
Automated white matter fiber tract
identification in patients with brain tumors

The Harvard community has made this
article openly available.  Please share  how
this access benefits you. Your story matters

Citation O’Donnell, L. J., Y. Suter, L. Rigolo, P. Kahali, F. Zhang, I. Norton, A.
Albi, et al. 2016. “Automated white matter fiber tract identification
in patients with brain tumors.” NeuroImage : Clinical 13 (1):
138-153. doi:10.1016/j.nicl.2016.11.023. http://dx.doi.org/10.1016/
j.nicl.2016.11.023.

Published Version doi:10.1016/j.nicl.2016.11.023

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29739026

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Automated%20white%20matter%20fiber%20tract%20identification%20in%20patients%20with%20brain%20tumors&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=78f9973f01c1de8cbde6af678e4e53ae&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29739026
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


NeuroImage: Clinical 13 (2016) 138–153

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l

Automated white matter fiber tract identification in patients with
brain tumors

Lauren J. O’Donnella,*, Yannick Sutera, d, Laura Rigoloa, Pegah Kahalia, Fan Zhanga, Isaiah Nortona,
Angela Albia, c, Olutayo Olubiyia, Antonio Meolaa, Walid I. Essayeda, Prashin Unadkata,
Pelin Aksit Cirisa, b, William M. Wells III, a, Yogesh Rathia, Carl-Fredrik Westina, Alexandra J. Golbya

aBrigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
bDepartment of Biomedical Engineering, Akdeniz University, Antalya, Turkey
cCenter for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
dInstitute for Surgical Technology and Biomechanics, University of Bern, Switzerland

A R T I C L E I N F O

Article history:
Received 9 August 2016
Received in revised form 13 October 2016
Accepted 22 November 2016
Available online 25 November 2016

Keywords:
Neurosurgery
Diffusion MRI
Tractography
Tumor
Fiber tract
White matter

A B S T R A C T

We propose a method for the automated identification of key white matter fiber tracts for neurosurgical
planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with
brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography,
which include peritumoral edema, displacement, and mass effect caused by mass lesions. The proposed
method has two parts. First, we learn a data-driven white matter parcellation or fiber cluster atlas using
groupwise registration and spectral clustering of multi-fiber tractography from healthy controls. Key fiber
tract clusters are identified in the atlas. Next, patient-specific fiber tracts are automatically identified using
tractography-based registration to the atlas and spectral embedding of patient tractography.
Results indicate good generalization of the data-driven atlas to patients: 80% of the 800 fiber clusters were
identified in all 18 patients, and 94% of the 800 fiber clusters were found in 16 or more of the 18 patients.
Automated subject-specific tract identification was evaluated by quantitative comparison to subject-specific
motor and language functional MRI, focusing on the arcuate fasciculus (language) and corticospinal tracts
(motor), which were identified in all patients. Results indicate good colocalization: 89 of 95, or 94%, of
patient-specific language and motor activations were intersected by the corresponding identified tract. All
patient-specific activations were within 3mm of the corresponding language or motor tract. Overall, our
results indicate the potential of an automated method for identifying fiber tracts of interest for neurosurgical
planning, even in patients with mass lesions.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Understanding of critical, individualized functional brain anatomy
is necessary for neurosurgical planning. In neurosurgical patients, cru-
cial areas to preserve during surgery include eloquent cortical regions
such as sensory, motor, visual, and language areas, as well as related
white matter connections or fiber tracts. Identification of these crucial
brain areas using functional MRI (fMRI) and diffusion MRI (dMRI) has
been shown to increase tumor resection, progression-free survival,
and overall survival Petrella et al. (2006), Wu et al. (2007), indicating
the important clinical potential of these presurgical MRI acquisitions.

* Corresponding author.
E-mail address: odonnell@bwh.harvard.edu (L. O’Donnell).

But the translation of fMRI and dMRI to widespread clinical use faces
significant challenges, as discussed in recent reviews (Bullmore, 2012;
Matthews et al., 2006; Rosen and Savoy, 2012; Ulmer et al., 2011).

Inthispaper,wefocusonaparticularchallengelimitingthetransla-
tion of dMRI to widespread clinical use: the need for expert processing
and interpretation of dMRI tractography. Tractography data is com-
plex, consisting of many hundreds of thousands of trajectories or
“fibers” when seeded throughout the entire brain. In order to assess
the patient-specific location of a particular fiber tract of interest, a
trained expert must currently select the tract in an interactive way.
The selection procedure requires the placement of multiple regions
of interest in locations defined by the patient anatomy. This is time
consuming, difficult to standardize across patients, produces variable
resultsacrossoperatorsandsoftwarepackagesBürgeletal. (2009),and
is complicated by the displacement of patient-specific brain anatomy
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due to mass effect. Furthermore, it is increasingly accepted (Caverzasi
et al., 2015; Chen et al., 2015, 2016; Farquharson et al., 2013; Kuhnt et
al., 2013; Mormina et al., 2015; Nimsky, 2014; Qazi et al., 2009) that
for improved clinical anatomical accuracy, tractography must move
beyond the standard diffusion tensor imaging (DTI) method, which
can only represent one fiber at any location and is thus unable to model
fiber crossing. Improved multi-fiber tractography methods, however,
increase the difficulty of the expert selection procedure, requiring a
higher number of regions of interest to restrict the selection. This is
because these advanced multi-fiber tractography methods are able
to trace a much higher number of fibers in any given region due to
their increased sensitivity (Bastiani et al., 2012; Behrens et al., 2007;
O’Donnell et al., 2013; Wilkins et al., 2015).

To aid processing and interpretation of complex, multi-fiber trac-
tography data, we propose to perform atlas-based identification of
key fiber tracts for neurosurgical planning. The goals of an automated
method are to reduce the clinical time needed for human interaction
and to increase the standardization of the presurgical plan. Increased
standardization has the potential to avoid operator-dependent
effects such as the choice of seeding or selection region, which are
known to affect tractography results (Radmanesh et al., 2015).

Our overall approach is to leverage a database of data from
healthy controls and to build models that are able to generalize to
patients with mass lesions or displacement. In this work we extend
and combine our methods for cluster-based (O’Donnell et al., 2006)
automated data-driven tractography atlasing (O’Donnell and Westin,
2007) and tractography registration (O’Donnell et al., 2012) to cre-
ate an end-to-end pipeline for automated analysis of neurosurgical
patient data.

Our proposed method is designed to be relatively robust to chal-
lenges in neurosurgical tractography, which include peritumoral
edema, displacement, and mass effect caused by mass lesions. We
employ two-tensor unscented Kalman filter tractography (Malcolm
et al., 2010), a multi-fiber tractography method that we have recently
shown to be more sensitive than the clinical standard of single-
tensor tractography in the presence of crossing fibers and edema
(Chen et al., 2015, 2016). To identify tracts in a relatively robust way,
despite displacement and mass effect, we use a strategy of large-
scale features: major fiber tracts such as the arcuate fasciculus (AF)
and corticospinal tract (CST) are quite large, traversing many image
voxels, and have characteristic shapes and relationships to surround-
ing tracts. Such large anatomical features in the brain can potentially
be identified in patients despite changes due to mass lesions, which
can include displacement, infiltration, disruption, and peritumoral
edema (Jellison et al., 2004). Our method uses the global interrela-
tionships of the fiber tracts to aid identification: the fiber similarity
between one fiber and many other fibers is used to perform spectral
embedding of that fiber (O’Donnell and Westin, 2007). In this way,
the feature vector describing a particular fiber is like a “fingerprint”
that encodes its similarity to many other fiber tracts (not just to the
nearest fibers).

In the rest of this paper, we first describe our proposed methods
and then demonstrate their application to neurosurgical planning
in a retrospective study of data from 18 consecutive neurosurgical
patients with brain tumors.

2. Methods

Here we give a brief overview of our proposed pipeline, followed by
a more detailed description of the datasets, computational processing
methods, and experimental evaluations employed in this work.

2.1. Pipeline overview and methods background

Our approach has two main steps: learning a white matter par-
cellation and applying the parcellation to data from new subjects.

First, our approach learns a model of the common white mat-
ter structures present in a group of healthy control subjects (Fig. 1)
using groupwise tractography registration (O’Donnell et al., 2012)
and clustering (O’Donnell and Westin, 2007). The unbiased entropy-
based groupwise tractography registration method performs simul-
taneous joint registration of tractography in a group of subjects
(O’Donnell et al., 2012) . Then the data-driven white matter atlas
creation method employs group spectral clustering of tractogra-
phy to discover structures corresponding to expected white matter
anatomy. Bilateral clustering enables discovery of common struc-
tures across subjects and hemispheres (O’Donnell and Westin, 2007).
These structures are represented as clusters in a “high-dimensional
white matter atlas” in the space of the spectral embedding, which
is created using the Nystrom method for analysis of large datasets
(O’Donnell and Westin, 2007) . Finally, the fiber clusters are visual-
ized and grouped by an expert to define structures of interest, which
are stored in an anatomical hierarchy. Overall, this creates a data-
driven white matter parcellation or fiber cluster atlas (Fig. 1). For
more details, see Section 2.3.

Next, the fiber cluster atlas is used to automatically identify
key patient-specific fiber tracts (Fig. 2). The entropy-based objec-
tive function (O’Donnell et al., 2012) is employed to register patient
to atlas tractography. Then, automatic segmentation of patient trac-
tography is performed by extending the spectral clustering solu-
tion, stored in the atlas, using the Nystrom method (O’Donnell and
Westin, 2007) . The anatomical hierarchy is used to identify key
patient-specific fiber clusters for visualization and comparison to
fMRI (Fig. 1). For more details, see Section 2.4.

All software used in this project is publicly available as open
source, including fiber tractography (Malcolm et al., 2010) (https://
github.com/pnlbwh/ukftractography), computational tractography
analysis methods (O’Donnell et al., 2012; O’Donnell and Westin,
2007) (https://github.com/SlicerDMRI/whitematteranalysis), and
tractography visualization with anatomical hierarchies in 3D Slicer
(Fedorov et al., 2012; Gering et al., 2001) (http://www.slicer.org)
via the SlicerDMRI project (Talos et al., 2003) (https://github.com/
SlicerDMRI).

2.2. Data acquisition and processing

Two datasets were used in this study: a healthy subjects dataset
from the Human Connectome Project (HCP) (Essen et al., 2013) and a
dataset of retrospective neurosurgical patient data.

2.2.1. Human Connectome Project dataset
The dataset used to create the fiber cluster atlas consisted of

10 healthy subjects’ data from the HCP1, processed following the
HCP minimum processing pipeline (Glasser et al., 2013). HCP sub-
jects were scanned at Washington University in St. Louis on a
customized Siemens Skyra 3T scanner (Siemens AG, Erlangen, Ger-
many) equipped with a standard 32-channel receive head coil and
a “body” transmission coil (see Essen et al. (2013) for details).
dMRI was acquired using a spin-echo planar imaging (EPI) sequence
(TR = 5520, TE = 89.5, flip angle = 78◦, matrix = 168×144,
FOV=210×180 mm, 111 slices, voxel size = 1.25 mm3), includ-
ing 270 diffusion-weighted scans distributed equally over 3 shells of
b = 1000, 2000, and 3000 s/mm2 and 18 b = 0 scans per sub-
ject. For this study, we extracted the b = 3000 shell of 90 gradient
directions and all b = 0 scans for each subject. Angular resolution is
better and more accurate at high b-values such as 3000 Descoteaux
et al. (2007), Ning et al. (2015), and this single shell was chosen
for reasonable computation time and memory use. DWIConvert

1 HCP data are publicly available at https://db.humanconnectome.org/
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Fig. 1. The overall pipeline for learning the data-driven white matter (WM) parcellation includes groupwise tractography registration, creation of a white matter parcellation (fiber
cluster atlas) using groupwise spectral clustering of fibers, and visualization and organization of atlas clusters into an anatomical hierarchy using 3D Slicer. In the tractography
registration, tracts from each subject are shown in a different color. In the white matter parcellation, colors are automatically generated from the spectral embedding, where each
fiber cluster has a unique color, and similar clusters have similar colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

(https://github.com/BRAINSia/BRAINSTools/) was applied during
this preprocessing for data format conversion (NIFTI to NRRD).

2.2.2. Neurosurgical patient dataset
For this retrospective study, we selected 18 consecutive patients

(Table 1) with brain tumors who had diffusion MRI, functional MRI,
T2-weighted, and contrast-enhanced T1-weighted images acquired
presurgically. All imaging was acquired at Brigham and Women’s
Hospital on Siemens 3T scanners (Siemens Trio and Verio, Siemens
Healthcare, Erlangen, Germany) equipped with a 12 channel head
coil. DTI was acquired using an echo planar imaging (EPI) sequence
(30 gradient directions, 1 baseline (b = 0) image, b = 2000 s/mm2,
TR = 12700, TE = 98, flip angle = 90◦, matrix = 100×90,
FOV = 22 cm, 59 axial slices, voxel size = 2.3 mm3). Func-
tional MRI images were acquired in the same session using EPI
(24 contiguous axial slices, 5 mm slice thickness, TR = 2000 ms,
TE = 30 ms, flip angle = 85◦, 64×64 matrix, voxel size =
3.475×3.475×5 mm). fMRI was acquired as clinically indicated for
each patient; tasks included block design motor (hand clench, toe
wiggle, lip purse, finger tap) and language (antonym generation, sen-
tence competition, auditory naming) paradigms and were presented
using FDA approved hardware (goggles/headphones) and software
(Nordic Aktiva, Nordic Neuro Labs, Bergen, Norway). High resolu-
tion anatomical T1 (with gadolinium contrast) and T2 weighted scans
were acquired as clinically indicated for each patient. The study
was approved by the Partners Healthcare Institutional Review Board,
and informed consent was obtained from all participants prior to
scanning.

fMRI processing. FDA-approved software was used for clinical fMRI
analysis (BrainEx, Nordic Neuro Labs, Bergen, Norway). fMRI data
were coregistered to the anatomical T2, motion corrected, smoothed,

and analyzed using the general linear model. The resulting t score
maps were independently thresholded by an expert and read by
a neuroradiologist. The t score maps from the clinical report were
imported into 3D Slicer, where an expert (PK,LR) selected the most
appropriate activation for each task in order to exclude unrelated or
noisy activations from comparison with fiber tracts. In each avail-
able language task, putative Broca’s and/or Wernicke’s areas were
selected, while for each motor task, the relevant hand, foot, or lip
activation was selected. fMRI language tasks commonly activate
both hemispheres but are usually lateralized to the left hemisphere.
If bilateral activations were present, putative Broca’s and/or Wer-
nicke’s homologues were also selected in the right hemisphere. The
thresholded and selected fMRI activations were exported as binary
images and used to create surface models for comparison to fiber
tracts.

dMRI processing. Diffusion Weighted Images (DWIs) were corrected
for motion and eddy current distortions using DTIPrep (Oguz et
al., 2014) (www.nitrc.org/projects/dtiprep). Images from all gradi-
ent directions were retained based on visual inspection of several
patient datasets with an in-house tool indicating no gradients should
be removed. Thus all 30 gradient directions were retained for anal-
ysis (Chen et al., 2015, 2016). We used 3D Slicer to obtain baseline
images (B0, the b = 0 image in the DWI volume) and a binary brain
mask derived from the DWI images. A rigid registration was com-
puted between the DWI baseline image and the T2 image. This rigid
registration was later applied to the fiber tracts for visualization in
3D Slicer with anatomical T2 and fMRI.

2.2.3. dMRI tractography
Whole-brain tractography of both datasets was con-

ducted using a two-tensor unscented Kalman filter method

Fig. 2. The pipeline for identification of key white matter (WM) tracts in patient data includes tractography registration, white matter parcellation via spectral embedding of
fibers, and visualization of key patient-specific tracts using an anatomical hierarchy. In this study, patient-specific tracts are compared to patient-specific fMRI by computing
distances to related functional activations.

https://github.com/BRAINSia/BRAINSTools/
http://www.nitrc.org/projects/dtiprep
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Table 1
Patient demographic data and pathology. W.H.O.: World Health Organization.

Patient information

Patient Age Gender Tumor type

P1 28 F Oligodendrioma, W.H.O. grade II
P2 34 F Recurrent metastatic carcinoma, lung primary
P3 57 M Glioblastoma (GBM), W.H.O. Grade IV
P4 66 F Glioblastoma (GBM), W.H.O. Grade IV
P5 63 M Metastatic melanoma
P6 52 F Metastatic carcinoma, breast primary
P7 70 M Anaplastic astrocytoma, W.H.O. Grade III
P8 26 F Anaplastic astrocytoma, W.H.O. Grade III
P9 57 F Diffuse astrocytoma W.H.O. grade II
P10 59 F Low grade glial/glioneuronal tumor
P11 57 M Glioblastoma (GBM), W.H.O. Grade IV
P12 52 M Malignant spindle cell neoplasm
P13 51 F Glioblastoma (GBM), W.H.O. Grade IV
P14 51 M Glioblastoma (GBM), W.H.O. Grade IV
P15 38 M Anaplastic astrocytoma, W.H.O. Grade III
P16 70 F Glioblastoma (GBM), W.H.O. Grade IV
P17 23 M Anaplastic astrocytoma, W.H.O. Grade III
P18 34 F Diffuse astrocytoma, W.H.O. Grade II

(Chen et al., 2015, 2016; Malcolm et al., 2010) as follows. We used
default values for UKF seeding and stopping fractional anisotropy
(FA) thresholds, where these defaults have previously been empiri-
cally determined across multiple datasets (Chen et al., 2015, 2016;
Malcolm et al., 2010). In UKF tractography, the FA seeding threshold
refers to the FA of an initial single-tensor fit at the seed point, which
is used to initialize the multi-fiber model. The FA stopping threshold
pertains to tensor 1, the tensor that is tracked. An additional thresh-
old, generalized anisotropy (GA), which is defined as a normalized
variance of the diffusivities in all gradient directions, is used to
assess the suitability of a multi-fiber fit for both seeding and stop-
ping tractography. In combination, the FA and GA thresholds assess
the suitability of the tensor being tracked and the overall signal.

HCP dataset: Tractography was seeded with 3 seeds per voxel, in
all voxels within the binary brain mask where FA and GA were both
greater than 0.18 (default). Tracking stopped where the FA value
fell below 0.15 (default) or the GA fell below 0.09 (a value slightly
below the 0.1 default, which was empirically determined to give
good performance in HCP data).

Patient dataset: Tractography was seeded with 20 seeds per voxel
(with larger voxels in the patient dataset than the HCP dataset, more
seeds per voxel are needed) in all voxels within the binary brain
mask where FA and GA were both greater than 0.18 (default). Track-
ing stopped where the FA value fell below 0.15 (default) or the GA
fell below 0.075. The GA threshold was reduced below the default
value in patient data to enable higher sensitivity for tracking in or
near edema.

2.3. Creation of data-driven white matter parcellation (fiber cluster
atlas)

Using the HCP dataset, we created a white matter parcellation in
two main steps: data-driven groupwise analysis and expert creation
of an anatomical hierarchy.

2.3.1. Data-driven groupwise analysis
In this step, we learned a data-driven model of common white

matter structures in the population. First, we computed an unbi-
ased entropy-based groupwise tractography registration (O’Donnell
et al., 2012) of all subjects in a multiscale fashion, first using affine
transforms, then using a recently implemented extension to nonrigid
b-spline transforms. Then we performed groupwise spectral embed-
ding and clustering using the Nystrom method to identify common

white matter structures in a data-driven way (O’Donnell and Westin,
2007). The spectral embedding creates a space that robustly repre-
sents the fiber tracts according to their similarities to all other fiber
tracts. The Nystrom method uses random sampling to represent this
space compactly while greatly reducing the number of fiber distance
computations that must be performed. We note that many other
methods for tractography registration, e.g. Durrleman et al. (2011),
Garyfallidis et al. (2015), and clustering, e.g. Garyfallidis et al. (2012),
Guevara et al. (2012, 2011), Vercruysse et al. (2014), Wassermann
et al. (2010), have been proposed (for a review on clustering, see
O’Donnell et al. (2013)), so it is of future interest to test additional
techniques in patient data.

We extended our groupwise clustering method to perform outlier
removal by iteratively clustering and removing any outlier fibers that
had low probability or affinity to their cluster. Fiber probability was
defined based on pairwise fiber distances mapped through a Gaus-
sian kernel (O’Donnell et al., 2012), which is the same as the fiber
affinity we use for clustering (O’Donnell and Westin, 2007). At each
iteration, for each cluster, the probability of each fiber was computed
in a leave-one-out fashion using fibers from all other subjects in the
cluster. Outlier fibers were rejected whose probability was more than
two standard deviations away from the cluster mean probability, in
a similar way to previously proposed spatial fiber outlier rejection
(Guevara et al., 2011). In this way, uncommon tractography errors
(spurious fibers) that were present in only one or few subjects were
rejected from the atlas.

All parameter settings were determined empirically to enable
registration and clustering of large multi-subject datasets, while
keeping computational time and memory usage reasonable and fea-
sible. It is well known that many tractography fibers are highly
similar to their neighboring fibers (Presseau et al., 2015) , thus not all
fibers are needed for analysis in order to learn common structures.
Our overall strategy is to perform random sampling to reduce the
number of fibers analyzed from each subject, keeping the total ana-
lyzed fibers (across subjects) sufficient to represent the anatomical
structures of interest in the population. Empirically, we find that this
total number of across-subjects fibers should generally be 100,000
or more for stable results. The number of fibers sampled from each
subject is then calculated in order to reach the desired total number
of fibers. In addition, fibers are thresholded by length: in the current
project, a higher minimum length threshold (60 mm) for clustering
avoided short-range connections of lower interest for neurosurgi-
cal planning. As the overall length distribution contained a majority
of fibers below 60 mm, this length thresholding step reduced the
overall dataset complexity and the number of clusters needed to
describe the dataset. The choice of the number of clusters depends
on the application, where a finer parcellation (> 1000 clusters) may
be more useful for disease classification (Zhang et al., 2016), while
for the current project, 800 clusters gave a fine parcellation that
was still practical for expert visualization and grouping of clusters
(see Section 2.3.2). We note that as datasets and tractography have
improved, we have increased our default number of clusters from
200, which our previous experiments had indicated as the number of
clusters that could be described in a single brain using single-tensor
streamline tractography (O’Donnell and Westin, 2007).

Detailed parameter settings were as follows. The registration
employed 20,000 fibers from each subject for a total of 200,000
fibers, with a minimum fiber length of 40 mm, and affine then
coarse-to-fine b-spline registration with multiscale sigma values
from 20 down to 2 mm and a final b-spline grid size of 8 × 8 × 8.
The clustering employed 10,000 fibers from each subject for a total
of 100,000 fibers, with a minimum fiber length of 60 mm, 800 clus-
ters, 2500 fibers sampled for the Nystrom method, and two rounds
of outlier rejection.

The clustering identified clusters bilaterally, which both improves
clustering robustness (O’Donnell and Westin, 2007) and is useful for
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clinical visualization, in which neurosurgeons and neuroradiologists
commonly use the technique of comparing tumor and contralateral
healthy hemispheres to make clinical assessments. The final cluster
atlas contained 800 structures that were consistently found across
all ten healthy controls.

2.3.2. Expert creation of anatomical hierarchy
The total number of clusters (800) was selected with the goal

of separating all structures considered to be different anatomically.
This fine subdivision allowed us to incorporate expert knowledge
to combine clusters in order to to define an anatomically relevant
tract for a particular application. For example, in our previous work
(Voineskos et al., 2009; Whitford et al., 2010) we employed this strat-
egy to combine multiple smaller clusters into larger regions that
subdivided the corpus callosum (e.g. genu, temporal, occipital). In
the current project, fiber clusters potentially related to motor and
language functions were organized and grouped into larger anatom-
ical structures of relevance for neurosurgery. This grouping was
described in terms of an anatomical hierarchy, which can define mul-
tiple levels of structure subdivisions for anatomical visualization.
Hierarchies are stored as part of the 3D Slicer scene file (in medi-
cal reality modeling language (MRML), an XML format), which can
include multimodal medical images, surface models, tractography,
and all relevant transforms relating the data for multimodal presur-
gical and intraoperative visualization. To enable the current study,
we extended the existing anatomical hierarchy functionality in 3D
Slicer 4.5 to support tractography data.

Experts (LJO, PK) viewed all clusters in the atlas to create the
anatomical hierarchy, which was defined as follows. dMRI studies
indicate that the corticospinal tract (CST), considered to be one of
the most important pathways serving a number of motor functions
essential for our voluntary movements (Al Masri, 2011), connects to
primary motor, primary somatosensory, and dorsal premotor cor-
tices, plus the supplementary motor area (Seo and Jang, 2013).
However, for the purpose of neurosurgical planning, the CST of
interest contains corticospinal and corticobulbar (face motor) fibers
(Berman et al., 2004) and originates in primary motor cortex. Thus
for this study, the CST hierarchy included clusters connecting precen-
tral gyrus and brainstem. The arcuate fasciculus (AF) is possibly one
of the most significant white matter fiber tracts related to language
function (Dick and Tremblay, 2012). The AF hierarchy included all C-
shaped fiber clusters connecting the temporal, parietal, and frontal
lobes (known connections of AF Catani and Mesulam (2008)). The
inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasci-
culus (ILF), and uncinate fasciculus (UF) are also thought to relate to
language function (Chang et al., 2015; Duffau et al., 2009; Mandonnet
et al., 2007; Martino et al., 2010; Papagno et al., 2010). The IFOF hier-
archy included fiber clusters connecting frontal and occipital lobes
(Catani et al., 2002) (additional clusters connecting frontal and pari-
etal lobes were found, as expected in dissection studies (Martino et
al., 2010), but were not included in the IFOF hierarchy for this initial
retrospective study). The ILF (Catani et al., 2003; Mandonnet et al.,
2007) hierarchy broadly included clusters connecting anterior tem-
poral and occipital lobes. Finally, the UF (Von Der Heide et al., 2013)
hierarchy included fiber clusters connecting frontal and temporal
lobes in a hook shape.

2.4. Application of white matter cluster atlas to patient data

We applied the cluster atlas to parcellate the whole white
matter of each patient’s tractography data as follows. First, the
entropy-based objective function used in the groupwise registration
(O’Donnell et al., 2012) was employed to perform an affine registra-
tion of patient tractography to the atlas tractography. We note that
in contrast to standard image-based atlas/patient registration, which
is challenged by the presence of a tumor that does not exist in the

atlas, tractography registration is relatively insensitive to the pres-
ence of a tumor, as there are generally very few fiber tracts traced
in the tumor, and the objective function is relatively robust to any
missing data.

After registration to the atlas, patient-specific fiber clusters were
then detected bilaterally using spectral embedding of patient trac-
tography, followed by assignment of each fiber to the closest cluster
(O’Donnell and Westin, 2007). Outlier fibers were removed if their
fiber probability/affinity given the atlas cluster was over 2 standard
deviations from the cluster’s mean fiber probability. The anatomi-
cal hierarchy was used to identify patient-specific key fiber tracts,
and bilateral AF and CST clusters were then divided into right and
left hemisphere structures to enable quantitative evaluation versus
patient-specific fMRI in each hemisphere. All fiber clusters were then
transformed from atlas space back to patient (DWI) space and then
(rigidly) to patient T2/fMRI space for comparison to fMRI activations.
For clarity, we note that the 800 clusters of each patient’s white
matter parcellation correspond directly to the 800 clusters in the
atlas, such that the anatomical hierarchy from the cluster atlas is
applied directly to each patient parcellation, regardless of the partic-
ular patient or coordinate system of the tracts. All transforms were
applied to fiber tracts using 3D Slicer.

2.5. Quantitative evaluation

We used patient-specific motor and language fMRI to assess the
success of atlas-based fiber clustering to identify key structures in
tumor patients: the corticospinal tract (CST) and arcuate fasciculus
(AF). CST tractography is known to connect to motor cortex electri-
cal stimulation sites (Berman et al., 2004) and to motor fMRI (Archip
et al., 2007) , and we have previously shown that two-tensor UKF is
more sensitive than single-tensor streamline tractography to define
tracts connecting to motor sites (Chen et al., 2016). Subcortical stim-
ulation of AF causes language disruptions (Leclercq et al., 2010) , and
AF tractography is expected to connect Broca’s and Wernicke’s fMRI
activations (Vassal et al., 2016; Vernooij et al., 2007), though this
may not always be the case with single-tensor tractography (Diehl
et al., 2010). To perform quantitative evaluation, the signed distance
was calculated from each fiber tract to the related fMRI activation(s).
The signed distance is negative for tracts intersecting the fMRI and
positive if no overlap occurs (Quammen et al., 2011). All available
patient-specific language and motor fMRI activations were compared
to the corresponding patient-specific AF or CST, and the minimum
signed distances from each fiber tract to each corresponding fMRI
surface model were recorded. The minimum signed distance indi-
cated either the closest distance to the fMRI (if the distance was
positive), or the maximum depth a fiber extended into the fMRI acti-
vation (if the distance was negative). Thus, a negative signed distance
indicated that a fiber tract intersected the fMRI activation.

2.6. Comparison to expert tract selection

For an initial methods comparison, visual and quantitative com-
parisons to expert-selected tracts were performed in the first 9
patient datasets. Expert selection of CST and AF was performed
by a trained neurosurgeon (AM) using regions of interest (ROIs)
drawn on the T2-weighted image, with additional reference to the
directionally-encoded color FA map. CST was selected with three
inclusion ROIs at the level of the pyramid, the middle three-fifths
of the midbrain, and the posterior limb of the internal capsule. For
CST, a fourth large ROI was added to generally restrict CST to cor-
tical areas of primary motor/M1, premotor, supplementary motor,
and somatosensory cortex. AF was delineated with three ROIs as fol-
lows. On a coronal plane passing through the precentral gyrus, the
first ROI encompassed the anteroposteriorly-oriented fibers adjacent
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to the lateral aspect of the CST, at the same level of the corpus callo-
sum on a craniocaudal axis. The second ROI was created on an axial
plane immediately above the level of the anterior commissure and
included only the vertically-oriented fibers lateral to the atrium of
the lateral ventricle. The third ROI was created on an axial plane,
encompassing the anterolaterally-oriented fibers lateral to the lat-
eral ventricle at the junction between the atrium and the temporal
horn. All ROIs were placed bilaterally. Exclusion masks were used to
avoid spurious fibers: each exclusion ROI was specific for each tract
and hemisphere.

3. Results

3.1. Data-driven white matter parcellation in HCP dataset

The 800 fiber clusters were highly consistent across HCP subjects
(Fig. 3). 89% of the clusters were detected in all subjects, and 98% of
the clusters were detected in at least 9 of 10 subjects.

3.2. Identification of key tracts in fiber cluster atlas

Anatomical hierarchies were created in 3D Slicer to organize the
fiber clusters belonging to major tracts of interest (Fig. 4) supporting
motor and language function. Note that multiple fiber clusters were
included in each anatomical hierarchy.

3.3. Whole-brain white matter parcellation in patient dataset

The fiber cluster atlas parcellates the entire white matter in each
patient. Thus, in addition to our focus on main tracts relevant to neu-
rosurgery, we were able to quantitatively evaluate the whole-brain
parcellation of the patients. To give a measure of the generalization
of the atlas to the patient dataset, we measured whether each cluster
was present or absent in each patient (Fig. 5). This measure indi-
cated robust generalization of the fiber cluster atlas to the patient

Fig. 3. Data-driven white matter parcellation: cluster consistency across 10 HCP
datasets. Of the 800 clusters, 712 (89%) are detected in all 10 subjects, and 780 (98%)
are detected in at least 9 of 10 subjects. We note that this cluster consistency result is
based on the 10,000 fibers that were randomly sampled from each subject for efficient
groupwise clustering, meaning that on average there would be 12.5 fibers sampled per
cluster per subject. Using a higher number of fibers per subject will increase this mea-
sure of cluster consistency (by increasing the number of clusters that can be detected
in all 10 subjects), while increasing the computational run time.

Fig. 4. Creation of the fiber cluster atlas. Visualization of the data-driven white matter
parcellation (top row) and the expert-defined anatomical hierarchies, which define
structures of interest for neurosurgical planning. Note that each hierarchy is the union
of several clusters. The number of clusters grouped into each hierarchy is shown. The
image in the background is the average DWI baseline image from the ten subjects
included in the atlas.

datasets: 80% of the clusters were detected in all patients, and 94% of
the clusters were detected in at least 16 of 18 patients.

3.4. Identification of key tracts in patient dataset

The left and right CST, AF, IFOF, UF, and ILF were successfully
detected in all patient datasets. To facilitate visual assessment of per-
formance across subjects, we rendered tracts (in the atlas coordinate
system) against a black background (Figs. 6, 7, 8, and 9). We note
that some detected tracts are apparently much smaller than others,
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Fig. 5. Cluster consistency across 18 neurosurgical patient datasets. Application of the
cluster atlas to whole-brain tractography data from 18 patients indicates good gen-
eralization of the atlas to the patient dataset despite the presence of mass lesions. Of
the 800 clusters, 637 (80%) are detected in all 18 patients, and 754 (94%) are detected
in at least 16 of 18 patients. Note that clusters are found bilaterally, so this measure
indicates the presence of the cluster in at least one hemisphere of each patient.

and this is most apparent in the AF and IFOF results. The automated
method identifies each fiber individually, based on its similarity to
multiple fibers in the atlas, thus the method is not affected by the
overall size of the fiber tract in an individual patient. This fiber tract
size variability can be due to anatomical variability, tract lateraliza-
tion (Catani et al., 2007; Lebel and Beaulieu, 2009; Propper et al.,
2010), or the presence of a tumor and associated peritumoral edema.

3.5. Visual and quantitative evaluation of patient-specific key tracts
using fMRI

Finally, we assessed performance in all 18 patients by visualiza-
tion of identified tracts versus patient-specific anatomical T2 images

and fMRI (Figs. 10, 11, 12, and 13) and by quantitative comparison
of AF and CST to patient-specific fMRI (Table 2 and Fig. 14). Note
that for each patient, some subset of the language tasks (antonym
generation, sentence competition, auditory naming) and motor tasks
(hand clench, lip purse, finger tap, toe wiggle) was acquired accord-
ing to clinical considerations. Summary results regarding tract-fMRI
intersection for each functional region are shown in Table 2, and
quantitative distance results are summarized in Fig. 14.

In all 12 patients with language fMRI, the AF in the left hemi-
sphere intersected all patient-specific activations. In the 6 patients
with bilateral language fMRI activations, the right AF intersected at
least one right hemisphere language activation in 5 patients, while
the right AF intersected all right hemisphere language activations in
4 patients. In all 6 cases, the AF in the right hemisphere lay within
2.97 mm or less of the right-hemisphere language fMRI activations
for all tasks.

Motor fMRI was acquired in 11 patients. The CST in the left hemi-
sphere intersected at least one activation in all 11 patients, while
the CST in the right hemisphere intersected at least one activation
in 10 of 11 patients. For 10 of 11 patients, the left hemisphere CST
intersected all patient-specific activations. The right hemisphere CST
intersected all patient-specific activations in 10 of 11 patients as
well. Across all patients, the greatest distance between the right
hemisphere CST and patient-specific motor activations was 2.41
mm, while the greatest distance between the left hemisphere CST
and patient-specific motor activations was 0.92 mm.

We also assessed the performance in tumor versus healthy hemi-
spheres. The AF and CST intersected all patient-specific activations
in all healthy hemispheres. In hemispheres with tumors, the AF
and CST, respectively, were within 2.97 mm and 2.41 mm of all
patient-specific activations.

3.6. Comparison to expert tract selection

In the first 9 patient datasets, expert tract selection was per-
formed. The expert-drawn ROIs identified left CST in 9 patients, right
CST in 9 patients, left AF in 9 patients, and right AF in 8 patients
(Fig. 15). Overall, the expert tract selection method produced tracts
that were smaller in volume than the automatically identified fiber
tracts (Table 3). Comparison to patient-specific fMRI indicated that

Fig. 6. Automatically detected corticospinal tract clusters in all patient datasets (anterior view). Tumor surfaces are shown in green. Each cluster has a unique color, and similar
clusters have similar colors. Multiple clusters are included in the corticospinal tract hierarchy, which groups putative corticospinal tract clusters for automated visualization. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



L. O’Donnell et al. / NeuroImage: Clinical 13 (2016) 138–153 145

Fig. 7. Automatically detected left arcuate fasciculus tract clusters in all patient datasets (view from left). Tumor surfaces are shown in green when they are near the tract. Each
cluster has a unique color, and similar clusters have similar colors. Multiple clusters are included in the arcuate fasciculus tract hierarchy, which groups putative arcuate fasciculus
clusters for automated visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

expert-selected left CST was within 3.86 mm of all related acti-
vations, and expert-selected right CST intersected all activations.
This performance in CST is similar to the automatic method, where
all activations in both hemispheres were intersected in the first 9
patients. Expert-selected left AF was within 13.52 mm of all patient-
specific left hemisphere activations, where 10 of 15 activations
were intersected. In contrast, automatically identified left AF inter-
sected all patient-specific language fMRI activations in the first 9
patients. Expert-selected right AF was identified in 2 of 3 patients
with bilateral language activations: 1 activation was intersected,
and expert-selected right AF was within 0.62 mm of all language
activations in those 2 patients. In contrast, automatically identified
right AF was found in all 3 patients: 2 activations were intersected,
and automatically identified right AF was within 2.98 mm of all
activations.

4. Discussion

In this paper, we have demonstrated high consistency across
healthy and neurosurgical subjects in terms of the fiber clusters that
may be defined using unscented Kalman filter two-tensor tractogra-
phy. The automatic patient-specific tract identification was assessed
as having very good colocalization with patient-specific fMRI activa-
tions. However, tractography methods are under active development
(Jeurissen et al., 2014; Reisert et al., 2011; Tournier et al., 2012)
and evaluation (Bucci et al., 2013; Fillard et al., 2011; Mormina
et al., 2015; Neher et al., 2015; Pujol et al., 2015; Thomas et al.,
2014), with many competing algorithms to choose from, and there
remains significant anatomical controversy about the true extent
and termination of many fiber tracts in the human brain (Dick and
Tremblay, 2012; Meola et al., 2015; Von Der Heide et al., 2013) . Thus,

Fig. 8. Automatically detected right arcuate fasciculus tract clusters in all patient datasets (view from right). Tumor surfaces are shown in green when they are near the tract.
Each cluster has a unique color, and similar clusters have similar colors. Multiple clusters are included in the arcuate fasciculus tract hierarchy, which groups putative arcuate
fasciculus clusters for automated visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Automatically detected inferior fronto-occipital (IFOF, top row, superior view), occipito-temporal (ILF, middle row, superior view), and left uncinate (UF, bottom row, view
from left) tract clusters, shown in the first six patient datasets. Tumor surfaces are shown in green when they are near the tract. Each cluster has a unique color, and similar
clusters have similar colors. Multiple clusters are included in the tract hierarchies, which group putative IFOF, ILF, and UF clusters for automated visualization. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

there is unavoidable uncertainty in these and any other tractogra-
phy results. Overall, the assessment of which tractography method,
or which combination of dMRI acquisition strategy and tractogra-
phy method, performs the best for neurosurgical planning remains
an open question for future research.

Two well known issues in tractography are false positive
(anatomically incorrrect) and false negative (missing fibers) errors
(Catani, 2007; O’Donnell and Westin, 2011). We believe we have
ameliorated the false positive issue to a certain extent by rejecting
outlier fibers that were improbable, given the other subjects, during

the process of atlas creation and again during patient tractography
identification. But with our approach, any false positive errors that
are strongly present across subjects (i.e. errors typically made by the
tractography method) would still be consistently represented in the
atlas. Other approaches have been proposed to filter tractography
(Smith et al., 2013, 2015), which operate at the single-subject level
and could be tested in the context of neurosurgical planning. In the
context of our current method, reducing false positive fibers using
stricter outlier removal might not make sense, because high sensi-
tivity is desirable for neurosurgical planning. In fact, an error in one

Fig. 10. Automatically detected CST fiber tracts in patients with subject-specific task-based motor fMRI. Images show every patient-specific motor fMRI activation (yellow), with
a T2-weighted image behind the fiber tracts, which are rendered partially transparent to better visualize the fMRI activations. All fMRI activations are intersected by CST fiber
tracts except the right foot motor activation in the left hemisphere of P10 and the right hemisphere motor activations in P14. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)



L. O’Donnell et al. / NeuroImage: Clinical 13 (2016) 138–153 147

Fig. 11. Automatically detected left AF fiber tracts in patients with subject-specific task-based language fMRI. Images show patient-specific language fMRI activations (yellow) in
the left hemisphere, with a T2-weighted image behind the fiber tracts. All fMRI activations are intersected by AF. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

spot along the fiber does not necessarily indicate that the rest of the
fiber is false. This is because decisions are made locally during track-
ing in UKF tractography and in the majority of tractography methods
used for neurosurgical planning.

The second tractography issue is false negative fibers due, for
example, to fiber crossings. Clinically, this is especially problematic
because tractography (especially that based on single-fiber diffu-
sion tensor imaging or DTI) has difficulty tracing the the lateral

Fig. 12. Automatically detected right AF fiber tracts in patients with bilateral language activations in subject-specific task-based language fMRI. Images show patient-specific
language fMRI activations (yellow) in the right hemisphere, with a T2-weighted image behind the fiber tracts. All fMRI activations are intersected by right AF except putative Broca
(P3 antonym task) and putative Wernicke (P6 audionaming task). Patients with language fMRI were right-handed except for P6, who had apparent right-hemispheric language
lateralization according to fMRI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Automatically detected fiber tracts in the first four patient datasets illustrate example results in IFOF, ILF, and UF. A T2-weighted image is shown behind the fiber tracts.

projections of the CST, which cross the AF and superior longitudinal
fasciculus (Behrens et al., 2007; Berman et al., 2004; Jones, 2008).
We and others have shown that multi-fiber tractography methods
are important to improve the anatomical accuracy of AF and CST
for neurosurgical planning (Bucci et al., 2013; Caverzasi et al., 2015;
Chen et al., 2015, 2016; Farquharson et al., 2013; Kuhnt et al., 2013;
Mormina et al., 2015; Nimsky, 2014; Qazi et al., 2009). The problem
of false negative or missing fibers was reduced in the current study
by using a sensitive multi-fiber tractography method; however, it is
not possible to assess the existence of false negatives without ground
truth. Furthermore, the fact that fiber clusters are found bilaterally
in our method allows comparison across hemispheres, and it is visu-
ally apparent in several patient datasets that the size of the tract that
can be identified in the tumor hemisphere is smaller than that in the
contralateral hemisphere. While some lateralization is expected, for
example in AF (Catani et al., 2007; Lebel and Beaulieu, 2009; Propper
et al., 2010), tract lateralization in tumor patients is a challenge
because it is not possible to know whether apparently “missing”
tracts are actually destroyed, or whether they are affected enough
by edema and/or infiltration to prevent tractography. Though we

Table 2
Summary results regarding tract-fMRI intersection for each functional region. The
data in the table (X/Y) indicates that X of a total of Y activations are intersected
by related AF (language) or CST (motor) tracts. 89 of 95 total activations are inter-
sected by the related fiber tract. In some patients, multiple language tasks resulted in
the identification of multiple putative Broca’s or Wernicke’s regions. All regions are
included.

Motor fMRI activations Language fMRI activations

Foot Hand Finger Lip Broca Wernicke

Left hemisphere 5/6 10/10 1/1 8/8 18/18 15/15
Right hemisphere 6/6 9/10 3/4 7/8 2/3 5/6

have previously shown that UKF two-tensor tractography can trace a
larger AF and CST than single-tensor streamline tractography in the
presence of peritumoral edema (Chen et al., 2015, 2016), tractogra-
phy in edematous regions is clearly still a challenge. In such cases,
additional interactive tractography (Golby et al., 2011) in the region
of the detected fiber tracts, as well as correlation with fMRI, could
help provide more information on a patient-specific basis.

The currently presented results indicate a very sensitive detection
of key fiber tracts, especially AF. The patient-specific structure-
function colocalization in the current study, where the AF in the left
hemisphere intersected the left hemisphere language fMRI activa-
tions for all tasks, is higher than the structure-function colocalization

Fig. 14. Quantitative results relating patient-specific automatically identified fiber
tracts to patient-specific fMRI activations. Most fiber tracts intersect the related
functional activations, and all are under 3mm from the related activations.
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Fig. 15. Comparison of expert tract selection versus automatic tract identification: visualizaton of results in the first 4 patient datasets in CST (top), left AF (middle), and right AF
(bottom). In general, the automatic method tends to identify larger structures. All tracts were detected by both methods except for P3 right AF, which was not detected by the
expert selection using anatomical ROIs. (Note that expert-selected left AF was detected in P4 but contains two fibers and is minimally visible.)

reported in previous studies that relied on the single diffusion ten-
sor (DTI) model to perform tractography of AF. For example, in one
study that compared DTI tractography of AF to implanted electrode

location in epilepsy, good colocalization of AF (defined as within
10 mmof the functional region) was only found for 84% of elec-
trodes in Broca’s area and 56% of electrodes in Wernicke’s area



150 L. O’Donnell et al. / NeuroImage: Clinical 13 (2016) 138–153

Table 3
Quantitative comparison of expert-selected and automatically identified tracts in the
first 9 consecutive patients with brain tumors. Columns include the number of tracts
identified or detected (ID), the mean and standard deviation of the tract volumes in cc,
and the number of fMRI intersections, where patient-specific tracts were compared to
patient-specific fMRI activations for language (AF) or motor (CST) tasks. The automatic
identification produced significantly larger volumes for all structures (p < 0.01, paired
t-tests).

Expert selection Automatic identification

Tract ID Volume fMRI ID Volume fMRI

Left CST 9/9 17 ± 9 10/11 9/9 38 ± 15 11/11
Right CST 9/9 15 ± 5 11/11 9/9 41 ± 7 11/11
Left AF 9/9 31 ± 21 10/15 9/9 69 ± 32 15/15
Right AF 8/9 14 ± 16 1/4 9/9 38 ± 30 2/4

(Diehl et al., 2010). In another study, anterior terminations of AF
were found primarily in premotor cortex, not in Broca’ area, using
DTI tractography (Bernal and Ardila, 2009).

In related work, Tunc et al. have recently proposed a method
for automated identification of fiber tracts in presurgical planning
(Tunç et al., 2015). Their work also adopted the strategy of building a
model or atlas by clustering tractography from multiple subjects, an
approach first reported by our group (O’Donnell and Westin, 2007).
Their clustering method relied on a “connectivity-based” strategy, in
which fibers were clustered according to the pattern of local cortical
connectivity of each voxel along a fiber (Tunç et al., 2015). This is a
promising strategy, but it requires parcellation of the patient cortex
via image registration, a potentially difficult approach due to the high
inter-subject variability of cortical topography (Desikan et al., 2006)
and the known challenges in image registration due to the presence
of a tumor (Kaus et al., 2001; Risholm et al., 2010). In contrast to Tunç
et al. (2015), our proposed method does not rely on an image-based
registration or a cortical parcellation. Instead it employs overall fiber
shape and location, measured using pairwise fiber similarity, both
for registration and spectral clustering. Another important difference
relative to Tunç et al. (2015) is that we applied a multi-fiber tractog-
raphy approach (not single-tensor DTI tractography), which provides
improved anatomical accuracy in neurosurgical planning (Caverzasi
et al., 2015; Chen et al., 2015, 2016; Farquharson et al., 2013; Kuhnt
et al., 2013; Mormina et al., 2015; Nimsky, 2014; Qazi et al., 2009).

In our study, 94% of the 800 fiber clusters were found in a
very robust way (in 16 or more of the 18 patients), when cluster-
ing densely seeded whole-brain tractography. Due to differences in
acquisition, it was expected a priori that the clinical dMRI scan would
be less sensitive in terms of the number of anatomical structures
that could be detected relative to the advanced HCP acquisition, in
which 98% of the 800 fiber clusters were identified in at least 9 of
10 subjects. This 98% measure in healthy control HCP data is actually
an underestimate of the cluster consistency, as it is based on down-
sampled tractography data from each subject to enable efficient
groupwise clustering. We believe that using HCP data improves the
overall quality of our data-driven parcellation; however we have pre-
viously successfully applied the clustering method to create atlases
using more standard acquisitions (O’Donnell et al., 2009; Propper et
al., 2010; Whitford et al., 2010) . Our experience indicates that the
data used to learn the atlas should be at least as good or better than
the data that will be segmented using the atlas, that the tractography
method should be the same for both datasets, and that bilateral clus-
tering improves robustness (O’Donnell and Westin, 2007). We have
also observed that using multi-fiber tractography increases the con-
sistency of the clusters found across subjects. In the future, improved
dMRI scans with higher b-values and/or multishell data, as well as
improved tractography methods and better modeling of edema, are
expected to increase the quality of patient tractography, bringing it
even closer to the quality of the HCP dataset.

We performed an initial comparison to expert-selected tracts in
the first 9 patients. This experiment serves mainly as a proof of
concept that automated tract identification can have comparable
performance to expert tract identification. Tract selection results are
known to vary across expert raters (Bürgel et al., 2009), where vari-
ability can occur in several situations, such as deciding on the size
of the ROI, the number of ROIs drawn, and the slice(s) on which
the ROIs are drawn (Voineskos et al., 2009). Thus a more complete
clinical evaluation including additional raters and patients is a clear
avenue for future work. However, in this initial comparison there
were clear trends demonstrating that the automatic method iden-
tified larger structures that intersected more fMRI activations. This
comparison result reflected the difference in how ROIs were defined
by the expert versus how clusters were included in the tract hier-
archies. For example, the expert method was much more specific
in the brainstem where two CST ROIs were placed. In contrast, the
automatic method visually demonstrated more fibers connecting to
lateral motor regions (e.g. face and hand), as the CST hierarchy was
defined primarily according to connection to motor cortex. In AF, the
automatic method was apparently less sensitive to tract displace-
ment due to mass effect, demonstrating larger AF volume across
patients. We tested expert tract selection using segmented ROIs, and
another option is interactive selection using boxes in 3D, which tends
to be more inclusive as the user has less specific control over the
shape of the ROI. ROI placement strategies may also be affected by an
expert’s familiarity with, or preference for, single-fiber versus multi-
fiber tractography, where the latter method is known to generate
more connections and have higher sensitivity (Bastiani et al., 2012;
Behrens et al., 2007; Wilkins et al., 2015) with larger tract volumes
(Chen et al., 2015, 2016).

Our data-driven tractography parcellation achieves a fine subdi-
vision of the white matter with the potential to be specific to tracts
of interest. For example, our approach naturally subdivides the arcu-
ate fasciculus/superior longitudinal fasciculus complex into multiple
parts as expected from neuroanatomical research (Catani and Jones,
2005; Makris et al., 2005; Martino et al., 2013). AF subdivisions are
shown in Figs. 4, 7, and 8. SLF was also divided into multiple sub-
divisions by the clustering method (not shown). We note that the
AF and CST tract hierarchies of interest included 30 of the total 800
clusters that were defined using our approach. The cortical regions
involved in the language network are widely distributed (Corina et
al., 2010; Huth et al., 2016) , and we have not yet evaluated addi-
tional tracts related to language function (Chang et al., 2015), such as
the superior longitudinal fasciculus (Makris et al., 2005; Martino et
al., 2013), frontal aslant tract (Catani et al., 2012, 2013), middle lon-
gitudinal fasciculus (de Champfleur et al., 2013; Makris et al., 2009) ,
and extreme capsule (Makris and Pandya, 2009).

One limitation of our method is that it is difficult, given our cur-
rent technology, to separate motor from sensory fibers in the CST
hierarchy. In fact, it is not completely clear if this separation is possi-
ble based only on tractography information, because approximately
two-thirds of corticospinal fibers have been shown to originate from
axons of pyramidal cells, mainly from primary motor/M1 (Brod-
mann’s area 4), premotor and supplementary motor (Brodmann’s
area 6); while the remaining one-third of fibers has been shown to
arise from the somatosensory cortex (Brodmann’s areas 3, 1 and 2)
(Mendoza and Foundas, 2007; Snell; Stippich, 2007). For the pur-
poses of this study, any fiber clusters in the atlas that primarily
connected to postcentral gyrus or to regions anterior of the precen-
tral gyrus were not included in the M1 CST hierarchy. The results
in this study indicate good sensitivity of CST detection, based on
good colocalization with patient-specific fMRI activations. However,
to potentially increase specificity of motor fiber identification, future
work could take into account additional information such as multi-
modal imagery, cortical geometry, and functional information when
creating and applying the white matter parcellation. Robustly tracing
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the CST from cortex to brainstem is still a challenge, and improve-
ments in data preprocessing for distortion correction may improve
depiction of the corticospinal tract and brainstem region in HCP
datasets (Irfanoglu et al., 2015).

There are some additional limitations of the current study. One
limitation of our method is the run time (approximately 2.5 h per
patient dataset to seed, register, and cluster all fiber tracts using
20 processors for tractography and 2 processors for the rest of the
pipeline) and the fact that some of the steps, as currently imple-
mented, require knowledge of the command line, limiting their ease
of use for clinically-trained personnel. We are currently investigat-
ing an optimized implementation for improved useability. In this
project, image distortions caused by eddy currents and/or motion
were corrected in the traditional way by registration to the base-
line image (Graham et al., 2016; Oguz et al., 2014) such that the
DWIs were considered to be in the space of the relatively undistorted
baseline image, which was then rigidly registered to the T2 space.
This does not correct for echo-planar imaging distortions, which are
expected to be on the order of 2 mm in the phase-encode direction in
patient data (Treiber et al., 2016), and are generally neglected in clin-
ical practice. Newly-proposed methods (Andersson and Sotiropou-
los, 2016; Irfanoglu et al., 2015) do have high potential for correcting
DWI distortions in the future. Finally, potential limitations of the pro-
posed method may be patient-specific, as some tumors will affect
tracts more than others. In the future, an interactive system could
allow the clinician to both increase and decrease the number of fibers
included in the tract of interest, for example by expanding and con-
tracting the region of the spectral embedding space considered to
belong to the tract. This type of visualization could provide practical
information about the uncertainty of automated tract detection.

Overall, the results of our study indicate the high potential of an
automated method for identifying fiber tracts of interest for neuro-
surgical planning. We note that this study also supports the utility of
our methods and open-source tools for other applications of white
matter parcellation (O’Donnell et al., 2013), such as our recent work
in autism (Zhang et al., 2016). In the current study, we evaluated a
limited number of selected fiber tracts considered to be of impor-
tance for neurosurgery, and we demonstrated their robust identifica-
tion across patients using multi-fiber tractography. We plan further
multi-modal data-driven investigation of the relationship of patient-
specific whole-brain fiber clusters to patient-specific fMRI in order to
more finely define which fiber clusters may be of greatest functional
importance for neurosurgical planning.
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