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Demixing can occur in systems of two or more particle species that experience dif-

ferent driving forces, e.g., mixtures of self-propelled active particles or of oppositely

charged colloids subject to an electric field. Here we show with macroscopic exper-

iments and computer simulations that the forces underlying such non-equilibrium

segregation can be used to control the self-assembly of particles that lack attrac-

tive interactions. We demonstrate that, depending on the direction, amplitude and

frequency of a periodic external force acting on one particle species, the structures

formed by a second, undriven species can range from compact clusters to elongated,

string-like patterns.

1



I. INTRODUCTION

Systems of particles that are driven far from equilibrium can self-assemble into patterns

that are much more complex than their typical equilibrium structures. Examples of such

patterns occur in many living systems and range from flocking birds to "swimming" bacteria

to actin filament networks.1 Building similarly complex patterns with synthetic nanoparti-

cles that are driven out of equilibrium is a promising route towards functional and respon-

sive nanomaterials.2 However, mimicking the targeted energy input on the level of single

nanoparticles, which is a hallmark of self-assembly in living systems, remains a formidable

challenge.

Recent experimental and theoretical results show that long-wavelength spatial patterns

can been achieved in multicomponent systems that are driven out of equilibrium in much

simpler ways. In particular, mixtures of oppositely charged colloids on a substrate demix

into striped patterns when an external electric AC field is applied.3,4 Different patterns can

be obtained by changing the frequency of the electric field.5–7 Similar demixing behavior has

been observed in granular systems under vibration and related model systems.8,9

In this paper we examine the possibility of exploiting this segregation tendency, for the

purpose of preparing non-equilibrium states that are patterned on much smaller scales. We

do so using both experiment and computer simulation. Our experimental systems comprise

macroscopic plastic solids, whose motions in a container are made roughly thermal in na-

ture through agitation. However, depending on the shape of the solids, agitation results in

different dynamics with respect to the container. We show that sufficiently strong ampli-

tudes and suitable frequencies of agitation lead to segregation and self-assembly by particle

shape. Our simulations explore the behavior of very similar model systems, but leverage the

computational ease of varying particle shape, dimensionality of the system, and the nature

of agitation. We analyze the effective attractive forces induced by agitation and show that

by changing the driving force and particle shape, the resulting self-assembled structures can

be switched from simple compact aggregates to patterns that reflect the directionality of the

driving force.
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II. DIFFERENTIAL "SHAKING" CAN INDUCE ASSEMBLY OF

NON-ATTRACTING PARTICLES

Mechanical agitation of macroscopic objects can induce random motion that resembles

the equilibrium dynamics of microscopic particles.10,11 In particular, agitation can lead to

the formation of patterns that correspond to equilibrium states of thermal systems.12–15 For

instance, randomly packed beads crystallize in an agitated container, and oppositely charged

plastic shapes form binary crystal lattices under shaking.16–18. However, thermal equilibrium

imposes strict rules on the statistics of energy fluctuations that can be easily violated by

mechanical agitation. In particular, random thermal forces acting on different particles are

statistically independent. Mechanical agitation, on the other hand, introduces correlations

in the dynamics of different particles that can lead to dramatic deviations from equilibrium

behavior.19

Our experimental setup, illustrated in Figure 1a, exemplifies this situation. It consists of

a shallow, circular container that is connected to two motors for quasi-random agitation (see

Methods section for details).20 The container is filled with plastic solids: a large number of

spherical beads, six triangular prisms ("wedges"), and one star-shaped object. The solids

lack any noticeable attractive interactions, as discussed in the Methods section. Figure 1b

shows a time series of snapshots of the system as it is agitated by the motor. Within 13

minutes, wedges and star aggregate and assemble into a compact unit.

The assembled state observed in our experiment is not caused by depletion attraction.

Such an entropic bias can, in principle, drive phase separation in mixtures of particles with

different size.21,22 To show that this mechanism does not apply in our case, we performed

Monte Carlo computer simulations of a two-dimensional system of hard particles with shapes

similar to the ones used in the experiment (see Methods section for simulation details). First,

we performed a number of simulation runs of the system in thermal equilibrium, i.e., with

standard Metropolis dynamics that sample the Boltzmann distribution of states. If the

assembly found in experiment were a signature of the system relaxing towards equilibrium,

the same aggregation should be observable in the Monte Carlo simulation. However, no

aggregation was observed. To the contrary, as illustrated in a series of snapshots in Fig. 1c,

the assembled state was not even found to be metastable: when the system was prepared in

the assembled state, it quickly dispersed.23
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FIG. 1. Agitation induced self-assembly. (a). Experimental setup. (b) Time series of pho-

tographs of the experimental system under agitation, looking down onto the paper plain. (Scale

bar = 2 cm.) (c) Time series of snapshots from an equilibrium Monte Carlo simulation of hard

shapes. Initiated as a compact unit, the star and wedges disperse. (d) Snapshots from a Monte

Carlo simulation with biased displacement moves of discs. Initiated in a dispersed state, star and

wedges aggregate and assemble. Note the void regions around star and wedges in both simulations

and experiment, which form due to the slower motion of these shapes compared to discs/beads. (e)

Snapshots from a Langevin molecular dynamics simulation of a binary mixture of soft discs, driven

by a periodic external force. Blue colored particles experience stronger friction forces.
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Self-assembly can be reproduced in simulations, however, by including the different ef-

fective forces imparted by the agitation on different solids. The beads in the experiment

roll and thus move in the frame of reference of the container when it is agitated. The flat

bottom faces of the star and wedges, on the other hand, effect large static friction forces.

In fact, when the container is agitated, these shapes will only move as a result of collisions

with beads. To model this asymmetry in the dynamics of the different shapes, we performed

Monte Carlo simulations that employed the following particle moves: Displacements of discs

(with diameter �) were drawn from a uniform distribution with zero mean, a customary

choice in equilibrium Monte Carlo simulations. Displacements of wedges and star, however,

were drawn from time-dependent distributions centered on a vector a(t) with components

a

x

(t) = a cos(2⇡t/⌧) and a

y

(t) = a sin(2⇡t/⌧), where t is time, and a and ⌧ are the magni-

tude and rotational period of the average displacement vector. These particle displacement

rules mimic the effects of the circular motion of the orbital motor used to agitate the exper-

imental setup. More importantly, they violate microscopic reversibility of the dynamics and

result in a non-Boltzmann distribution of states. For a broad range of values of the param-

eters a and ⌧ , we observe segregation and self-assembly of star and wedges, as illustrated in

Figure 1d. (In this case, we used a = 0.6� and ⌧ = 1200 sweeps.) Very similar results were

obtained from simulations that apply the periodic bias to the beads, rather than to the star

and wedges, suggesting that the choice of reference frame is qualitatively unimportant to

the dynamics of assembly.

III. SEGREGATION IS CAUSED BY ASYMMETRICAL COLLISION

RATES

Our computer simulations show that such nonequilibrium segregation is not limited to

the special case of sinusoidal biases, but can occur very generally when drift velocity, induced

by an external field, differs substantially between two or more particle types.5 In particular,

concentrating on the Langevin dynamics of dense fluids consisting of two particle types (A

and B), segregation can be observed in the following scenarios:

• One of the particle types is driven by a periodic driving force.

• A and B experience the same external periodic force, but have different friction coef-

5

Michael Gruenwald


Michael Gruenwald




FIG. 2. Shaking causes particle mobilities that depend on local environment. Mean

squared displacement of a single undriven particle in a bath of driven particles, as a function

of amplitude F and period ⌧ (in units of �

p
m/✏) of the periodic external force. Results are

normalized by the mean squared displacement at zero driving, i.e., by the mobility of a particle

in a homogeneous environment of its own type. All data points reflect averages over at least 150

independent trajectories. Error bars indicate one standard deviation.

ficients. (See Figure 1e for snapshots of the segregation process in this case.)

• A and B experience different, non-periodic driving forces.

In all the cases described above, particles have collision rates that depend on the compo-

sition of their immediate environment: Particles that are surrounded by their own type have

lower collision rates than particles in heterogeneous environments. For illustration purposes,

consider the effect of an arbitrary, time-dependent external force F(t) that acts on all par-

ticles in a dense system of identical particles. In this case, the equations of motion for the

relative positions of particles are unchanged by F(t); collision rates are thus independent

of F(t), too. Consider now the case where F(t) acts on only one of two particle types in

a mixture of otherwise identical particles. Relative motion of unlike particles is modulated

by F(t) in this case, and particles in environments of heterogeneous composition experience

comparatively large numbers of collisions. (See Supporting Information for a discussion of

the correspondence between the dynamics of particles subject to mechanical agitation and

direct external forces.)
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Differences in collision rates directly translate into different particle mobilities. To illus-

trate this point, we calculate mean squared displacements of particles in environments of dif-

ferent composition. We first follow numerically the Langevin dynamics of a dense fluid of par-

ticles that are driven by a periodic external force F(t) with components F

x

= F cos(2⇡t/⌧)

and F

y

= F sin(2⇡t/⌧)). These particles, symmetrically biased by the driving, have a mean

square displacement that is independent of amplitude F and period ⌧ of the driving. In

particular, since
R

⌧

0 dtF(t) = 0, the driving force does not effect a net translation over long

times and the mean square displacement is equal to that measured in the undriven system

(i.e, for F = 0), which we refer to as msd0. By contrast, the mobility of a single undriven

particle, added to the driven system, depends sensitively on the driving force. In Figure

2, we plot the mean squared displacement of this particle (msd

F,⌧

) as a function of F for

several values of ⌧ , normalized by msd0. We observe a marked increase in the mobility of

the particle with both F and ⌧ .

The net effect of these disparate mobilities is a particle flux away from regions of het-

erogeneous composition, which can lead to phase separation.24,25 This mechanism is also

responsible for pattern formation in model systems of "active" particles, i.e., particles with

intrinsic mobility.25–31. Corté and coworkers have used an analogous argument to rational-

ize the transformation from an active to an inactive state in computer models of colloidal

suspensions under periodic shear32.

IV. THE SPATIAL STRUCTURE OF SEGREGATED PHASES CAN BE

CONTROLLED

We now turn our attention to controlling the patterns formed within the segregated

phases. In our experiments, we observe that the extent to which star and wedges assemble

into a compact unit depends on the compatibility of the two shapes. Figure 3b shows

snapshots from an experiment that is identical to the one presented in Figure 1 except for

the star-shaped solid, which in this case has smaller pockets. While aggregation of star

and wedges occurs also in this case, only incomplete assembly is observed. Simulations of

similarly modified shapes also show incomplete assembly — but furthermore demonstrate

that the degree of assembly can be tuned via the amplitude of the driving force. In Figure

3a we plot the average number ng of aggregated wedges (i.e., the number of wedges in the
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FIG. 3. Shaking amplitude controls an effective pressure. (a) Number of aggregated wedges

ng and assembled wedges ns as a function of driving amplitude a in Monte Carlo simulations of the

star-and-wedge system at ⌧ = 1200 sweeps. Snapshots show two typical configurations. Equilibrium

simulations at constant pressure P show similar degrees of assembly ns,P (a), when P is mapped onto

a as described in the text. (b) Snapshots of experimental system show aggregation, but no assembly,

when the pockets of the star-shaped object were made smaller. (Insets in the first snapshot show

wedges located outside of the field of view of the camera.)

immediate vicinity of the star) and the average number ns of assembled wedges (i.e., the

number of wedges occupying a pocket of the star) as a function of the amplitude of the

driving. We observe three regimes, though not sharply delimited: For a < 0.1�, we observe

only partial segregation of shapes, indicated by values of ng < 6. (At a = 0, the system is at

equilibrium.) For intermediate values of 0.1� < a < 0.4�, we observe essentially complete

segregation of shapes, but little assembly (ns ⇡ 1.5 in this regime). Finally, for large values of

a > 0.4�, the number of assembled wedges gradually increases with a until almost complete

assembly is obtained.

The progression of states observed for star and wedges with increasing amplitude of

driving—dilute vapor, disordered aggregate, ordered aggregate—bears similarity with fa-

miliar equilibrium phase behavior at conditions of increasing pressure. Our computer sim-

ulations indeed show that the basic influence of an environment of "shaking" particles is to

8

Michael Gruenwald
triangles blue, units added to x-axis and insets

Michael Gruenwald




generate an effective pressure on a segregated phase of unbiased particles.33

To characterize this effective pressure, we first calculated the number of assembled wedges

ns,P in equilibrium simulations as a function of external hydrostatic pressure P (see Sup-

porting Information for simulation details). As expected, ns,P increases monotonically with

pressure, as illustrated in Supporting Figure 1a. In order to compare the degrees of assembly

achieved under equilibrium conditions of constant P and non-equilibrium driving with ampli-

tude a, a relation P (a) was established in the following way. We simulated a system of driven

discs and undriven "ideal gas" particles. These particles interact with the driven species via

a simple repulsive pair potential, but lack any mutual interactions. Due to the driving, the

ideal gas particles segregate and form a compact cluster with surface area S that depends

on the amplitude of the driving a, as illustrated in Supporting Figure 1b. The effective

surface pressure P (a) can thus be determined from the ideal gas law, P (a) = NkBT/S(a).

In Figure 3b, we plot the number of assembled wedges ns,P (a) at equilibrium conditions of

constant P parameterically as a function of the corresponding amplitude a. The resulting

curve predicts similar degrees of assembly over the relevant range of amplitudes.

The precise dependence of n
s

on the driving a, however, can not be explained by anal-

ogy with equilibrium alone. To more accurately characterize the effective interactions

between undriven particles, we have calculated effective potentials between two undriven

particles in a bath of discs under the influence of "circular" shaking (F
x

= F cos(2⇡t/⌧),

F

y

= F sin(2⇡t/⌧)) in Brownian dynamics simulations. The potentials are calculated as

u

⌧,F

(r) = �kBT ln

p⌧,F (r)
p0(r)

, where p

⌧,F

(r) is the distribution function of the particle distance

r with shaking characterized by a period ⌧ and amplitude F , and p0(r) is the corresponding

equilibrium distribution for F = 0. The distribution p

⌧,F

(r) was averaged over many periods

of the external field. (In analogy with a potential of mean force for equilibrium systems,

u

⌧,F

(r) can be interpreted as the interaction potential necessary to generate in the undriven

system the r-statistics of the driven system.34) As illustrated in Figure 4a, the associated

forces are largely attractive and are consistent with the observed segregation. The strength

and range of attraction increase with increasing period and amplitude. Interestingly, the

potentials show modulations that depend on the frequency and amplitude of the driving

force and reflect the structure of the "solvent" of biased particles.

The isotropic nature of averaged effective forces can be altered and directional forces

between particles induced by applying suitable external fields. Figure 4b shows the potential
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FIG. 4. Effective interactions from circular and uni-directional driving fields. (a) Effective

interparticle potentials u

⌧,F

plotted as a function of the distance between two unbiased particles in

a bath of particles driven by "circular" shaking, for different values of ⌧ and F , in units of �

p
m/✏

and ✏/�, respectively. (b) Effective interparticle potential (in kBT ), as a function of the components

�x and �y of the distance vector between two unbiased particles in a bath of particles driven by a

uni-directional external force acting in the x-direction. Values of u

⌧,F

/kBT are indicated by color

according to the scale at right.

of effective forces in a system driven by a uni-directional external force with components

F

x

(t) = F cos(2⇡t/⌧) and F

y

= 0, with F = 5.0 ✏/� and ⌧ = 1.0 �

p
m/✏. The induced

forces are strongly asymmetric in this case: The formation of dimers that are oriented in

the direction of the field are favored by a few kBT over the perpendicular orientation. While
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the attractive forces decay in x-direction within a few particle diameters, they act over a

significantly longer range in the direction perpendicular to the driving.

Our observation of directional effective forces suggests that highly anisotropic patterns

could be prepared that strikingly differ from typical equilibrium structures in self-assembling

systems. To illustrate this possibility we concentrate on three-dimensional systems of parti-

cles with anisotropic shape, specifically plate-shaped particles and rods, as shown in Figure

5. Our simulations were initiated by placing hundreds of these particles in a dilute solution

of spherical particles at a total packing fraction of 0.4. All particles interacted via purely

repulsive, short-ranged pair potentials. A periodic external force was applied exclusively on

spherical particles, and the Langevin dynamics of the system was followed at a temperature

of T = 0.2 ✏/kB for 105 units of simulation time. (Additional simulation details are given in

the Methods section.)

For plates, we find unusual patterns under unidirectional shaking (F
x

(t) = F sgn[cos(2⇡t/⌧)],

F

y

= F

z

= 0). Our simulations show self-assembly of single-file columns that connect

through the periodic boundary conditions in x-direction, as illustrated in Figure 5a. We

note that the conditions under which we observe the formation of columns are roughly consis-

tent with conditions at which "laning" is observed in mixtures of oppositely charged colloids

in external electric fields.6 Similar string-like patterns have been observed in experiments

and models of colloidal cubes under the influence of external electric fields.35

To corroborate that this highly anisotropic pattern is improbable under conditions of

thermal equilibrium, we perform analogous simulations with zero nonthermal driving of

spheres. In these equilibrium simulations of purely repulsive plates in a bath of spheres,

stacks of plates do form transiently driven by weak depletion forces, but comprise only

small numbers of plates, as illustrated in Figure 5b. In a second type of simulation, plates

interact via short-range isotropic attractions of the Lennard-Jones type. In these simulations,

columns of up to ⇡ 10 plates form in the early stages of assembly, but aggregate over time to

form compact clusters, as illustrated in Figure 5c. Coarsening towards equilibrium proceeds

very sluggishly in these simulations, and the completely equilibrated state (likely involving a

columnar crystal of plates) could not be observed on the time scales accessible to simulation.

In the case of rods in a bath of driven spheres, we find formation of strikingly anisotropic

patterns for "circular" shaking (F
y

(t) = F cos(2⇡t/⌧), F
z

(t) = F sin(2⇡t/⌧), F
x

= 0). In

particular, we observe self-assembly of a single column that consists of monolayer segments

11

Michael Gruenwald




of close-packed rods, mostly aligned in the x-direction, perpendicular to the plane of driving,

as illustrated in Figure 5d. As in the case of plates, such patterns do not occur in undriven

systems. In simulations of purely repulsive rods at thermal equilibrium, nearby rods tend to

align, but the typical size of clusters of aligned rods does not exceed a few particles (Figure

5e). In simulations with isotropic mutual attractions between rods, larger clusters of aligned

rods form but aggregate over time in a non-specific manner (Figure 5f).

The forces driving pattern formation in our simulations are conceptually different from

the effective forces responsible for the formation of liquid crystal phases in dense systems of

hard rods and platelets. Nevertheless, filamentous patterns reminiscent of the one presented

in Figure 5f have been observed in dense colloidal mixtures of rods and spheres, albeit under

very different relative concentrations.36

V. CONCLUSIONS

Our experiments and simulations show that the effective forces associated with non-

equilibrium phase separation of differentially driven particles can be manipulated to bias

pattern formation within segregated phases. Experiments of agitated macroscopic shapes

and computer models show that amplitude and frequency of periodic external forces control

the degree of order observed in segregated phases, similar to the effect of external pressure in

equilibrium systems. Highly anisotropic patterns can be achieved with strongly directional

driving forces. In particular, simulations of rod- and plate-shaped particles indicate that

binding motifs that occur transiently in equilibrium can be markedly amplified by suitable

driving forces. Since particle attractions are effected by external biases only, assembled

patterns can be easily un-assembled or modified by changing the driving force. This re-

versibility of interactions is in sharp contrast to the often irreversibly strong physical forces

that hold together equilibrium structures of nanoparticles. A more detailed investigation

of these principles could open up avenues to nanomaterials that more closely mimic the

functionality and responsiveness of self-assembled structures in living systems.

12

Michael Gruenwald




FIG. 5. Self-assembly of rods and plates into anisotropic patterns. (a) Snapshot of a

system of rigid plates immersed in a bath of spheres (not shown) that are subject to a unidirectional

periodic external force, as indicated by the arrows. The snapshot was taken after 108 time steps of

Langevin molecular dynamics that was initiated from a dispersed configuration of plates. The plates

form single-file columns that connect through the periodic boundaries. (b) A typical equilibrium

configuration of the same system without external forces. (c) A snapshot obtained after 108 time

steps of equilibrium simulation (spheres are not subject to external forces) in which plates not only

exclude volume but also attract via isotropic Lennard-Jones potentials. (d) Snapshot of a system of

rigid rods in a bath of spheres under circular shaking, as indicated by the arrow. Rods form a column

that consists of monolayer-segments of tightly packed rods. (e) Equilibrium configuration of rods in

the absence of external forces. (f) Attractive rods form disordered aggregates on computationally

accessible time scales.

VI. METHODS

A. Experimental Setup

1. Materials and dimensions

Star- and wedge-shaped prisms were cut from 3 mm thick PMMA sheets (McMaster Carr

Supply Company) with a laser cutter (Universal Laser Systems, 50 Watt VLS 3.5). The base

of wedges were equilateral triangles with 10 mm edge length. Stars had a diameter of 25

mm, and pockets in the shape of equilateral triangles with edge lengths of 10 mm (for a
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perfect size match with the wedges) or 6.35 mm (for a size mismatch). Transparent PMMA

beads of 6.35 mm diameter were purchased from Engineering Laboratories.

The board on which the objects were agitated had dimensions of 1.2m⇥1.2m and a mass

of ⇡ 7 kg and was built from a planar aluminum honeycomb panel (purchased from Home

Depot). The board was supported from the ceiling via an elastic cord joined to four cables

anchored to the corners of the panel. The distance between the board and its attachment

point on the ceiling was 1.3 m. In the geometric center of the lower surface of the board,

we attached a pendulum made from a rigid rod of 0.1 kg mass and 0.3 m length; to the end

of the rod, we attached a weight of 1.4 kg. The space accessible to shapes was restricted

by an aluminum rim with a diameter of 0.48 m. We covered the surface of the board with

paper (Fadeless brand, purchased from Pacon Corp.). The roughness of the paper was

chosen such that beads rolled easily under agitation, stars and the wedges, however, did

not move unless hit by other solids. We filled the board with approximately 4100 beads,

which corresponds to a packing fraction of 0.72. (A packing fraction of 0.91 corresponds to

a hexagonal close-packed arrangement of discs in 2 dimensions.)

2. Forces between plastic solids

To ensure that interactions between solid particles were limited to collisions, we wrapped

the experimental setup in a polyvinyl chloride (PVC) film to control the humidity above

the plate. Using an air humidifier (Vicks V5100NS), we maintained a relative humidity

larger than 60% around the experimental setup. Under these conditions, static electricity

can be easily discharged and electrostatic interactions between solids are minimized. (See

Supporting Information of Ref. 20.) Relative to forces of agitation, van der Waals forces

between the solids in our experiments can be neglected.

3. Agitation of the board and imaging

To achieve pseudo-random agitation, we connected two motors to the board. An or-

bital shaker (Madell Technology Corp., ZD-9556-A) was attached to the board via an elastic

polyurethane cord. The motion produced by the motor was a combination of orbital transla-

tion (with an amplitude of 5.1 mm) and small-amplitude angular oscillation. The frequency

14



was set to 120 rpm. To randomize this motion, we used as a second motor a linear actu-

ator (LinMot Inc., P01-23x80) connected to the weight on the pendulum under the board.

The actuator moved at a fixed frequency of 4 Hz in all experiments, and, in combination

with the pendulum, lead to a irregular motion of the board. However, as confirmed by

computer simulations described in this paper, segregation and assembly of shapes can be

achieved through different modes of agitation. We repeated some experiments without the

linear actuator in place and obtained qualitatively identical results. We took photos every

60 seconds using a Nikon D40 digital camera that was suspended 1 m above the plate.

B. Simulation Details

Input files for simulations performed in this work are available for download at

http://gruenwaldgroup.com.

1. Monte Carlo simulations of hard shapes

Simulations comprised 218 discs with diameter �, 6 equilateral triangular shapes (wedges)

with edge length �, and one star-shaped body, consisting of three rectangles with long-edge

length 2.5� and short-edge length �/(2

p
3) (to achieve a pocket shape that matches the

wedges, as shown in Fig. 1), or �/2 (for a size mismatch, as shown in Fig. 3), respectively.

The packing fraction was set to 0.65 and periodic boundary conditions were used. Overlaps

between shapes were detected using an algorithm based on the method of separating axis.37

Time is measured in "sweeps", each consisting on average of one attempt to displace each

shape, and one attempt to rotate each anisotropic shape. The typical timescale for complete

assembly of star and wedges from an initially dispersed state is millions of sweeps. In equi-

librium simulations, components of particle displacements and rotations were drawn from

uniform distributions with zero mean and widths of 0.01�, 0.03⇡, and 0.01⇡ for displace-

ments of all shapes, rotations of wedges, and rotations of the star, respectively. To simulate

shaking, the mean of the distribution of disc-displacements was modified as described in

section II. ng and ns are defined as the time-averaged numbers of wedges within a distance

11�/4 and �[

p
3/(4 sin(⇡/3)) + 1/2] of the center of the star, respectively. All simulation

snapshots were rendered with VMD.38
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2. Langevin dynamics of soft discs

For simulations illustrated in Fig. 1e and Fig. 2, dynamics were advanced by numerically

integrating the underdamped Langevin equation, as implemented in the HOOMD-blue sim-

ulation package39. For data in Fig. 1e, we simulated N = 2500 particles in a periodically

replicated square box at a packing fraction of 0.5. Particles interacted via the purely repulsive

WCA potential.40 As basic units, we use the potential parameters � and ✏, and the particle

mass m. We used friction coefficients of 2.0
p
m✏/� and 1.0

p
m✏/� for species A and B,

respectively, a temperature of T = 0.1 ✏/kB, and a time step of �t = 0.001 �

p
m/✏. All parti-

cles experienced an external periodic force characterized by F = 2.0 ✏/� and ⌧ = 10 �

p
m/✏.

Data in Fig. 2 were obtained from systems of 900 particles at a packing fraction of 0.6 and

a uniform friction coefficient of 10.0
p
m✏/�. Mean squared displacements were calculated

from trajectories consisting of 2⇥ 10

7 timesteps.

Data presented in Figure 4 were obtained by integrating the overdamped Langevin equa-

tions of motion for 196 WCA particles at a packing fraction of 0.65, with a simple Euler-type

integrator.41 We set D�t = 0.0001 �

2, where D is the diffusion coefficient, and T = 0.1 ✏/kB.

3. Langevin dynamics of three-dimensional shapes

Dynamics were advanced by numerically integrating the underdamped Langevin equation,

as implemented in the HOOMD-blue simulation package.39 Hydrodynamic interactions were

neglected. Plates and rods were treated as rigid bodies consisting of spherical particles

with diameter �. Each plate comprised 40 such spheres. Spheres were arranged around a

central sphere in three concentric conplanar rings with radii of �/3, 2�/3 and �, comprising

7, 13, and 19 spheres, respectively. Discs therefore had an effective diameter of 3�. Rods

consisted of 13 spheres and had an effective length of 4.0�. Simulations of plate assembly

comprised 532 plates and 53,467 driven spheres of diameter �. All spheres interacted via

the WCA potential.40 We used a sphere friction coefficient � = 10.0

p
m✏/�, a time step

�t = 0.001 �

p
m/✏, and a box aspect ratio of 2:1:1. Assembly of columns was observed for

A = 5.0 � and ⌧ = 100.0 �

p
m/✏. Simulations of rods involved 458 rods and 89,542 driven

spheres in a box with aspect ratio 8:3:3. Assembly of columns was observed for A = 3.0 � and

⌧ = 40.0 �

p
m/✏. Equilibrium simulations were performed in cubic boxes. All simulations
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were performed at a packing fraction of 0.4 and a temperature of T = 0.2 ✏/kB.

For the simulations illustrated in Figures 5c and 5f, spheres in different rigid bodies

interacted via the full Lennard-Jones potentials with ✏rb = 0.1 ✏ and ✏rb = 0.2 ✏, respectively.

The temperature was T = 1.0 ✏/kB.

Acknowledgments

We thank Meital Reches, Cristina Marchetti, and Christoph Dellago for useful discussions.

MG’s work was supported in part by the Austrian Science Fund (FWF) under Grant J 3106-

N16. The support and resources from the Center for High Performance Computing at the

University of Utah are gratefully acknowledged. Calculations were in part performed on the

Vienna Scientific Cluster (VSC). We acknowledge computational resources obtained under

NSF award CHE-1048789. Research of ST and GMW was supported by the US Department

of Energy (US DOE), Division of Materials Sciences and Engineering, under Award No. DE-

FG02-00ER45852. PLG was supported by the U.S. Department of Energy, Office of Basic

Energy Sciences, through the Chemical Sciences Division (CSD) of the Lawrence Berkeley

National Laboratory (LBNL), under Contract DE-AC02-05CH11231.

REFERENCES

1S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).
2S. C. Warren, O. Guney-Altay, and B. A. Grzybowski, J. Phys. Chem. Lett. 3, 2103

(2012).
3M. E. Leunissen, C. G. Christova, A.-P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof,

M. Dijkstra, R. van Roij, and A. van Blaaderen, Nature 437, 235 (2005).
4T. Vissers, A. van Blaaderen, and A. Imhof, Phys. Rev. Lett. 106, 228303 (2011).
5A. Wysocki and H. Löwen, Phys. Rev. E 79, 041408 (2009).
6T. Glanz and H. Löwen, J. Phys. Cond. Mat. 24, 464114 (2012).
7A. van Blaaderen, M. Dijkstra, R. van Roij, A. Imhof, M. Kamp, B. W. Kwaadgras,

T. Vissers, and B. Liu, Eur. Phys. J. Spec. Top. 222, 2895 (2013).
8G. C. M. A. Ehrhardt, A. Stephenson, and P. M. Reis, Phys. Rev. E 71, 1 (2005).
9P. M. Reis, T. Sykes, and T. Mullin, Phys. Rev. E 74, 1 (2006).

17

Michael Gruenwald


Michael Gruenwald


Michael Gruenwald


Michael Gruenwald




10G. D’Anna, P. Mayor, A. Barrat, V. Loreto, and F. Nori, Nature 424, 909 (2003).
11H. Jaeger, J. Knight, C.-H. Liu, and S. Nagel, MRS Bull. 19, 25 (1994).
12A. J. Olson, Y. H. E. Hu, and E. Keinan, Proc. Natl. Acad. Sci. U. S. A. 104, 20731

(2007).
13S. Tricard, E. Feinstein, R. F. Shepherd, M. Reches, P. W. Snyder, D. C. Bandarage,

M. Prentiss, and G. M. Whitesides, Phys. Chem. Chem. Phys. 14, 9041 (2012).
14S. Tricard, C. A. Stan, E. I. Shakhnovich, and G. M. Whitesides, Soft Matter 9, 4480

(2013).
15S. Tricard, R. F. Shepherd, C. A. Stan, P. W. Snyder, R. Cademartiri, D. Zhu, I. S.

Aranson, E. I. Shakhnovich, and G. M. Whitesides, Chempluschem 80, 37 (2015).
16G. K. Kaufman, M. Reches, S. W. Thomas, J. Feng, B. F. Shaw, and G. M. Whitesides,

Appl. Phys. Lett. 94, 044102 (2009).
17B. A. Grzybowski, A. Winkleman, J. A. Wiles, Y. Brumer, and G. M. Whitesides, Nat.

Mater. 2, 241 (2003).
18R. Cademartiri, C. A. Stan, V. M. Tran, E. Wu, L. Friar, D. Vulis, L. W. Clark, S. Tricard,

and G. M. Whitesides, Soft Matter 8, 9771 (2012).
19I. Aranson and L. Tsimring, Rev. Mod. Phys. 78, 641 (2006).
20M. Reches, P. W. Snyder, and G. M. Whitesides, Proc. Natl. Acad. Sci. 106, 17644 (2009).
21Y. Mao, M. Cates, and H. Lekkerkerker, Physica A 222, 10 (1995).
22S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
23We speculate that depletion-induced assembly will eventually be observed under equilib-

rium conditions if beads are made smaller at constant packing fraction.
24M. E. Cates and J. Tailleur, arXiv:1406.3533.
25S. R. McCandlish, A. Baskaran, and M. F. Hagan, Soft Matter 8, 2527 (2012).
26M. Schnitzer, Phys. Rev. E 48, 2553 (1993).
27J. Tailleur and M. Cates, Phys. Rev. Lett. 100, 218103 (2008).
28F. D. C. Farrell, M. C. Marchetti, D. Marenduzzo, and J. Tailleur, Phys. Rev. Lett. 108,

248101 (2012).
29M. E. Cates and J. Tailleur, Europhys. Lett. 101, 20010 (2013).
30I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev.

Lett. 110, 1 (2013).
31J. Bialké, T. Speck, and H. Löwen, J. Non. Cryst. Solids 407, 11 (2014).

18

Michael Gruenwald




32L. Corté, P. M. Chaikin, J. P. Gollub, and D. J. Pine, Nat. Phys. 4, 420 (2008).
33A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M. E. Cates, and

J. Tailleur, Phys. Rev. Lett. 114, 1 (2015).
34J. Harder, S. A. Mallory, C. Tung, C. Valeriani, and A. Cacciuto, J. Chem. Phys. 141,

194901 (2014).
35H. R. Vutukuri, F. Smallenburg, S. Badaire, A. Imhof, M. Dijkstra, and A. van Blaaderen,

Soft Matter 10, 9110 (2014).
36S. Fraden, M. Adams, Z. Dogic, and S. L. Keller, Nature 393, 349 (1998).
37P. Schneider and D. Eberly, Geometric Tools for Computer Graphics (Elsevier Science,

2002).
38W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).
39J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput. Phys. 227, 5342 (2008).
40J. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
41P. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987).

19


