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RESEARCH Open Access

Nicotine, aerosol particles, carbonyls and
volatile organic compounds in tobacco-
and menthol-flavored e-cigarettes
Mi-Sun Lee1, Ryan F. LeBouf2, Youn-Suk Son3, Petros Koutrakis4 and David C. Christiani1,5*

Abstract

Background: We aimed to assess the content of electronic cigarette (EC) emissions for five groups of potentially
toxic compounds that are known to be present in tobacco smoke: nicotine, particles, carbonyls, volatile organic
compounds (VOCs), and trace elements by flavor and puffing time.

Methods: We used ECs containing a common nicotine strength (1.8%) and the most popular flavors, tobacco and
menthol. An automatic multiple smoking machine was used to generate EC aerosols under controlled conditions.
Using a dilution chamber, we targeted nicotine concentrations similar to that of exposure in a general indoor
environment. The selected toxic compounds were extracted from EC aerosols into a solid or liquid phase and
analyzed with chromatographic and spectroscopic methods.

Results: We found that EC aerosols contained toxic compounds including nicotine, fine and nanoparticles, carbonyls,
and some toxic VOCs such as benzene and toluene. Higher mass and number concentrations of aerosol particles were
generated from tobacco-flavored ECs than from menthol-flavored ECs.

Conclusion: We found that diluted machine-generated EC aerosols contain some pollutants. These findings are limited
by the small number of ECs tested and the conditions of testing. More comprehensive research on EC exposure
extending to more brands and flavor compounds is warranted.

Keywords: Nicotine, Particles, Carbonyls, VOCs in e-cigarette emissions

Background
Electronic cigarettes (referred to as ‘ECs’ hereafter) deliver
nicotine with flavorings and other additives via inhalation
without combustion. They are marketed as an alternative
to conventional cigarettes [1]. In August 2016, a new U.S.
Food and Drug Administration (FDA) regulation was pro-
mulgated to regulate all tobacco products including ECs,
and the sale of these products was banned to people under
age 18 years (http://www.fda.gov/TobaccoProducts/Label
ing/RulesRegulationsGuidance/ucm394909.htm).
Although the FDA has not yet developed standards for

testing or for acceptable emissions, current evidence on
the emission from EC smoking raises health concerns.

Wide ranges in the levels of chemical substances, such
as nicotine, tobacco-specific nitrosamines, aldehydes,
metals, volatile organic compounds (VOCs), phenolic
compounds, polycyclic aromatic hydrocarbons, flavors,
aerosol particles, and solvent carriers have been reported
in various EC matrices, including refill solutions, car-
tridges, aerosols and environmental emissions (reviewed
in [2, 3]). Particle number concentration was found to
be similar or higher in EC emissions than in conven-
tional tobacco cigarette smoke [4]. VOCs (e.g., benzene
classified as a known human carcinogen for all routes of
exposure by EPA) and carbonyl compounds (e.g., formal-
dehyde, acetaldehyde, and acrolein) were at lower con-
centrations in EC emissions than in conventional
cigarettes [5–7]. Heavy metal (e.g., lead and nickel) con-
centrations in EC emissions were equal to or higher than
concentrations in conventional cigarettes [8].
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However, current evidence on emission profiles is of
limited use for risk assessment in the US population.
Many studies have analyzed chemicals in refill solutions
and cartridges rather than in EC emissions and can only
infer possible emission levels [2]. Cheng [2] has stated
that there is a “strong need for evaluation of products
currently on the US market”, indicating that there is lit-
tle information available for US products, especially re-
garding their flavor-based emission profiles.
Therefore, our study aimed to assess the content of

emissions for ECs with flavors (tobacco and menthol)
that dominated the U.S. market (95%>) in 2013 [9]. We
considered whether flavor and puffing time affect the
emission of five groups of chemical compounds present
in tobacco smoke: nicotine, fine particle fractions, in-
cluding nanoparticles or ultrafine particles (PM0.1 or
UFPs, particulate matter of aerodynamic diameter less
than 100 nm) and fine particles (PM2.5, particulate mat-
ter of aerodynamic diameter less than 2.5 μm), particle
number concentration (PNC, particle size range from
0.02 to 1 μm), carbonyls, VOCs, and trace elements.

Methods
EC aerosol generation system
EC aerosol generation and sampling was performed in the
Environmental Chemistry Laboratory at the Harvard T.H.
Chan School of Public Health where thermo-hygrometric
conditions were continuously monitored. We used two
dominant flavors, tobacco and menthol, of the EC V2
brand (VMR Products, LLC), a popular U.S. brand, con-
taining a nicotine strength of 1.8%, which is a popular
“strength” consumed by experienced EC users [10] and is
close to the maximum level set by the European Commis-
sion regulatory proposal [11] (http://www.europarl.euro
pa.eu/pdfs/news/expert/infopress/20131216IPR31001/2013
1216IPR31001_en.pdf). The EC devices used in this study
were rechargeable “cigalike” devices consisting of a carto-
mizer, which combines a disposable cartridge (which holds
a liquid solution) and a built-in atomizer, and a recharge-
able battery with a glowing red light-emitting diode (LED)
tip on the end that lights up with each puff and serves as
an indicator of use. This device has the same components
as many EC devices. The tip of the cartridge served as the
EC’s mouthpiece. The liquid in the cartridge was heated
by a battery and turned into a vapor by an atomizer. The
EC aerosol generation system consisted of a smoking
machine, mixing chamber, dilution chamber, suction
controller and two zero air systems, as shown in Fig. 1.
A dilution chamber was used to generate stable concen-
trations of machine-generated aerosols with nicotine levels
similar to those in a general indoor environment. As tar-
geted, the concentrations of nicotine generated from our
smoking machine were within the range of previous stud-
ies [12–15]. The automatic multiple smoking machine

(Modified TE-2 system, Teaque Enterprises, CA, USA)
was used to generate EC aerosols. This is a multiple port
linear piston-like smoking machine with adjustable and
very wide-ranging puffing regimes. The determination of
the characteristics of machine-generated EC emissions
was done under controlled conditions of temperature,
relative humidity and air exchange rate [16]. The EC aero-
sol generated from the smoking machine was entered into
a mixing chamber at a flow rate of 1.3 L/min and mixed
with pure air through zero air system #1 (10 L/min). The
volume and air exchange rate of the chamber was 442.5 L
(0.762 × 0.762 × 0.762 m) and 1.53 h−1, respectively. The
mixed EC aerosol at 4.3 L/min was entered into a dilution
chamber to adjust for concentrations of airborne markers,
such as PM2.5. At this time, additional pure air (81 L/min)
generated by zero air system #2 was supplied to the dilu-
tion chamber to reduce the EC-emitted aerosol concentra-
tion. Consequently, the total dilution ratio of the system
was 1:172 calculated by multiplying the dilution factors of
the mixing (8.69) and dilution (19.8) chambers. Experi-
ments on mixing patterns and equilibrium times of EC
aerosols in the system were carried out, and it was found
that EC aerosol levels in the system were consistent after
40 min of smoking machine operation to allow for equilib-
rium. To improve reliability of the experimental results,
the system was purged with pure air. The EC aerosol was
collected and analyzed using various instruments to evalu-
ate the effect of flavor and puffing time on the aerosol
characteristics. During the experimental period, the rela-
tive humidity and temperature inside the chamber were
controlled at 18.8 ± 6.7% and 34.4 ± 0.9 °C, respectively.
All experiments were carried out using a smoking ma-
chine with two ECs at different puff rate(s), 1 puff and 2
puffs per min, and each experiment was repeated.

Analysis of EC aerosols
Nicotine
Nicotine emitted from ECs was collected by XAD-7
sorption tubes (SKC, Inc., Eighty Four, PA, USA) at a
flow rate of 1 L/min for 60 min. The tubes were des-
orbed completely using 2.0 mL of 2-propanol. The nico-
tine concentrations were measured by a 7890A gas
chromatograph (Agilent Technologies, Santa Clara, CA,
USA) equipped with a 5975C mass selective detector
(Enthalpy Analytical, Inc., NC, USA). A Second Source
sample (Nicotine SS) was analyzed along with the sam-
ples as a Laboratory Control Sample (LCS). The recov-
ery was 108%.
PM2.5. The real-time mass concentration of PM2.5 was

measured using the SidePakTM light-scattering integrat-
ing nephelometer (Model AM510, TSI, Inc., MN, USA).
The one-hour (h) limit of detection (LOD) of the Side-
Pak is estimated to be 3 μg/m3. Since the SidePak gener-
ally overestimates PM2.5 concentrations [17, 18], SidePak
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measurements were calibrated using integrated PM2.5

concentrations obtained by using a co-located Personal
Exposure Monitor (PEM), which is a small inertial im-
pactor designed specifically for personal monitoring [19].
The flow rates of all PEMs were 9 L/min. PEMs collected
PM2.5 on 37-mm Teflon filters placed downstream of a
size-selective inlet that uses a greased impaction plate.
Teflon filters were weighed on an electronic microbalance
(Cahn Model C-31, Cahn Instruments, Madison, WI) in
duplicate before and after sample collection. Filters were
equilibrated in a controlled temperature (71 ± 3 °F) and
relative humidity (40 ± 5%) room, both before and after
sampling. To eliminate the effects of static charge, the Tef-
lon filters were passed over Po210 sources (alpha rays)
prior to each weighing. The integrated PEM PM2.5 mass
concentration is the net mass collected on the filter (μg)
divided by the sample volume of air (m3), based on mea-
sured flow and duration.
We calculated the calibration factor (CF) using the

average value measured by SidePak divided by the PEM
concentration (Eq. 1):

CF ¼ SidePakaverage
Integrated PEM Concentration

ð1Þ

To determine the calibration-adjusted SidePak value
for each 10-s measurement, we divided the measured
value by the CF.

Particle number concentration (PNC) and Nanoparticles
The PNC was analyzed using the P-Trak® Ultrafine Par-
ticle Counter (TSI model 8525, TSI Inc., Shoreview,
USA). The sampling flow rate and interval of P-Trak
were 0.1 L/min and 10 s, respectively. Nanoparticle

masses and number concentrations were measured over
consecutive 5-min internals using the TSI Model 3936
Scanning Mobility Particle Sizer (SMPS) system consist-
ing of the TSI Electrostatic Classifier (Model 3080) and
TSI Long Differential Mobility Analyzer (Model 3081)
equipped with a water-based Condensation Particle
Counter (CPC, Model 3785). The sampling flow rate of
the SMPS was 0.3 L/min and the range of measurement
was 10 to 1000 nm. We assumed a particle density of
1.2 g/cc.

Volatile organic compounds (VOCs) and Carbonyls
VOCs and carbonyls were analyzed using a draft Na-
tional Institute for Occupational Safety and Health
(NIOSH) canister method [20] that detects the follow-
ing compounds: acetaldehyde, acetone, ethanol, aceto-
nitrile, isopropyl alcohol, benzene, toluene, methylene
chloride, 2,3-butanedione, n-hexane, chloroform, 2,3-
pentanedione, methyl methacrylate, 2,3-hexanedione,
ethylbenzene, m,p-xylene, styrene, o-xylene, alpha-
pinene, and d-limonene. Potentially toxic carbonyls
such as acetaldehyde can form when e-liquids are
heated to high temperature [5]. Acetaldehyde is classi-
fied as possibly carcinogenic to humans (Group 2B) by
the International Agency for Research on Cancer
(IARC) [21] and is the most abundant carcinogen in to-
bacco smoke. Benzene is classified as carcinogenic to
humans (Group 1) by IARC [22]. Fused-silica lined can-
isters (6 L, Entech Instruments, Simi Valley, CA) were
used to collect VOCs for 60 min. Canisters were
shipped to the NIOSH-Morgantown Organics Labora-
tory for analysis after pressurization with UHP nitro-
gen. A canister autosampler/preconcentrator (7016D/
7200, Entech Instruments) coupled with a GCMS

Fig. 1 EC aerosol generation and sampling system
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system (6890/5975, Agilent Technologies) was used to
concentrate a 250 mL sample. Internal standards, bromo-
chloromethane, 1,4-difluorobenzene, and chlorobenzene-
d5, were used to quantify target analytes based on
response factors.

Trace elements
An energy dispersive X-ray fluorescence (EDXRF) spec-
trometer was used to determine the concentrations of
48 trace elements in a range of atomic numbers from 11
(Na) to 82 (Pb), including Ag, Al, As, Au, Ba, Br, Ca, Cd,
Ce, Cl, Co, Cr, Cs, Cu, Eu, Fe, Ga, Ge, Hg, K, La, In, Mg,
Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Rb, S, Sb, Sc, Se, Si, Sm,
Sn, Sr, Tb, Ti, Tl, V, W, Y, Zn, and Zr. To do this, we
analyzed the characteristics of the Teflon filters used
during PEM sampling. Elemental analysis was conducted
using an Epsilon 5 EDXRF spectrometer (PANalytical,
Almelo, The Netherlands) which utilizes secondary
excitation from 10 secondary selectable targets [23].
The spectrometer employs a 600 W dual (scandium/
tungsten, Sc/W) anode X-ray tube, a 100 kV gener-
ator, and a solid-state germanium (Ge) detector. A
total of 49 MicroMatter XRF calibration standard
polycarbonate films (Micromatter Co., Vancouver,
Canada) were used for calibration of 48 elements. We
also used the U. S. National Institute of Standards
and Technology (NIST) standard reference material
(SRM) 2783 for quality control of the analytical
procedure.

Statistical analysis
All data are presented as the mean ± standard deviation
(SD) levels of selected compounds in EC emissions. The
difference in EC emission levels between groups (e.g.,
menthol vs. tobacco flavor, 1 puff vs. 2 puffs) were tested
using Student’s t-test. In addition, linear regressions were
applied to estimate percent changes as (10β-1) × 100%,
where β is the estimated regression coefficient, and the
corresponding 95% CIs for the association between aero-
sol particle concentrations and type of flavor, adjusting
for puffing time. All analyses were performed using SAS
(version 9.4; SAS Institute Inc., Cary, NC, USA).

Results
The content of EC emissions for chemical compounds
by flavor and puffing time are presented in Table 1.

Nicotine
Nicotine was identified in all tested EC emissions.
The mean concentration of nicotine was 3.13 μg/m3

(median: 1.90 μg/m3) from tobacco-flavored ECs and
1.48 μg/m3 (median: 1.05 μg/m3) from menthol-
flavored ECs. There were no statistically significant

differences in the mean concentrations of nicotine
based on flavor or puffing times.

Aerosol particles (PM2.5, nanoparticles, and PNC)
Particle mass and number concentrations generated
from EC aerosols were identified in all tested ECs. The
mean concentration of nanoparticles was significantly
higher from tobacco-flavored ECs than from menthol-
flavored ECs (1,942.8 vs 762.1 ng/m3, p = 0.013). For
menthol-flavored ECs, a significantly higher mass con-
centration of nanoparticles was produced by 2 puff/min
than by 1 puff/min (1,029.0 vs 495.3 ng/m3, p < 0.001).
There was no significant difference in nanoparticle con-
centrations based on puffing time for the tobacco-flavored
ECs. We found significant differences in the number con-
centration of nanoparticles based on flavor (menthol:
7,463.2 vs tobacco: 14,801.8 particles/cm3, p = 0.013) and
puffing time. The mean PNC was significantly higher from
tobacco-flavored ECs than from menthol-flavored ECs
(19,635.3 vs 10,329.3/cm3, p = 0.012). When stratified by
puffing time, 2 puffs/min produced a significantly higher
PNC than 1 puff/min for the menthol-flavored ECs
(12,790.0 vs 7,868.5 particles/cm3, p = 0.024) and for the
tobacco-flavored ECs (23,232.0 vs 16,038.5 particles/cm3).
There was no significant difference in PM2.5 concentra-
tions based on flavor or puffing time. When we adjusted
for puffing time, tobacco flavoring increased the mass
concentration of nanoparticles by 162% (95% CI, 124% to
206%), the number concentration of nanoparticles by
101% (95% CI, 85% to 119%), and the PNC by 93% (95%
CI, 72% to 117%) in comparison to menthol flavoring
(Fig. 2).

Carbonyls
The concentration of acetaldehyde was measured from
menthol ECs at 1 puff/min, but the other groups had
concentrations below the method’s detection limit. The
mean concentration of acetone was 3.35 ppb from to-
bacco ECs at 2 puffs/min, while the other groups had
levels mostly below the method’s detection limit.

VOCs
Of the 18 VOCs, ethanol, acetonitrile, isopropyl alcohol,
benzene, and toluene had concentrations above the
LOD. Toluene was only detected from tobacco ECs at 2
puffs/min.

Trace elements
Silicon (Si), Chlorine (Cl), Barium (Ba), and Indium (In)
were detected depending on the flavor and puffing time,
while other elements were below the method’s detection
limit.
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Discussion
Our findings suggest that nicotine, fine and nanoparti-
cles, other toxic chemicals, and carcinogens are present
in the emissions from the two dominant flavors of ECs
sold in the U.S. In this study, acetaldehyde and benzene
were identified at low levels. Tobacco-flavored ECs de-
livered higher mass and number concentrations of nano-
particles than menthol-flavored ECs.
Our results confirm findings from previous studies

in which nicotine, aerosol particles, and other toxic
chemicals were detected in EC emission [5, 16]. Nico-
tine is a highly addictive substance found in cigarette
smoke and other tobacco products including ECs. A
study by Fu and colleagues in Spain [24] collected
30-min measurements of airborne nicotine as a
marker of second-hand smoke (SHS) exposure in
various settings including healthcare centers, bars,
public administration offices, educational centers, and
on public transport. The median concentration of air-
borne nicotine was 1.36 μg/m3 (range: 0.43 to
4.33 μg/m3), which is similar to the levels observed in
this study (median: 1.30 μg/m3, range: 0.50 to
7.60 μg/m3). The mean concentration of nicotine gen-
erated from ECs in the present study (2.3 μg/m3) was
somewhat lower than airborne nicotine levels mea-
sured for 1 h in indoor offices in the US (mean:
3.8 μg/m3) [12], but nicotine levels generated from
tobacco-flavored ECs (mean: 3.13 μg/m3) in this study
were similar. In a study by Baek and colleagues in
Korea [13], mean concentrations of airborne nicotine
measured for 2 h were 1.8 μg/m3 for home indoors,

2.5 μg/m3 for offices indoors, and 4.8 μg/m3 for res-
taurants indoors. The nicotine concentrations in EC
emissions in the present study were somewhat higher
than home indoor concentrations (mean: 1.43 μg/m3)
[14] and greater than outdoor concentrations mea-
sured for 30 min (median: 0.81 μg/m3) [15], implying
that ECs deliver nicotine in doses that are comparable
to secondhand exposure from conventional tobacco
cigarettes.
In this study, the median concentration of PM2.5

was 21.1 μg/m3 (mean: 59.86 μg/m3), which is similar
to the airborne concentrations in indoor and outdoor
assessments of SHS exposure [15, 24] and passive ex-
posure to EC emissions in a simulated café [25]. In
this study, there was no significant difference in the
concentration of PM2.5 based on flavor, but flavor af-
fected PM2.5 levels in a prior study [26]. Previous
studies reported that ECs deliver high levels of nano-
particles [1, 24, 27, 28], which can penetrate deep into
the respiratory tract, reach the alveolar sacs [29, 30] and
carry toxic chemicals into the blood stream. These toxic
chemicals can then appear in various organs including the
liver, kidney, heart and brain [31]. In the present study,
nanoparticles were observed in all examined EC emis-
sions. Our study indicates that menthol-flavored ECs
produce fewer nanoparticles and lower PNCs than the
tobacco-flavored ECs, which is consistent with previ-
ously published data [26]. In contrast, a previous
study reported that flavors did not change the PNC
levels [4]. Based on our results, the tobacco-flavored
ECs generated more particles than menthol-flavored

Fig. 2 Estimated percent increases and 95% CIs in aerosol particles associated with type of flavor, adjusting for puffing time. Circle blue symbols
indicate the effect estimate. * p < 0.001
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ECs. Given a previous report suggesting that particles
emitted from ECs have different physical and chem-
ical properties compared to particles in cigarette
smoke [32] and that EC aerosols do not contain true
particulate matter unlike combustible cigarette smoke
[33], fine and ultrafine particles present in EC aero-
sols are not directly comparable with those in
cigarette smoke.
In this study, small amounts of carbonyls and toxic

VOCs were detected in EC aerosols. More import-
antly, carcinogens such as benzene and acetaldehyde
were identified. Toluene was detected only in emis-
sions from tobacco-flavored ECs at 2 puffs/min. Acet-
aldehyde, a major component in the gas phase of
tobacco smoke, is of particular interest because of its
carcinogenic and genotoxic effects [21]. Acute expos-
ure to acetaldehyde results in irritation of the eyes,
skin, and respiratory tract in humans [34]. Acetalde-
hyde induced DNA and chromosomal damage in hu-
man lymphocyte in vitro [35–37]. Our findings are
consistent with those from previous studies in which
trace amounts of acetaldehyde were detected in EC
emissions [1, 5, 16, 25, 38]. Acetaldehyde was found
in vapors exhaled in an 8 m3 test chamber by volun-
teer EC users [1]. Geiss and colleagues [16] reported
carbonyls were below the method LOD in the air of
a30 m3 chamberbut were detected when the carbonyls
were determined from a gas sampling bag directly
connected to the smoking machine. In a study by
Goniewicz and colleagues [5], the content of acetalde-
hyde in emissions from EC cartridges ranged from
0.11 to 1.36 μg per 15 puffs. In this study, acetalde-
hyde in EC emissions was mostly below the LOD, but
was detected at 0.4 ppb from menthol ECs at 1 puff/
min. Studies have reported that carbonyl levels gener-
ated from the first-generation (cigarette-like) EC de-
vices, as used in our study, were lower than levels
found in tobacco cigarette smoke [5, 38]. A recent
study has reported that new-generation EC devices at
high power produce high levels of aldehyde but only
under ‘dry puff ’ conditions, which deliver a strong
unpleasant taste by overheating the liquid [39].
The presence of VOCs has been reported in EC

emissions. Ten of 12 brands emitted detectable levels
of toluene and m,p-xylene but not benzene [5]. None
of these compounds were found in passive exposure
to EC emissions [1]. Benzene was detected in EC
emissions from volunteer EC users, but it was also
found at the same level in background concentrations
[25]. In a study by McAuley and colleagues [40],
small amounts of benzene, toluene, ethylbenzene, and
m,p-xylene were detected above LOD. In this study,
five of the analyzed VOCs were detected: ethanol,
acetonitrile, isopropyl alcohol, benzene, and toluene.

Benzene is a well-known hematotoxic carcinogen that
can cause leukemia [22]. While carcinogens are found
in trace amount in EC emissions, the effects of EC
emission on cancer risk have not been reported.
Here, trace elements such as Si, Cl, Ba, and In were

found at trace levels while others were below LOD.
Trace amounts of toxic metals such as Cd, Ni, and Pb
were present in EC emissions in previous studies, but
the same elements were also detected in blank samples
[5, 25].
There is a need for caution in interpreting our find-

ings. Exposure limits and standards recommended or
set by agencies and organizations such as the Occupa-
tional Safety and Health Administration (OSHA), the Na-
tional Institute for Occupational Safety (NIOSH), the
American Conference of Governmental Industrial Hy-
gienists (ACGIH), the U.S. Environmental Protection
Agency (EPA), and the World Health Organization
(WHO) have been established for the compounds that
were detected in EC emissions [41–47] (Table 2). Al-
though airborne levels of carbonyls and VOCs in EC
emissions are considerably lower than the occupa-
tional standards and guidelines, there are no stan-
dards for the general public. The application of
occupational exposure limits (OELs) in the workplace
to non-occupational exposure in the general public
may not be entirely applicable or appropriate for EC
users because OELs are set for workers who are at a
greater risk than the general population [48]. For
PM2.5, about half of the samples in our study
exceeded the annual mean of NAAQS and WHO
guidelines. Thus, our findings should not be inter-
preted as “safe” or as “acceptable”.
It is also important to be cautious about generaliz-

ing our results because our findings are limited to the
small number of ECs tested and the conditions of
testing. Another potential limitation is that the con-
stituents delivered via machine-generated EC emis-
sions may not reflect the emissions exhaled by an EC
user, although nicotine levels generated by our smok-
ing machine were found to be similar to those ex-
haled from EC users [49]. In addition, our results
exhibited variation in the content of EC emissions in
duplicate experiments. Previous studies have shown
large variation in carbonyl concentrations among indi-
vidual ECs from the same brand [50]. One possible
factor to explain our experimental variation is that we
used a different cartridge for the duplicate experi-
ments. We suspect that this may contribute to the
observed variation in constituent levels and to the
range of particle size distribution within products. Al-
ternatively, it is also possible that our simulation sys-
tem may suffer from different conditioning following
the sequence of the simulation. Additional studies
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based on scientifically validated aerosol generation
and chemical analysis methods are needed.

Conclusions
In summary, EC emissions contain measurable amounts
of nicotine, fine and nanoparticles, and other toxic che-
micals, implying that EC emissions are a new source of
environmental pollution and should be investigated
further.
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