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SCIENTIFIC REPLIRTS

Impaired Function of Peripherally
Induced Regulatory T Cells in Hosts
at High Risk of Graft Rejection

Received: 02 September 2016 Takenori Inomata®, Jing Hua*, Antonio Di Zazzo & Reza Dana

Accepted: 29 November 2016
Published: 23 December 2016 . RegulatoryT cells (Tregs) are Frucnal for aIIc_;graf_t survival. Tregs can be divided into thym_us-derlved
. natural Tregs (tTregs) and peripherally-derived induced Tregs (pTregs). Here, we determine whether
the suppressive function of Treg subsets is hampered in hosts who are at high risk for rejecting their
graft. To induce graft beds that promote high risk of transplant rejection, intrastromal corneal sutures
were placed two weeks prior to the transplant procedure in mice. We demonstrate that in high-risk
recipients the frequencies and function of pTregs (but not tTregs) are suppressed. Reduced function
. of pTregs correlated with decreased expression of CTLA-4, interleukin-10, and transforming growth
. factor-3. Adoptive transfer of pTregs from mice at low risk of subsequent graft rejection is able to rescue
. graft survival in recipients that are at high risk of rejecting their grafts. Our data suggest that impaired
function of pTregs, but not tTregs, mediates the loss of immune tolerance and promotes allograft
rejection.

Regulatory T cells (Tregs) maintain immune homeostasis by dampening inflammatory responses toward self-
and alloantigens'~, and therefore play a crucial role in allograft survival. Studies in solid organ transplanta-
tion have shown that Treg-based therapies can be effective in promoting long-term tolerance to skin and heart
grafts not only in experimental animals*°, but also in human subjects®’. Studies have suggested that Foxp3*
natural Tregs (nTregs; thymic-derived Tregs [tTregs]) and peripherally-induced Tregs (pTregs) can act in concert
to promote tolerance®~!°, but alloantigen-specific pTregs are thought to be the principal mediators of allograft

. tolerance''"1%. While these and other studies have shed light on the antigen-specificity of Tregs on graft sur-

. vival, much of the results are limited to Tregs that are artificially induced in vitro through controlled alloanti-

: gen exposure, or using transgenic strains with altered immune systems®~!%*1%, This has left important questions
open, especially regarding the differential contributions of Treg subsets to the natural allotolerance that is devel-
oped in vivo. Understanding the natural involvement and precise function of Treg subsets in allotolerance is
essential for effective development of Treg-based strategies in transplantation. Tregs are a heterogeneous popu-
lation; recently, animal studies have shown that natural thymus-derived tTregs and some (auto) antigen-specific
Tregs are neuropillin-1* (Nrp-17) while in transplantation alloantigen-specific peripherally-induced pTregs'®
are Nrp-1-'718, This differentiation has permitted studies evaluating these distinct Treg subsets in a variety of
immunopathologies.

In all forms of transplantation, certain recipients are known to be at particularly high risk of rejecting their
grafts. In the case of corneal transplantation, which is the most commonly performed tissue grafting procedure®,
success rates are very high in uninflamed (so-called ‘low-risk’) host beds (as seen in simple corneal scars)°.
Similarly, in the murine model of corneal transplantation close to one-half of allografts survive indefinitely with-
out any local or systemic immunomodulatory treatment, reflective of the immune privileged status of corneal
grafts. In contrast, host factors such as graft bed inflammation and neovascularization lead to high rejection
rates?! regardless of the magnitude of immune suppression?*?2. Thus, understanding the underlying mecha-
nisms that enable, or abrogate, normal Treg function is essential for optimizing immunomodulatory strategies
in transplantation, especially in hosts at high risk of rejection. In the current study, we used a model of corneal
transplantation?*?* to delineate the differential function and susceptibility of tTregs and pTregs from allograft
recipients — low-risk hosts with normal immune homeostatic mechanisms who develop allotolerance naturally,
and high-risk hosts with inflamed graft beds who are prone to swift rejection of their transplants.

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard
Medical School, Boston, MA, USA. *These authors contributed equally to this work. Correspondence and requests
for materials should be addressed to R.D. (email: Reza_Dana@meei.harvard.edu)
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Figure 1. Regulatory T cell dysfunction in high-risk graft recipients. Corneal grafts were transplanted onto
inflamed high-risk or control (‘low-risk’) host beds, and their corneas and draining lymph nodes (dLNs) were
analyzed 14 days post-transplantation. (A, B) Corneal grafts were harvested and digested with collagenase

D. Single cell suspensions were stained for Foxp3 and CD4, and analyzed using flow cytometry. 5 corneas per
group were pooled for each analysis; data shown are representative of 3 independent experiments. (C) Corneal
grafts were harvested, mRNA was isolated, and Foxp3 expression was analyzed using real-time PCR 14 days
post-transplantation. n=5. (D) DLNs were harvested, each DLN was stained for Foxp3 and CD4, and analyzed
separately using flow cytometry. Mean fluorescence intensity (MFI) of Foxp3 levels by Tregs of low-risk and
high-risk graft recipients was assesssed. N = 5 mice/group, data shown are representative of 3 independent
experiments. (E) Treg suppression assay showing Treg suppressive function of Tregs isolated from DLNs of
high-risk vs. low-risk recipients 14 days post-transplantation. Suppression of naive BALB/c CD4"CD25~
conventional T cell proliferation by Tregs was assessed following exposure to C57BL/6 (donor) or C3H (third
party) APCs. All data were obtained from n =5 mice/group and representative data from three independent
experiments are shown. p values are calculated using the Mann-Whitney test and error bars represent SEM.

Results

Treg dysfunction in high-risk transplantation. Transplantation was performed onto recipients with
quiescent low-risk and inflamed high-risk graft beds. Grafted corneas were harvested to determine Treg migra-
tion to the graft site 14 days after corneal transplantation. Treg frequencies (Fig. 1A,B) and Foxp3 expression
(Fig. 1C) were reduced in corneas from high-risk recipients compared to recipients at low-risk for rejection.
Ipsilateral draining lymph nodes (dLNs) are the principal sites of allosensitization®*; thus we compared Foxp3
expression and Treg functionality in the dLNs of high-risk vs. control low-risk graft recipients. Foxp3 protein
expression in Tregs from dLNs of high-risk graft recipients was reduced compared to low-risk graft recipients
(Fig. 1D). Tregs isolated from dLNs of high-risk recipients and cultured with Tconv cells displayed ~20% less
suppressive function compared to Tregs isolated from low-risk control recipients (Fig. 1E). When donor-specific
(C57BL/6) APCs were used to stimulate T cell proliferation, only Tregs from low-risk control recipients showed
suppressive function; with third party C3H APCs, both high-risk and low-risk host-derived Tregs displayed a
comparably low suppressive function at ~60% (Fig. 1E).
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Figure 2. Function of pTregs and their differential expression of cytokines and co-immunosuppressive
molecules. Corneal transplantation was performed in low and high-risk recipients, and draining lymph

nodes (dLNs) were isolated 14 days post-surgery. For further analyses separate single cell suspensions for each
DLN were prepared, n=5/group. (A) pTregs and tTregs were FACS sorted from the dLNs of graft recipients
according to their Nrpl expression; pTregs =Nrpl-~, tTregs = Nrp-1*. The suppressive potential of pTregs and
tTregs on CD47CD25" conventional T cell proliferation in the presence of C57BL/6 APCs was compared using
a Treg suppression assay. (B) Dot plot showing frequencies of CTLA-4" pTregs of dLNs from high-risk and low-
risk recipients. (C) Flow cytometry analysis showing frequencies of CLTA-4" tTregs and pTregs in the dLNs of
high-risk and low-risk recipients. (D-F) pTreg and tTregs were isolated from the draining lymph nodes of high-
risk and low-risk recipients, cultured and the expression levels of (D) IL-10, (E) TGF-31, and (F) IFN-~ were
analyzed in the supernatant by ELISA. All data were obtained from n= 5 mice/group and represent data from
three independent experiments. p values are calculated using the Mann-Whitney test and error bars represent
SEM.

Dysfunctional pTregs express reduced immunoregulatory molecules and increased inflamma-
tory cytokine. Alloantigen-specific peripherally-induced pTregs have been defined as Nrp-1-2%. Here, we
FACS sorted Nrp1™* tTregs and Nrp-1~ pTregs to assess their suppressive function on Tconv cell proliferation in
vitro. We found that pTregs from high-risk recipients showed ~20% less suppressive function than pTregs from
low-risk recipients (Fig. 2A). To determine how pTreg dysfunction in hosts prone to rejection may fail to induce
allotolerance, we evaluated the expression of several key Treg regulatory molecules and cytokines critical for
their function. First, we assessed the expression of the co-inhibitory molecule CTLA-4 by pTregs and tTregs,
and noted that pTregs from high-risk recipients have lower frequencies of CTLA-4" pTregs whereas tTregs from
high- and low-risk recipients show no difference (Fig. 2B and C). pTreg frequencies and their Foxp3 expres-
sion in the DLNs of low-risk and high-risk graft recipients were analyzed before and 14 days after transplan-
tation. Corneal suturing did not affect pTreg frequencies or Foxp3 expression, but transplantation into these
high-risk graft beds reduced their Foxp3 expression compared to transplants into low-risk (not sutured) graft
beds (Supplemental Fig. 1A-C). Comparing pTreg frequencies and Foxp3 expression high-risk acceptors vs. rejc-
tors 14 days post-transplantation showed no difference in pTreg frequencies but reduced Foxp3 expression in
rejectors (Supplemental Fig. 1D and E). Then, we measured levels of IL-10, TGF-31, and IFN-~ in the supernatant
of sorted and cultured pTregs and tTregs using ELISA. IL-10 (Fig. 2D) and TGF-31 (Fig. 2E) expression levels
were significantly reduced in pTregs from high-risk recipients. In contrast, IFN-~ expression by both pTregs and
tTregs from high-risk recipients was increased (Fig. 2F). In grafted corneas, we found less IL-10 but increased
IFN-~ and IL-12 expression in high-risk recipients (Supplemental Fig. 2).

Adoptive transfer of functional pTregs restores allotolerance. To investigate whether normal allo-
tolerance can be restored in high-risk hosts, we adoptively transferred pTregs or tTregs isolated from low-risk or
high-risk recipients to high-risk recipients soon (18 hours) after transplantation. Our data showed that pTregs
isolated from high-risk recipients were incapable of preventing allograft rejection, whereas pTregs from low-risk
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Figure 3. Effect of pTreg and tTreg adoptive transfer on allograft survival in high-risk recipients. pTregs
and tTregs were isolated from the draining lymph nodes (dLNs) of high-risk and low-risk (LR) recipients at day
14 post-transplantation, and 1 x 10° cells were intravenously injected into high-risk (HR) recipients 18 hours
post-transplantation (n = 6/group). High-risk and low-risk recipients without transfer served as controls (No
adop. trans). (A) Opacity scores and (B) graft survival were monitored for up to 8 weeks post-transplantation
(**p <0.01). HR hosts transferred with LR pTregs had a significantly higher survival (p =0.006) and reduced
opacity scores (**p < 0.01) than HR recipients without adoptive transfer. Log-rank test. (C) The median graft
survival shows that only pTregs from LR recipients significantly improved graft survival in HR recipients to
levels seen in LR control recipients. Mann-Whitney Test, n = 6-10 mice/group.

recipients prolonged graft survival and reduced graft opacity even in hosts that were considered at high risk for
rejecting their allografts (Fig. 3A,B). Of note, the adoptive transfer of pTregs from low-risk grafted controls to
high-risk recipients enhanced median graft survival to levels seen normally with low-risk hosts without transfer
(Fig. 3C). Although tTregs from both high-risk and control recipients prolonged graft survival, they were less
efficient than the highly functional pTregs derived from low-risk recipients in promoting graft survival.

Discussion

Tregs have attracted broad interest for their role in supporting allograft survival. Corneal allografts normally
enjoy very high survival rates due to tolerogenic mechanisms that account for ocular immune privilege?®; how-
ever, in settings of graft site inflammation (‘high-risk’ transplantation) the risk of a prompt rejection becomes a
near absolute certainty?*?*%,

In accord with previous studies reporting reduced Treg frequencies in solid organ graft rejection’~>?, we
show herein decreased Treg frequencies at the graft site of high-risk grafted hosts. We further observed decreased
Foxp3 expression in high-risk corneas and by Tregs from DLNs of high-risk recipients. Because Foxp3 is the key
transcription factor for Tregs and its expression level correlates with Treg suppressive function®>*, Tregs from
high-risk recipients with less Foxp3 expression display decreased inhibitory functions ex vivo.

It is recognized that Foxp3™ Tregs are comprised of multiple subsets, and it has been suggested that pTregs
control antigen-specific immune responses in the periphery, whereas tTregs maintain general immune home-
ostasis®~!%. Here, we show that pTregs from high-risk recipients show reduced suppressive function compared
to pTregs from low-risk recipients. In accord with our previous study?, we found that pTregs from high-risk
recipients with rejected corneas express less Foxp3 compared with high-risk acceptors (Supplemental Fig. 1D, E).
In this context, and given our data, we propose that pTregs induce peripheral tolerance for allografts under phys-
iologically normal conditions, whereas graft site inflammation leads to pTreg instability or dysfunction after
transplantation, which in turn promotes graft rejection. Although sutures in the cornea may induce local inflam-
mation, we see similar pTreg frequencies and Foxp3 expression in the DLNs of mice before transplantation with
sutured and non-manipulated corneas (Supplemental Fig. 1).

Tregs exert their suppressive function via expression of inhibitory cell surface molecules (e.g., CTLA-4)* and
through production of immunoregulatory cytokines, such as IL-10 and TGF-3'*%. In high-risk hosts we observe
reduced CTLA-4, IL-10, and TGF-3 expression by pTregs, which correlates with their reduced suppressive func-
tion both in vivo and in vitro. In contrast, the acquisition of IFN-~ by Tregs isolated from high-risk hosts suggests
not only impaired regulatory function but also an adopted proinflammatory function, which may further imperil
allograft survival. In accord, we found decreased IL-10 and increased IFN-~ and IL-12 mRNA expression in

31-33
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grafted corneas of high-risk recipients (Supplemental Fig. 2), indicating that Treg dysfunction in high-risk recip-
ients with inflamed beds is caused at the local site.

Our adoptive transfer experiments demonstrate that transferred functional pTregs from control low-risk
recipients displayed the highest capacity to rescue graft survival, similar to levels seen in control low-risk recipi-
ents. In previous studies, we have reported on the relevance of the graft bed microenvironment on APC matura-
tion and migration, and subsequent allosensitization*"’. Based on the results presented, we propose that the graft
microenvironment cannot only enhance allosensitization through increased APC maturation and migration, as
we have reported previously?"’, but can also dictate the functional specificities of pTregs, which in turn control
allograft fate. Given the known functional plasticity of Tregs®®, these data also suggest the potential feasibility of
local graft-site cytokine manipulation to alter microenvironmental cues that regulate pTreg function and ulti-
mately promote graft survival.

Materials and Methods

Animals. Six-week-old BALB/c (H-2d), C57BL/6 (H-2b), and C3H/He male mice were purchased from
Charles River Laboratories (Wilmington, MA, USA). All animal experiments were approved by the Institutional
Animal Care and Use Committee of the Schepens Eye Research Institute, and were conducted in accordance
with the Association for Research in Vision and Ophthalmology (ARVO) statement for the Use of Animals in
Ophthalmic and Vision Research.

Suture-induced Inflamed Graft Bed Preparation. Inflamed, neovascularized (‘high-risk’) host beds
were created as detailed previously®*. Briefly, three intrastromal sutures were placed into the central cornea using
11-0 nylon sutures (AB-0550S, MANTI, Tochigi, Japan) 14 days before corneal transplantation to induce host bed
inflammation and angiogenesis, thus rendering the host at high risk of rejecting their allograft*'. Mice with unma-
nipulated (clear, non-vascularized) corneal host beds at low-risk of graft rejection served as controls.

Allogeneic Corneal Transplantation. For allogeneic corneal transplantation C57BL/6 corneas were
grafted onto BALB/c host beds as detailed elsewhere®*. Briefly, the central cornea (2-mm diameter) was excised
from a donor C57BL/6 mouse using scissors (Vannas; Storz Instruments, San Dimas, CA). The graft bed was
prepared by excising a 1.5-mm site in the central cornea of a BALB/c mouse. The donor button was then placed
onto the recipient bed and secured with eight interrupted 11-0 nylon sutures. Corneal sutures were removed 7
days after surgery. Graft survival was evaluated for 8 weeks using a slit-lamp biomicroscope. We used a standard
opacity-grading (range, 0-5+) scheme to define rejection®; corneas with an opacity score of 2+ for two consec-
utive examinations were considered rejected. In order to evaluate Treg function before graft rejection set in, clear
grafts from both recipient groups were analyzed at day 14.

Isolation of Corneal Cells.  Single-cell suspensions were prepared from the corneal samples by collagenase
digestion, as previously described*. In brief, corneas were digested in RPMI media (Lonza, Walkersville, MD)
containing 2 mg/ml collagenase type IV (Sigma-Aldrich, St. Louis, MO) and 2 mg/ml DNase I (Roche, Basel,
Switzerland) for 60 min at 37 °C, and then filtered through a 70-um cell strainer.

Flow Cytometry. Ipsilateral draining lymph nodes (dLNs) and corneas (n = 5/group) were harvested and
single-cell suspensions were prepared. To analyze corneal cells we pooled 5 corneas for each analysis; DLNs were
analyzed separately. Each analysis was repeated twice. To avoid non-specific staining, cells were blocked with an
anti-FcR blocking antibody (eBioscience, San Diego, CA, USA), and then stained with the following antibod-
ies: anti-CD4 FITC (RM4-5), anti-CD25 PE (PCé61), anti-Foxp3 PECy7 (FJK-16s) (BioLegend, San Diego, CA,
USA), anti-Neuropilin-1 Alexa700 (FAB566N, R&D Systems, Minneapolis, MN, USA) and anti-CTLA-4 APC
(UC10-4B9, BioLegend). Control samples were stained with appropriate isotype-matched control antibodies.
Stained cells were examined using an LSRII Flow Cytometer (BD Biosciences, Franklin Lakes, NJ, USA), and the
results were analyzed using Flow]Jo software X 10.0.7 (FlowJo LLC, Ashland, OR, USA).

Cell Sorting.  For in vitro analysis CD47CD25~ conventional T cells (Tconv) and CD4+CD25" Tregs
from BALB/c mice and antigen-presenting cells (APCs) from C57BL/6 and C3H mice were isolated by
magnetic-assisted cell sorting (MACS) using Treg and CD90.2 (depletion) isolation kits according to the manu-
facturers’ instructions (Miltenyi Biotec, Bergisch-Gladbach, Germany), respectively. For the in vitro studies and
adoptive transfer experiments CD4"CD25"Nrp-1* Treg (tTreg) and CD4"CD25" Nrp-1~ Treg (pTreg) cells were
sorted using a BD FACSAria™ III sorter (BD Biosciences, Franklin Lakes, NJ, USA).

Treg Suppression Assay. Conventional T cells (Tconv; 1 x 10°) isolated via MACS sort from the dLNs of
naive BALB/c mice were cocultured with Tregs (5 x 10*) from transplant recipients (14 days post-transplantation),
T cell-depleted allogeneic splenocytes from C57BL/6 or C3H mice (1 x 10°), and 1 pg/ml anti-CD3 antibody
(145-2C11, BioLegend) for 3 days. Proliferation was measured using the BrdU incorporation assay (EMD
Millipore, Billerica, MA, USA), and percent suppression was calculated using the following formula: % sup-
pression = [(Tconv proliferation without Tregs — Tconv proliferation with Tregs)/ (Tconv proliferation without
Tregs)] x100. Percent suppression of Tregs from low-risk recipients cocultured with Tconv and donor APCs was
set 100%.

RNA Isolation, RT-PCR, and Real-Time PCR. RNA was isolated (RNeasy Micro Kit; Qiagen, Valencia,
CA, USA) from 5 mice per group (dLNs or cornea) 14 days post-transplantation and reverse transcribed
(Superscript Kit; Invitrogen, Carlsbad, CA, USA). Real-time PCR was performed using a PCR mix (Tagman
Universal PCR Master mix; Invitrogen) and preformulated primers for Foxp3 (Mm00475156_ml), IL-10
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(Mm00439614_m1), IFN-~ (Mm00801778_m1), IL-12 (MmO00434165_m1), and Glyceraldehyde-3-Phosphate
Dehydrogenase (GAPDH; Mm999999_¢l) (Applied Biosystems, Austin, TX, USA). Results were analyzed by the
comparative threshold cycle method, using GAPDH as an internal control. Real-Time PCR was repeated three
times for each cytokine with triplicates for each group.

Enzyme-linked immunosorbent assay. Tregs from 5 mice/group were isolated 14 days
post-transplantation via MACS sort from the dLNs of high-risk and low-risk graft-recipients, FACS sorted for
pTregs and tTregs, and protein expression of IL-10, TGF-{1, and IFN-~ was analyzed in the supernatants after
stimulation with PMA and inomomycin (IL-10 and IFN-v) or LPS (TGF-31) for 24 hours using ELISA kits
according to the manufacturers’ instructions (eBioscience).

Treg Adoptive Transfer.  First, dLNs of high-risk and low-risk graft recipients were isolated at 14 days
post-transplantation. After FACS sorting, 1 x 10° pTregs or tTregs were suspended in 100 pl phosphate buffered
saline (PBS) and transferred intravenously (i.v.) to high-risk host 18 hours post-transplantation. High-risk and
low-risk recipients with no transfer served as controls. Allograft survival and opacity scores were monitored in
each group (n=6-10 mice/group) for up to 8 weeks post-transplantation.

Statistical analysis. All animals were evaluated by a masked observer unaware of the source of adoptively
transferred cells. Mann-Whitney test was used to compare means between groups. The One-Way Anova test was
used to analyze opacity scores. Kaplan-Meier analysis was used to construct survival curves, and log-rank test
was used to compare corneal graft survival. Data are presented as mean = standard error of mean and considered
statistically significant at p < 0.05.
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