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ABSTRACT: Studies of transcriptomes are critical for under-
standing gene expression. Release of RNA molecules from cells
is typically the first step for transcriptomic analysis. Effective cell
lysis approaches that completely release intracellular materials
are in high demand especially for cells that are structurally
robust. In this report, we demonstrate a microfluidic electric
lysis device that is effective for mRNA extraction from
mycobacteria that have hydrophobic and waxy cell walls. We
used a packed bed of microscale silica beads to filter M.
smegmatis out of the suspension. 4000−8000 V/cm field
intensity was used to lyse M. smegmatis with long pulses (i.e., up
to 30 pulses that were 5 s long each). Our quantitative reverse
transcription (qRT)-PCR results showed that our method yielded a factor of 10−20 higher extraction efficiency than the current
state-of-the-art method (bead beating). We conclude that our electric lysis technique is an effective approach for mRNA release
from hard-to-lyse cells and highly compatible with microfluidic molecular assays.

Profiling transcriptomes (the set of all RNA molecules) is
critical for understanding the functional elements of the

genome and disease processes.1 Various technologies have been
developed in recent years, such as real time PCR,2 microarrays,3

and RNA sequencing (RNA-seq),1,4,5 to detect and quantify
mRNA for understanding physiological events. The purity and
integrity of input RNA are critical for the success of these RNA-
based analysis. Compromise in RNA quality leads to variable
results.6,7 There is a growing demand for mRNA extraction
methods that allow transcriptomic profiling of all species.
Mycobacteria are nonmotile, aerobic, and acid-fast bacteria,

including highly pathogenic species that cause tuberculosis and
leprosy.8 Compared to other bacteria, mycobacteria have a
thick cell wall that is hydrophobic, waxy, and rich in mycolic
acids/mycolates. Analysis of intracellular contents from
mycobacteria is challenging due to this structural characteristic.
Several methods have been developed for RNA isolation

from bacteria. Chemical disruption, including the TRIzol-based
method9,10 and hot-phenol-based method,11 is traditionally
used for bacteria RNA extraction. However, the procedures are
usually tedious and time-consuming, taking several hours to a
few days.12,13 The chemicals (SDS and phenol) involved in
these procedures often cause RNA fragmentation and result in
variability in RNA quality and analysis results.13 Bead beating is
considered to be the state of the art for RNA extraction from
lysis-resistant bacterial cells including mycobacteria.14 TRIzol is
often added in bead beating to improve RNA stability and
facilitate cell wall disruption (via denaturing proteins and

inhibiting RNases).15 Bacterial cells and beads are contained in
a closed tube and then subject to high-frequency oscillation.
The high shear stress generated by periodic vertical flow leads
to mechanical lysis. This procedure is typically applied to a
large number of cells (>108 cells). This creates difficulty for
studying slow-growing mycobacteria and probing a low number
of cells.16 Such release tends to be incomplete. The mechanical
mechanism is also hard to replicate on a microfluidic device.
Electric lysis is a rapid physical method for cell membrane

disruption and intracellular content release.17,18 Electric lysis
typically refers to irreversible cell electroporation that occurs
under application of electrical pulses with defined intensity and
duration. When the field intensity and duration of these
electrical pulses exceed certain threshold (that is specific to the
cell type), cells are irreversibly lysed and intracellular molecules
are released into the surrounding solution. Electric lysis can be
completed rapidly (within seconds to minutes) and does not
involve the use of chemical/biological reagents that may
potentially interfere with downstream assays. Although electro-
poration has been extensively utilized for releasing intracellular
proteins,17−19 there has been very little work on using it to
release nucleic acids in general.20−22 None of the previous
works examined the effectiveness of electric lysis on
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mycobacteria that are generally considered highly resistant to
most lysis methods.
Here, we describe a rapid mRNA extraction from

Mycobacterium smegmatis under ultrahigh-intensity (up to
8000 V/cm) electric lysis on a microfluidic device. We formed
a packed bed of microscale silica beads in the device to trap the
mycobacterial cells. Electric pulses were then applied to
electrically lyse trapped M. smegmatis within 3 min. Cell lysate
was directly used for quantitative reverse transcription (qRT)-
PCR analysis without further treatment. We show that our
mRNA extraction efficiency was 10−20 times higher than bead
beating.

■ MATERIAL AND METHODS
Microfluidic Chip Fabrication and Operation. A two-

layered PDMS chip was fabricated by multilayer soft
lithography.23,24 Photomasks were designed by Freehand MX
(Macromedia, San Francisco, CA) and printed on transparency
film at 4000 dpi resolution. The fluidic layer master was
fabricated in SU-8 2002 (Microchem, Newton, MA) and AZ
9260 (Clariant, Charlotte, NC) with the thickness being 2 and
10 μm, respectively. Micropillars were placed in fluidic
chambers to avoid collapse. The master was heated at 130
°C for 30 s to form a rounded cross-sectional profile for the
features in AZ 9260. The control layer master was fabricated in
SU-2025 with 24 μm thickness. The control layer was made by
spinning PDMS prepolymers (RTV615A/RTV615B = 20:1, R.
S. Hughes, Sunnyvale, CA) at 500 rpm for 10 s and then at
1700 rpm for 30 s. This resulted in a thickness of 67 μm for the
control layer PDMS. The fluidic layer had a composition of
RTV615A/RTV615B = 5:1 and a thickness of ∼0.4 cm. Both
layers of PDMS were cured at 80 °C for 15 min. The two layers
were then aligned, brought into contact, and baked for 1 h at 80
°C. The two-layered PDMS structure was then peeled off from
the control layer master, and access holes were punched. Glass
slides (VWR, Radnor, PA) were cleaned in a basic solution
(H2O/27% NH4OH/30% H2O2 = 5:1:1, volumetric ratio) at
80 °C for 1 h, rinsed with ultrapure water, and blown dry using
nitrogen. Finally, the PDMS structure was bonded to the
precleaned glass slide after plasma oxidation of both surfaces
(Harrick Plasma, Ithaca, NY) and baked at 80 °C for 1 h for
further strengthening of the device.
We wrote two LabVIEW (National Instruments, Austin, TX)

programs to operate on-chip pneumatic valves and generate
electric pulses with designated duration/direction, all via a
DAQ card (NI SCB-68 from National Instruments).20,24,25 One
program controlled actuation of on-chip pneumatic valves
(under a pressure of 25 psi) via operation of solenoid valves
(18801003-12VDC, ASCO Scientific, Florham Park, NJ). The
other defined the pulse duration and direction. Two platinum
electrodes were inserted into the reservoirs at inlet 2 and the
outlet with direct contact to the solution (Figure 1). The two
electrodes were connected to DC voltage provided by a high
voltage power supply (PS350/5000V-25W, Stanford Research
System, Sunnyvale, CA) via an H-bridge circuit. The H-bridge
circuit consisted of 4 high voltage reed relays (5501-05-1, Coto
Technology, Kingstown, RI). Two of the relays worked
together (by switching closed and then open at the same
time) to generate a pulse of defined duration in one direction
(while the other two relays remained open). On the other
hand, when the other two relays were actuated in the same
fashion, a pulse in the opposite direction was generated. To
eliminate potential pH changes in the electroporation solution

due to electrolysis of water under long pulses, we applied a
series of pulses by changing the current direction after each
pulse. In this study, each individual pulse was 5 s in duration
and there was a 2 s interval between pulses.

Cell Culture. Mycobacterium smegmatis MC2 155 expressing
green fluorescent protein (GFP) was cultured in lysogeny broth
(LB) with 0.05% Tween 80 and 100 μg/μL hygromycin at 37
°C under continuous shaking at 200 rpm. The cell culture was
centrifuged at 3000 rpm for 10 min and resuspended in H2O.
The concentration of the cell culture was estimated by
McFarland standards.

RNA Extraction by Bead Beating. The cell culture was
centrifuged at 4000 rpm for 10 min; 5 ×109 to 1010 cells (with
the actual value calculated on the basis of optical density
reading taken with a spectrophotometer) were then resus-
pended in 1 mL of TRIzol (Life Technologies). The mixture
was then transferred into a lysing matrix B bead beating tube

Figure 1. Experimental setup for conducting ultrahigh-intensity
electrolysis of M. smegmatis. Electric pulses were applied across a
PDMS microfluidic channel via two platinum electrodes. Pulses were
generated by cutting off constant voltage generated by a power supply.
The pulse duration and direction were set in a LabVIEW program that
operated a H-bridge circuit (consisting of 4 high-voltage relays) via a
data acquisition (DAQ) card. The two-layered microfluidic device
contained two pneumatic valves. The dimensions of the electrolysis
channel were 800 μm × 200 μm × 10 μm. There were circular
supporting pillars in the large chambers to prevent collapsing.
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(MP Biochemicals, Santa Ana, CA) on ice. Chloroform (300
μL) was added, and the bead beating tube was shaken
vigorously. Bead beating using maximum power was conducted
twice (45 s the first time and 30 s the second time), with a 5
min rest time in between. The mixture was centrifuged at
10 000 rpm for 15 min at 4 °C, and the top aqueous layer was
collected. The sample was mixed with 600 μL of isopropanol
and stored at −20 °C overnight. The RNA sample was
centrifuged at 10 000 rpm for 10 min at 4 °C, washed with 75%
ethanol, and resuspended in H2O.
qRT-PCR Assay. Cell lysate was eluted from the micro-

fluidic device by 20 μL of RNase-free water and then mixed
with 1× RNasecure Reagent (Life Technologies) to deactivate
RNases and protect the integrity of RNA. The mixture was
incubated at 60 °C for 10 min and then cooled to 4 °C. The
samples were directly used in qRT-PCR (four pairs of primers
are listed in Table S1) or stored at −20 °C until use. qPCR
assays were performed in 20 μL aliquots in a Real-Time PCR
Detection System (CFX Connect, BIO-RAD, Hercules, CA).
Power SYBR Green RNA-to-CT 1-Step Kit (Life Technolo-
gies) was used to measure mRNA copy numbers following the
manufacturer’s protocol. A pair of primers (100 nM each) was
added into each aliquot. The mixture was incubated at 48 °C
for 30 min for reverse transcription. The mixture was then
denatured at 95 °C for 10 min, followed by 40 cycles of 95 °C
for 15 s and 60 °C for 60 s for DNA amplification. No-template
controls (NTCs) were included to monitor nonspecific
amplification.
RNA Standard Synthesis and Quantification. We

established a standard curve to link the copy number of
mRNA with qPCR signal (Ct value). In vitro transcribed RNA
was used as the template to generate the standard curve. Each
of the four pairs of primers in Table S1 with added T7
promoter sequence (5′-TAA TAC GAC TCA CTA TAG GG-
3′) was used to amplify a specific mRNA (from total RNA
extracted by bead beating) by RT-PCR for 40 cycles. The size
of RT-PCR products was verified by gel electrophoresis (Figure
S1). The amplification product (DNA) contained the T7
promotor sequence on both ends that could be recognized by
T7 phage RNA polymerases. About 75 ng of amplification
product was mixed with nucleotides (0.5 mM in final
concentration), T7 polymerase, and 1× transcription buffer
polymerases (MAXIscript T7 in vitro transcription kit, Life
Technologies) and incubated at 37 °C for 1 h. TURBO DNase
1 was added and incubated at 37 °C for 15 min to digest
template DNA. Twenty-five mM EDTA was used to stop
digestion and block heat-induced RNA degradation. The
produced RNA was purified twice by precipitating with
ammonium acetate/ethanol to remove unincorporated NTPs
and DNase. The copy number of the RNA was measured by a
Qubit 2.0 Fluorometer with Qubit RNA HS Assay Kit (Life
Technologies). The RNA was serially diluted to generate
samples for the standard curve using qRT-PCR.
COMSOL Modeling. COMSOL Multiphysics 4.3 (Burling-

ton, MA) was used to simulate the electric field intensity in the
microfluidic chamber. The “Electric Current (ec)” module was
used to study the steady state of the model. The 3-D model was
based on the actual geometry of the microfluidic structures with
the exception of the packed bed. Because the resistivity of silica
beads (1 × 1013 Ωm) is much higher than that of water (2 ×
105 Ωm), we treated silica beads as electrically insulating. Thus,
the segment that contained the packed bed was treated as
having a cross-sectional area smaller than that of the channel

(with the equivalent cross-sectional area occupied by the
insulating beads deducted). Water was used in all other
domains with electrical conductivity of 5.5 × 10−6 S/m. To
simplify the modeling, we did not consider gas bubbles and
treated the solution as static.
The modeling is based on the governing equation:

∂ ∇·
∂

= −∇·D
t

J
( )

(1)

where D is electric flux density and J is the electric current
density.
The electric current density is expressed by

σ=J E (2)

where σ is the electrical conductivity and E is electric field. The
electric flux density (D) is also expressed by

= ϵ ϵD E0 r (3)

where ϵ0 is the vacuum permeability and ϵr is relative
permeability. The system was electrically insulated on all
boundaries. 786 V across the two reservoirs was applied.

■ RESULTS AND DISCUSSION
We designed a two-layered microfluidic electric lysis chip
(Figure 1). There were two inlets and one outlet. The depth of
channels and chambers in the fluidic layer was 10 μm with the
exception of the shallow channels (having a depth of 2 μm).
Prior to the experiment, the device was primed by flowing
water in via both inlets, removing debris and bubbles.
Microscale silica beads (d ∼ 4.8 μm, SS05N, Bangs
Laboratories, Fishers, IN) and mycobacterial cells (M.
smegmatis) then flowed into the device via inlet 1, while
keeping valve 2 closed. A 20 μL mixture of beads and cells (∼2
× 107 cell/mL) was packed against the downstream shallow
channel to form a packed bed in the electrolysis channel with
mycobacterial cells trapped inside. In our experiment, roughly 2
× 105 cells were captured in the electrolysis channel each time
and loading of cells and beads was stopped by closing valve 1.
Two platinum (Pt) electrodes were inserted in the inlet 2 and
the outlet for application of electric pulses. Valve 1 was closed
and there was a flow of 1 μL/min coming in from inlet 2 during
the application of the electric pulses.
Compared to electric lysis of bacterial cells such as E. coli,18,25

electric lysis of M. smegmatis required significantly longer pulse
duration and higher field intensity. Several features of our
device and operation were designed to accommodate these
requirements. First, we found that even low-conductivity buffer
(e.g., 1 mM MgSO4, 8 mM Na2HPO4, 2 mM KH2PO4, and 250
mM sucrose) used in our previous works26−30 generated too
many bubbles when the field intensity was >2000 V/cm). Thus,
we flowed ultrapure water (RNase-free) during the application
of electric pulses. Second, we applied a flow of 1 μL/min
(coming from inlet 2) during application of electric pulses. The
flow carried away generated heat and bubbles during the
operation. Finally, we programmed the LabVIEW code and
designed an H-bridge circuit (including four relays) so that the
direction of the electric field was alternated after each pulse (of
5s duration). This was to prevent significant local pH change
due to electrolysis of water associated with long pulses.
Other than the channel dimensions and the voltage applied,

the field intensity of the pulses was affected by the presence of
nonconductive beads. There was a substantially higher
resistance associated with the packed bed of beads than that
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of the same channel segment without the beads. We used
COMSOL Multiphysics to model the field intensity within the
packed bed (Figure S2). We show that the presence of the
packed bed significantly increased the local field intensity (by
∼3×) (compared to the channel segment without beads).
We used a M. smegmatis strain that expressed green

fluorescent protein (GFP). In Figure 2, we show the process

of bead/cell packing and the electrolysis-based release of
intracellular materials. The initial stopping of beads at the
interface of the shallow channel and the electrolysis channel
(Figure 2a) led to the formation of a packed bed with
mycobacterial cells trapped in the gaps among beads (Figure
2b). The fluorescence emitted from the cells was observed in
Figure 2c before electrolysis and disappeared after electrolysis
by 20, 5 s pulses with a field intensity of 6000 V/cm (Figure
2d), suggesting release of intracellular molecules (also see
Video S1).

We quantified the amount of RNA release by electrolysis
using quantitative reverse transcription polymerase chain
reaction (qRT-PCR). The RNA extraction was quantified by

μ= ×
×

× −
−

−
× − V

mRNAcopy per cell
10 20 L

(1 DNA%)
C((intercept )/slope)

(FI 1581.1)

3.0 10

t

7

(4)

where 1581.1 and 3.0 × 10−7 were parameters extracted from
the working curve in Figure S3. Intercept and slope were
calculated for each mRNA in Figure S4. Ct was the RT-qPCR
signal. The number of GFP-expressing mycobacterial cells
trapped in the packed bed was estimated on the basis of the
amount of emitted fluorescence. The fluorescence intensity
(FI) was the average of 10 z-stacking images that covered the
entire depth of the packed bed (taken after the GFP-expressing
mycobacterial cells occupied the packed bed). DNA% was the
fraction of a mRNA copy per cell value contributed by DNA
(Figure S5). Packed bed volume (V) was calculated by

μ μ= × ×V lengthof packed bed 200 m 10 m (5)

We characterized RNA extraction efficiency by the
electrolysis protocol under various pulse numbers (2 to 30
pulses, all at 6000 V/cm) and field intensities (4000−8000 V/
cm, all with 30 pulses) (Figure 3). We quantified the copy
number per cell for 4 representative mRNAs in the cell lysate

Figure 2. Procedure for microfluidic electrolysis of M. smegmatis. (a)
Bright field image shows that beads were stopped by the shallow
channel and started to accumulate in the electrolysis channel. (b)
Bright field image shows the formation of packed bed of beads/M.
smegmatis cells. (c) Fluorescence image shows the GFP expressing M.
smegmatis cells before electrolysis. The packed bed roughly contained
2 × 105 cells. (d) Fluorescence image after electrolysis (30 pulses of
6000 V/cm and 5 s each).

Figure 3. Release of mRNA under various conditions forM. smegmatis.
The released copy number per cell for 4 mRNAs was quantified using
qRT-PCR (n = 3). The copy per cell values for microfluidics-produced
samples were calibrated by deducting the fraction generated by DNA
templates in the cell lysate (Figure S5). (a) The effect of pulse
numbers and comparison to bead beating. Various numbers of pulses
(5 s duration for each pulse with 6000 V/cm intensity) were applied.
(b) The effect of pulse intensity. In each case, 30 pulses (5 s each)
were applied.
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under various electric lysis conditions and compared them with
those with bead beating (i.e., the conventional lysis method).
The number of cells in the electrolysis channel was quantified
by fluorescence, as shown in Figure S3. RNA quantification was
based on standard curves established using in vitro transcribed
RNAs, which offered more accuracy than using bulk RNA,
cDNA, or DNA-based quantification.31 Figure 3a shows that
there was no substantial release of mRNA (under 2 or 4 pulses
at 6000 V/cm) until the number of pulses increased to 10. The
amount of mRNA release increased with higher number of
pulses (from 10 to 20 and 30). Some genes experienced a
drastic increase with the number of pulses (e.g., SigA from 6.3
copies/cell at 10 pulses to 16.9 and 20.7 copies/cell at 20 and
30 pulses, respectively, and ClpX from 3.0 copies/cell at 10
pulses to 12.6 and 18.7 copies/cell at 20 and 30 pulses). The
results suggest that a significant number of pulses (or total
electrolysis duration) was required to create sufficient cell wall
damage for M. smegmatis and complete release of intracellular
RNAs. Overall, electrolysis provided significantly more
complete release of intracellular mRNAs than the current
state of the art (i.e., bead beating). We release a factor of 18 and
10 more RNA molecules with 30 pulses than bead beating, for
SigA and ClpX, respectively. Furthermore, we also examined
the effect of the pulse intensity. As expected, increased field
intensity of the pulses from 4000 to 6000 V/cm increased the
mRNA release significantly for all genes examined (when the
number of pulses was kept at 30). However, a further increase
from 6000 to 8000 V/cm did not produce significant additional
increase. This indicates that, with 30 pulses at 6000 V/cm, the
release of mRNA was fairly complete. Further increase in the
field intensity or duration did not produce better results and
could potentially lead to loss of integrity and function for
mRNA due to heating.
Our results demonstrate that electrolysis of hard-to-lyse

mycobacterial cells can be conducted with high efficiency under
ultrahigh field intensity in a microfluidic device. Our micro-
fluidic lysis protocol takes less than 30 min for each sample
(including cell capture, lysis, and elution) and may potentially
be run in parallel for high throughput of samples. Our
microfluidic platform offers advantages for handling small
quantities of cells and integration with downstream assays.
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