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 CURRENT
OPINION HIV-associated changes in the enteric microbial

community: potential role in loss of homeostasis
and development of systemic inflammation

David B. Gootenberga,b, Jeffrey M. Paera, Jesus-Mario Luevanoa,b,
and Douglas S. Kwona,b,c

Purpose of review

Despite HIV therapy advances, average life expectancy in HIV-infected individuals on effective treatment is
significantly decreased relative to uninfected persons, largely because of increased incidence of
inflammation-related diseases, such as cardiovascular disease and renal dysfunction. The enteric microbial
community could potentially cause this inflammation, as HIV-driven destruction of gastrointestinal CD4þ T
cells may disturb the microbiota–mucosal immune system balance, disrupting the stable gut microbiome
and leading to further deleterious host outcomes.

Recent findings

Varied enteric microbiome changes have been reported during HIV infection, but unifying patterns have
emerged. Community diversity is decreased, similar to pathologies such as inflammatory bowel disease,
obesity, and Clostridium difficile infection. Many taxa frequently enriched in HIV-infected individuals, such
as Enterobacteriaceae and Erysipelotrichaceae, have pathogenic potential, whereas depleted taxa, such as
Bacteroidaceae and Ruminococcaceae, are more linked with anti-inflammatory properties and maintenance
of gut homeostasis. The gut viral community in HIV has been found to contain a greater abundance of
pathogenesis-associated Adenoviridae and Anelloviridae. These bacterial and viral changes correlate with
increased systemic inflammatory markers, such as serum sCD14, sCD163, and IL-6.

Summary

Enteric microbial community changes may contribute to chronic HIV pathogenesis, but more investigation is
necessary, especially in the developing world population with the greatest HIV burden (Video,
Supplemental Digital Content 1, http://links.lww.com/COID/A15, which includes the authors’ summary of
the importance of the work).
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INTRODUCTION

The enteric ‘microbiome’ consists of a diverse collec-
tion of trillions of Bacteria, Archaea, Eukarya, and
viruses [1–5], with a large aggregate genome, referred
to as the ‘metagenome’, that contributes to normal
immune development [6] and a number of patho-
logical processes [7–9]. The host immune system acts
as an essential curator for this luminal enteric
microbial community, serving to shape and control
the structure and function of this diversecollection of
organisms [10–12]. HIV infection leads to the wide-
spread destruction of host immune function [13,14],
including the rapid and profound depletion of CD4þ

T cells within gut-associated lymphoid tissue [15,16].
As could be predicted from the loss of mucosal
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immune cells, a wide range of changes in the enteric
microbial community have been reported during
HIV infection [17,18
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] (Fig. 1 and Table S1, http://links.
lww.com/COID/A16). In light of the role of the
enteric microbiome in many inflammation-associ-
ated pathologies such as diabetes, obesity, and
inflammatory bowel disease (IBD) [7–9], it has been
proposed that HIV-associated microbiome shifts
could contribute to inflammation-related noncom-
municable diseases (NCD) that are responsible for a
large shareof the increasedmortalityobserved during
chronic HIV infection [34–39]. Investigation of
microbial changes associated with HIV infection
has the potential to aid in the development of thera-
peutic interventions that could improve many of the
pathologic consequences of chronic HIV infection.

CHRONIC SYSTEMIC IMMUNE
ACTIVATION IN HIV INFECTION

Despite advancements in HIV antiretroviral therapy
(ART), average life expectancy in HIV-infected

individuals on effective treatment is 14% less than
that of uninfected persons [35]. The ART Cohort
Collaboration Study found that deaths were largely
because of inflammation-related clinical diseases,
such as stroke, long-bone fractures, cardiovascular
disease (CVD), and renal dysfunction [34,35,37,38].
CVD, which constitutes a large proportion of HIV-
associated NCD [40–42], is increased in HIV infec-
tion [43–45] and associated with systemic immune
activation as measured by markers such as serum
IL-6, sCD163, and C-reactive protein [46–51]. In
HIV-uninfected individuals, microbiota-induced
inflammation has been shown to drive CVD patho-
genesis [52–55], suggesting that this disorder could
occur in HIV as well.

Further supporting the connection between
systemic inflammation and chronic pathogenesis,
individuals with the highest degree of persistent
elevated immune activation while on suppressive
ART experience higher overall mortality, even with
CD4þ T-cell reconstitution more than 500 cells/ml
[56,57]. Although systemic immune activation
declines after initiation of ART, it remains persist-
ently elevated in the majority of study participants
even after years of therapy [58–60] and has also been
observed in individuals with undetectable viral
loads [61]. In a cohort of HIV-infected Ugandans,
a 1.6-fold increased hazard of death was associated
with each 10% increase in CD8þ T-cell activation
following initial viral suppression with ART [62].

POTENTIAL ROLE OF HIV-ASSOCIATED
GUT MICROBIAL CHANGES IN HIV
DISEASE PROGRESSION

HIV-associated changes to the enteric microbiome
may lead to systemic inflammation by disrupting
the balance of metabolic functions performed by the
microbiota, such as short-chain fatty acid or bile
acid metabolism [63], or causing increased trans-
location of bacterial products into the systemic
circulation [64]. Elevated plasma kynurenine, a
tryptophan metabolite, has been found to be associ-
ated with CD8þ T-cell activation [65] and mortality
[66] in HIV-infected individuals and HIV infection
was associated with the presence of a gut microbial
community with both the genetic capacity to
metabolize tryptophan into kynurenine and
demonstrable kynurenine production in vitro
[21

&&

]. In a similar paradigm, independent of HIV,
the enteric microbiome can drive CVD pathogenesis
by transforming dietary constituents such as phos-
phatidylcholine and bile acids into reactive inter-
mediates such as trimethylamine N-oxide that can
lead to macrophage and platelet activation, throm-
bosis, and arterial plaque formation [67–71].

KEY POINTS

� HIV-driven destruction of gastrointestinal CD4þ T cells
may disturb the microbiota–mucosal immune system
balance, disrupting the stable gut microbiome and
leading to systemic inflammation and chronic HIV
pathogenesis manifested as NCD such as CVD.

� Comparative enteric microbiota studies between HIV-
infected individuals and uninfected controls have
differed in methods and patient populations studied
and found a wide spectrum of microbial community
differences associated with HIV infection.

� Several overarching themes have emerged from HIV-
enteric microbiome research, including decreased
bacterial community diversity similar to that found in
pathologies such as IBD, obesity, and C. difficile
infection, increases in potential pathogens such as
Enterobacteriaceae and Erysipelotrichaceae, decreases
in commensals such as Bacteroidaceae and
Ruminococcaceae, and increased systemic
inflammatory markers, such as serum sCD14, sCD163,
and IL-6.

� Enteric viral communities also have been found to be
changed in HIV infection, with increased abundance of
pathogenesis-associated Adenoviridae and
Anelloviridae.

� Despite the disproportionate HIV disease burden in the
developing world, the vast majority of HIV-enteric
microbiome research has occurred in developed
countries, potentially impeding the application of these
findings to the population of greatest need.

HIV infections and AIDS
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Early in HIV infection the intestinal mucosa is a
critical reservoir of viral replication and substantial
CD4þ T-cell depletion (80–90%) [72–80]. This
depletion is attributed to the widespread surface
expression of CCR5 on gastrointestinal T cells,
which serves as the coreceptor for HIV entry early
on in infection [13,72]. Because certain lymphocyte
subsets are important to the maintenance of enteric
epithelial integrity (e.g., IL-22-producing ILC3 and
Th17 cells [12,81]), it is believed that such a loss of
immune surveillance may result in impaired intes-
tinal epithelial barrier function, increased gut per-
meability, and the translocation of gut bacterial
products into systemic circulation [16,64]. These

products could trigger persistent systemic immune
activation and drive turnover of CD4þ and CD8þ T
cells leading to clonal exhaustion and progressive
impairment of T-cell function [82]. HIV-associated
chronic systemic immune activation, secondary to a
loss of gut epithelial homeostasis, may then lead to
disease progression in both treated and untreated
HIV infection. This model is supported by data
showing that circulating levels of lipopolysacchar-
ide (LPS), a bacterial product known to elicit an
innate immune response by binding host Toll-like
receptors [83], increase significantly as HIV infec-
tion progresses [84], though initiation of ART lowers
circulating LPS levels [64]. Individuals with both

FIGURE 1. Alterations in the gut microbiota reported in HIV microbiome studies. Black and gray boxes, respectively, indicate
reported increases and decreases in relative abundance. Bracketed letter indicates taxonomic level of classification (e.g., [p]
indicates phylum), parenthetical taxa indicate subtaxa that commonly drive significance of parent taxa. aDysbiosis observed in
HIV-positive subjects with less than 200 CD4þ T cells/mL. Black dashed box outlines the only study to date that investigated
the relationship between gut microbiota and HIV in a sub-Saharan African cohort. bFecal microbiome data only obtained for
HIV seronegative unexposed and exposed infants. cProteobacteria class indicated by corresponding Greek letter (e.g., b for
Betaproteobacteria). Enterobacteriaceae are Gammaproteobacteria [c] within Proteobacteria [p]. ART, antiretroviral therapy.
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treated and untreated HIV infection, however,
exhibit elevated serum levels of bacterial LPS and
systemic inflammation relative to uninfected con-
trols [64,85,86].

BACTERIAL MICROBIOME DIFFERENCES
IN HIV INFECTION
Changes in the composition of the enteric micro-
biome that cause it to deviate from what is con-
sidered a healthy baseline state are often collectively
referred to as ‘dysbiosis’. Dysbiotic states are
thought to underlie many of the pathologies linked
with the microbiota [7–9]. Comparative studies
between HIV-infected and uninfected individuals
have differed in methods and patient populations
studied (Fig. 2 and Table S1, http://links.lww.com/
COID/A16) and found a wide spectrum of differ-
ences associated with HIV infection (Figs. 1 and S1,
http://links.lww.com/COID/A16). However, several
overarching themes have emerged. HIV-infected
individuals often have reduced diversity of their
enteric microbiome, which is also observed in a
number of pathologies such as IBD [87–89], type
1 diabetes mellitus [90], obesity [91], and Clostridium
difficile infection [92,93]. HIV infection also fre-
quently correlates with increased tissue and circu-
lating measures of inflammation (e.g., sCD14, IL-6,
CD38þHLA-DRþCD8þ T cells) [64,85,86], as well
as increases in traditionally pathogenic bacteria
such as Enterobacteriaceae [20

&

,21
&&

,24
&

,29
&&

,31
&&

,
32

&&

,33
&

] and decreases in commensals such as
Lactobacillaceae, Lachnospiraceae, and Rumino-
coccaceae [19,20

&

,21
&&

,22
&

,23
&&

,25
&

,26
&

,28
&&

–30
&&
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32

&&

,94,95].
Taxa from four bacterial phyla – Proteobacteria,

Fusobacteria, Bacteroidetes, and Firmicutes – have
been reported in multiple studies to differ between
HIV-infected and HIV-uninfected individuals. Pro-
teobacteria were more abundant in HIV-infected
individuals in 10 of the 16 published studies whereas
others reported no change [17,18

&&

,19,20
&

,21
&&

,22
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23
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,27
&

,30
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]. The phylum Proteobac-
teria includes numerous pathogens, such as Shigella,
Salmonella, and Helicobacter. Many specific Proteo-
bacteria genera have been shown to be enriched in
HIV-infected individuals and are capable of poten-
tially pathogenic activities in this context [96]: Pseu-
domonas [21

&&

,95] is an opportunistic pathogen that
is capable of impairing host mucus production
[97,98]; Desulfovirbrio [17] can produce hydrogen
sulfide compounds and inflame the host epithelium
[99]; Acinetobacter [23

&&

] can produce LPS [100] and
in vitro is able to induce IL-8 production and neu-
trophil recruitment that could lead to inflammatory
tissue damage [101,102]; and Campylobacter [20

&

]

produces multiple toxins [103] that can induce
mucosal inflammation [104]. The Proteobacterial
family Enterobacteriaceae is associated with inflam-
mation [105,106] and was enriched in HIV-infected
individuals in seven of the 16 studies surveyed
[20

&

,21
&&

,24
&

,29
&&

,31
&&

,32
&&

,33
&

] (most frequently
driven by its constituent genus Escherichia, which
is capable of pathogenic bile acid transformations
and degradation of host mucus [98,107]). The phy-
lum Fusobacteria, which is of particular interest
because of its previous associations with intestinal
inflammation and colorectal cancer [108–110], was
enriched (most frequently driven by its constituent
genus Fusobacterium) in HIV-infected individuals
in four of the 16 previously published studies
[19,20

&

,22
&

,32
&&

].
Taxa in the phylum Bacteroidetes, including the

families Prevotellaceae, Porphyromonadaceae, Bac-
teroidaceae, and Rikenellaceae, exhibited a more
heterogeneous pattern of changes in HIV-infected
individuals. The family Prevotellaceae (most fre-
quently driven by its constituent genus Prevotella)
was enriched in HIV-infected individuals in seven of
16 studies [17,18

&&

,20
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,23
&&

,26
&

,27
&

,28
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&

] and
depleted in one study [31

&&

]. Taxa within the family
Prevotellaceae have been associated with inflam-
mation (particularly in the context of autoinflam-
matory disease [111,112]) and activation of gut
dendritic cells [28

&&

], but a greater abundance of
Prevotellaceae is also characteristic of the baseline
enteric microbial community of healthy individuals
in developing world countries such as Burkina Faso,
Venezuela, Malawi, or Papua New Guinea [17,113–
117]. Taxa from the family Porphyromonadaceae
(most frequently driven by the genera Barnesiella
or Odoribacter) were generally depleted in HIV-
infected individuals, exhibiting a decrease in nine
of 16 studies [17,18

&&

,20
&

,21
&&

,22
&

,23
&&

,30
&&

–32
&&

,33
&

]
and an increase in two studies [19,24

&

]. Independent
of HIV, Porphyromonadaceae exhibit a diverse and
complex array of functions, with both positive
[110,118,119] and negative [119] associations with
colorectal cancer, and negative associations with C.
difficile [120–122], Salmonella [123], vancomycin-
resistant Enterococcus [124], and Citrobacter roden-
tium [125,126] infection that imply a putative pro-
tective role. The family Bacteroidaceae (mostly
driven by the abundance of the genus Bacteroides)
is overall depleted in HIV infection, showing a
reduced HIV-associated abundance in 10 of 16 stud-
ies [17,18

&&

,21
&&

,23
&&

,26
&

,28
&&

–31
&&

,33
&

]. This family
is generally considered to play an anti-inflammatory
role [127–131], with the species Bacteroides fragilis
promoting regulatory T-cell differentiation and
IL-10 production via secreted bacterial products
[127–129]. The family Rikenellaceae (mostly driven
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by the abundance of the genus Alistipes) is also
depleted in HIV infection, with decreased abun-
dance in seven studies [17,18

&&

,19,20
&

,21
&&

,23
&&

,
24

&

,28
&&

] and this bile-tolerant family [132] displays
protective properties against C. difficile infection
[133] and a negative association with obesity [134]
as well as positive associations with both type 1
[135] and type 2 [136] diabetes mellitus.

Similar to the phylum Bacteroidetes, bacterial
families within the phylum Firmicutes were in gen-
eral reduced in abundance in HIV-infected individ-
uals, though this pattern did not hold true for every
family within this phylum. The phylum overall
behaved in this manner, with decreased abundance
in five of 16 studies [19,20

&

,22
&

,23
&&

,27
&

] and
increased abundance in two studies [30

&&

,33
&

]. The
Firmicutes phylum is quite diverse, but broadly can
be characterized as associated with developed world
individuals [113] as well as obesity and increased
energy harvest from diet [137,138]. Within the Fir-
micutes, the class Clostridia, which was overall
depleted in HIV infection with decreased abundance
in eight of 16 studies [19,20

&

,21
&&

,22
&

,23
&&

,30
&&

,
32

&&

,33
&

], is characterized by taxa that often func-
tion in anti-inflammatory roles by producing buty-
rate and other short-chain fatty acids (SCFA)
[107,139] and shifting T-cell differentiation toward
regulatory T cells [140–143]. Within the class
Clostridia, the family Lachnospiraceae, which was
decreased in abundance in HIV-infected individuals
in six of 16 studies [19,20

&

,21
&&

,23
&&

,25
&

,30
&&

],
includes members that are commonly found to be
uniquely effective metabolizers of complex polysac-
charides [144,145] and characterized by the pro-
duction of SCFA such as butyrate [146] and
acetate [147] that are thought to be anti-inflamma-
tory. Also within the class Clostridia, the family
Peptostreptococcaceae varied in its HIV-associated
shifts, with two of 16 studies [20

&

,32
&&

] showing a
relative decrease in abundance in HIV-infected indi-
viduals and one study [19] showing a relative
increase. Peptostreptococcaceae have been found
to function in mostly a proinflammatory role, with
positive associations with C. difficile infection
[121,148], viral diarrhea [149], intestinal inflam-
mation [150], and the mucosal [151] and fecal
[152] communities of individuals with colorectal
cancer. In contrast to the family Peptostreptococca-
ceae, the Clostridia family Ruminococcaceae was
in general decreased in HIV infection, with 10 of
16 studies [19,20

&

,21
&&

,22
&

,23
&&

,26
&

,28
&&

–30
&&

,32
&&

]
reporting decreased abundance in HIV-infected
individuals and only one study [17,18

&&

] reporting
increased abundance. Ruminococcaceae have been
associated with both protective and disruptive roles
within the gut microbial community, such as the

production of anti-inflammatory SCFA [144] or the
degradation of host mucus and potential proinflam-
matory role in IBD [153], and functional effects
within this family have been found to be highly
species dependent [132,154–156]. The bacterial
family Erysipelotrichaceae, which is contained
within the separate class Erysipelotrichia, was on
the whole found to be increased in association with
HIV infection with a greater abundance demon-
strated in six of 16 studies [17,18

&&

,20
&

,21
&&

,24
&

,
26

&

,33
&

] and decreased abundance in only one study
[31

&&

]. Erysipelotrichaceae are described as adhesive
and potentially pathogenic [157], and have been
found to be positively associated with obesity
[158,159] and luminal microbial communities in
colorectal cancer [151,160]. Interestingly, this fam-
ily is also found to be enriched in the enteric com-
munities of the Hadza hunter-gatherers of Tanzania
[157].

MICROBIOME DIFFERENCES AND
SAMPLING SITE

Some of the variation in the findings among
these studies may be attributed to the differences
in body site sampled and sampling methodology.
The predominant collection method was stool
sampling [17,18

&&

,20
&

,23
&&

,24
&

–26
&

,28
&&

–32
&&

,
33

&

,161
&

–164
&

] which is most representative of
the luminal microbial community, though anal
swabs and washings [19,22

&

,165] or mucosal biop-
sies [20

&

,21
&&

,23
&&

,27
&

,28
&&

] were also used. Inde-
pendent of HIV, mucosal and luminal microbial
communities have been shown to differ to varying
degrees [166–171], though in some contexts, the
mucosal and luminal communities correlate
strongly and are representative of one another
[170]. With regard to functional differences, facul-
tative anaerobes have been found to be more abun-
dant in mucosal-associated environments, whereas
obligate anaerobes are more prevalent in the gut
lumen [170]. Studies of the HIV-associated micro-
biota that used both mucosal and luminal-targeted
sampling techniques [20

&

,23
&&

,28
&&

] found a variety
of differences between these techniques. In the most
concordant finding, the two sampling sites pro-
duced similar conclusions, with most taxa showing
the same patterns of HIV-associated enrichment or
depletion at both sampling sites (Fig. 1 and Table S1,
http://links.lww.com/COID/A16) [20

&

]. However,
the HIV-associated reduction in diversity was more
pronounced in mucosa than stool samples. Other
studies found greater variation in the HIV-associated
differences by body site. For instance, Dillon et al.
[28

&&

] detected an HIV-associated increase in abun-
dance of Prevotellaceae at both sampling sites, but
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only observed HIV-associated decreases in taxa in
the phyla Bacteroidetes and Firmicutes and
increases in Proteobacteria in the mucosal samples.
The study with the greatest discordance between
mucosal and luminal findings observed many more
HIV-associated differences in mucosal-associated
communities than luminal communities [23

&&

].
In addition, mucosal community composition
changes were more closely associated with mucosal
cellular immune activation. Mucosal findings may
be more sensitive or representative of the causative
community, as these microorganisms are in the
closest contact with epithelial cells and immune
cells. These advantages, however, must be weighed
against the relative difficulty of obtaining mucosal
samples.

GEOGRAPHICAL CONTEXT FOR
BACTERIAL MICROBIOTA DIFFERENCES

Most current work investigating HIV and the enteric
microbiome has focused on populations in the
developed world (Fig. 3), as opposed to the devel-
oping world where HIV burden is greatest [172]. As
the burden of NCD in chronic HIV is growing rap-
idly in the HIV-infected population in sub-Saharan
Africa [173–176], this region could potentially
benefit from the deployment of microbiota-directed

therapeutics. However, geographic differences in
the gut microbiome may make it difficult to trans-
late data derived from developed world subjects to
target populations in the developing world.

The microbiota differences observed between
HIV-infected and uninfected individuals as a whole
[17,18

&&

] mirror some differences seen at baseline
between populations in the developing and devel-
oped world [113,115,117]. It is currently thought
that the differences between developed and devel-
oping world microbiota are primarily a result of
the corresponding dietary differences, with greater
consumption of fat and simple carbohydrates in
the developed world and greater consumption of
more complex carbohydrates in the developing
world [114,132,177]. The observations that a
Prevotellaceae-rich community is frequently
observed in healthy individuals in developing
nations such as Burkina Faso, Venezuela, Malawi,
or Papua New Guinea [17,113–117] argue against
the simple conclusion that defined HIV-associated
taxa changes in the gut microbiota (e.g., an increase
in Prevotellaceae and a decrease in Firmicutes) alone
are responsible for chronic inflammation and
disorder in HIV-infected individuals. Rather, these
potentially conflicting observations suggest a more
complex relationship wherein a mismatch between
the extant taxa and their host context causes

FIGURE 3. People living with HIV and locations of HIV-microbiome studies. Locations of HIV-microbiome cohorts overlaid on
world map of HIV prevalence. The vast majority of HIV-microbiome studies have been conducted in developed world settings.
Map source: Adults and children estimated to be living with HIV 2015, WHO/UNAIDS/UNICEF.
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inflammation [18
&&

]. One possible example of this
mismatch might be a microbial community that is
inappropriate for the host diet and as a result pro-
duces inflammatory metabolites from these dietary
constituents. This ‘context-dependent’ model of
microbial-driven systemic inflammation would
further heighten the need to study HIV-associated
microbial differences in appropriate populations, as
therapeutic interventions constructed from data
originating from one population may be poorly
suited for application in a population with a differ-
ent microbial and environmental milieu.

VIROME DIFFERENCES IN HIV INFECTION

The diverse human enteric virome includes a wide
array of eukaryotic viruses, bacteriophages, and
endogenous retroviruses [178–181] and is largely
unexplored, with some estimates that only 1% of
the virome has been sequenced [182]. To date, only a
handful of studies have examined alterations in the
virome during lentiviral infection [29

&&

,183–186].
New sequencing technologies offer a unique oppor-
tunity for unbiased examination of the virome
including discovery of potentially novel uncultur-
able viruses [187]. Enteric eukaryotic viruses can
drive host pathology that directly causes gastroen-
teritis, enteritis, or colitis. Bacteriophages, which are
the most abundant enteric viruses, can initiate
changes in the bacterial community that influence
gut health and may also be able to directly interact
with the host immune system [178–190]. In IBD,
diversity of the bacteriophage virome increases
whereas diversity of the bacterial microbiome
decreases, suggesting a potential competitive
relationship between bacteria and bacteriophages
during enteric inflammation [191]. In light of the
emerging recognition of the potential role of the
enteric virome in gastrointestinal pathology, there
is now a growing focus on characterizing the gut
virome associated with HIV infection.

Nonhuman primate simian immunodeficiency
virus models of HIV infection have shown expan-
sion of the enteric virome, with significant increases
in Picornaviridae, Adenoviridae, and Parvoviridae
abundance in pathologic simian immunodeficiency
virus infection of rhesus macaques [183,184]. In this
model, Adenoviridae were associated with develop-
ment of severe gastrointestinal disease [183,184]
and enteric viruses spread to other tissue compart-
ments, with Parvoviridae detected in the serum and
Adenoviridae found in the enteric mucosa [184].

HIV-associated differences in the virome have
also been observed in HIV-infected individuals.
In a Ugandan cohort, CD4þ T-cell counts less
than 200 cells/ml were associated with a significant

increase in enteric Adenoviridae and Anelloviridae
[29

&&

]. Anelloviridae are small, nonenveloped viruses
with circular negative-sense ssDNA genomes often
found in human serum [192]. Anelloviridae have not
yet been identified as causative disease agents, but
have been shown to be increased in the serum of
immunosuppressed solid organ transplant patients
[193] and (not using modern sequencing methods)
HIV-infected study participants [194,195]. Similar
alterations to the plasma virome were observed in
HIV-infected individuals in the United States and
Uganda, with an increase in Anelloviridae [185].
In the United States but not the Ugandan cohort,
there was also a significant increase in total plasma
viral sequences, mainly attributed to bacterio-
phages, in HIV-infected individuals with low
(<20 cells/ml) CD4þ T-cell counts as compared
with individuals with high (>700 cells/ml) CD4þ

T-cell counts [185].

CONCLUSION

The role of enteric microbial changes in HIV disease
progression has been the focus of increasing inves-
tigation. Models regarding the connections between
gut microbiome changes and chronic HIV patho-
genesis hypothesize a role for gut epithelial damage
and systemic immune activation as an intermediate
mechanism. Investigations into HIV-associated
differences in the gut microbial community have
found varied changes, but a few overall consistent
patterns have emerged. In general, HIV infection is
associated with decreases in many bacterial families
within the phyla Bacteroidetes and Firmicutes as
well as increases in the family Prevotellaceae and
families within the phyla Proteobacteria and Fuso-
bacteria. This community shift implies an overall
pathogenic or proinflammatory outcome based on
the functions of the differentially abundant micro-
organisms, but this causative relationship has not
been conclusively shown and bacterial behavior can
vary widely based on context. The viral component
of the gut microbial community has received rela-
tively little attention, but findings have generally
shown an increase in the family Anelloviridae, which
is frequently found in immunocompromised hosts,
and in potentially pathogenic viruses such as the
family Adenoviridae.

The heterogeneity of the conclusions drawn to
date within this field may be in part because of
the variation in study populations and methods
employed (Fig. 2 and Table S1, http://links.
lww.com/COID/A16). Greater coordination of
methodologies would allow more robust analysis
of multiple studies and potentially reconcile con-
flicting conclusions. There is also a need to more
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finely examine the taxa differentially abundant in
HIV infection, as meaningful functional variation
can often occur at the species or strain level rather
than the family or genera level [196–198]. 16S rRNA
gene sequencing cannot provide this taxonomic
resolution, creating a role for techniques such as
shotgun metagenomic sequencing, which could
detect strain or gene content variation. In light of
the current findings of HIV-associated Prevotella-
ceae enrichment and the great abundance of this
taxa in developing world populations that consti-
tute the majority of HIV-infected individuals, there
is a dire need for further examination of HIV-associ-
ated gut microbial differences in developing world
populations. It is possible that therapeutic strategies
that consider Prevotellaceae enrichment a patho-
genic state would be ill suited for HIV-infected
individuals in the developing world. In addition,
microbiota-targeted probiotic interventions have
produced mixed results, with some therapeutics
reducing inflammatory markers and others lacking
efficacy [162

&

,199–208]. Further understanding of
the enteric microbial changes associated with HIV
infection, especially among developing world
populations that bear the greatest burden of HIV
infection, is therefore necessary to design thera-
peutic strategies that could alleviate the sequelae
of systemic inflammation and NCD in chronic
HIV infection.
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