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Abstract

The unparalleled heterogeneity in genetic causes of hearing loss along with remarkable dif-

ferences in prevalence of causative variants among ethnic groups makes single gene tests

technically inefficient. Although hundreds of genes have been reported to be associated with

nonsyndromic hearing loss (NSHL), GJB2, GJB6, SLC26A4, and mitochondrial (mt) MT-

RNR1 and MTTS are the major contributors. In order to provide a faster, more comprehen-

sive and cost effective assay, we constructed a DNA fluidic array, CapitalBioMiamiOtoArray,

for the detection of sequence variants in five genes that are common in most populations of

European descent. They consist of c.35delG, p.W44C, p.L90P, c.167delT (GJB2); 309kb

deletion (GJB6); p.L236P, p.T416P (SLC26A4); and m.1555A>G, m.7444G>A (mtDNA).

We have validated our hearing loss array by analyzing a total of 160 DNAs samples. Our

results show 100% concordance between the fluidic array biochip-based approach and the

established Sanger sequencing method, thus proving its robustness and reliability at a rela-

tively low cost.

Introduction

In industrialized nations, one child in 1,000 is born deaf, and an additional one in 300 births

will be diagnosed with a milder degree of hearing loss. A further 1/1,000 children become
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profoundly hearing disabled before adulthood [1, 2]. Overall, hearing loss affects up to 8% of

the world’s population [3, 4]. Hearing loss can be due to environmental or genetic factors, or a

combination thereof. At least 50% of prelingual hearing loss is due to genetic factors in indus-

trialized nations [5]. Non-syndromic hearing loss (NSHL) is the most common form of neuro-

sensory deafness, and account for 70% of inherited hearing impairment. To date, more than

80 genes, with approximately 1,000 pathogenic variants, and 150 loci have been identified for

NSHL (http://hereditaryhearingloss.org/). The spectrum of deafness-associated genetic vari-

ants varies greatly among regions and ethnicities [6, 7]. Mutations in GJB2 are a major cause

of autosomal recessive nonsyndromic hearing loss (ARNSHL) in many populations [8].

The most frequent pathogenic variants are c.35delG in European descent populations [9],

c.167delT in Ashkenazi Jews [10], and c.235delC in East Asians (Japanese, Koreans, and Chi-

nese) [11, 12, 13, 14]. In contrast, the GJB6 deletion mutation del(GJB6-D13S1830) is common

in France, Spain, the United Kingdom and Israel, accounting for 5.9–9.7% of all DFNB1 alleles

[15]. Pathogenic variants in pendrin encoded by SLC26A4 can cause both nonsyndromic

(DFNB4) and syndromic deafness (Pendred syndrome; PDS). PDS is thought to be one of the

most common forms of syndromic deafness and pathogenic variants of SLC26A4 were

reported to be the second most frequent cause of ARNSHL worldwide [16]. However, there

are considerable differences in reported percentages of individuals segregating SLC26A4 vari-

ants. The percentage of probands in whom biallelic variants are found varies accordingly, from

a low of 13% [17] to a high of 62% [18]. This variation may be attributed to differences in selec-

tion criteria of each study and/or to the patient population being tested. Pathogenic variants in

the mitochondrial (mt) 12S ribosomal RNA subunit gene (MT-RNR1) have been associated

with amninoglycoside ototoxicity in an estimated 2% of deaf individuals in the United States

[19, 20]. One of the most common mitochondrial variants is the m.1555A>G substitution in

MT-RNR1 which can be found in 0.6–2.5% of patients of European descent, 3–5% of Asians

and as high as 17% of the Spanish population with NSHL [21]. The m.7444G>A mutations in

the tRNA serine 1 gene (MTTS1) has been found in patients with maternally inherited sensori-

neural hearing loss, but is less likely to cause hypersensitivity to aminoglycoside.

The extraordinary genetic heterogeneity of hearing loss has been a great challenge for

molecular testing: analysis of multiple genes using conventional gel-based and traditional

Sanger sequencing techniques is expensive, time-consuming and cumbersome. The DNA

microarray, or biochip, is a hybridization-based genotyping method that allows simultaneous

multi-gene variant analysis.

Multiplexed microarray platforms provide parallel detection capabilities that make it ideally

suited to genotyping of genetically heterogeneous conditions such as deafness. To achieve an

efficient method for a genetic diagnosis of hearing loss, we developed a genetic hearing loss

DNA chip, CapitalBioMiamiOtoArray, that allows simultaneous analysis of the nine most

common mutations in patients of European descent in the genes GJB2, GJB6, SLC26A4,

MT-RNR1 and MTTS1. In this study we have validated our hearing loss biochip by analyzing a

total of 160 DNA samples. Availability of an inexpensive and extensive screening test for com-

mon variants for hearing loss will result in affordable testing, improved diagnosis, more accu-

rate genetic counseling, and eventually in improved management of hearing loss.

Materials and methods

Subjects

Genomic DNA was extracted from 136 whole blood samples and 24 dried blood spots. Of

these, 101 were from deaf patients and 59 from normal hearing controls. For validation, 60

samples were pre-tested for the specific variants in GJB2, GJB6 and SLC26A4 genes by Sanger

Population-based screening for hearing loss
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sequencing. Mitochondrial DNA (mtDNA) genes were subjected to PCR-RFLP (Restriction

Fragment Length Polymorphism) analysis using specific primers [22]. The diagnosis of senso-

rineural hearing loss was established via standard audiometry in a sound-proofed room

according to current clinical standards. HL was congenital or prelingual-onset with a severity

ranging from moderate to profound. Clinical evaluation included a thorough physical exami-

nation and otoscopy in all cases. This study was approved by the University of Miami Institu-

tional Review Board, USA (permit #20010415). The cohort of participants was recruited

between 2003 and 2016. A signed informed-consent form was obtained from each subject or,

in the case of a minor, from the parents.

The deafness fluidic microarray

The hearing loss fluidic array, CapitalBioMiamiOtoArray (CapitalBio Corporation, Beijing,

China) was designed to detect the following nucleotide changes: GJB2 [c.35delG, p.W44C

(c.132G>C), p.L90P (c.269T>C), c.167delT]; GJB6 c.309kb deletion; SLC26A4 [p.L236P

(c.707T>C), p.T416P (c.1246 A>C)]; and mtDNA m.1555A>G and m.7444G>A mutations.

The nine mutations were selected based on their high prevalence in patients of European

descent. The 167delT is common in Ashkenazi Jews. The mtDNA changes 1555A>G and

7444G>A are frequently found in southern European populations [22, 23, 24, 25].

The Amplification refractory mutation system (ARMS) technique for detecting known

point mutations described by Newton et al [26] was applied. The method requires that 3’-OH

terminal mismatched primers are refractory to extension by the DNA polymerase and thus the

terminal 3’-nucleotide only of a PCR primer be allele specific; the primer is synthesized in two

forms. The wild type form is refractory to PCR on mutant template DNA and the ’mutant’

form is refractory to PCR on normal DNA. We have previously described in details the design,

optimization and validation of tagged primers and multiplex PCR conditions [27, 28, 29]

using allele-specific amplification primers to the wild type (WT) and variant sequences (M)

and common primers (S1 and S2 Tables).

The microarray is composed of a fluidic manifold made of polycarbonate glued on the glass

slide to introduce a dynamic hybridization for signal enhancement and acceleration of reac-

tion kinetics (Fig 1A). The tag probes contain a poly (dT) spacer and a 50 amino group, are

diluted in 50% dimethyl sulfoxide (DMSO) to a final concentration of 15 micromole and are

spotted with a SmartArrayer 136 spotter (CapitalBio) on the aldehyde-functionalized glass

slides. Each tag probe is spotted in triplicate. The diameter of each spot is approximately 150

micrometers. The pattern of the distribution of probes on the microarray is shown in the

microarray layout (Fig 1B) (Fig 1A and 1B: Microarray design); the different numerals refer to

different genetic loci, whereas upper case alphabetic letters W and M represent wild-type and

mutant-type variant probes, respectively. A number of control probes are also represented: QC

and NC are the positive and negative controls for the spotting of probes during array manufac-

ture, PC and BC are the positive and negative controls for the hybridization reaction, IC is the

internal control for the gene amplification, and MC is the positive control for magnetic beads.

The QC, IC, BC and PC were spotted in 6 to 12 replicates.

Magnetic bead-based DNA microarray analysis. Mutations were detected using the nine

common deafness mutations detection kit for populations of European descent (CapitalBio,

Beijing). Each DNA sample was amplified in two 25-μl multiplex PCR reactions (A and B) as

recommended by the manufacturer. Amplification primers were designed according to the

principle shown in Fig 2 (Fig 2. The principle for design of the amplification primers). Each

PCR reaction is prepared by combining 5 μl template DNA (15–150 ng), 10 μl mixture of

amplification primer and 10 μl mixture of amplification reagent to the 25 μl reaction system

Population-based screening for hearing loss
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individually. For degradation of carryover contaminating molecules prior to amplification, we

applied a procedure that makes use of dUTP incorporation instead of dTTP during amplifica-

tion, which is preceded by treatment of PCR reaction mixtures with uracil-N-glycosylase

(UNG) at 37˚C to degrade uridine-containing carryover products [30], and subsequent cleav-

age of apyrimidinic polynucleotides at elevated temperature (95˚C for 15 min) to remove con-

taminating U-DNA from the sample. The amplification was performed in a Master Cycler

Fig 1. Microarray design. (A) Copy of the microarray; (B) the microarray layout. QC: chemical control; PC: external control; BC: blank

control; NC: negative control; IC: internal control; MC: magnetic control; W: wild-type; M: mutant.

doi:10.1371/journal.pone.0169219.g001

Fig 2. The principle for design of the amplification primers. Multiplex PCR is performed as described previously [27, 28, 29].

Asymmetric PCR procedure was used for generation of labeled single-stranded DNA in excess for hybridization and detection.

doi:10.1371/journal.pone.0169219.g002
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nexus X2e (Oppendorf) by setting the temperature rate using the RAMP function of the PCR

instrument under the following conditions: 37˚C for 10min, 95˚C for 15 min; 96˚C for 1 min;

then: 94˚C for 30 sec, ramp (0.4 C/s) to 55˚C, hold for 30 sec; ramp (0.2 C/s) to 70˚C, hold for

45 sec for 32 cycles; followed by 60˚C for 10 min, 4˚C soak. The total reaction time was about

3 hours and 20 minutes. Amplified products from the two tubes were mixed, and the ampli-

cons were then captured by magnetic beads. Captured amplicons were denatured by NaOH,

and only the single stranded DNA attached to the magnetic beads was collected and dissolved

in hybridization buffer. Approximately 30 μL of the hybridization solution was then injected

into the sample inlet to cover the central hexagonal array region. The sample inlet and the air

outlet were then sealed and the chip was placed into the Easy Array 3A (CapitalBio Corpora-

tion) for a dynamic hybridization at 55˚C for 20 min followed by washing at 42˚C for 2 min.

Due to the flowing reaction controlled by the instrument, the hybridization and washing pro-

cess was about four times faster than the conventional static diffusion reaction. The total time

required for PCR amplification, hybridization, washing and detection was about 4 hours.

Results

DNA from 101 deaf patients was used to validate the deafness chip. Of these, 60 subjects were

pre-screened and known to be positive for one or two specific variants (s) present on the chip;

18 had one GJB2 variant, 21 had two GJB2 variants (homozygous or compound heterozygous),

four were digenic for GJB2-c.35delG and GJB6-309kb deletion. For SLC26A4, 10 of the subjects

were heterozygous and two were homozygous for variants on the chip. All the five individuals

tested positive for the m.1555A>G variant in MT-RNR1 are homoplasmic as well as two deaf

subjects among the 41 cases of unknown molecular genetic etiology (Table 1).

The results showed 100% concordance between the fluidic array biochip-based approach

and the established PCR protocol. It did not detected any unreported variant in the validation

set as expected Of 10 individuals found with one SLC26A4 variants, two were biallelic based on

Sanger Sequencing, because the c.1001+1 G>A and c.412G>T variants in these two individu-

als were not present on the chip (Table 1). There were no false-positive results in 59 negative

controls.

Table 1. Mutations detected in the deaf individuals.

Gene Genotype Number of Subjects

GJB2 35delG/35delG 11

GJB2 35delG/WT 10

GJB2 167delT/167delT 2

GJB2 167delT/WT 2

GJB2 L90P/L90P 5

GJB2 L90P/WT 6

GJB2 35delG/L90P 3

SLC26A4 L236P/WT 5

SLC26A4 T416P/T416P 2

SLC26A4 T416P/WT 1

SLC26A4 L236P/(c.1001+1 G>A) 2

SLC26A4 T416P/(c.412G>T) 2

MTRNR1 1555A>G/1555A>G 7

GJB2/GJB6 35delG/309kb 4

62

doi:10.1371/journal.pone.0169219.t001
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Discussion

The profound genetic heterogeneity of deafness has proved a challenge for genetic testing

using conventional approaches. It is neither financially or nor practically feasible to screen for

causative variants in many cases, because they can be in one of several hundred genes, many of

which have many exons. Demand for genetic testing for deafness has risen dramatically over

the last decade, in part due to identification of many genes associated with hearing loss and to

the introduction of Universal Newborn Hearing Screening Programs in many countries.

There is therefore a need for simpler, cheaper, and more comprehensive methods for screen-

ing for variants associated with hearing loss.

Patterns of high frequency pathogenic variants in diverse populations and their popula-

tion-wide distributions make it efficacious to target ethnically restricted disease variants in

screening tests. In the present study, we have used an oligonucleotide-array based chip

approach for simultaneous analysis of nine mutations in five genes. Using this chip, rapid

screening for specific variants at different genetic loci can be performed. The technology can

also easily be expanded or modified, according to further epidemiologic surveys of carrier

rate and the spectrum of genetic variants associated with hearing loss in certain ethnic back-

grounds. We have validated the hearing loss chip on DNA obtained from 60 deaf individuals

who were previously screened and known to carry one or two pathogenic variants included

on the chip. Analysis detected all known variants in the correct zygotic and plasmic state in

nuclear and mitochondrial genes. These results prove the accuracy and reliability of the cus-

tom capture experiment.

Population-based genetic testing has been proposed as a major vehicle for translating

genetic and genomic advances into human health and disease. Testing for pathogenic variants

in common deafness causing genes has several potential advantages over conventional hearing

loss evaluation without genetic testing. Anticipated benefits from genetic screening include: 1)

A need for more expensive or invasive procedures may be precluded, such as tests to identify

prenatal infections, electrocardiograms and other heart and thyroid function tests. Inner ear

imaging techniques such as magnetic resonance imaging (MRI) or a computed tomography

(CT) scan can be avoided; 2) Earlier detection of hearing loss for making informed choices of

interventions such as hearing aids, cochlear implants, or sign language proven to be effective

in significantly improving language ability and quality of life outcomes can be realized.

Research evidence has demonstrated the practicability, cost-efficiency and benefits of universal

newborn hearing screening (UNHS) [1, 9, 31, 32, 33]. However, UNHS programs may suffer

from inherent limitations such as failure to detect children with slight or mild hearing loss,

because the target condition for the majority of UNHS programs is permanent hearing loss

>35dB [34]. Additionally, children with late-onset or progressive hearing loss may be missed

by UNHS, because their hearing is normal or near-normal at birth. Lifetime costs of all care

related to deafness and lost productivity have been estimated to be $1.1 million USD per birth

cohort of 80,000 children [35]; 3) Predictive information about possible progression of a hear-

ing disorder may be provided, which can facilitate parents and professional teams in imple-

mentation of an individualized health-maintenance strategy; 4) Monitoring of associated

clinical manifestations and complications, particularly for certain syndromic forms of hearing

loss for early management may be enabled; 5) Obtaining an etiologic diagnosis provides the

basis for precise genetic counseling including information on the chance of recurrence in the

family that can inform reproductive decisions. Lastly, 6) Information pertinent to aminoglyco-

side antibiotic ototoxicity risk factors can guide medical care (e.g., avoiding administration of

aminoglycoside antibiotics among those with the MTRNR1 m.1555A>G variant to prevent

hearing loss.

Population-based screening for hearing loss
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Continuous advances in DNA sequencing technologies have allowed interrogation of very

large numbers of variants in a highly rapid and inexpensive manner. As knowledge of the vari-

ant spectrum in specific populations increases, selection of variants in a population specific

manner can be made. Routine screening can thus be performed at a reduced cost for a larger

number of samples.

There are many reliable, relatively simple and inexpensive variant detection techniques

available for a faster, more comprehensive and cost-effective approach for NSNHL mutations.

These include the HHL APEX (Hereditary Hearing Loss Arrayed Primer Extension) microar-

ray [36], that is comprised of 198 variants in six nuclear genes (GJB2, GJB6, GJB3, GJA1,

SLC26A4 and SLC26A5) and two mitochondrial genes (MTRNR1 and MTTS1). Considering

that the APEX array did not detect a single GJB3 or GJA1 sequence variant in any of the study

subjects, these gap junction proteins do not seem to be a major cause of NSHL in populations

of European descent. Inclusion of GJB3 for pre-screening is thus not warranted. For SLC26A5,

the IVS2-2A>G (c.-53-2A>G) variant was found only in a heterozygous state, however, its

clinical significance is unknown and it has been found at the same frequency in deaf individu-

als and in a control group and pathogenicity seems therefore now questionable [37, 38]. Rese-

quencing microarrays have also been developed by Affymetrix [39, 40], allowing for both

detection of previously reported hearing loss variants and discovery of new variants. But the

Affymetrix resequencing array for variants screening is costly in comparison with the other

methods, limiting its implementation in the routine laboratory setting [40, 41]. In addition, a

key drawback of this technology has been a high false positive rate (~70%) among identified

variants, thus requiring time-consuming and expensive [39]. The TaqMan OpenArray has also

been described [42]. All of these technologies have in common the use of oligonucleotides

probes applied on a solid support and fluorescent compounds. The APEX microarray as well

as our fluidic array allow some versatility, because it can be easily modified to alter mutation

composition and/or to increase the number of mutations. In contrast, for OpenArray and rese-

quencing arrays, modifications cannot be made after manufacturingof the plates/chips.

In this present study we have used an allele-specific PCR-based universal array designed to

simultaneously screen nine deafness associated variants in the GJB2, GJB6, SLC26A4, MT-
RNR1 and MTTS genes that are common in patients of European descent. The test results are

determined based on the fluorescent hybridization signal and the distribution of microarray

probe. The array results for the 60 pre-screened subjects were consistent with the previous

molecular diagnostic testing data and there were no false-positive results in 59 negative con-

trols, thus confirming the100% sensitivity and reliability of the assay.

A direct comparison of cost-effectiveness of Miami-CapitalBio array mutation analysis with

other array-based tests is not straightforward since the number of genes and mutations cov-

ered vary depending on platform used. Furthermore, laboratory practices and workflows,

array designs, and analytical performance parameters, all of which impact test cost, can differ

greatly. For genetically heterogeneous diseases such as hearing loss, testing laboratories must

strive to increase clinical sensitivity by including more genes and minimizing test price and

turn around time. An Affymatrix resequencing microarray capable of resequencing 13 deaf-

ness causative genes has been reported to allow an individual worker to produce a throughput

of nearly 100 patients per month and has reduced the cost of testing of the 13 genes roughly in

half compared to dideoxy capillary sequencing approaches [39, 43].

Use of the Miami-CapitalBio fluidic array is a good option as an initial screening tool for

the most common variants within genes. The cost of routine research grade Sanger sequencing

of each variant in GJB6, SLC26A4 and MT-RNR1 is approximately US$5 per sample. The cost

estimated for analysis of all the 9 variants per patient, including materials and reagents, is

approximately US$ 30. Costs for technician labor were not calculated directly since salaries,

Population-based screening for hearing loss
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benefits, and overhead rates vary across laboratories, but we estimated that a single technician

could process 50 samples per week including data analysis. Equipment and maintenance costs

are expected to be minimal as the array protocol only requires equipment that is of current

standard for molecular laboratories. Overall, we demonstrate that the use of CapitalBioMia-

miOtoArray for analysis of common mutations in patients of European descent is cost

effective and the genotypes produced are high quality and match those collected using the

established Sanger sequencing at a rate of 100%.

Supporting information

S1 Table. Loci and allele-specific amplification primers to the wild type (WT) and variant

(MT) sequences. Tag sequences are underlined and mismatched bases are highlighted.

(XLSX)

S2 Table. Common primers used for amplification. F: forward; R: reverse; BT: bitotin.

(XLSX)
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41. Cremers FP, Kimberling WJ, Külm M, de Brouwer AP, van Wijk E, te Brinke H, et al. Development of a

genotyping microarray for Usher syndrome. J Med Genet. 2007; 44: 153–160. doi: 10.1136/jmg.2006.

044784 PMID: 16963483

42. Martins FT, Ramos PZ, Svidnicki MC, Castilho AM, Sartorato EL. Optimization of simultaneous screen-

ing of the main mutations involved in non-syndromic deafness using the TaqMan OpenArray Genotyp-

ing platform. BMC Med Genet. 2013; 14:11238.

43. Waldmuller S, Muller M, Rackebrandt K, Binner P, Poths S, Bonin M, Scheffold T. Array-based rese-

quencing assay for mutations causing hypertrophic cardiomyopathy. Clin Chem. 2008; 54:682–687.

doi: 10.1373/clinchem.2007.099119 PMID: 18258667

Population-based screening for hearing loss

PLOS ONE | DOI:10.1371/journal.pone.0169219 March 8, 2017 10 / 10

http://www.ncbi.nlm.nih.gov/pubmed/2785681
http://dx.doi.org/10.1002/humu.20622
http://www.ncbi.nlm.nih.gov/pubmed/18161878
http://dx.doi.org/10.1177/2211068213491096
http://www.ncbi.nlm.nih.gov/pubmed/23975388
http://www.ncbi.nlm.nih.gov/pubmed/2227421
http://dx.doi.org/10.1056/NEJMoa054915
http://www.ncbi.nlm.nih.gov/pubmed/16707750
http://www.ncbi.nlm.nih.gov/pubmed/9738715
http://dx.doi.org/10.1542/peds.2004-1688
http://www.ncbi.nlm.nih.gov/pubmed/16140706
http://www.ncbi.nlm.nih.gov/pubmed/12415021
http://dx.doi.org/10.1371/journal.pone.0011804
http://www.ncbi.nlm.nih.gov/pubmed/20668687
http://dx.doi.org/10.1186/1471-2350-6-30
http://www.ncbi.nlm.nih.gov/pubmed/16086836
http://dx.doi.org/10.1016/j.ijporl.2008.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19027966
http://dx.doi.org/10.1186/1472-6750-10-10
http://www.ncbi.nlm.nih.gov/pubmed/20146813
http://dx.doi.org/10.1080/03630260701459366
http://www.ncbi.nlm.nih.gov/pubmed/17654067
http://dx.doi.org/10.1136/jmg.2006.044784
http://dx.doi.org/10.1136/jmg.2006.044784
http://www.ncbi.nlm.nih.gov/pubmed/16963483
http://dx.doi.org/10.1373/clinchem.2007.099119
http://www.ncbi.nlm.nih.gov/pubmed/18258667

