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Summary

Surgical stress responses cause an array of endocrinological, metabolic and immunological 

changes in patients. The landmark studies in the 1980s showed that adequate anesthesia 

dramatically improved the outcomes of pediatric surgical patients by attenuating stress hormonal 

responses, pointing out the harm of ‘inadequate’ anesthesia. Subsequent studies questioned the 

role of administering very high-dose anesthetics to further attenuate stress responses. Here we 

review the feature of surgical stress responses in pediatric patients including their difference from 

those in adult patients. Overall, pediatric patients show minimal or no resting energy expenditure 

change postoperatively. In adult patients, increased resting energy expenditure has been described. 

Pediatric patients demonstrated robust cortisol and catecholamine responses than adult patients. 

However, the duration of these surges is often short-lived. Systemic proinflammatory and anti-

inflammatory cytokine levels have been measured. Pediatric patients showed less proinflammatory 

cytokine elevation, but had similar anti-antiinflamatory responses. We also review in detail the 

immunological changes in response to surgical stress. Based on our current knowledge, we 

attempted to understand the underlying mechanism how adequate anesthesia dramatically 

improved the outcome of patients. Although more work is needed to be done, understanding how 

pediatric patients respond to perioperative stress, and its mechanism and consequence will allow 

us to direct us into a better, perioperative management in this population.
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Introduction

Stress is defined as stimuli that cause disequilibrium to an organism and therefore threaten 

homeostasis [1, 2]. When the human body faces stress such as an injury or a trauma, both 
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the hypothalamic-pituitary-adrenal axis (HPA) and the sympathetic nervous system become 

activated and a range of metabolic, endocrinological and immunological responses occur [3]. 

Presumably these responses are developed for survival benefit. By extrapolation, surgery is 

considered to be a “trauma” and induces stress responses. Our intent here is to review 

surgical stress responses in pediatric patients. Because the physiology of newborns, children 

and adults differs at their baseline due to their developmental differences, subtle differences 

in stress responses are likely to exist between pediatric and adult patients. We also review 

the role of modifying surgical stress response for patient outcomes.

Perioperative stress responses

The presumed role of the stress responses is to prevent secondary damage and increase the 

availability of substrates required by essential organs and healing tissues. Not only surgical 

stimulus, but also temperature change, blood loss and altered blood flow pattern can trigger 

the stress response. A good example is surgery performed with the assistance of 

cardiolpulmonary bypass (CPB), where hypothermia, contact activation, hemodilution, and 

nonpulsatile flow are involved. Not surprisingly, cardiac surgery is a major stimulus of 

massive stress responses. Stress responses lead to metabolic, endocrinological, and 

immunological changes. A surgical insult triggers a central response via afferent nerves to 

activate both the HPA axis and the sympathetic-adrenal-medullary (SAM) axis. In addition, 

it triggers a local response including cytokine production. Cytokines produced locally can 

act on the central nervous system. These complex processes are illustrated in Figure 1.

Contrary to our presumption that the stress responses had evolved to promote survival, 

earlier studies in pediatric patients demonstrated that attenuation of surgical stress responses 

was associated with improved outcomes, reduced complications, and faster recovery time 

[4–9]. Some speculated that our stress response had not been fine-tuned to mitigate severe 

trauma and surgical stress [1]. Excessive stress responses can lead to systemic inflammatory 

response (SIRS) and prolonged catabolism of body stores [10]. In contrast, an extended 

period of postoperative immunoparalysis can predispose to secondary infection. Ideally 

excessive responses to surgical stress would be mitigated to prevent SIRS while at the same 

time allowing those inflammatory responses responsible for the initiation of reparative 

healing to occur. We will review the underlying mechanism of these opposing responses 

with surgical stress.

The characteristics of surgical stress responses in pediatric patients

Endocrinological and metabolic stress responses

The main feature of endocrinological stress response is a release of “stress hormones” such 

as catecholamines, cortisol and glucagon via the activation of the HPA axis and the SMA 

axis. They trigger a cascade of metabolic responses to break down protein, fat and 

carbohydrate and mobilize resultant substrates for energy sources. Cortisol, catecholamines 

and glucagon shift from the production of structural proteins to acute phase proteins, and 

facilitate mobilization of stored glycogen, gluconeogenesis and lipolysis. Protein catabolism 

is stimulated by cortisol. Cortisol and catecholamines stimulate glycogenolysis and 

gluconeogenesis. Lipolysis is facilitated mainly by catecholamines, which convert 
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triglyceride to glycerol and fatty acids. Glycerol is used for gluconeogenesis and fatty acids 

are for ketogenesis. Metabolites originating from fat are main energy sources in the 

perioperative period [11].

The activation of the HPA axis and the SMA axis can be assessed by measuring plasma 

stress hormone levels without difficulty. In contrast, an individual evaluation of protein, lipid 

and glycogen metabolism often requires more resources and such studies are limited so far. 

Metabolic responses have often been assessed with the use of indirect calorimety to obtain 

resting energy expenditure (REE) instead. Thus the degree of surgical stress responses has 

been gauged by measuring serum catecholamine and cortisol levels in many studies. 

Chernow et al. reported that stress hormonal responses correlated with the severity of 

surgical stress in adult patients [12]. In the ‘minimal’ surgical stress group (such as inguinal 

hernia repair), they were negligible. In the ‘moderate’ (such as cholecystectomy) and 

‘severe’ (such as subtotal colectomy) surgical stress groups, plasma cortisol and 

norepinephrine levels were elevated at postoperative 1 and 24 hours, and epinephrine level 

was elevated at postoperative 1 hour. Similarly in adult patients who underwent cardiac 

surgery, cortisol level remained elevated at 24 hours after surgery [13–15]. In contrast, the 

salient feature of pediatric, particular neonatal stress hormonal responses is that the elevation 

of these stress hormones lasts for a shorter duration with a greater magnitude. Anand et al. 

studied neonates undergoing surgery (type of surgery was not specified in the study) and 

noted that plasma epinephrine and norepinephrine concentrations were significantly elevated 

at the end of surgery, but returned to their preoperative levels by 6 hour after surgery [16]. 

The same group studied a group of neonates undergoing surgery with different severity and 

measured several metabolic and endocrinological markers preoperatively and during the first 

24 hours postoperatively [17]. Plasma epinephrine and norepinephrine concentrations were 

significantly elevated at the end of surgery. Epinephrine level was also elevated at 6 hours 

after surgery and then returned back to its baseline level. The hormonal responses in 

neonates were proportional to the degree of surgical stress. Cardiac surgery, particularly the 

one involving hypothermic CPB or deep hypothermic circulatory arrest (DHCA) was 

associated with greater and more prolonged stress hormonal changes, which is in line with 

the study in adult patients by Chernow et al [17]. The peak epinephrine and norepinephrine 

levels in neonates undergoing cardiac surgery were 1.4 ~ 7.2 and 3.4 ~ 10.2 times higher 

than those in adult patients, respectively [18, 19]. The study by Boix-Ocha et al. 

demonstrated that plasma cortisol level went up significantly (up to 1000 nmol/L) in 

neonates and infants intraoperatively, and returned back to its baseline value in the very early 

postoperative period [20]. Interestingly, the pattern of these stress hormonal responses was 

prevalent and characteristic in pediatric patients at various ages [21]. Overall, in the pediatric 

population, catecholamine and cortisol levels tended to be much higher intraoperatively, but 

returned to their baseline levels by the very early postoperative period, while they remained 

elevated for a longer duration postoperatively in the adult population [22].

Studies associating these cortisol and catecholamine responses with lipid, protein and 

carbohydrate metabolism separately have been limited. It was recent advanced techniques 

using nuclear magnetic resonance, spectroscopy, and mass spectrometry have been applied 

to metabolic profiling [23]. Thus many studies measured REE by indirect calorimetry in 

conjunction with the measurement of plasma stress hormones. Studies measuring REE by 
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indirect calorimetry suggested that increase in the REE in pediatric patients was not 

sustained for prolonged periods as in adult patients. Postoperative REE changes in adult 

patients were well studied by Cuthbertson and others, and were characterized as an initial 

reduction in metabolic rate (‘ebb’ phase) associated with reduced cardiac output and lactic 

acidosis (the first 24–48 hours postoperatively) followed by an increase (‘flow’ phase) up to 

several days after surgery [24]. In contrast, the majority of pediatric studies demonstrated 

little or no postoperative REE increase with any increase lasting only for a very brief period 

(< 12–24 hours postoperatively) [25–29]. Based on these findings, it was postulated that 

infants and children would divert protein and energy from growth to wound healing without 

an increase in energy expenditure [27]. Metabolic profiling using proton nuclear magnetic 

resonance spectroscopy demonstrated that ketone bodies (acetone, acetoacetate and 3-D-

hydroxy-butyrate) were elevated postoperatively [23]. This was likely a consequence of 

cortisol and catecholamine induced lipolysis and ketone bodies production. Further detailed 

assessment of the relationship between hormonal changes and lipid, protein, and 

carbohydrate profile dynamics in the perioperative setting will enhance our understanding of 

surgical stress responses.

Immunological responses

A surgical insult initiates a series of immunological responses. These can be largely divided 

into the proinflammatory responses aimed at eradicating any causal agents and secondary 

opportunistic microbial invasion, and systemic deactivation of the immune system to restore 

homeostasis, which occasionally progresses into the extreme called ‘immunoparalysis’. 

Overall, adequate immunological responses protect against infection, provide effective 

wound healing, and are key determinant of postoperative recovery.

The immunological alternation in the perioperative setting derives from a combined result of 

local and central events (Figure 2). With surgical insult, host molecules called damage-

associated molecular pattern molecules (DAMPs) or alarmins are released from necrotic 

cells and induce inflammation. Pathophysiological changes such as ischemia-reperfusion 

injury also contribute to the release of DAMPs [30]. DAMPs include high-mobility group 

box 1 (HMGB1) and mitochondria DNA, and stimulate innate immune cells such as 

macrophages/monocytes to produce proinflammatory cytokines. HMGB1, a nuclear protein 

that modulates transcription, is also categorized as a cytokine and secreted by activated 

macrophages and other immune cells[31]. High-mobility group box 1 protein (HMGB1. 

Mitochodria DNA is released from damaged cells and is detectable in the blood stream 

following a significant injury [32]. Toll-like receptors (TLRs) are pattern-recognition 

receptors that recognize both infectious materials and DAMPs, and are major receptors to 

induce the production of proinflammatory cytokines in the face of DAMPs [33–35]. 

Proinflammatory cytokines such as tumor necrosis factor (TNF)-a, interleukin (IL)-1b, IL-6 

and IL-8 are primarily secreted from monocytes and macrophages. Together with DAMPs, 

they activate and recruit neutrophils and monocytes to inflammatory sites by interacting with 

cytokine receptors and TLRs [36, 37]. In addition to this local response, surgical insult 

stimulates the HPA axis and the SAM axis via the afferent nerves to lead to the systemic 

secretion of cortisol and catecholamines. Glucocorticoid receptors are expressed in 

neutrophils, monocytes, macrophages, T cells and B cells and cortisol shifts them to the cells 
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with anti-inflammatory phenotype [38]. Catecholamine receptors are found in monocytes, 

macrophages, natural killer (NK) cells, B cells and T cells, and their stimulation induces 

anti-inflammatory responses [39]. Anti-inflammatory responses are induced most potently 

by epinephrine, followed by norepinephrine, and least by cortisol [40]. Anti-inflammatory 

cytokines such as IL-10 and transforming growth factor (TGF)-b induce regulatory T cells, a 

subset of Cluster of differentiation (CD) 4+ T cells with suppressive activity, from a pool of 

CD4+ T cells [41], and these regulatory T cells also bias CD4+ T cells toward Th2 cells, 

which are anti-inflammatory [42] (Figure 2). In addition, heat shock proteins (HSPs), 

chaperone proteins released under stress, amplify regulatory T cell function [43, 44]. Thus, 

surgically injured tissues demonstrate proinflammatory responses, while leukocytes in blood 

stream are anti-inflammatory and hyporeactive [45]. Adaptation to surgical stress involves 

coordinating local inflammation with systemic anti-inflammation so as to allow 

concentration of activated phagocytes and other effectors only at injured local site [46]. In 

some pathophysiological conditions such as contact activation due to CPB use and ischemia-

reperfusion injury, DAMPs can be present in the systemic circulation and also induce 

systemic proinflammatory responses (Figure 2).

The perioperative leukocyte distribution was studied in detail in adult patients undergoing 

surgery [47]. Postoperative increase in neutrophil counts peaked at postoperative day 1 with 

no difference in monocyte and B cell counts, and reduction in various types of T cell counts 

peaking at 12 hours after surgery was seen. Regulatory T cell population, induced by anti-

inflammatory cytokines, expanded at one week after surgery [48]. Some of other studies 

found monocyte counts to decrease or increase postoperatively [49, 50]. Postoperative 

lymphopenia was also reported in the pediatric population with its peak at 12 hours after 

surgery, as in the case in adults [21, 51]. The distribution of immune cell subsets in the 

perioperative period seems to be regulated at least in part by stress hormones [52]. 

Epinephrine and norepinephrine induce a redistribution of immune cells from spleen, bone 

marrow and the marginated pool into the bloodstream and temporarily increase blood 

leukocyte counts [53]. Subsequently cortisol and epinephrine induce the movement of 

immune cells out of the blood stream to surgical site or back to their origins. How stress 

hormones control leukocyte tissue/blood distribution is not described yet. Because the 

pattern of catecholamine and cortisol elevation in pediatric population is different, there may 

be a subtle difference in the time-course of blood leukocyte counts between pediatric and 

adult patients.

The majority of perioperative, immunological studies have focused on measuring the level of 

serum proinflammatory and anti-inflammatory cytokines. It is intuitively obvious that 

systemic responses can differ depending on the type and duration of surgery, co-morbidities 

and additional modifiers such as ischemia-reperfusion and CPB use. SIRS is one of the 

maladaptive arms of stress responses and involves excessive systemic inflammation. Contact 

activation by CPB and ischemia- reperfusion injury, for example, can produce systemic 

DAMPs, activate monocytes, and stimulate systemic release of proinflammatory cytokines, 

resulting in SIRS. Systemic inflammation can cause endothelial activation and subsequent 

endothelial-leukocyte interaction. Plasma TNF-a and IL-1b levels increase early. This is 

followed by IL-6 and IL-8 elevation. Plasma IL-1b is often elevated in adult cardiac surgical 

patients [54, 55]. However, IL-1b was not necessarily detected after major surgery including 
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cardiac surgery in children [56, 57]. In adult patients, plasma TNF-a was not detected in 

minor surgery, but was elevated in major surgery [58]. Uncomplicated major surgery in 

pediatric patients was not associated with elevated levels of TNF-a [59]. TNF-a facilitates 

leukocyte-endothelial interaction, and its elevation in infants postoperatively was correlated 

with capillary leak syndrome [60]. IL-6 is the most consistently elevated cytokine in blood 

in the postoperative period [1]. A change in plasma IL-6 level became significant after 2 to 4 

hours following surgery, peaking at 6 – 24 hours [3]. Overall systemic proinflammatory 

response seems to be attenuated in small children [61]. This might be explained partly by 

more robust elevation of catecholamines and cortisol in the pediatric patients. In addition, 

the developmental change of TLR-mediated responses should be considered. TLR-mediated 

responses are age-dependent; anti-inflammatory responses are more dominant at the age < 

one year, and proinflammatory responses become dominant over time [34]. As opposed to 

the systemic proinflammatory responses, the systemic anti-inflammatory responses do not 

seem to differ between children and adults. Early responders among anti-inflammatory 

cytokines include IL-10, soluble IL-1 receptor antagonist (IL-1Ra), TNF soluble receptors 1 

and 2 (TNFsr1 and 2), and TGF-b [55]. In adult cardiac surgical patients, IL-10 and IL-1ra 

peaked soon after the termination of CPB, followed by an increase in TNFsr1 and 2. IL-10 

and IL-1ra returned to their baseline levels at 24 hours after surgery [62, 63]. Similar 

responses have been observed in pediatric patients undergoing cardiac surgery [60, 64].

The phenotype of monocytes has been studied, particularly their human leukocyte antigen 

(HLA)-DR surface expression. HLA-DR is a component of major histocompatibility 

complex (MHC) class II and is involved in antigen presentation to T cells. IL-10 induces an 

accumulation of MHC class II complexes in intracellular vesicles and reduces their surface 

expression [65]. Reduction of HLA-DR surface expression can occur in response to anti-

inflammatory cytokine milieu under a surge of stress hormones. Postoperative reduction of 

HLA-DR surface expression on monocytes has been reported in adult and pediatric patients 

[62, 66]. However, baseline profile of their HLA-DR surface expression may not be the 

same between pediatric and adult patients. Kanakoudi-Tsakalidou et al. reported that healthy 

neonates had significantly lower HLA-DR positive monocytes than adult (69% versus 

91.5%) [67], suggesting that HLA-DR expression might be influenced by other factors as 

well.

Surgical stress responses and anesthesia

Historical perspective of anesthesia and stress responses in pediatric patients

For decades, it was believed that neonates could not feel pain, and they often underwent 

surgery without adequate anesthesia on our current standard. As recently as the1980s, it was 

reported that 77% of newborn babies undergoing surgical ligation of patent ductus arteriosus 

(PDA) received either muscle relaxants alone or with nitrous oxide [16]. The landmark 

studies by Anand et al. in the mid 1980s led to reconsideration of anesthetic management for 

neonatal surgery [4]. The outcomes of 16 preterm babies undergoing PDA ligation under 

nitrous oxide with or without fentanyl (10 μg/kg) were compared. They demonstrated that 

intraoperative use of fentanyl significantly improved perioperative outcomes (less 

postoperative ventilator support, less hemodynamic and metabolic complications) consistent 
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with the concept that neonates could feel pain. Plasma epinephrine, norepinephrine and 

cortisol levels were significantly elevated up to 24 hours after surgery in neonates who did 

not receive fentanyl. Blunting hormonal response was presumably responsible for this 

improved outcome. Anand et al. also examined 36 neonates (27 term, 9 preterm) undergoing 

non-cardiac surgeries under nitrous oxide with or without halothane (1–2% of halothane for 

induction, 0.5–1% for maintenance) [6]. The peak epinephrine, norepinephrine and cortisol 

levels were significantly lower in the halothane group. The group who did not receive 

halothane had higher postoperative complications including gastric bleeding, arrhythmias, 

poor peripheral perfusion, increased ventilatory support, oliguria, and paralytic ileus. The 

importance of anesthesia was further examined in cardiac surgical patients. Eliis and 

Steward reviewed the charts of 36 patients (average 4.7 year old) who had undergone cardiac 

surgery with hypothermic CPB or profound DHCA under fentanyl anesthesia (7 to 88 μg/kg) 

[68]. They found that elevated blood glucose was associated with poorer neurological 

outcome following DHCA, and fentanyl attenuated the hyperglycemia associated with 

hypothermic CPB and DHCA. Anand and Hickey compared neonates who received deeper 

anesthesia consisting of high doses of sufentanil (37 μg/kg) and postoperative infusions of 

fentanyl or sufentanil for 24 hours with neonates who received lighter anesthesia with 

halothane (0.5%) and morphine as needed [5]. The group with deeper anesthesia had 

attenuated hormonal stress responses with fewer incidences of sepsis, metabolic acidosis, 

disseminated intravascular coagulation, and postoperative deaths. These studies established 

the concept that provision of adequate anesthesia to pediatric patients is critical to attenuate 

stress response for better outcomes. The endocrine control of metabolic homeostasis is 

believed to be already functional at 16 weeks’ gestation [69, 70].

Outcome assessments following surgical stress and their potential markers

Attenuating surgical stress responses to improve perioperative outcomes of pediatric patients 

by providing adequate anesthesia represented a significant paradigm shift in our clinical 

practice. Compared to the “common” practice two-three decades ago, it is without doubt that 

our perioperative anesthetic management of pediatric patients has improved significantly in 

conjunction with the improvement of monitoring, surgical technique and postoperative care, 

and a better understanding of disease pathophysiology. Now a new question is - how much 

should we attenuate stress responses? Duncan et al. evaluated the effect of different doses of 

fentanyl (2, 25, 50, 100, or 150 μg/kg) in 40 infant and children (0.3 to 44 months) 

undergoing elective cardiac surgery [71]. Patients receiving the lowest fentanyl dose 

experienced a significant elevation in glucose, cortisol and norepinephrine levels. Anesthetic 

regimen containing fentanyl 25–50 μg/kg was sufficient to blunt hemodynamic and 

hormonal stress responses. Higher doses of fentanyl (100 and 150 μg/kg) offered little 

advantage over more a moderate dose of fentanyl (50 μg/kg) in stress hormonal responses 

and were associated with hemodynamic compromise. There was no significant difference 

among the five groups in regard to time to extubation, the duration of intensive care unit 

(ICU) stay, and the incidence of infection or other postoperative complications. Gruber et al. 

examined 45 children (average 3 months) undergoing elective cardiac surgery under three 

different anesthetic regimens [72]. The first group received fentanyl boluses of 25 μg/kg at 

four time points during the surgery, the second group received fentanyl 25 μg/kg bolus 

followed by 10 μg/kg/h infusion, and the last group received fentanyl infusion at 10 μg/kg/h 
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and midazolam at 100 μg/kg/h. Cortisol, epinephrine, and norepinephrine levels were best 

attenuated in the group that received the highest dose of fentanyl. Also there was no 

significant difference among the three groups in the duration of mechanical ventilation, ICU 

or hospital stay or postoperative complications. These studies questioned the benefit of 

overly attenuating stress responses by using high dose of opioids.

The underlying mechanism whereby adequate anesthesia, defined as attenuation of the 

neurohormonal responses, improves patient outcomes, is not known and is ethically 

impossible to try to determine at this point. However, considering that cortisol and 

catecholamine levels in patients with what is now considered inadequate anesthesia were 

significantly elevated in the perioperative period, it is likely that these patients had 

exaggerated anti-inflammatory responses with resultant immunoparalysis. And 

immunoparalysis could lead to increased complications. Attenuation of the neurohormonal 

stress responses likely resulted in better balance of proinflammatory and anti-inflammatory 

responses. However, complete abolition of hormonal stress responses will not be beneficial 

either as inadequate stress hormonal responses can be detrimental in patients with adrenal 

insufficiency.

While assessment of stress hormonal responses to surgical stress has been a common 

method to assess the degree of the stress response, it does not provide the complete, 

phenotypic picture. Consequently changes in other parameters induced by surgical stress 

have been explored. The immunological signature is complex and the recent data suggests 

that the immunological signature induced by surgical stress can predict recovery [50]. Two 

signatures are well studied. One is the ratio of IL-6/IL-10 and the other is HLA-DR surface 

expression on monocytes. The IL-6/IL-10 ratio is considered as a surrogate of the balance 

between systemic inflammation and anti-inflammation. In patients with sepsis, higher IL-6 

to IL-10 ratio was correlated with poor outcomes [73]. Conversely, a reduction in IL-6 to 

IL-10 ratio in infants undergoing cardiac surgery was predictive of better outcomes [74]. 

Although anti-inflammatory cytokines limit the extent of inflammatory responses and aid in 

restoration of homeostasis, excessive systemic anti-inflammatory responses, which reduce 

IL-6 to IL-10 ratio, may cause immunoparalysis and poorer outcomes [75]. HLA-DR 

surface expression on monocytes has been also studied in relationship to patient outcomes 

because the reduction in HLA-DR surface expression on monocytes has been considered to 

be a marker of immunodepression [76–79]. In adult cardiac surgical patients, the reduction 

in HLA-DR expression was associated with poorer clinical outcomes [62]. Similarly, HLA-

DR expression was reduced postoperatively in pediatric cardiac surgical patients and HLA-

DR expression of < 60% of monocytes was associated with an increased risk factor of SIRS/

sepsis and prolonged ICU stay [66]. In addition, low HLA-DR expression within the first 72 

hours was an independent predictor of postoperative sepsis. Among monocytes with reduced 

HLA-DR expression, changes in signal transducer and activator of transcription 3 (STAT3), 

NF-kB and adenosine 3′,5′-monophosphate response element-binding protein (CREB) were 

strongly associated with postoperative recovery profile of patients who underwent hip 

arthroplasty [50]. Ex vivo TLR4 signaling in monocytes were tested in the same population 

and replicated these signature changes with postoperative recovery [80]. STAT3 is a very 

interesting molecule that regulates the production of both proinflammatory cytokine IL-6 

and anti-inflammatory cytokine IL-10 along with TLR [81], and may be worth studying as a 
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potential marker. While HLA-DR expression on monocytes is an appealing marker to predict 

perioperative outcomes, it may be a very sensitive, but not specific marker as reduced HLA-

DR expression has been observed on monocytes from patients who underwent low-

intermediate risk surgery [82], Optimistically makers to detect balanced immunological 

profiles may allow us to direct our perioperative stress response approach (Figure 3). To 

understand how different anesthetic agents and techniques modulate surgical stress 

responses is needed to improve our perioperative management and outcome. While some 

anesthetics may alter hormonal stress responses by altering the central nervous system, other 

anesthetics not only affect hormonal responses, but also affect immune cells and can change 

the immunological signature of immune cells directly [83–85]. In addition to general 

anesthesia, regional anesthesia potently suppresses surgical stress responses by afferent and 

efferent sympathetic blockade [86]. An optimal immunological marker, if available, can be 

used to assist our perioperative anesthetic management.

In summary, the pediatric surgical stress response profile is different from that in adults; 

little of less postoperative REE postoperatively, robust cortisol and catecholamine surges 

with shorted duration, and less systemic proinflammatory cytokine responses. And less 

proinflammatory cytokine responses may be explained by robust cortisol and catecholamine 

responses. Current anesthesia regimens have improved outcomes of pediatric patients by 

suppressing extreme stress responses. Future research is necessary to understand both how 

to optimize modulation of stress responses and to find accurate markers for optimal 

modulation.
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Figure 1. Perioperative stress responses
Upon stress, such as surgery, both local and systemic responses are triggered leading to pro-

inflammatory and anti-inflammatory events, respectively. Systemic response involve the 

stimulation of HPA and SAM axis and result in a cascade of endocrinological and metabolic 

responses through the production of cortisol and catecholamines (epinephrine, 

norepinephrine). These “stress hormones” can activate immune cells in the blood stream 

leading to the production of anti-inflammatory cytokines. Local immunological responses on 

the other hand accompany inflammatory responses including pro-inflammatory cytokine 

production. CRH; corticotropin-releasing hormone, ACTH; adrenocorticotropic hormone.

Yuki et al. Page 15

Transl Perioper Pain Med. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Surgery-induced Immunological responses
Surgery can induce local response manifested by release of damage- associated molecular 

patterns (DAMPs) such as high mobility group box 1 (HMGB1) and mitochondrial DNA 

(mtDNA), which through toll-like receptors (TLRs) stimulate macrophages/monocytes to 

produce pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin 

(IL)-1β, IL-6 and IL-8. In turn, these cytokines together with DAMPs activate and recruit 

neutrophils and macrophages/monocytes to inflammatory sites. In addition to this local 

response, surgery can triger systemic responses through stimulation of the hypothalamic-

pituitary-adrenal (HPA)/sympathetic-adrenal- medullary (SAM) axis and subsequent 

production of cortisol and catecholamines (epinephrine and norepinephrine). These 

hormones activate immune cells in the blood stream to produce anti-inflammatory cytokines. 

Anti-inflammatory cytokines such as transforming growth factor (TGF)-β and IL-10 induce 

regulatory T cells (Treg) cells, favoring type 2 T helper (Th2) responses (anti-inflammatory). 

Heat shock proteins are also produced during surgery-induced stress amplifying Treg 

function.
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Figure 3. Balance between proinflammatory and anti-inflammatory responses
Both excessive systemic inflammatory response syndrome (SIRS) and excessive 

immunodepression (immunoparalysis) may be harmful to patients. The relationship with 

IL-6/IL-10 ratio and human leukocyte antigen (HLA)-DR expression with proinflammatory/

anti-inflammatory balance is shown.
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