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5Department of Biosciences, Åbo Akademi University, Turku, Finland

Correspondence: Alberto Pessia (alberto.pessia@helsinki.fi)

DOI: 10.1099/mgen.0.000025

The recent growth in publicly available sequence data has introduced new opportunities for studying microbial evolution and

spread. Because the pace of sequence accumulation tends to exceed the pace of experimental studies of protein function

and the roles of individual amino acids, statistical tools to identify meaningful patterns in protein diversity are essential. Large

sequence alignments from fast-evolving micro-organisms are particularly challenging to dissect using standard tools from

phylogenetics and multivariate statistics because biologically relevant functional signals are easily masked by neutral vari-

ation and noise. To meet this need, a novel computational method is introduced that is easily executed in parallel using a

cluster environment and can handle thousands of sequences with minimal subjective input from the user. The usefulness of

this kind of machine learning is demonstrated by applying it to nearly 5000 haemagglutinin sequences of influenza

A/H3N2.Antigenic and 3D structural mapping of the results show that the method can recover the major jumps in antigenic

phenotype that occurred between 1968 and 2013 and identify specific amino acids associated with these changes. The

method is expected to provide a useful tool to uncover patterns of protein evolution.

Keywords: data clustering; protein evolution; sequence analysis.

Abbreviation: HA, haemagglutinin.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary

data files.

Data Summary

1. Supplementary Text S1 has been deposited in figshare:
10.6084/m9.figshare.1334296

2. Supplementary Tables S1–S3 have been deposited in
figshare: 10.6084/m9.figshare.1334294

3. Supplementary Fig. S1 has been deposited in figshare:
10.6084/m9.figshare.1334297

4. Supplementary Video S1 has been deposited in fig-
share: 10.6084/m9.figshare.1334293

Introduction

The growth in microbial genome sequence data, driven by
decreasing sequencing costs and the integration of sequen-
cing into routine clinical microbiology (Köser et al., 2012;
Reuter et al., 2013), has begun to revolutionize our under-
standing of microbial evolution and spread. However,
the pace of sequence accumulation generally exceeds
the pace of experimental studies of protein function.Received 8 April 2015; Accepted 8 June 2015
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This relationship holds not only for recently emerged
pathogens (Cotten et al., 2013; Gire et al., 2014), but also
for intensively studied pathogens, such as influenza
(Gong & Bloom, 2014; Worobey et al., 2014). Tools to ana-
lyse such large datasets and provide targeted guidance in
inferring phenotypically meaningful groups can therefore
be useful to identify amino acid sites and proteins that
play critical roles in pathogen biology and evolution.
These sites are potential targets for diagnostics, thera-
peutics and vaccines.

Large sequence alignments are challenging to dissect using
standard tools from phylogenetics and multivariate stat-
istics. When the datasets comprise hundreds to thousands
of sequences, trees become increasingly crowded and iden-
tifying meaningful information is difficult. In contrast,
basic statistical procedures such as principal components
analysis, hierarchical clustering or k-means (Hastie et al.,
2009) can provide a compressed view into the data with
relative ease. However, the use of such unfocused methods
for extracting information is problematic when the biologi-
cally relevant signals are masked by noise introduced due
to sequencing errors or functionally neutral variation.
This is the situation for fast-evolving organisms where
many changes rapidly accumulate across proteins but
only a subset of them actually show signs of selection.

Model-based statistical methods have a clear advantage
over the generic approaches when the model is structured
to infer biologically relevant information. For microbial
proteins one important question is which isolates or strains
constitute phenotypically distinct groups, distinguished by
specific amino acids fixed by selection. It is also useful to
know which positions and amino acids are probably
directly under selection. Statistically, these questions corre-
spond to the task of simultaneously clustering a protein
sequence alignment in two ways, by the rows to identify
the relevant groups of strains and by the columns to ident-
ify which amino acid positions define the clusters. As both
the number of groups and the relevant sequence positions
are often unknown, statistical inference is required. Baye-
sian modelling is particularly well suited for such model
selection problems, as by specifying probabilistic prior
information for the unknowns in the model, one can effi-
ciently focus the search and avoid overfitting.

Previous studies (Aguas & Ferguson, 2013; Meroz et al.,
2011) have partially solved the above-discussed problem
by supervised machine learning techniques. Within this
related setting, genetic determinants are identified con-
ditional on a known classification of the sequences.
To our knowledge, no statistical machine learning
method has yet addressed the problem of identifying
most relevant sites and amino acids without knowing a
priori how the sequences are grouped.

We introduce here a Bayesian method (K-Pax2) that can
handle thousands of sequences with minimal subjective
input from the user. Our approach is based on a two-
way clustering model inspired by an earlier method

(K-Pax) for clustering single protein sequence alignments
from distant homologues to identify substructure within
a protein superfamily (Marttinen et al., 2006). Our current
method possesses two significant improvements over the
original K-Pax, one related to accuracy and the other to
the technical specifications of the priors and model.
These changes permit the method to be used to study a
large number of closely related sequences as well as several
proteins simultaneously. A useful feature of our model
definition is that it enables an analytically obtainable Baye-
sian score of model fitness. This feature permits the use of
parallel computation in model optimization, as the scores
are directly comparable from independent optimization
runs without approximation errors caused by, for example,
Monte Carlo methods.

The haemagglutinin (HA) of influenza A/H3N2 possesses
features that make it an ideal test case to demonstrate
the function and applicability of K-Pax2 to large align-
ments. Thousands of A/H3N2 HA sequences are available
in public databases (Bao et al., 2008; Benson et al., 2005;
Bogner et al., 2006; Squires et al., 2012). In addition, the
detailed structure and evolution of HA have been investi-
gated by phylogenetic inference and direct experiments
(Bedford et al., 2014; Bizebard et al., 1995; Fleury et al.,
1999; Knossow et al., 2002; Koel et al., 2013; Smith et al.,
2004; Suzuki, 2006; Wolf et al., 2006).

HA is a homotrimeric integral membrane protein on the
surface of the influenza virion and the primary target of
the neutralizing immune response against influenza. HA
binds sialic acid receptors on the surface of cells and,
once bound, promotes viral entry by fusion of the viral
envelope with the endosome membrane. The tertiary struc-
ture of HA indicates that there are two main domains:
a variable globular head (HA1) that contains the sialic
acid binding sites and a conserved stalk region (HA2)
involved in membrane fusion (Skehel & Wiley, 2000).

Since its introduction in 1968, the A/H3N2 HA has under-
gone rapid evolution that is associated with short coalesc-
ent times, a ladder-like phylogeny and regular antigenic

Impact Statement

Large sequence databases have introduced new
opportunities to explore patterns of microbial evol-
ution. This paper introduces the first fast model-
based machine learning method targeted to identify
genomic positions that are likely to display non-
synonymous variation due to selection pressure.
The method is widely applicable to aid in generation
of hypotheses for experimental work and to pinpoint
plausible candidates for further study and data acqui-
sition. Results on influenza A/H3N2 highlight the
potential to significantly advance the process towards
understanding the mechanisms linked to the success
of major pathogens.
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change (Bedford et al., 2014; Fitch et al., 1991; Smith et al.,
2004). The HA1 domain is the predominant site of influ-
enza’s antigenic evolution. Mutations in exposed epitopes
demonstrate strong selective pressure to escape antibodies
(Fitch et al., 1991; Suzuki, 2006), and tend to predominate
along the trunk of the phylogenetic tree. However, there is
also evidence of positive selection at CD4+ and CD8+T-
cell epitopes (Suzuki, 2006) and for the addition of N-
linked glycosylation sites (Suzuki, 2011). Here, we use
the K-Pax2 method to analyse thousands of influenza A/
H3N2 HA sequences to evaluate the success of the algor-
ithm in identifying amino acid positions known to play
key roles in the function of HA.

Theory and Implementation

A two-way clustering model for identifying groups
of viral strains under diversifying or directional
selection

Let S5(s1, . . . , sn) denote a multiple sequence alignment of
concatenated amino acid sequences for the coding regions
extracted from n virus samples. Each alignment element
thus belongs to the alphabet A representing the set of
amino acids, including the gap symbol. The length of the
aligned sequences is denoted by L. For the purpose of obtain-
ing a model family and an inference algorithm that can effi-
ciently capture signals of diversifying and directional
selection from S, we transform the multiple sequence align-
ment into an n £ LjAj binary matrix, where each column
corresponds to an indicator variable of a particular element
inA being observed at position l. Prior to any inference, all
columns with exclusively zero elements are removed from
the analysis because they are uninformative for the statistical
model introduced here. The resulting binary matrix X is
assumed to be of dimension n|m.

In a set notation, let N ¼ {1; . . . ; n} denote the collection
of integer labels for the n virus strains. Let
W5{w1, . . . , wK} denote an assignment of the n strains
into K mutually disjoint non-empty clusters, where wK

represents the set of labels of the units associated with clus-
ter k. Formally, the K non-empty subsets w1, . . . ,wK define
a partition of the sequences such that

k
<wk ¼ N

and wk > wk9 ¼ {B}, ;k – k9. In our model formulation
each of the K clusters is assumed to correspond to a
group of strains that has evolved under diversifying or
directional selection pressure and consequently prolifer-
ated given the fitness improvements induced by non-
synonymous changes that are of functional importance at
the protein level. The sequence locations of such changes,
the number of groups K and the explicit assignment of
strains into the groups are all unknown parameters of
our model to be inferred from the matrix X.

Non-synonymous changes in viral strains that are free
from diversifying selection pressure will fluctuate in fre-
quency in the population due to drift, but they are not

in general expected to be rapidly driven to fixation unless
they are tightly linked to other sites that are under selec-
tion. We assume that the non-synonymous mutations
that do not induce fitness changes will occur at a constant
rate throughout the population. This can be translated into
the statistical approximation that for the n sampled strains,
functional neutrality corresponds to a fixed probability of
observing a particular residue in a given sequence position
across all the K clusters:

Pr{Xij ¼ 1ji [ wk} ¼ hj

for all i [ wk and for all k51, . . . , K. Thus, from the clus-
tering perspective, any column j ( j51, . . . , m) in X is con-
sidered as ‘noise’ if the above probability is constant across
groups. Conversely, we define a column j to represent a
putative ‘selection signal’ if there are at least two groups
for which the corresponding probability is different:

Pr {Xij ¼ 1ji [ wk} – Pr Xi9j ¼ 1ji9 [ wk9

� �
for all i [ wk, and i9 [ wk9 and for some k ? k9. Such signals
are only putative, as random drift could still explain a
difference in the residue composition between two clusters.
In addition, more rigid probabilistic restrictions must be
imposed on the model structure to ensure that the group-
ing W and the identities of the selected sites become jointly
identifiable and convey a biologically meaningful extrac-
tion of information from the alignment S. Note that resi-
dues that remain unchanged in the whole virus
population over long periods of time ostensibly due to
strict functional constraints on the protein structure are
also uninformative for the purpose of identification of
sequence clusters, as they correspond to fully conserved
sites in the alignment S.

Under relatively strong selection pressure, non-synon-
ymous changes that are associated with an increase in fit-
ness should rapidly rise in frequency, leading to the
formation of a novel group of strains. Similar to the neu-
tral changes considered previously, this assumption can be
translated into a statistical approximation that implies that
we expect for each cluster k at least a single column j to be
present in X such that

Pr {Xij ¼ 1ji [ wk} < 1 ^ Pr Xi9j ¼ 1ji9 � wk

� �
< 0 ð1Þ

These residues are defined as ‘characteristic’ for cluster k
and represent significant signals of selection. In summary,
a site–amino acid pair (column of X) can then be con-
sidered either noise (h51), a weak signal (h52) or a
strong signal (h53). It can be further classified as of no
particular status (r51) or characteristic (r52) for a cluster.
Column classification can accordingly be encoded by a col-
lection of binary variables zjhrk attaining value 1 if and only
if column j ( j51, . . . ,m) has property h (h51, 2, 3) with
status r (r51, 2) in cluster k (k51, . . ., K), and attaining
value 0 otherwise. Let the array Z represent the collection
of binary variables zjhrk over all the index values. The
pair (W,Z) then contains all the main parameters of inter-
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est in our model. However, its full probabilistic character-
ization requires a set of additional nuisance parameters
that are defined below.

Likelihood function

Assuming conditional independence of the elements of X
given both the main and the nuisance parameters of the
model, we obtain the following expressions:

pðX jW ;ZÞ ¼
YK
k¼1

pðX kjwk;Z kÞ

where Xk is the binary data matrix associated with cluster k
of size nk, and subsequently

pðX kjwk;Z kÞ ¼
Ym
j¼1

pðxkjjwk;Z jkÞ

where xkj is the binary vector for cluster k at column j,
while Zjk is a 3 £ 2 binary matrix such that

h

P
r

P
zjhrk ¼ 1. Defining the columns as statistically inde-

pendent may be interpreted as a very strong assumption.
However, note that their stochastic nature is already
addressed through the prior distribution. Concern could
arise for phenomena such as hitchhiking, where sites
could be genetically linked and thus present at similar fre-
quencies. Such cases can be easily addressed when post-
processing the results from model optimization.

We define the (prior) predictive probability

pðxkj jwk;Z jkÞ ¼
ð1
0

pðhjZ jkÞ
i[wk

Y
gðxij jhÞdh ð2Þ

where gðxjhÞ is the Bernoulli distribution and pðhjZ jkÞ is
the conjugate Beta distribution for its parameter h, which
is explicitly conditioned on the property and status of
column j in cluster k. All these Bernoulli parameters are
nuisance parameters in the model, as their explicit values
are not a target of inference. Hence, in accordance with
standard conventions in Bayesian statistics, they are inte-
grated out from the likelihood to obtain the marginal pos-
terior distribution for the parameters of interest. Note that
according to this formulation sequences belonging to the
same cluster are not statistically independent, whereas
sequences belonging to different groups are. For
zjhrk ¼ 1, standard Bayesian calculation (Bernardo &
Smith, 2000) shows that equation 2 is equal to the ratio
of Beta functions

Bðajhrk þ ykj ; bjhrk þ nk 2 ykjÞ
Bðajhrk; bjhrkÞ ð3Þ

where ajhrk and bjhrk are the hyperparameters of the Beta
distribution and ykj ¼

i[wk

P
xij is the number of values

equal to unity observed in cluster k at column j.
To simplify the notation, we denote the probability in

equation 2 as pjhrk . The likelihood function can now be
compactly rewritten as

pðX jW ;ZÞ ¼
Ym
j¼1

Y3
h¼1

Y2
r¼1

YK
k¼1

p
zjhrk
jhrk ð4Þ

Prior distributions

Let pðW ;ZÞ ¼ p Wð ÞpðZ jW Þ be the joint prior distribution
for the partition W and the column classification Z. For
computational simplicity, similar to Marttinen et al.
(2006, 2009), we define the prior distribution for W as
the uniform distribution for which

pðW Þ / 1

There are alternative prior distributions for data partitions
that directly penalize an increase in the number of clusters,
such as a uniform distribution for the number of clusters K
used in the hierBAPS software (Cheng et al., 2013) or the
Dirichlet process prior (Jain & Neal, 2007; Neal, 2000).
However, because we use a strongly informative prior dis-
tribution for the parameters in Z, which penalizes spurious
clusters, the uniform prior onW does not lead to problems
with overestimation of K, as illustrated for a related clus-
tering model by Marttinen et al. (2009).

To define the conditional prior distribution for Z, we follow
a hierarchical approach. Let c5(c1, c2, c3)

T denote our
prior probabilities for a column to represent noise, weak
signal or strong signal, respectively. Then, ch ¢ 0 and

h

P
ch ¼ 1ðh ¼ 1; 2; 3Þ. Note that these properties are

column-specific and they are not affected by any particular
partition under consideration. Also, note that the array Z
satisfies

X2
r¼1

zjhrk ¼ zjh:k ¼
1; if j has property h

0; otherwise

(
ð5Þ

from which we obtain

X2
r¼1

XK
k¼1

zjhrk ¼ zjh:: ¼
K ; if j has property h

0; otherwise

(

and consequently zjh../K can be interpreted as an indicator
variable, taking value 1 if and only if column j has the
property h. Assuming the columns to be stochastically
independent from each other, motivated by the lack of
any prior information about their relationships, we start
by writing

pðZ jW Þ ¼
Ym
j¼1

Y3
h¼1

chpðZ jhjW Þ� � 1
K
zjh:: ð6Þ

where Zjh is a 2 £ K binary matrix satisfying equation 5.
The matrix Zjh is then modelled by K independent multi-
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nomial distributions

pðZ jhjW Þ ¼
YK
k¼1

Y2
r¼1

v
zjhrk
hr ð7Þ

where vhr is the prior probability of observing status r
when a column has property h. Inserting equation 7 into
equation 6, we finally obtain

p W ; Z
� �/Ym

j¼1

Y3
h¼1

Y2
r¼1

YK
k¼1

c
1
K

hvhr

h izjhrk ð8Þ

where we used the equality zjh::zjhrk ¼ Kzjhrk .

Posterior inference

By multiplying the right-hand side of equation 4 and
equation 8, we obtain the joint posterior distribution of
the main parameters up to a normalizing constant

pðW ; Z jX Þ /
Ym
j¼1

Y3
h¼1

Y2
r¼1

YK
k¼1

c
1
K

hvhrpjhrk

h izjhrk
We estimate the pair (W, Z) using the mode of the pos-
terior distribution

W ; Z
� � ¼

ðW ;ZÞ
argmaxpðW ; Z jX Þ

which is equivalently obtained by maximizing the log
posterior while ignoring the constant term:

Xm
j¼1

X3
h¼1

X2
r¼1

XK
k¼1

zjhrk log c
1
K

hvhrpjhrk

� 	
ð9Þ

Let W represent the set of all the possible partitions of N
and let ZW denote the set of all the possible classifications
of the columns (conditional on the underlying partition).
The cardinality of the parameter space is easily determined,

as Wj j is equal to the Bell number Bn, whereas
ZWj j ¼ ð2þ 2K Þm. For a discrete posterior distribution
over a space of such high cardinality and complex top-
ology, it is unlikely that any standard Markov chain
Monte Carlo approach would be able to efficiently explore
the distribution and estimate the mode using a reasonable
amount of computational time. Therefore, we have devel-
oped a greedy optimization algorithm for fitting the model
to a multiple sequence alignment. An advantage of the ana-
lytical tractability of the model is that any two model
structures can be compared using the difference in log pos-
terior, and hence estimates from multiple independent
parallel or sequential algorithm runs can be ranked in a
straightforward manner. Similarly, posterior uncertainty
around the mode estimate can be easily numerically sum-
marized, for example using Bayes factors against neigh-
bouring model configurations.

An explanation of how to obtain default values for the
prior hyperparameters and a description of the greedy
algorithm can be found in Supplementary Text S1.

Data collection

Data collection followed a multi-stage approach. First,
12 295 A/H3N2 HA protein sequences were downloaded
from three different search engines: NCBI’s Influenza
Virus Resource (Bao et al., 2008), GISAID EpiFlu Database
(Bogner et al., 2006) and Influenza Research Database
(Squires et al., 2012). Our search query consisted of full-
length A/H3N2 HA proteins, collected from human hosts
in any country, excluding laboratory strains and mixed sub-
types. In the second stage, we scanned the data for duplicates
and low-quality reads and, after removing them from the
collection, we aligned the data using MUSCLE (Edgar,
2004). After again removing duplicates, the dataset consisted
of 4898 unique strains of 567 amino acids. The complete list
of accession numbers is given in Table S1.

2010

2000

1990

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Cluster

313233343536373839404142434445464748495051525354555657

Ye
ar

1980

1970

Fig. 1. Temporal distribution of influenza A/H3N2 HA within each K-Pax2 cluster. Groups are sorted by sampling year of the earliest con-
sensus sequence.
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3-D mapping of characteristic amino acid
changes

The amino acid positions that correspond to characteristic
amino acid changes were mapped to the crystal structure of

the influenza virus HA (PDB ID 1HA0). Structurally rel-
evant mutations occurring between two consecutive clus-
ters are shown as yellow spheres. The resulting sequence
of mapping images were rendered in PyMol and the
image sequence was then encoded into a video file using
MEncoder v.4.8.3 and the H.264 compression format.

Broad overview of K-Pax2 output

To obtain a reliable estimate of the model parameters, we
ran the optimization algorithm 100 times from different
starting points and chose the solution with the highest pos-
terior probability. The starting points were created by ran-
domly modifying, through merging and splitting
operations, a common k-medoids partition (Hastie et al.,
2009). The value for k was chosen according to the highest
posterior probability score. This procedure generated
initial partitions lying in a neighbourhood of the optimal
solution and allowed the algorithm to converge in less
than 6 h (2.6 GHz processor with 2 GB RAM). The optimal
model allocated the 4898 sequences into 57 different
groups while simultaneously detecting 117 (out of 567
possible) cluster-defining sites. As a comparison, the
adjusted Rand index between our solution and the k-
medoids partition with the same number of clusters is
0.824. The two partitions are very similar and their discre-
pancy is completely explained by a small rearrangement of
the units. This result can be interpreted by noting that
Kpax2 gives different weights to matrix columns, whereas
standard clustering techniques do not make any distinction
between noise and signal sites.

To understand the groups’ chronologies, we first selected,
within each group, only those strains possessing the
whole set of characteristic amino acids. We will call these
strains the ‘consensus sequences’ of the cluster, as they rep-
resent the molecular variation most relevant for selection.
Based on the earliest year in which the consensus sequence
was identified, we ordered the groups according to their
appearance. Fig. 1 summarizes the temporal distribution
within each cluster, showing a clear relationship between
cluster associations and sampling time. A similar temporal
pattern can be observed by overlaying the clusters on a
maximum-likelihood phylogenetic tree (Fig. 2). Because
more samples are available from the recent past, we achieve
higher resolution clustering of samples from the past sev-
eral years compared with, for example, samples from
1968 to 1972.

As shown in Table S2, each virus group is associated with a
particular subset of the 117 sites. The cluster-defining
amino acids can be interpreted as a fingerprint of the fit-
ness change that did lead to proliferation of the lineage
represented by the cluster.

Core evolution of the HA protein

To facilitate comparison with HA evolution, we performed
a phylogenetic analysis of the fingerprint amino acid

1968 1973 1980 1990 1996 2001 2005 2010 2013

0.025

Fig. 2. Maximum-likelihood phylogenetic tree of influenza A/H3N2
HA. K-Pax2 clusters are denoted in the tree as different colours.
The scale bar indicates the expected number of substitutions per
site.
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change patterns discovered by the method. There can exist,
in particular with densely sampled data from co-
circulating groups of strains, multiple clusters of which
only one successfully seeds the next cluster. Therefore, we
identified a parsimonious ‘core’ set of groups defined to

have the following characteristics. First, their age or time
of emergence is determined by the first sampling date of
their consensus sequence (as previously defined). Second,
a core cluster can have only a single ancestral core cluster
but potentially multiple descendant clusters, some of

A/beijing/1/1968

A/Bilthoven/21793/1972

A/Bilthoven/1761/1976

A/Texas/1/1977

0.02

9 10
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24 23 21
25

26

30
29 32 34

38
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40
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48
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5053

9: AParis/417/1991
10: A/England/260/1991
13: A/Netherlands/241/1993
14: A/New York/659/1994

17: A/New York/592/1996
18: A/New York/565/1996

16: A/Malaysia/10360/1996

19: A/Malaysia/10877/1996
21: A/Malaysia/12904/1997
22: A/Hong Kong/1179/1999

32: A/Hong Kong/CUHK33677/2004

47: A/Hong Kong/1775/2010
45: A/Algeria/G53/2009
44: A/Hawaii/15/2009
43: A/Philippines/2191/2009
41: A/Texas/91/2007
40: A/Wisconsin/03/2007
38: A/Madagascar/2699/2006
37: A/Hong Kong/CUHK65241/2006
35: A/Hong Kong/HKU69/2005
34: A/Malaysia/29930/2004

23: A/New South Wales/25/2000
24: A/Hong Kong/CUHK13048/2001

30: A/Denmark/107/2003
54: A/Cote d’lvoire/GR1542/2010
53: A/Peru/PER065/2010
52: A/Netherlands/034/2010
51: A/colombia/6722/2010
50: A/Wisconsin/23/2010

48: A/Florida/19/2010
49: A/Riyadh/01/2010

29: A/Queensland/40/2003
26: A/Queensland/19/2001
25: A/New York/273/2001

5447

A/Bangkok/1/1979

A/Memphis/33/1983

A/Memphis/5/1988
A/Netherlands/620/1989
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Fig. 3. Phylogeny of influenza A/H3N2 HA as a phylogeny of K-Pax2 clusters. Ancestors are defined as the minimum (average) genetic
distance groups, at least 1 year older. Each cluster is labelled by its earliest consensus sequence. Highlighted clusters connecting the
viruses observed in 1968 to the most recent ones are the ‘core’ clusters. The scale bar indicates the expected number of substitutions
per site.
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Fig. 4. Maximum-likelihood phylogenetic tree of influenza A/H3N2 HA, restricted to core cluster consensus sequences. The 23 strains
are the core clusters’ earliest consensus sequences. The scale bar indicates the expected number of substitutions per site.
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which may not be core clusters themselves. Third, a core

cluster can descend only from an ancestral core cluster

that precedes it by at least 1 year. In addition, we assumed

that no recombination has occurred.

The above criteria led to the discovery of 23 core clusters

among the 57 clusters present in the K-Pax2 output.

We computed the genetic distance between clusters as

the average distance between their consensus sequences

using the corrected distance proposed by Tamura &

Kumar (2002) and the usual p-distance (Nei & Kumar,

2000). Both measures agreed. The tree in Fig. 3 was recon-

structed by choosing, for each group, the ancestor associ-

ated with the minimum distance. The core clusters can

be interpreted as the backbone clades of the A/H3N2 HA

phylogeny, connecting the viruses observed in 1968 to

the most recent ones. The classical ladder shape of the phy-

logenetic tree is conserved when only one consensus

sequence per core cluster is used (Fig. 4). These cluster

transitions closely resemble those reported by Smith et al.

(2004) based on a carefully curated set of sequences,

which represents less than 10 % of the data analysed

here. The evolutionary relationships among all the 57 clus-

ters are shown in Fig. S1.

Figure 5 shows how the characteristic sites of the core clus-

ters have evolved over time. This reflects the dominant role

of the B-cell epitopes in contrast to T-cell epitopes (Suzuki,

2006). To quantify the distribution of these changes over

time, we calculated unadjusted estimates of mutation
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Fig. 5. HA1 chain characteristic sites and their changes across the 23 core clusters. Vertical grey bars indicate cases where the previous
characteristic amino acid in the sequence position has not mutated to a new value. White in any position indicates that the amino acid is not
determined as characteristic. All other colours correspond to specific amino acids. Abscissae indicate residues’ position along the HA protein.
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rates in each epitope and elsewhere in HA1 (Table 1). Anti-

genic drift is thought to occur when an average of four

amino acid changes accumulates over time (Koel et al.,

2013). Many of the cluster transitions in Fig. 5 agree

with this definition, but some carry fewer substitutions,

which illustrates the usefulness of more flexible, statistical

Table 1. Unadjusted mutation rate estimates, as observed on the HA1 of influenza A/H3N2, by B cell epitope (BCE)

Rates have been estimated as y=ðltÞ, where y is the total number of amino acid changes, l is the length of the region and t is the time difference in

years between two clusters. Independence between sites and homogeneous rates per region are assumed.

Year A B C D E Not BCE HA1 global

1972 0.0263 0.0227 0.0093 0.0122 0.0114 0.0025 0.0076

1976 0.0395 0.0341 0.0185 0.0305 0.0227 0.0013 0.0121

1977 0.1053 0.1364 0.0741 0.122 0.0909 0.005 0.0455

1979 0.0526 0.0682 0 0.0244 0 0 0.0106

1983 0.0132 0.0114 0.0093 0.0183 0 0.0013 0.0053

1988 0.0105 0.0273 0 0 0.0091 0 0.003

1989 0.0526 0 0.037 0 0.0909 0 0.0121

1992 0.0175 0.0758 0.0123 0.0081 0.0152 0 0.0091

1993 0.0526 0 0 0.0244 0 0 0.0061

1995 0.0263 0.0227 0.037 0.0366 0 0 0.0106

1996 0.3684 0.1818 0.0741 0.0732 0.1364 0 0.0576

2001 0 0.0091 0.0074 0 0.0091 0.003 0.0036

2002 0.0526 0.0909 0 0 0.0455 0.005 0.0152

2003 0 0.0909 0 0.0244 0 0 0.0091

2004 0.0526 0 0 0.0244 0 0 0.0061

2005 0 0.0455 0.037 0 0 0.005 0.0091

2006 0.0526 0 0 0 0 0 0.003

2007 0 0 0 0.0244 0 0 0.003

2009 0 0.0455 0.0185 0.0122 0 0 0.0061

2010 0 0.0455 0.1111 0 0 0.0101 0.0182

2012(a)* 0.0263 0 0 0 0 0 0.0015

2012(b)* 0.0526 0.0227 0 0 0 0 0.0045

Global† 0.0311 0.0351 0.0152 0.0161 0.0145 0.0014 0.0092

*Mutations since 2010.

† It is unknown which of the two 2012 co-circulating groups will go extinct. The global rate has been computed by arbitrarily choosing cluster
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Fig. 6. Core clusters in antigenic space. Polygon shapes and sizes are dependent on the availability of inhibition assay data.
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model-based rules to pinpoint potential targets for further
attention and experimental work. The inferred changes are
not uniformly distributed over the five epitopes (chi-
squared test, x2519.665, df54, Pv0.001); instead changes
in epitopes B and A are over-represented (in decreasing
order), which matches well with current understanding
of their relative functional importance (Koel et al., 2013).

Figure 6 shows how the core clusters relate to each other in
antigenic space, based on haemagglutination inhibition
assays (Bedford et al., 2014). Many clusters are clearly dis-
tinct from each other, supporting the conclusion that K-
Pax2 successfully identifies meaningful phenotypes. The
pairs of clusters where an overlap occurs represent core
clusters that arise in succession in Fig. 4. This suggests
that our method has high sensitivity to detect changes
that relate to early antigenic separation of strains, making
it potentially also useful for continuous semi-automated
screening of novel antigenic types from sequenced strains.

While K-Pax2 can generate hypotheses about which amino
acids are under selection simply on the basis of sequence
data, the integration of K-Pax2 output and other data
can yield additional hypotheses. Video S1 displays the
characteristic amino acid changes in core clusters
mapped to the 3D structure of HA. The most comprehen-
sive transition occurs in the 1996 group where changes
occurred in all five epitopes, shown as a pronounced
jump in antigenic space (Fig. 6). Interestingly, sequential
changes in core characteristic sites rarely occur in close
proximity, even when within the same epitope. This
raises the possibility that selection tends to favour alterna-
tion across the protein surface, even within a single
domain. Such patterns are consistent with the idea that
HA evades immunity through sequential mutations that
enable escape from different subpopulations (Linderman
et al., 2014; Sato et al., 2004).

Conclusions

There is a widening gap between the number of exper-
imentally validated evolutionary mechanisms and the
abundance of sequence data. Hence, there is demand for
computational tools that can aid in harvesting biologically
meaningful signals from data to guide further research.

Using thousands of publicly available HA sequences from
A/H3N2 since 1968, we demonstrated that a Bayesian
modelling approach can identify patterns of sequence vari-
ation that reflect known existing drivers of A/H3N2 evol-
ution. These results suggest the power of K-Pax2 to
extract evolutionary signals from microbial sequence col-
lections and to provide a critically needed tool to guide
studies of protein function and evolution.

Despite the demonstrated ability of our method to success-
fully explore sequence variation without imposing an
explicit dynamic evolutionary model, there are caveats to
be aware of. Like most statistical methods, the model-
based clustering can be affected by sampling biases of var-
ious kinds. Highly uneven sampling over space and time

will both reduce the power to detect novel variants and
inflate the false positive rate of functionally critical residue
changes. Furthermore, certain evolutionary processes such
as episodic selection can create a pattern that resembles
those implied by positive selection, and hence the inferred
clusters may lack meaningful interpretation in phenotype
space. Furthermore, hitchhiking phenomena due to genetic
linkage may confound the identification of the causal var-
iants as characteristic sites.

K-Pax2 has been implemented as an R package and is freely
available at http://www.helsinki.fi/bsg/software/kpax2/ and
at https://github.com/alberto-p/kpax2.
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