paper, we aim to extend the method of Reiser [6] by relaxing the normality 

assumption. The paper is arranged as follows: In section 2, we first present a measurement-

error-correction method for AUC under the probit-shift hypothesis without requiring the 

normality assumption. We then construct confidence intervals for the corrected AUC. In 

Section 3, we present a simulation study. In Section 4, we present results from data analysis 

of a real example based on the Swiss Analgesic Study. Section 5 is a discussion.

Methods

AUC for non-normally distributed diagnostic biomarkers measured without error

We first consider how to handle the non-normality for a diagnostic biomarker M measured 

without error. We propose a probit-shift model

(5)

or equivalently

where Φ is the CDF of the standard normal distribution. That is, after probit transformations, 

the distributions of cases and controls satisfy the location-shift property.

Thus, the AUC is a function of μ. If we let w = HX(x) ≡ Φ−1{FX(x)} then based on (??) it 

follows that

We can use a first order Taylor series approximation to approximate the above integration 

(c.f Online Supplementary Document Section A, Equation A1) and obtain:
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AUC for non-normally distributed diagnostic biomarkers measured with error

We assume the following measurement error model for probit transformed data:

(6)

where HX,true (z) = Φ−1 {FX,true (z)}, HX,obs (z) = Φ−1 {FX,obs (z)}, eX is independent of 

HX,true, and HY,true and HY,obs are defined similarly. FX,true (z), FX,obs (z), FY,true (z), and 

FY,obs (z) are the cumulative distribution functions of the underlying true/observed values of 

the diagnostic biomarker M, respectively. We assume that eX and eY are independent.

To derive the relationship between the true AUC and the observed AUC, we first consider 

the conditional observed AUC:

Note that

Hence,

Note that

Thus,
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Upon integration and use of the delta method (c.f. Online Supplementary Document 

Equation (A7))

or equivalently, based on Online Supplementary Document Equation (A9),

(7)

where ICCX and ICCY are intra-class correlations

We assume there exists at least one replicated observation for each subject in the data set or 

in a subset of the data set and that the replicates are distinguishable, so that we can 

determine unique probit scales for each subject and each replicate and then can estimate the 

intra-class correlations ICCX and ICCY by using the variance components from a one-way 

ANOVA. We used the function ICCest of the package ICC[8] from the statistical software 

R[9] to calculate ICCs. Furthermore, because the probit transformation is a rank-invariant 

transformation, we can use the Mann-Whitney statistic to estimate AUCobs(μ) [10] (c.f 

Formula A13 in the Online Supplementary Document Section D.1). When we estimate 

AUCobs (μ), only the data in the main study were used (replicates were not used). Replicates 

were used only to estimate ICCs.

The relationship (??) between AUCtrue (μ) and AUCobs (μ) provides a method to correct 

measurement error for the observed AUCobs(μ). Hence, we also refer to AUCtrue (μ) as the 

corrected AUC and denote it as AUCcorrected.

Confidence limits for AUCtrue (μ)

We use the delta method to derive the variance of the true AUC. Denote
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We have

An approximate 100%×(1−α) CI for AUCtrue (μ) is given by {Φ(c1), Φ(c2)}, where

(8)

The detailed derivations of c1 and c2 are shown in the online supplementary document 

Sections C and D.

A Simulation Study

To evaluate the performance of the proposed AUC estimate ÂUCtrue (μ̂) that corrects for 

measurement error, we conducted 3 simulation studies. In each simulation study, we 

generated 1000 simulated data sets, each of which contains 100 cases and 100 controls. We 

then ran each simulation study 100 times to obtain the mean performance measure over the 

100 simulations and to estimate the 95% confidence interval (CI) of the performance 

measures, such as bias, mean square error (MSE), and coverage.

We also compared the performance of AUCcorrected in (??) with that proposed by Reiser [6] 

in equation (??). Both methods require the availability of replicate observations.

Simulation model I

In the first simulation study, we assumed that there are replicate observations for each 

subject and generated simulated data using Reiser's [6] model (c.f. Formula (??)). That is, 

Xi,true, Yj,true, eXi and eYj were generated from normal distributions. To generate replicates, 

we generated another set of error terms eXi′ and eYj′, but kept the values of true observations 

Xi,true, Yj,true, so that the 2 observations for the same subject would be dependent.

Simulation model II

In the second simulation study, we assumed that Xi,true and Yj,true were from log-normal 

distributions, while the error terms εX,i and εY,j were from normal distributions:

(9)

To generate replicates, we generated another set of error terms εXi′ and εYj′, but kept the 

values of true observations Xi,true, Yj,true, so that the 2 observations for the same subject 

would be dependent.
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Simulation model III

In the third simulation study, we assumed that Xi,true and Yj,true εX,i and εY,j were all from 

log-normal distributions:

(10)

To generate replicates, we generated another set of error terms εX,i′ and εY,j′, but kept the 

values of true observations Xi,true, yj,true, so that the 2 observations for the same subject 

would be dependent.

Parameter settings

For Simulation Model I, the true AUC value is AUCtrue = Φ(δ), where 

. We set m = n = 100, mi = nj = 2, 

, μY = 0, and μX = 0.25,0.5, or 1.

For Simulation Models II and III, we can show that (c.f. Online Supplementary Document 

Section E) . We set m = n = 100, λ = 

0, , μY = 0, and μX = 0.25, 0.5, or 1.

For Simulation Models I, II, and II, the true AUC values are 0.57 (for μ = μX − μY = 0.25), 

0.64 (for μ = μX − μY = 0.5), and 0.76 (for μ = μX − μY = 1), respectively.

To evaluate the effects of sample size and unequal variance on the performances of the three 

methods, we also performed an addtional set of simulations with m = n = 50 and 

 and the same set of other parameters as above.

To further evaluate the effect of the value of  (i.e., the degree 

of measurement error), we performed another set of simulations with m = n = 50, 

, and .

Results of simulation studies

Tables 1-3 and online supplementary Figure 1 summarized the results of the three simulation 

studies. We observed that (1) the observed (i.e., uncorrected) AUC estimates AUCobs 

underestimated the true AUC for all 9 scenarios (i.e., the estimated biases were negative and 

the estimated coverages were less than the nominal value 0.95); (2) The MSE of AUCobs 

was much larger than those of the proposed method and Reiser's method when μ = 1; (3) as 

the value of μ increases, the absolute bias and MSE generally increased for all 3 types of 

AUC estimates; (4) for Simulation Study I (i.e., data were generated under Reiser's model), 

the probit method had similar performance to Reiser's method; (5) for Simulation Studies II 
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and III (i.e., data were generated from non-normal distributions), the coverages estimated by 

the proposed method were close to the nominal value 0.95, while the coverages of the 

uncorrected AUC and the coverages of the corrected AUC estimated by Reiser's method 

were smaller than the nominal value, especially when the value of μ was large; (6) for 

Simulation Studies II and III, the proposed method had much smaller absolute bias than the 

other two methods.

Tables S1, S2, and S3 in the online Supplementary Documents showed the results for the 

simulations with smaller sample size m = n = 50 and with unequal variance  and 

. The results are similar to those shown in Tables 1-3.

If the degree of measurement error as characterized by  is 

large (θ2 = 3 say), the bias of the probit method is smaller than the other two approches. 

However, the coverage of Reiser's method and the probit-shit method tend to be somewhat 

larger than the nominal level 0.95 (c.f, Tables S4, S5, S6 in the online Supplementary 

Documents).

Examples

In this section, we used a real data set (the Swiss Analgesic Study data set) to evaluate the 

performance of the proposed measurement correction method for AUC estimation.

The Swiss Analgesic Study data set was collected starting from 1967/1968 [11]. There were 

1244 Swiss women participating in this study whose purpose was to evaluate the association 

of the use of phenacetin-containing analgesics with kidney function. NAPAP is a biomarker 

which is associated with recent use of phenacetin-containing analgesics. The NAPAP value 

was measured in a urine sample at the baseline clinic visit. There were additional follow-up 

collections of NAPAP values at home on 2 separate days within 1 week of the baseline clinic 

visit. In addition, serum creatinine was measured at the baseline clinic visit.

We wish to investigate whether excessive recent intake of phenacetin-containing analgesics 

as determined by the urinary NAPAP level can be used as a screening test for identifying 

subjects with abnormal kidney function as determined by elevated serum creatinine. For this 

purpose, we dichotomized the baseline serum creatinine level. If a woman had elevated 

baseline serum creatinine (i.e., serum creatinine ≥1.5mg / dL), she was classified as a case; 

otherwise she was classified as a control. There were 1081 controls, 128 cases, and 35 

subjects missing baseline serum creatinine. In the analysis, 1209 women without missing 

values were used. We would like to assess if NAPAP values could be used to discriminate 

between cases and controls. The AUC based on the NAPAP values measured at the clinic 

visit was used to measure the discrimination ability of the NAPAP assay. The 3 replicates 

were used to calculate ICC values. By examining the histograms of the NAPAP values for 

cases and controls, we found the distribution of the NAPAP value is quite skewed in both 

cases and controls in all 3 measurements (Figure 1). Hence, the normality assumption was 

violated.
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The estimated AUC and 95% confidence interval (CI) of AUC are summarized in Table 4. 

The estimated AUC based on the Mann-Whitney U statistic (i.e., the uncorrected estimate of 

AUC) was 0.589 with 95% confidence interval (CI) [0.537,0.640]. The corrected AUC 

estimate based on Reiser's [6] method was 0.611 with 95% CI [0.557,0.663]. The corrected 

AUC estimate based on the probit-shift method was 0.618 with 95% CI [0.549,0.684]. In 

this example, the number of women with replicated observations is 1193, the estimated ICC 

based on probit transformed data was 0.648 for cases and 0.498 for controls. Hence, the 

corrected AUC is similar for the Reiser's and probit-shift methods, but the confidence limits 

are wider for the latter method.

Discussion

In this article, we presented a method to correct AUC for measurement error without making 

the assumption of normally distributed diagnostic biomarkers. Instead, we use the probit 

transformation to create a transformed diagnostic biomarker, which on the probit scale is 

approximately normally distributed. To implement our approach, one needs replicate data on 

at least a subsample of subjects to compute the intraclass correlation. The replicates should 

be close enough in time so that the assumption that the underlying mean diagnostic 

biomarker level is the same is not violated. Simulation studies support the validity of the 

methods based on moderate sized samples of 100 cases and 100 controls.

The simulation studies demonstrated that without correcting for measurement error would 

result in AUC biased toward the null value (0.5) Under the normality assumption, the 

proposed method has similar performance as Reiser's method which requires the normality 

assumption in measurement error modelling. When the normality assumption is violated, the 

proposed method performed much better than Reiser's method in terms of bias and coverage.

The probit-shift model assumes equal variance . In the simulation studies, we 

evaluated the effects of unequal variance on the performance of the probit-shift model. The 

results were similar to Tables 1-3, if measurement error is small as characterized by θ2. If θ2 

> 1, then the probit-shift model still has minimal bias, but has observed coverage greater 

than nominal coverage. In future work, we will extend the probit-shift model to allow 

unequal variance scenario, in which the probit-shift model would have the following form:

where c1 = σx,true / σy,true and c2 = (μX,true − μY,true) / σY,true.

In the real data analysis, the corrected AUC by the proposed method was similar to the 

corrected AUC by the Reiser's method, although the distributions of the biomarker in both 

cases and controls were highly skewed. This is probably because the unknown true AUC is 

close to the null value 0.5. The three simulation studies also demonstrated this point. That is, 

when μ is close to 0 or equivalently when AUCtrue is close to 0.5, the 3 AUC estimation 

methods gave similar results. However, confidence limits are wider with the probit-shift 

method.
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An implicit assumption of our approach is that the distribution of diagnostic biomarkers is 

continuous. If instead, risk is defined based on a limited number of categorical risk factors, 

then the diagnostic biomarker distribution will be discrete and the assumption that the probit 

transformation results in a normally distributed scale will only be approximately satisfied 

and needs to be studied in more detail.

It is worth noting that several authors have developed measurement-error-correction 

approaches for estimating a variety of diagnostic performance measures other than AUC, 

including sensitivity, specificity, and the Youden index [12]. The probit-shift method may be 

useful in incorporating the effects of measurement error on these indices in the setting of 

non-normally distributed diagnostic biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histograms of the NAPAP values. The upper panel: cases (left) and controls (right) 

measured at the clinic visit; The middle panel: cases (left) and controls (right) measured at 

the first home collection; The bottom panel: cases (left) and controls (right) measured at the 

second home collection.
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Table 4

Estimate of AUCtrue and its 95% confidence interval for the NAPAP data.

MW R P

ÂUCtrue95 % CI 0.589 [0.557,0.663] 0.611 [0.557,0.663] 0.618 [0.549,0.684]
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