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Abstract

We develop a statistical framework for the de-
sign of a strategy-proof assignment mechanism
that closely approximates a target outcome rule.
The framework can handle settings with and
without money, and allows the designer to em-
ploy techniques from machine learning to control
the space of strategy-proof mechanisms searched
over, by providing a rule class with appropriate
capacity. We solve a sample-based optimization
problem over a space of mechanisms that corre-
spond to agent-independent price functions (vir-
tual prices in the case of settings without money),
subject to a feasibility constraint on the sam-
ple. A transformation is applied to the obtained
mechanism to ensure feasibility on all type pro-
files, and strategy-proofness. We derive a sample
complexity bound for our approach in terms of
the capacity of the chosen rule class and provide
applications for our results.

1 INTRODUCTION

Mechanism design studies situations where a set of self-
interested agents each hold private information regarding
their preferences over different outcomes. Originating from
microeconomic theory, mechanism design has become im-
portant in the design of open, algorithmic systems that in-
volve multiple stakeholders. A mechanism receives claims
about agent types, selects an outcome, and may addition-
ally charge payments. An important property of a mech-
anism is that of strategy-proofness, where it is in the best
interest for each agent to make truthful reports.

The existing theory of mechanism design provides posi-
tive and negative results in regard to properties that can be
achieved together with strategy-proofness. The theory is
quite limited, though, in that:

1) Results are developed for stylized preference domains

that may not reflect real-world structure [1].
2) Positive results are limited by an analytical bottleneck

that makes analysis difficult in multi-dimensional type
spaces [2, 3].

3) There are few general methodologies, especially in
mechanism design without money, where bespoke
mechanisms are developed for a given domain [4].

In practice, one often needs to hand-craft a mechanism
based on application-specific requirements. For example,

‚ Task assignment: Consider the problem of designing
an assignment mechanism for a ride sharing platform.
This is a setting with payments, and the standard mech-
anism one would use here is the Vickrey-Clarke-Groves
(VCG) mechanism. However, if one needs to incor-
porate specific priority or fairness considerations, the
VCG mechanism may not be well-suited, and the de-
signer would be faced with needing to manually design
a mechanism that satisfies the requirements.

‚ Resource allocation: Consider the problem of design-
ing a strategy-proof mechanism for the fair allocation
of jobs to shared computers based on reported need.
This is a setting without money, and a standard strategy-
proof mechanism for assignment is random serial dic-
tatorship (RSD). However, if the designer wishes to op-
timize a different utility criterion than RSD (e.g. a util-
itarian objective), then the designer will again have to
handcraft a mechanism based on the requirements.

We suppose that alternatively, the designer can provide his
requirements in the form of a target outcome rule that maps
reports to desired outcomes (but is not necessarily strategy-
proof). The goal is to automatically design a strategy-proof
mechanism that closely mimics this rule, leading to the fol-
lowing question:

Given an arbitrary outcome rule, can we
automatically design a strategy-proof mechanism

that closely approximates the rule?

The common approach to automated mechanism design [5]
has been to formulate a search problem over a set of



strategy-proof mechanisms. Some works perform this
search over an explicit space of all possible mechanisms,
often resulting in intractable optimization problems (with a
number of decision variables that grow exponentially in the
number of agents). Other approaches search over a parame-
terized subset of strategy-proof mechanisms [6, 7, 8]. How-
ever, these methods are tailored to specific classes of mech-
anisms known to be strategy-proof. Positive results are
available for a Bayesian relaxation of strategy-proofness,
and with agent-separable objectives [9, 10], but a more gen-
eral approach has remained elusive.

In this paper, we develop a general statistical framework
for designing strategy-proof mechanisms that closely ap-
proximate a target outcome rule. Envisioning settings with
abundant data on agent preferences, we assume access to
example inputs to a mechanism, each input labeled with a
target outcome. Consider for example a setting with an ex-
isting, strategy-proof mechanism, with new design require-
ments specified through target outcomes on historical re-
ports. The goal is to find a strategy-proof mechanism that
closely approximates the target outcome rule.

We leverage general, necessary and sufficient conditions
for the strategy-proofness of a mechanism, namely an
agent-independence condition, and a feasibility require-
ment (that the outcome of the mechanism is feasible). Con-
cretely, the framework formulates an optimization problem
on a sampled set of agent type profiles over a specified
class of outcome rules that satisfy agent-independence. A
feasibility constraint is enforced on the sampled profiles,
so that the resulting mechanism is feasible on these sam-
ples. In addition, we apply a transform to the mechanism
to ensure feasibility on all profiles while retaining agent-
independence (and thus obtaining strategy-proofness). The
particular problem we study is an assignment problem,
where there is a set of distinct, indivisible items and the
outcome assigns at most one item to each agent. The dis-
tance to the target assignment is measured in terms of the
Hamming distance. The feasibility transform is due to
Hashimoto [11] and is well defined for allocation problems.

Unlike previous works on the automated design of strategy-
proof mechanisms, our framework neither performs a
brute-force search over all mechanisms nor requires the de-
signer to provide a specific parameterized class of strategy-
proof mechanisms. Instead we take an intermediate ap-
proach, where the space of strategy-proof mechanisms
searched over is controlled by the capacity of the out-
come class. The capacity of this class can be controlled
through standard machine learning techniques, for exam-
ple by parametrizing the class in a suitable feature space
and adjusting the set of features used. By using the general,
necessary and sufficient conditions of agent-independence
and feasibilty, we remove the need for new characterization
results. Rather, the limit of the framework is governed by
the limits of the statistical framework.

The main result is an upper bound on the sample com-
plexity of designing strategy-proof mechanisms using our
framework. The bound depends on the capacity of the
agent-independent function class used, measured in terms
of its Natarajan dimension D [12]. We show that for n
agents and N sampled profiles, the difference in Hamming
distance to the target between the designed mechanism and
the best strategy-proof mechanism within the hypothesis
space is at most:

rO
ˆ

c

D

N
`

D

N

n
ÿ

i“1

|Θi|

˙

,

for a distributional assumption, and where |Θi| is the size
of the type space for agent i. The linear dependence on
|Θi| is a result of the feasibility transformation applied to
the sample-optimal rule. This sample complexity is ex-
ponentially smaller than the total number of type profiles
Śn

i“1 |Θi|.

The proposed approach is quite flexible, in that it can
handle settings with and without money. Instantiating
the framework to assignment problems, we provide ex-
plicit examples of agent-independent rule classes with fi-
nite Natarajan dimension that contain feasible assignment
rules. For the setting with money, the hypothesis class is
defined in terms of agent-independent price functions, with
each agent demanding the item that maximizes its utility.
For the setting without money, the hypothesis class is de-
fined in terms of virtual price functions and budgets, with
each agent demanding its most preferred, affordable item.

1.1 RELATED WORK

The problem of using machine learning to design mecha-
nisms that approximate a target rule was first considered
by Procaccia et al. [13] in the context of designing vot-
ing rules, but without consideration to strategy-proofness.
In the most closely-related work, Dütting et al. [14] use
statistical machine learning to design payment rules for a
fixed outcome rule. We design both outcome and pay-
ment rules, and whereas they provide approximate strategy-
proofness, we obtain strategy-proof mechanisms. We also
handle mechanism design without money.

Prior work on automated mechanism design adopts spe-
cific, parameterized classes of mechanisms [7, 8, 15].
However, these approaches require a designer to have para-
metric characterizations of strategy-proof mechanisms, and
require specialized solvers for each case. More recently,
Narasimhan and Parkes [15] consider the problem of us-
ing methods from machine learning to design social choice
and matching mechanisms that best approximate a target
rule, but their approach is also tailored to specific parame-
terized classes of mechanisms. We provide a more general
approach, where the designer only needs to provide a set of
rules that satisfy the agent-independence condition.



There has also been previous work that uses statistical
or machine learning techniques to design revenue-optimal
mechanisms from sampled preference data [16, 17, 18, 19],
but this is restricted to settings where the private informa-
tion of agents is “single-parameter” (roughly, one number,
whereas in our setting each agent’s type is a value for each
item or a rank order on items).

Organization. In Section 2, we begin with the problem set-
ting and in Section 3, describe a general characterization of
strategy-proof mechanisms for assignment problems with
and without money. In Section 4, we use these charac-
terizations to develop a statistical framework for designing
strategy-proof assignment mechanisms. In Section 5, we
derive a sample complexity bound for our approach, and in
Section 6, we discuss applications of our result to assign-
ment problems with and without money.

2 PROBLEM SETTING

We consider n agents rns “ t1, . . . , nu andm items rms “
t1, . . . ,mu, and are interested in one-to-one assignments
of items to agents. We allow agents to be unassigned, in
which case we will say that the agent is assigned to φ. An
agent may additionally be charged a payment.

We say that an assignment is feasible if no two agents are
assigned the same item. Let Ω Ă rmsn denote the set
of feasible one-to-one assignments of items (or φ) to the
agents. We will use y P Ω to denote a feasible assignment
and yi P rms for the item allocated to agent i in y.

Each agent is associated with a type θi from a finite set Θi,
which is private to the agent. We use θ “ pθ1, . . . , θnq to
denote a profile of types, and Θ “

Śn
i“1 Θi to denote the

set of all type profiles. We will use θ´i to denote the profile
of types for all but agent i, and Θ´i “

Ś

j‰i Θj .

In a setting without money, an agent’s type induces a pref-
erence ordering over items. We will use o ąi o

1 to denote
that agent i strictly prefers item o P rms over item o1 P rms,
and o ľi o

1 to denote that the agent either strictly prefers o
over o1 or is indifferent.

In a setting with money, an agent is charged a price for
an item, and the agent’s type induces a preference or-
dering over pairs po, poq P rms ˆ R` of items and
prices. In this case, we will assume quasi-linear prefer-
ences. Here each agent i is associated with a valuation
function vi : Θi ˆ rmsÑR`, with vipθi, oq P R` in-
dicating the value assigned for agent type θi to item o.
The agent’s utility for a pair po, poq of items and prices is
given by uipθi, po, poqq “ vipθi, oq ´ po, and po, poq ľi

po1, po1q ðñ uipθi, po, poqq ě uipθi, po
1, po1qq.

A mechanism receives reports of types from the agents, and
maps each agent to an item through an outcome rule f :
ΘÑΩ. For a report profile θ̂ from the agents, the assign-

ment to the agents is given by fpθ̂q P Ω, and fipθ̂q P rms
shall denote the item assigned to agent i by f . In settings
with money, the mechanism also charges a payment mea-
sured in terms of a payment rule pi : ΘÑR`.

A desirable property of a mechanism is strategy-proofness.
A mechanism is strategy-proof if each agent receives its
most-preferred outcome (or outcome-price pair) when re-
porting its true type. More concretely, in a setting without
money, a mechanism defined by outcome rule f is strategy-
proof if for all i P rns, θ P Θ, and θ1i P Θi, fipθq ľi

fipθ
1
i, θ´iq. Similarly, in a setting with money, a mecha-

nism defined by pf, pq is strategy-proof if for all i P rns, θ P
Θ, and θ1i P Θi, pfipθq, pipθqq ľi pfipθ

1
i, θ´iq, pipθ

1
i, θ´iqq.

In both cases, let us useMSP to denote the space of mech-
anisms that are strategy-proof.

Agent types are distributed according to an underlying, un-
known distributionD over type profiles Θ. We are provided
a target outcome rule g : ΘÑΩ that need not be strategy-
proof, and the goal is to design a strategy-proof mecha-
nism that closely approximates this rule. For this purpose,
we adopt a distance measure ` : rmsn ˆ rmsnÑR` to
measure the distance between the given and target assign-
ments. In particular, we use the normalized Hamming dis-
tance, `py, y1q “ 1

n

řn
i“1 1pyi ‰ y1iq for any y, y1 P rmsn.

The goal is:

min
pf,pqPM1

SP

EΘ„D
“

`pgpθq, fpθqq
‰

, (1)

whereM1
SP Ď MSP is some set of strategy-proof mecha-

nisms. In words, we want to find the strategy-proof mecha-
nism in a class of mechanisms that minimizes the expected
distance from the target. Since the distribution is over a fi-
nite space, an infimum overM1

SP is always achieved by a
mechanism within the class. We shall allow the designer
to control the space of strategy-proof mechanismsM1

SP by
providing a suitable rule class with appropriate capacity (or
expressive power).

3 CHARACTERIZATION OF
STRATEGY-PROOF MECHANISMS

We first provide a general, necessary and sufficient charac-
terization of strategy-proof assignment mechanisms in set-
tings with and without money. These characterizations are
standard in mechanism design theory.

Assignment Problem with Money. A mechanism defined
by a pair of outcome rule and payment rule pf, pq is
strategy-proof iff the following conditions hold [20]:

(1) Agent independence: Given the report of the other
agents, an agent’s prices on each item are independent
of its own report. Also, the agent is assigned its
most-preferred item, given its report and the agent-
independent prices. In other words, the payment



rule pipθq “ tipθ´i, fipθqq for some price function
ti : Θ´i ˆ rmsÑR`, and

fipθq P argmax
oPrms

 

vipθi, oq ´ tipθ´i, oq
(

.

(2) Feasibility: No two agents get the same item, i.e. for
all i, j P rns,fipθq ‰ φ, fjpθq ‰ φñ fipθq ‰ fjpθq.

In words, an agent cannot change the price for an item by
misreporting its type, and given these prices, receives the
most-preferred item according to the report. Further, the
assignment is feasible for all reports.

Example 1. The well-known VCG mechanism satisfies the
above conditions. In its general form, the VCG mecha-
nism allocates for any report θ an assignment that max-
imizes welfare (i.e. sum of agent valuations): f vcgpθq P
argmaxyPΩ

řn
i“1 vipθi, yiq, and charges each agent i a

payment: pvcg
i pθq “ Hipθ´iq ´

ř

j‰i vjpθj , f
vcg
j pθqq,

where Hi : Θ´iÑR` is a function that is independent
of agent i’s report. By definition, the VCG mechanism
satisfies the feasibility condition. To see that the mecha-
nism also satisfies the agent-independence condition, de-
fine tvcg

i : Θ´i ˆ rmsÑR` for reports θ´i and item o as:
tvcg
i pθ´i, oq “ Hipθ´iq ´ maxyPΩ,yi“o

ř

j‰i vjpθj , yjq.

Then it can be verified that pvcg
i pθq “ tvcg

i pθ´i, f
vcg
i pθqq.

Assignment Problem without Money. We can obtain a
similar characterization by defining a virtual price function
tvir
i : Θ´i ˆ rmsÑR` for each agent. For a given prefer-

ence profile report θ P Θ, we will say that agent i can afford
item o P rms if the virtual price for the item is below a bud-
get of $1, i.e. tvir

i pθ´i, oq ď 1. An agent receives one of the
items that it can afford. A mechanism defined by outcome
rule f is strategy-proof iff the following hold:

(1) Agent independence: Given the report of the other
agents, an agent’s virtual prices are independent of its
own report. The agent is assigned its most-preferred
item among those it can afford, given its report and the
agent-independent prices. In other words, there exists a
virtual price function, tvir

i : Θ´i ˆ rmsÑR` such that
tvir
i pθ´i, fipθqq ď 1 and

fipθq ľi o, @o P to
1 P rms : tvir

i pθ´i, o
1q ď 1u.

(2) Feasibility: No two agents get the same item, i.e. for
all i, j P rns, fipθq ‰ φ, fjpθq ‰ φñ fipθq ‰ fjpθq.

4 A GENERAL STATISTICAL
FRAMEWORK

We next introduce a framework that exploits these general,
necessary and sufficient characterizations. Specifically, we
provide an approach to solve (1) by formulating a sample-
based optimization problem over outcome rules that satisfy
the above conditions.

We require the designer to provide a class Fi of functions
fi : ΘÑrms that satisfy the agent independence condi-
tion. For the setting with money, each fi P Fi is required to
be of the form fipθq P argmaxoPrms

 

vipθi, oq ´ tipθ´i, oq
(

for some ti : Θ´i ˆ rmsÑR`. For the setting without
money, each fi P Fi needs to satisfy tvir

i pθ´i, fipθqq ď 1
and fipθq ľi o, @o P to

1 P rms : tvir
i pθ´i, o

1q ď 1u for
some tvir

i : Θ´i ˆ rmsÑR`.

Further, let F “
Śn

i“1 Fi. We will refer to each function
fi P Fi as an agent-independent function, and the concate-
nated function f P F as an agent-independent outcome
rule. The outcome rules f P F need not satisfy the feasi-
bility condition (i.e. can map a type profile θ to an infea-
sible assignment fpθq P rmsn), and therefore may not be
strategy-proof.

For ease of exposition, we will henceforth assume that nei-
ther the outcome rules f P F nor the target rule g leave
an agent unassigned (i.e. do not assign φ to an agent). The
framework and theoretical results easily extend to the case
where this assumption does not hold.

The goal is to solve (1) over all outcome rules in F that
also satisfy the feasibility condition, and find the rule that
has minimum Hamming distance from the target rule:

min
fPF

Eθ„D
“

`
`

gpθq, fpθq
˘‰

(2)

s.t. f1pθq ‰ . . . ‰ fnpθq, @θ P Θ.

In practice, we do not have access to the type distribu-
tion D. Rather, we have a sample S “ tpθ1, y1 “

gpθ1qq, . . . , pθN , yN “ gpθN qqu P pΘ ˆ ΩqN containing
agent profiles drawn i.i.d. from D and labeled according to
the target outcome rule g.

We solve an empirical version of the optimization prob-
lem (2), with the feasibility constraint enforced only on
the profiles in S. A problem is that the obtained rule need
not be feasible on type profiles outside S. To address this,
we adopt a feasibility transform on the obtained rule that
ensures that the resulting rule is feasible without compro-
mising agent independence, and thus obtaining strategy-
proofness. The two steps of our framework are:

Step I: Constrained Optimization on a Sample. We first
solve an empirical version of (2) on sample S:

min
fPF

1

N

N
ÿ

k“1

`
`

yk, fpθkqq
˘

(3)

s.t. f1pθ
kq ‰ . . . ‰ fnpθ

kq, @k P t1, . . . , Nu.

Step II: Feasibility Transform. The obtained outcome
rule need not be feasible on profiles outside S. A naive way
to enforce feasibility is to resolve conflicts by canceling an



allocation when there is infeasibility, or through some more
sophisticated priority-based approach. But without care,
this results in a mechanism that is not strategy-proof; e.g.
perhaps an agent can usefully misreport in order to avoid a
problem with infeasibility.

We use a transform inspired by an approach due to
Hashimoto [11]. For each agent i, we perform the follow-
ing check: conditioned on the reports of the other agents,
does there exist a type in Θi for which the outcome rule
would output an infeasible assignment? If yes, we leave
agent i unassigned; otherwise the original assigned item is
left unchanged. For the outcome rule pf obtained by solv-
ing (3), the transform Tr pf s : ΘÑΩ is given by:

Tir pf spθq

“

#

φ if D θ1i P Θi s.t. pfpθ1i, θ´iq is infeasible
pfipθq otherwise,

where Tir pf spθq denotes the item assigned to agent i by the
transformed rule. The transform has no effect when pf is
feasible on all profiles.1

Theorem 1 (Hashimoto 2016). The outcome rule Tr pf s is
feasible and strategy-proof when pf is agent-independent.

Proof. The transformation T will leave an agent unas-
signed whenever its original assignment conflicts with that
of the others. Since T never assigns a new item to an agent,
Tr pf s is feasible. For strategy-proofness, we consider two
cases. (Case 1): the feasibility check for all θ1i P Θi passes,
so that agent i’s assignment from pf is left unperturbed, and
no misreport is useful as the agent receives its optimal item
given the agent-independent prices. (Case 2): the feasibil-
ity check does not pass. But here it would not pass what-
ever be the report θ̂i of agent i, since the test is independent
of its report. A misreport is not useful.

The framework allows a designer to control the space of
strategy-proof mechanisms searched over by choosing an
appropriately expressive agent-independent rule class F .

Example 2. We show how the framework can be used to
design a strategy-proof mechanism for a simple setting with
payments. Consider two homogeneous agents t1, 2u and
two items t1, 2u. Assume there are two agent types Θ1 “

Θ2 “ tα, βu, with the following valuation functions:

v1pα, 1q “ v2pα, 1q “ 2; v1pα, 2q “ v2pα, 2q “ 1

v1pβ, 1q “ v2pβ, 1q “ 1; v1pβ, 2q “ v2pβ, 2q “ 2

1The transformation does not require an enumeration of all
Śn

i“1 |Θi| type profiles, and performs a check only over the indi-
vidual type space of a given agent, fixing the reports of the others.
It can be implemented with

řn
i“1 |Θi| checks.

Suppose the underlying distribution D over Θ is uniform,
and the target rule the designer wants to approximate is:

gpα, αq “ p1, 2q; gpβ, αq “ p1, 2q

gpα, βq “ p1, 2q; gpβ, βq “ p2, 1q

Assume the designer provides a class Fi of agent-
independent functions fipθq “ argmaxoPrms

 

vipθi, oq ´

tipθ´i, oq
(

, with the following two candidates for the
payment function ti : Θ´i ˆ t1, 2uÑR`:

τA:
1 2

α 1 0
β 0 2

τB:
1 2

α 1 0
β 0 1

Assume we are provided a training sample with two ran-
domly drawn type profiles and labeled with the target out-
comes: S “ tppα, αq, p1, 2qq, ppα, βq, p1, 2qqu. We now
go over the two steps of the framework:

I: Constrained optimization over sample. We first solve the
optimization problem in (3) over the given hypothesis class.
Note that an outcome rule pfA constructed using t1 “ t2 “
τA (with ties broken in favor of the smaller item for agent
1, and larger item for agent 2) is a solution to (3) as it is
both feasible on S and yields zero error. On the first type
profile pα, αq, this rule gives us

pfA1 pα, αq “ argmaxoPt1,2u
 

v1pα, oq ´ τApα, oq
(

“ 1

pfA2 pα, αq “ argmaxoPt1,2u
 

v2pα, oq ´ τApα, oq
(

“ 2

and on the second type profile, we get

pfA1 pα, βq “ argmaxoPt1,2u
 

v1pα, oq ´ τApβ, oq
(

“ 1

pfA2 pα, βq “ argmaxoPt1,2u
 

v2pβ, oq ´ τApα, oq
(

“ 2

II: Feasibility transformation. The outcome rule is not
necessarily feasible on a type profile outside S. For exam-
ple, on the type profile pβ, βq, the rule outputs an infeasible
allocation p1, 1q. As a second step, we apply the feasibility
transform to enforce feasibility without violating the agent-
independence property. The resulting outcome rule Tr pfAs
can then be verified to yield the following:

Tr pfAspα, αq “ p1, 2q; Tr pfAspα, βq “ p1, φq

Tr pfAspβ, αq “ pφ, 1q; Tr pfAspβ, βq “ pφ, φq

On the other hand, if we were provided a larger sample, say
S1 “ tppβ, αq, p1, 2qq, ppα, βq, p1, 2qq, ppβ, βq, p2, 1qq,

ppα, βq, p1, 2qqu, then the outcome rule pfA is no longer fea-
sible on the sample. In this case, we would instead pick
t1 “ t2 “ τB . It can be verified that the resulting rule
pfB is the VCG outcome rule. This rule is feasible on all
profiles, and the transform has no effect: Tr pfBs “ pfB .



5 SAMPLE COMPLEXITY GUARANTEE

A potential concern is the extent to which the feasibility
transform reduces the quality of the solution obtained by
solving (3). We shall see that under an assumption on dis-
tribution D, and with a sufficiently large sample, the trans-
formed rule becomes arbitrarily close to the best strategy-
proof approximation in F . This holds when each Fi has
finite capacity, as we elaborate in this section.

To have any hope of solving our original optimization prob-
lem in (1) using a finite sample, we will require the space of
agent-independent functionsFi to have limited capacity, so
that the obtained outcome rule does not overfit the sample.
The specific notion of capacity we consider is the Natara-
jan dimension, commonly used while analyzing generaliza-
tion performance of multi-class classifiers [12] (note that
each fi P Fi can be seen as a multiclass classifier mapping
type profiles to one of m items).

Definition 1 (Natarajan dimension). A set of profiles
A Ď Θ is said to be N-shattered by Fi if there exists label-
ings L1, L2 : AÑrms such that L1pθq ‰ L2pθq, @θ P A,
and for every subset B Ď A, there is a fi P Fi such that
fipθq “ L1pθq, @θ P B and fipθq “ L2pθq, @θ P AzB.
The Natarajan dimension of Fi is the size of the largest set
A that is N-shattered by Fi.

The Natarajan dimension is analogous to the VC dimension
used in binary classification settings. In fact, for binary
hypothesis classes, this quantity is the same as the VC di-
mension (with L1 and L2 being the all 1’s and all 0’s label-
ings respectively). As with the VC dimension, finiteness
of the Natarajan dimension is necessary and sufficient for
learnability of a multiclass hypothesis class (see for exam-
ple [21]). Hence, we assume that each agent-independent
class Fi has finite Natarajan dimension. We will further
require a smoothness assumption on distribution D:

Assumption A. Let µ be the p.m.f. associated with
distribution D. There exists α ě 1 such that for all i,
θ1i, θi P Θi, θ´i P Θ´i, µpθ1i, θ´iq ď αµpθi, θ´iq.

Assumption A requires that type profiles that differ only in
one coordinate have similar probability masses. The value
of α measures the closeness of the type distribution to a
uniform distribution (with higher values indicating the dis-
tribution is father away from being uniform). For the uni-
form distribution we have α “ 1. Assumption A is used to
enable an analysis of the effect of the feasibility transform
on the outcome rule.

Each outcome rule in F satisfies the agent-independence
condition. Let FSP Ď F be the subset of rules that also
satisfy the feasibility condition, and are thus strategy-proof,
i.e. outcome rules in f P F that are feasible on all θ P Θ.
We only consider function classes that contain at least one
feasible rule, i.e. for which FSP ‰ φ. Our goal is to find a

rule in FSP that best approximates target rule g.

Our approach picks a rule pf that is feasible on sample S,
but need not be feasible on type profiles outside S. The
transformation T ensures feasibility on all profiles, while
ensuring strategy-proofness. We show that the transformed
rule Tr pf s converges in the large sample limit to the best
rule in FSP:
Theorem 2. Let D satisfy Assumption A, and assume
FSP ‰ H. Let pf denote the rule obtained by solving (3)
on a sample S of size N , and f̃ “ Tr pf s. Then with proba-
bility at least 1´ δ (over draw of S from DN ),

Eθ„D
“

`
`

gpθq, f̃pθq
˘‰

ď min
fPFSP

Eθ„D
“

`
`

gpθq, fpθq
˘‰

` rO
ˆ

c

D

N

˙

` rO
ˆ

αD

N

n
ÿ

i“1

|Θi|

˙

,

where D is an upper bound on the Natarajan dimension
of each agent-independent function class Fi, and rO hides
terms that are logarithmic in n, m, N , D and δ.

The first term arises from pf yielding minimum error on
sample S, and decreases with increasing sample size N .

The second term captures the effect of the feasibility trans-
formation T, and has a linear dependence on the size of an
agent’s type space |Θi|, while being exponentially smaller
than the total number of type profiles

Śn
i“1 |Θi|. This term

also decreases with sample size N ; this is because as N in-
creases, pf becomes feasible on a larger fraction of the pop-
ulation, the effect of the transformation T becomes smaller.
Thus for a finite class capacity D, both the above terms go
to 0 as NÑ8, and the transformed outcome rule rf con-
verges to the optimal rule in FSP.

The larger the class capacity D, the larger is the space of
strategy-proof rules searched over. However, as seen in
the above bound, this will also lead to a larger bias due to
overfitting. Thus based on the size of the available sample,
the designer needs to appropriately tune the capacity of the
agent-independent class, so as to strike a trade-off between
the size of the strategy-proof hypothesis space searched
over, and the corresponding bias introduced.

5.1 PROOF

We give the proof for Theorem 2. Let FS denote the subset
of all agent-independent rules in F that are feasible on S.
Recall that the outcome rule pf P F obtained by solving (3)
is in FS , and also yields the minimum sample error over all
rules in FS . Note that FSP is a subset of the rules FS that
are feasible on all type profiles, and thus strategy-proof:

FSP Ď FS Ď F

Also, note that the final transformed outcome rule rf “

Tr pf s is feasible on all profiles, but may not be a rule inFSP.



We show that with increasing sample size, rf converges to
the rule in FSP that best approximates the target. While we
assume neither the rules f P F nor the target rule g assign
φ to an agent, the transformation T is allowed to cancel
an item to an agent. Hence, while evaluating the designed
mechanism against the target outcome rule, an assignment
of φ to an agent will be counted as an error.

The proof is based on uniform convergence arguments
commonly used in the generalization analysis of multiclass
classifiers. We will make use of the fact that pf is chosen
from a finite capacity rule class. We first show that since
pf minimizes the sample error over all rules in FS , its ex-
pected error to the target is also close to the least possible
error withinFS , and in turn to the least error within the sub-
set of feasible and strategy-proof rules FSP Ď FS . How-
ever, the final transformed rule f̃ may be different from
pf , as it can cancel items assigned by pf . We further show
that since pf is feasible on sample S, it is also feasible on
a large portion of the population; this together with our
smoothness assumption on the distribution implies that the
expected error of f̃ is close to that of pf . Thus we are able
to bound the expected error of f̃ in terms of the minimum
error within FSP, and a sample complexity term.

In particular, we analyze three quantities:

εerr “ Eθ„D
“

`
`

gpθq, pfpθq
˘‰

,

εinfeasible “ Pθ„D
`

pfipθq “ pfjpθq for some i, j P rns
˘

,

εiT “ Pθ„D
`

rfipθq “ φ
˘

.

Here εerr is the expected distance of the untransformed rule
pf from the target; εinfeasible is the probability of pf being
infeasible on a random profile; and εiT is the probability that
the transformation T cancels the item assigned to agent i.

Since the transformation T leaves pfi unchanged on all but
a fraction εiT of the profiles, the distance of the final trans-
formed outcome rule rf from the target can be bounded in
terms of the error of the untransformed rule εerr, and εiT’s:

Eθ„D
“

`
`

gpθq, f̃pθq
˘‰

“ Eθ„D

„

1

n

n
ÿ

i“1

1
`

rfipθq ‰ gipθq
˘



“ Eθ„D

„

1

n

n
ÿ

i“1

1
`

rfipθq “ pfipθq ‰ gipθq
˘



`Eθ„D

„

1

n

n
ÿ

i“1

1
`

rfipθq “ φ ‰ gipθq
˘



ď Eθ„D
“

`
`

gpθq, pfpθq
˘‰

` Eθ„D

„

1

n

n
ÿ

i“1

1
`

rfipθq “ φ
˘



“ εerr `
1

n

n
ÿ

i“1

εiT. (4)

We bound εerr and εiT. For this, we will in turn require a
bound on εinfeasible. We start with an outline:

‚ Bounding εerr (Lemma 3): We show that the expected
distance of this rule from the target is close to that of
the optimal rule in FSP.

‚ Bounding εinfeasible (Lemma 4): We show that pf is fea-
sible on a large fraction of the population.

‚ Bounding εiT (Lemma 5): We use the smoothness as-
sumption on D (Assumption A) to show that the trans-
formation T will have limited effect on pf as long as pf
is feasible on a large portion of the population. In par-
ticular, we bound each εiT in terms of εinfeasible.

We begin by bounding εerr. It is useful to state a general-
ization bound on the difference between the empirical and
population errors of an outcome rule f chosen from a class
of finite Natarajan dimension [21] (see Lemma 10 in Ap-
pendix A). W.p. ě 1´ δ (over draw of S), @f P F ,

ˇ

ˇ

ˇ

ˇ

Eθ„D
“

`
`

gpθq, fpθq
˘‰

´
1

N

N
ÿ

k“1

`
`

yk, fpθkq
˘

ˇ

ˇ

ˇ

ˇ

ď O
ˆ

c

D lnpmq ` lnpn{δq

N

˙

. (5)

We then have:
Lemma 3. Fix δ ą 0. With probability at least 1´ δ (over
draw of S from DN ),

εerr ď min
fPFSP

Eθ„D
“

`
`

gpθq, fpθq
˘‰

`O
ˆ

c

D lnpmq ` lnpn{δq

N

˙

.

Proof. Denote f˚ P argminfPFSP
Eθ„D

“

`
`

gpθq, fpθq
˘‰

.
We wish to bound:

Eθ„D
“

`
`

gpθq, pfpθq
˘‰

´ min
fPFSP

Eθ„D
“

`
`

gpθq, fpθq
˘‰

“ Eθ„D
“

`
`

gpθq, pfpθq
˘‰

´
1

N

N
ÿ

k“1

`
`

yk, pfpθkq
˘

`
1

N

N
ÿ

k“1

`
`

yk, pfpθkq
˘

´ Eθ„D
“

`
`

gpθq, f˚pθq
˘‰

ď Eθ„D
“

`
`

gpθq, pfpθq
˘‰

´
1

N

N
ÿ

k“1

`
`

yk, pfpθkq
˘

`
1

N

N
ÿ

k“1

`
`

yk, f˚pθkq
˘

´ Eθ„D
“

`
`

gpθq, f˚pθq
˘‰

ď 2 sup
fPF

ˇ

ˇ

ˇ

ˇ

Eθ„D
“

`
`

gpθq, fpθq
˘‰

´
1

N

N
ÿ

k“1

`
`

yk, fpθkq
˘

ˇ

ˇ

ˇ

ˇ

,

where the second step uses the fact that pf has minimum
empirical error on S over all FS Ě FSP and hence a lesser
or equal empirical error compared to f˚ P FSP; the last
step uses the fact that both pf, f˚ P F . The generalization
bound in (5) then gives the desired result.



We next focus on bounding εinfeasible.
Lemma 4. Assume FSP ‰ H. Fix δ ą 0. Then w.p. at
least 1´ δ (over draw of S from DN ),

εinfeasible ď O
ˆ

nD lnpmnDq lnpNq ` lnp1{δq

N

˙

.

Proof. (Sketch) We provide the full proof in Appendix
B.1. For any f : ΘÑΩ, define a binary function Gf :
ΘÑt0, 1u as Gf pθq “ 1

`

f1pθq ‰ . . . ‰ fnpθq
˘

. Clearly,
f is feasible iffGf evaluates to 1 on all type profiles. Since
FSP ‰ φ, there always exists a f in F which is feasible,
and hence there always exists a Gf which outputs 1 on all
profiles. Treating Gf as a binary classifier, one can now
appeal to standard VC dimension based learnability results
for classification [22], with the loss function being the 0-1
loss against the all 1’s labeling. The VC dimension of the
class of all functions tGf : ΘÑt0, 1u : f P Fu can be
shown to be at mostOpnD lnpnmDqq. Then w.p.ě 1´δ,

εinfeasible “ Eθ„D
“

1
`

G
pf pθq ‰ 1q

˘

ď O
ˆ

nD lnpnmDq lnpNq ` lnp1{δq

N

˙

,

which implies the statement of the lemma.

We finally bound εiT in terms εinfeasible.
Lemma 5. Under Assumption A, εiT ď α|Θi|εinfeasible.

Proof. Let us use µ to denote the p.m.f. associated with
distribution D. Also, let Θinfeasible Ď Θ denote the subset
of type profiles on which pf is infeasible, i.e. type profiles
θ P Θ for which pfipθq “ pfjpθq for some i and j. Clearly,
εinfeasible “

ř

θPΘinfeasible
µpθq. Further, note that the set of

type profiles on which the transformation T makes a null
allocation to agent i is precisely the set of type profiles that
are one hop away (i.e. differ in agent i’s type) from those
in Θinfeasible. Therefore,

εiT “
ÿ

θPΘ

µpθq1
`

f̃ipθq “ φ
˘

“
ÿ

θPΘinfeasible

ÿ

θ1iPΘi

µpθ1i, θ´iq

ď
ÿ

θPΘinfeasible

ÿ

θ1iPΘi

αµpθq “ α
ÿ

θ1iPΘi

ÿ

θPΘinfeasible

µpθq

“ α|Θi|εinfeasible,

where the inequality follows from Assumption A.

Combining Lemmas 4-5 with (4) gives us w.p. at least 1´δ
(over draw of S):

Eθ„D
“

`
`

gpθq, f̃pθq
˘‰

ď min
fPFSP

Eθ„D
“

`
`

gpθq, fpθq
˘‰

`O
ˆ

c

D lnpmq ` lnpn{δq

N

˙

`O
ˆ

α

n

n
ÿ

i“1

|Θi|
nD lnpnmDq lnpNq ` lnp1{δq

N

˙

.

This completes the proof of Theorem 2.

6 APPLICATIONS

We provide instantiations of the framework to assignment
problems with and without money. In each case, we con-
struct examples of agent-independent function classes Fi
that have finite Natarajan dimension. We also show that
these function classes can be used to model feasible out-
come rules, which together with the agent-independence
property are guaranteed to be strategy-proof.

6.1 ASSIGNMENT PROBLEM WITH MONEY

As noted in Section 3, a strategy-proof outcome rule in this
setting is necessarily of the following form for an agent-
independent price rule ti : Θ´iÑR`.

fipθq P argmax
oPrms

 

vipθi, oq ´ tipθ´i, oq
(

.

One way to construct an agent-independent function class
for this setting is by modeling the above price rule ti
as a linear function in a suitable feature space, i.e. as
twi pθ´i, oq “ wJi Ψipθ´i, oq for some model vector wi P

Rd and feature map Ψi : Θ´i ˆ rmsÑRd. Let F̄Ψ
i be

the corresponding class of agent-independent functions ob-
tained for different model vectors wi. This class resembles
the class of linear discriminant classifiers, which is known
to have a finite Natarajan dimension [21]:

Theorem 6. The Natarajan dimension of F̄Ψ
i is at most

Opd lnpdqq.

Note that one can fine-tune the capacity of this class by
adjusting the number of features d used. Below, we show
that the function class admits feasible and strategy-proof
outcome rules for an appropriate choice of feature map.

Example feature map. We describe a feature map with two
parts, inspired by the VCG price function seen in Example
1. For an agent i and item o, the first part contains the
valuations for all agents other than i:

Ψ1
i pθ´i, oq “ rvjpθj , o

1qsmo1“1sj‰i P Rpn´1qˆm
` .

The second part of the feature map contains the valua-
tions for the other agents when they receive the welfare-
maximizing assignment from items other than o:

Ψ2
i pθ´i, oq “ rvjpθj , y

zi,o
j qsj‰i P Rn´1

` ,

where yzi,o P argmaxyPΩ, yi“o
ř

j‰i vjpθj , yjq.

The feature map Ψ̄ipθ´i, oq “ rΨ1
i pθ´i, oq,Ψ

2
i pθ´i, oqs

then allows us to construct feasible outcome rules.

Theorem 7. There exists wi P Rpn´1qpm`1q s.t. the prices
twi pθ´i, oq “ wJi Ψ̄ipθ´i, oq are non-negative and yield a
feasible outcome rule for a suitable tie-breaking scheme.



The specific model vector we consider is

wi “ r1, 1, . . . , 1
loooomoooon

pn´1qˆm

,´1,´1, . . . ,´1
loooooooomoooooooon

n´1

s.

The first part of the model vector ensures that the payments
are non-negative, while the second part leads to a VCG-
style welfare maximizing outcome rule. The proof details
are provided in Appendix B.2.

6.2 ASSIGNMENT PROBLEM WITHOUT
MONEY

In this setting, a strategy-proof outcome rule satisfied the
following for some agent-independent virtual price func-
tions tvir

i : Θ´i ˆ rmsÑR`: tvir
i pθ´i, fipθqq ď 1 and

fipθq ľi o, @o P to
1 P rms : tvir

i pθ´i, o
1q ď 1u.

As before, to construct an agent-independent function
class, we can model the virtual price function tvir

i as a linear
function tvir,w

i pθ´i, oq “ wJi Ψipθ´i, oq for some model
vector wi P Rd and feature map Ψi : Θ´i ˆ rmsÑRd.
Let rFΨ

i be the corresponding class of agent-independent
functions obtained for different model vectors wi.

Unlike the setting with money, here the payment functions
do not directly resemble standard classification constructs.
Below, we derive a bound on the Natarajan dimension of
the proposed function class (see Appendix B.3 for proof).

Theorem 8. The Natarajan dimension of rFΨ
i is at most

Oppmdq lnpmdqq.

Thus the capacity of the function class is finite and can be
tuned by varying the number of features used. Also, this
class includes feasible and strategy-proof outcome rules for
an appropriate choice of the feature map.

Example feature map. Define for agent i, a function
ranki : Θi ˆ rmsÑ rms that maps a type θi and item o
to the number of items that the agent prefers less than o:
rankpθi, oq “

řm
o1“1 1po ąi o

1q (note higher ranks imply
greater preference to item o). For an agent i and item o, the
prescribed feature map is then a nˆm binary encoding of
the ranks assigned by agents other than i to item o:

rΨipθ´i, oqrj, ks “

#

1prankjpθj , oq “ kq if j ‰ i

0 otherwise
,

where we use rj, ks to denote the index pj ´ 1qm` k.

Theorem 9. There exists wi P Rnˆm such that the vir-
tual price functions tvir,w

i pθ´i, oq “ wJi
rΨipθ´i, oq yield a

feasible outcome rule.

In particular, a serial dictatorship (SD) style feasible, and
strategy-proof outcome rule is within this class. Fix a pri-
ority π : rnsÑ rns over the agents, where πpiq denotes the

priority to agent i (with 1 indicating the lowest priority, and
n indicating the highest). The following vector wi P Rnˆm
then yields a SD style rule with priority ordering π: for any
j P rns, k P rms,

wirj, ks “

#

2 πpjq ą πpiq, k ě m´ n` πpjq

0 otherwise
.

The proof of feasibility is provided in Appendix B.4.

7 CONCLUSION AND OPEN
QUESTIONS

We have developed a general statistical framework for de-
signing strategy-proof mechanisms that closely approxi-
mate a given target outcome rule. Our approach does
not require domain-specific characterizations, and only re-
quires the designer to provide a class of rules that satisfy
a simple agent-independent condition. By tuning the ca-
pacity of this class, one can control the space of strategy-
proof mechanisms optimized over. We have provided sam-
ple complexity bounds for our method and instantiated ap-
plications to assignment problems with and without money.

There are several questions that arise from our work:

• The optimization problem (3) can be formulated and
solved as a mixed integer linear program. But, how
can one solve this problem efficiently in practice? For
the setting with money, the problem can be solved ap-
proximately by adopting convex relaxations from ma-
chine learning (see [14]). It will be interesting to un-
derstand the effectiveness of these relaxations as well
as to identify similar relaxations for the setting with-
out money.

• How can the framework be extended to infinite type
spaces, and how can the feasibility transformation be
implemented efficiently in such a setting?

• How can the framework be extended to instance-
dependent distance functions, and applied to specific
design objectives such as welfare or revenue?

• The sample complexity result requires that the agent-
independent function classes have finite capacity. Can
we use an approach similar to structural risk mini-
mization to incorporate a universal hypothesis class
in the framework, and thus cover the entire space of
strategy-proof mechanisms?
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A General Statistical Framework for Designing
Strategy-proof Assignment Mechanisms

Appendix

A Generalization Bounds

For a rule class Fi with finite Natarajan dimension of at most D, the following result relates the empirical and population
0-1 errors of any rule in Fi: w.p. at least 1´ δ (over draw of S), for all fi P Fi,

ˇ

ˇ

ˇ

ˇ

Eθ„D
“

1
`

gipθq ‰ fipθq
˘‰

´
1

N

N
ÿ

k“1

1
`

yk ‰ fipθ
kq
˘

ˇ

ˇ

ˇ

ˇ

ď O
ˆ

c

D lnpmq ` lnp1{δq

N

˙

. (6)

The proof is involves a reduction to binary classification, and an application of a VC dimension based generalization bound
(see for example proof of Theorem 4 in [21]; also see Eq. (6) in [21]). It is straightforward to extend the above result to a
similar bound on the Hamming error metric of an outcome rule f P F :
Lemma 10. With probability at least 1´ δ (over draw of S „ DN ), for all f P F ,

ˇ

ˇ

ˇ

ˇ

Eθ„D
“

`
`

gpθq, fpθq
˘‰

´
1

N

N
ÿ

k“1

`
`

yk, fpθkq
˘

ˇ

ˇ

ˇ

ˇ

ď O
ˆ

c

D lnpmq ` lnpn{δq

N

˙

.

Proof. We would like to bound:

sup
fPF

ˇ

ˇ

ˇ

ˇ

Eθ„D
“

`
`

gpθq, fpθq
˘‰

´
1

N

N
ÿ

k“1

`
`

yk, fpθkq
˘

ˇ

ˇ

ˇ

ˇ

ď
1

n

n
ÿ

i“1

sup
fiPFi

ˇ

ˇ

ˇ

ˇ

E
“

1
`

gipθq ‰ fipθq
˘‰

´
1

N

N
ÿ

k“1

1
`

yk ‰ fipθ
kq
˘

ˇ

ˇ

ˇ

ˇ

.

Applying (6) to the above expression, along with a union bound over all i, gives us the desired result.

B Proofs

B.1 Complete Proof of Lemma 5

Proof. For any f : ΘÑΩ, define a binary function Gf : ΘÑt0, 1u as Gf pθq “ 1
`

f1pθq ‰ . . . ‰ fnpθq
˘

. Clearly, f is
feasible on S iff Gf evaluates to 1 on all type profiles in S, and feasible on all type profiles iff Gf evaluates to 1 on all type
profiles.

Treating Gf as a binary classifier, the desired result can be derived using standard VC dimension based learnability results
for binary classification [22], with the loss function being the 0-1 loss against a labeling of 1 on all profiles. Let G “ tGf :
ΘÑt0, 1u : f P Fu be the set of all such binary classifiers. Also, εinfeasible “ Eθ„D

“

1
`

G
pf pθq ‰ 1q

˘

. We then wish to
bound the expected 0-1 error of a classifier G

pf from G that outputs 1 on all type profiles in S.

We first bound the VC dimension of G. Since each Fi has a Natarajan dimension of at most D, we have from Lemma 11
in [21] that the maximum number of ways a set of N profiles can be labeled by Fi with labels rms is at most NDm2D.
Since each Gf is a function solely of the outputs of f1, . . . , fn, the number of ways a set of N profiles can be labeled by G
with labels t0, 1u is at most

`

NDm2D
˘n

.

The VC dimension of G is then given by the maximum value of N for which 2N ď
`

Nm2
˘nD

. We thus have that the VC
dimension is at most OpnD lnpmnDqq.

Since FSP ‰ φ, there always exists a function Gf consistent with a labeling of 1 on all profiles. A standard VC dimension
based argument then gives us the following guarantee for the outcome rule pf that is feasible on sample S: w.p. at least
1´ δ (over draw of S),

εinfeasible “ Eθ„D
“

1
`

G
pf pθq ‰ 1q

˘

ď O
ˆ

nD lnpmnDq lnpNq ` lnp1{δq

N

˙

,

which implies the statement of the lemma.



B.2 Proof of Theorem 7

Proof. Let wi “ r1, 1, . . . , 1
loooomoooon

pn´1qˆm

,´1,´1, . . . ,´1
loooooooomoooooooon

n´1

s. We first show that the corresponding payments are non-negative.

twi pθ´i, oq “ wJi Ψ̄ipθ´i, oq

“
ÿ

j‰i

m
ÿ

o1“1

vjpθj , o
1q ´

ÿ

j‰i

vjpθj , y
zi,o
j q

“
ÿ

j‰i

ÿ

o1‰y
zi,o
j

vjpθj , o
1q ě 0.

We next show that the outcome rule fw is feasible, and in particular, outputs a welfare-maximizing assignment. Note that
fwi pθq can output any one of the following items:

Ii “ argmax
oPrms

 

vipθi, oq ´ wJi Ψ̄ipθ´i, oq
(

“ argmax
oPrms

"

vipθi, oq `
ÿ

j‰i

vjpθj , y
zi,o
j q ´

ÿ

j‰i

m
ÿ

o1“1

vjpθj , o
1q

looooooooomooooooooon

T´i

*

“ argmax
oPrms

"

max
yPΩ, yi“o

" n
ÿ

i“1

vipθi, yiq

**

,

where T´i is a term independent of agent i’s valuations and the item o over which the argmax is taken. If the above max
is achieved by more than one item, then the individual functions fwi may not pick distinct items. However, in each of
the following feasible assignments, agent i is assigned an optimal item from Ii: argmaxyPΩ

 
řn
i“1 vipθi, yiq

(

. Thus pf
is feasible as long as it uses a tie-breaking scheme that picks an assignment from this set. Such a tie-breaking scheme
will not violate the agent-independence condition, as the agents continue to receive an optimal item based on their agent-
independent prices.

B.3 Proof for Theorem 8

Proof. For ease of presentation, we omit the subscript i whenever clear from context. Let A Ď Θ be a set of N profiles
N-shattered by rFΨ. Then there exists labelings L1, L2 : AÑrms that disagree on all profiles inA such that for allB Ď A,
there is a w with fwpθq “ L1pθq,@θ P B and fwpθq “ L2pθq,@θ P AzB.

To bound the Natarajan dimension of rFΨ, define ξw : ΘÑt0, 1u that for any θ P Θ outputs 1 if fwpθq “ L1pθq and 0
otherwise. Then for all subsets B of a N -shattered set A, there is a w with ξwpθq “ 1,@θ P B and ξwpθq “ 0,@θ P AzB.
This implies that if a set is N-shattered by rFΨ, it is (binary) shattered by the class tξw : w P Rdu “ Ξ (say). Thus the
size of the largest set N-shattered by rFΨ is no larger than the size of the largest set (binary) shattered by Ξ. The Natarajan
dimension of rFΨ is therefore upper bounded by the VC dimension of Ξ.

What remains is to bound the VC dimension of Ξ. Note that ξwpθq “ 1 only when wJΨipθ´i, L1pθqq ď 1 and L1pθq ľi

o,@o P to1 P rms : wJΨipθ´i, o
1q ď 1u. Also note that when θ P Θ is fixed, the output of ξwpθq for different w P Rd

is solely determined by the value of the binary vector r1pwJΨipθ´i, oq ď 1qsmo“1 P t0, 1u
m. Thus the number of ways a

fixed set A Ď Θ can be labeled by Ξ cannot be larger than the number of ways A can be labeled with the binary vectors
r1pwJΨipθ´i, oq ď 1qsmo“1 P t0, 1u

m for different w P Rd.

Each entry of the above binary vector can be seen as a linear separator. Given that the VC dimension of linear separators
in Rd (with a constant bias term) is d, by Sauer’s lemma, the number of ways a set of N profiles can be labeled by a single
entry 1pwJΨipθ´i, oq ď 1q is at most pNeqd. The total number of ways the set can be labeled with binary vectors of the
above form is at most pNeqmd. The VC dimension of Ξ is then the largest N for which 2N ď pNeqmd. We thus get that
the VC dimension of Ξ is at most Oppmdq lnpmdqq, as desired.



B.4 Proof of Theorem 9

Proof. Fix a priority π : rnsÑ rns over the agents, where πpiq denotes the priority to agent i (with 1 indicating the lowest
priority, and n indicating the highest). Define wi P Rnˆm as follows: for j P rns, k P rms,

wirj, ks “

#

2 πpjq ą πpiq, k ě m´ n` πpjq

0 otherwise.

We show that the resulting outcome rule is a feasible serial dictator style mechanism where the agents are served according
to the priority ordering π. We show this for the case when m “ n. The proof easily extends to the case where this is not
true.

Recall that the entry pj, kq for j ‰ i in the feature map rΨipθ´i, oq is 1 when agent j assigns a rank of k to item o, i.e.
rankjpθj , oq “ k. One can then observe that virtual price function, tvir,w

i pθ´i, oq “ wJi
rΨipθ´i, oq ě 2 whenever an agent

with a higher priority assigns item o a rank greater or equal to its priority level, i.e. whenever rankjpθj , oq ě πpjq for some
j with πpjq ą πpiq. The item o is then not affordable to agent i, as the virtual price exceeds a budget of 1.

The resulting outcome rule is similar to a serial dictatorship mechanism and serves the agents according to the priorities
π: agent π´1p1q affords all items; agent π´1p2q affords all but the item most-preferred by agent π´1p1q; agent π´1p3q
affords all items except the most-preferred item by agent π´1p1q, and the first- and second-most preferred items by agent
π´1p2q; and so on. Thus the most-preferred affordable item for a given agent is always unaffordable for lower priority
agents. Since each agent receives its most-preferred affordable item (and is unassigned if it cannot afford any), there are
no conflicts in assignments.


