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ABSTRACT
We present measurements of polarization lensing using the 150 GHz maps which include all data taken by

the BICEP2 & Keck Array CMB polarization experiments up to and including the 2014 observing season
(BK14). Despite their modest angular resolution (∼ 0.5◦), the excellent sensitivity (∼ 3µK-arcmin) of these
maps makes it possible to directly reconstruct the lensing potential using only information at larger angular
scales (` ≤ 700). From the auto-spectrum of the reconstructed potential we measure an amplitude of the
spectrum to be AφφL = 1.15±0.36 (Planck ΛCDM prediction corresponds to AφφL = 1), and reject the no-lensing
hypothesis at 5.8σ, which is the highest significance achieved to date using an EB lensing estimator. Taking
the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields AφφL = 1.13±0.20.
These direct measurements of AφφL are consistent with the ΛCDM cosmology, and with that derived from the
previously reported BK14 B-mode auto-spectrum (ABB

L = 1.20± 0.17). We perform a series of null tests and
consistency checks to show that these results are robust against systematics and are insensitive to analysis
choices. These results unambiguously demonstrate that the B-modes previously reported by BICEP / Keck
at intermediate angular scales (150 . ` . 350) are dominated by gravitational lensing. The good agreement
between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place
constraints on any alternative cosmological sources of B-modes at these angular scales.
Subject headings: cosmic background radiation — cosmology:observations — gravitational lensing — polar-

ization
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1. INTRODUCTION
Cosmic Microwave Background (CMB) photons traveling

from the surface of last scattering are lensed by the gravi-
tational potential of the large-scale structure along the line
of sight. This leads to spatial distortions of a few arcmin-
utes in the temperature and polarization anisotropies. In par-
ticular, gravitational lensing converts some of the E-mode
polarization into B-mode polarization (Zaldarriaga & Seljak
1998). Measurements of temperature and polarization with
sufficient resolution and sensitivity can be used to reconstruct
the intervening matter distribution, and in the future such bias-
free measurements of large-scale structure will become some
of the most powerful probes in cosmology (e.g., Hu 2002;
Namikawa et al. 2010; Wu et al. 2014; Abazajian et al. 2015;
Allison et al. 2015; Pan & Knox 2015). Lensing can also
act as a noise source for primordial B-modes, which peak at
degree-scales (e.g., Kesden et al. 2002; Knox & Song 2002).
With sufficient sensitivity, a reconstructed lensing potential
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can be used to predict the degree-scale lensing B-modes, en-
abling a deeper search for a primordial signal. If the tensor-
to-scalar ratio r is below 0.01, such “de-lensing” procedures
will become important in the search for inflationary B-modes
(Kesden et al. 2002; Knox & Song 2002; Seljak & Hirata
2004; Smith et al. 2012). In the latest BICEP / Keck results
we already see a non-negligible lensing contribution at large
angular scales (` < 100) (BICEP2 / Keck Array Collaboration
VI 2015).

Lensing reconstruction from high resolution CMB temper-
ature maps has been performed using data from the Ata-
cama Cosmology Telescope (ACT; Das et al. 2011, 2014),
Planck (Planck Collaboration 2014a) and the South Pole Tele-
scope (SPT; van Engelen et al. 2012; Story et al. 2015).
More recently, reconstruction using polarization maps has
also been demonstrated. Using polarization data, the esti-
mated amplitude of the lensing potential power spectrum,
AφφL , from Planck 2015, POLARBEAR and SPTPOL are, AφφL =
0.76± 0.15 (Planck Collaboration 2015), AφφL = 1.06± 0.47
(POLARBEAR Collaboration 2014b), and AφφL = 0.92± 0.24
(Story et al. 2015), respectively, where the errors denote
the 1σ statistical uncertainties. The reconstructed lensing
potential from the polarization maps can be used in cross-
correlation with other lensing potential tracers such as the
cosmic-infrared background (CIB) (Hanson et al. 2013; PO-
LARBEAR Collaboration 2014a; van Engelen et al. 2015).
These measurements all use the fact that a common lensing
potential introduces statistical anisotropy into the observed
CMB in the form of a correlation between the CMB polariza-
tion anisotropies and their spatial derivatives (Hu 2001; Hu
& Okamoto 2002; Hirata & Seljak 2003a,b). These experi-
ments have high enough angular resolution to resolve small-
scale (arcminute) polarization fluctuations where weak lens-
ing significantly perturbs the primordial CMB anisotropies.

The BICEP2 and Keck Array telescopes, with smaller aper-
tures and beam sizes of ∼ 0.5◦ at 150 GHz, do not resolve the
arcminute-scale fluctuations. Nevertheless, we demonstrate
in this paper that the excellent achieved sensitivity makes it
possible to perform reconstruction of the lensing potential us-
ing only information at larger angular scales, and report a sig-
nificant detection in the auto-spectrum of the reconstructed
lensing potential. In addition, we cross-correlate our recon-
structed lensing map with the published Planck lensing po-
tential (Planck Collaboration 2015). This cross-spectrum,
which is immune to most systematic effects and foregrounds,
also detects lensing with high significance. Since the Planck
lensing potential is reconstructed primarily using temperature,
and that from BICEP / Keck is reconstructed entirely using
polarization, the strong correlation of the two maps shows
that they are producing a consistent reconstruction of the true
lensing potential. The derived lensing amplitudes are consis-
tent with that expected in the ΛCDM cosmology. Taken to-
gether, these results imply that the B-mode power in the mul-
tipole range of 150. `. 350 previously detected by BICEP /
Keck (BICEP2 / Keck Array Collaboration VI 2015) is indeed
caused by lensing.

This paper is part of an on-going series describing results
and methods from the BICEP / Keck series of experiments
(BICEP2 Collaboration I 2014, hereafter BK-I; BICEP2 Col-
laboration II 2014, hereafter BK-II; BICEP2 Collaboration III
2015, hereafter BK-III; BICEP2 Collaboration IV 2015, here-
after BK-IV; BICEP2 / Keck Array Collaborations V 2015,
hereafter BK-V; BICEP2 and Planck Collaborations 2015,

hereafter BKP; BICEP2 / Keck Array Collaboration VI 2015,
hereafter BK-VI; BICEP2 / Keck Array Collaboration VII
2016, hereafter BK-VII). This paper is organized as follows:
in Sec. 2 we briefly summarize the data sets that are used
in this paper, in Sec. 3 we describe our analysis method for
reconstructing the lensing potential from the BICEP / Keck
data, in Sec. 4 we give our results including the auto- and
cross-spectra of the lensing potential, in Sec. 5 we present
consistency and null tests, and in Sec. 6 we conclude.

2. OBSERVED DATA AND SIMULATIONS
2.1. BICEP2 and Keck Array

In this paper we use the BICEP / Keck maps which
coadd all data taken up to and including the 2014 observing
season—we refer to these as the BK14 maps. These maps
were previously described in BK-VI, where they were con-
verted to power spectra, and used to set constraints on the am-
plitudes of primordial B-modes and foregrounds. In this work
we use only the 150 GHz Q/U maps. These have a depth of
3.0 µK-arcmin over an effective area of ∼ 395 deg2, centered
on RA 0h, Dec. −57.5◦.

We re-use the standard sets of simulations described in BK-
VI and previous papers: lensed and unlensed CMB signal-
only simulations (denoted by “lensed/unlensed-ΛCDM”), in-
strumental noise, and dust foreground, each having 499 real-
izations. In addition in this paper we also make use of the in-
put lensing potential. The details of the signal and noise sim-
ulations are given in Sec. V of BK-I and the dust simulations
are described in Sec. IV.A of BKP and Appendix E of BK-VI.
As discussed in Sec. 3, the lensed-ΛCDM, instrumental noise,
and dust simulated maps are combined to estimate the transfer
function, mean-field bias, disconnected bias, and the uncer-
tainties of the lensing power spectrum. The unlensed-ΛCDM
simulations are used to evaluate the significance of detection
of lensing (rejection of the no-lensing hypothesis). Lensing
is applied to the unlensed input maps using Lenspix (Lewis
2005) as described in Sec. V.A.2 of BK-I.

Starting with the spherical harmonic coefficients of the in-
put lensing potential (from Lenspix) we first transform to the
lensing-mass field κ (lensing convergence) using

κLM = −
L(L + 1)

2
φLM , (1)

and then make the full-sky κ map by the spherical harmonic
transform of κLM . This transformation is necessary to avoid
mode mixing in the subsequent apodization to the BK14 sky
patch because the lensing-mass field has a nearly flat spec-
trum, while the lensing potential has a red spectrum (Planck
Collaboration 2015). Next the input lensing-mass map in the
BK14 sky patch, κin(n̂), is obtained by interpolating the full-
sky κ map to the standard BK14 map pixelization, and mul-
tiplying by the standard inverse variance apodization mask.
Here n̂ denotes position in the BK14 sky patch. Finally, the
Fourier modes of the input lensing potential in the BK14 sky
patch, φin

L , are calculated from

φin
L = −

2
L2

∫
d2n̂ e−in̂·Lκin(n̂) . (2)

Here and after, we use L for the multipoles of the lensing po-
tential and ` for the E and B modes.

2.2. Planck
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We use the publicly available Planck 2015 lensing-mass
field (Planck Collaboration 2015). This lensing-mass field is
estimated by optimally combining all of the quadratic estima-
tors constructed from the SMICA temperature and E/B maps.
The most effective of the estimators is T T , but the T E and
EE estimators also improve the total significance of the detec-
tion. We also use the Planck 2013 lensing potential (Planck
Collaboration 2014a), which has larger statistical uncertainty,
but, since it is reconstructed using the temperature maps only,
is a useful cross check.

The publicly released Planck 2015 lensing package con-
tains multipole coefficients for the observed lensing-mass
field as well as 100 simulated realizations of input and recon-
structed lensing-mass fields. The Planck 2013 release instead
provides multipole coefficients of the unnormalized lensing
potential, so we multiply by the provided response function
(see Sec. 2 of Planck Collaboration 2014a), and make a full
sky lensing-mass field. The full-sky Planck lensing-mass
maps, with point sources masked, are interpolated to the stan-
dard BK14 map pixelization. We find that the noise contribu-
tion to the Planck lensing-mass map in this region is approxi-
mately ∼ 20% smaller than that of the full-sky average due to
the scan strategy of the Planck mission.

As discussed in Sec. 3, the Planck simulations are used
to evaluate the expected correlation between the BK14 and
Planck lensing signals and its statistical uncertainty. In or-
der to correlate the reconstructed lensing signal between the
BK14 and Planck simulations, we replace each Planck lens-
ing realization with those of the BK14 simulations using (e.g.,
Giannantonio et al. 2015; Kirk et al. 2015)

κ̂sim,P′(n̂) = κ̂sim,P(n̂) −κin,P(n̂) +κin(n̂) , (3)

where κin,P and κ̂sim,P are the input and reconstructed lensing-
mass maps of the Planck simulations, and κin is the input
lensing-mass map of the BK14 realizations. We checked that
the correlation between κ̂sim,P′ and κin,P is consistent with
zero. We then multiply κ̂sim,P′ by the standard BK14 inverse
variance apodization mask, and Fourier transform according
to Eq. (2).

Hereafter, unless otherwise stated, the Planck data refers to
the Planck 2015 release products.

3. LENSING RECONSTRUCTION METHOD
It is possible to reconstruct the lensing potential from ob-

served CMB anisotropies because lensing introduces off-
diagonal mode-mode covariance within, and between, the T -
E- and B- mode sets. An estimator of the lensing potential is
then given by a quadratic form in the CMB anisotropies. The
power spectrum of the lensing potential CφφL (lensing potential
power spectrum) can be studied by taking the power spectrum
of the lensing potential estimator.

In this section we describe the method used to reconstruct
the lensing potential from the BK14 polarization map, to cal-
culate the lensing potential power spectrum, and to evaluate
the amplitudes of the resulting power spectra for the data sets
described in Sec. 2.

3.1. Lensed CMB anisotropies
The effect of lensing on the Q and U maps is given by (e.g.,

Lewis & Challinor 2006; Hanson et al. 2010)

[Q̃± iŨ](n̂) = [Q± iU](n̂ + d(n̂))
' [Q± iU](n̂) + d(n̂) ·∇[Q± iU](n̂) , (4)

where n̂ is the observed direction, and Q(Q̃) and U(Ũ) are the
unlensed (lensed) anisotropies. The two-dimensional vector
d(n̂) is the deflection angle, with two degrees of freedom. In
terms of parity symmetry, these two components are given as
the lensing potential (even parity), and curl-mode deflection
(odd parity) (Hirata & Seljak 2003b):

∇2φ(n̂) = ∇ ·d(n̂) , (5)

(?∇)2
ϖ(n̂) = (?∇) ·d(n̂) , (6)

where ∇ is the covariant derivative on the sphere, and ? de-
notes the operation that rotates the angle of a two-dimensional
vector counterclockwise by 90 degrees.

The E and B modes are defined as

E`± iB` = −

∫
d2n̂ e−in̂·` [Q± iU](n̂)e∓2iϕ` , (7)

where ϕ` is the angle of ` measured from the Stokes Q axis.
With the lensing potential and curl mode given in Eqs. (5)
and (6), the lensed E and B modes are given by (e.g., Hu &
Okamoto 2002; Cooray et al. 2005)

Ẽ` = E` +

∫
d2L

(2π)2 [L · (`− L)φL + (?L) · (`− L)ϖL]

×E`−L cos2(ϕ`−L −ϕ`) (8)

B̃` =
∫

d2L
(2π)2 [L · (`− L)φL + (?L) · (`− L)ϖL]

×E`−L sin2(ϕ`−L −ϕ`) . (9)

Because the contribution of B-modes from gravitational
waves is tightly constrained in the BK-VI paper, and rapidly
decreases in amplitude at ` > 100, we ignore their possible
contribution here.

Up to first order in φ and ϖ, the lensing-induced off-
diagonal elements of the covariance are (e.g., Hu & Okamoto
2002; Cooray et al. 2005)

〈ẼLB̃`−L〉CMB = wφ`,Lφ` + wϖ

`,Lϖ` , (10)

where 〈· · ·〉CMB denotes the ensemble average over unlensed
E-modes, with a fixed realization of the lensing potential and
curl modes. The explicit forms of the weight functions for the
lensing potential and curl mode are, respectively, given in Hu
& Okamoto (2002) and Namikawa et al. (2012) as

wφL,` = −` · (L −`)C̃EE
` sin2(ϕ` −ϕL−`) , (11)

wϖ

L,` = −(?`) · (L −`)C̃EE
` sin2(ϕ` −ϕL−`) , (12)

where C̃EE
` is the lensed E-mode power spectrum to take into

account the higher order biases (Hanson et al. 2011; Lewis
et al. 2011). Eq. (10) means that the lensing signals, φ and
ϖ, can be estimated through off-diagonal elements of the co-
variance matrix of the CMB Fourier modes (see Sec. 3.3 for
details). Note that we do not include ϖ in our simulations
because its contribution is negligible in the standard ΛCDM
model (e.g. Saga et al. 2015; Pratten & Lewis 2016). We use
the reconstructed curl mode as a null test in Sec. 5.

3.2. Input E and B-modes for reconstruction
In BICEP / Keck analysis, we use real space matrix opera-

tions to process the data into purified E- and B-maps, which
are then transformed to multipole space. The sky signal is
filtered by the observing strategy, and the analysis process,
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including the removal of potential systematic errors (“depro-
jection"). These effects are entirely captured in an observation
matrix, R (see Tolan 2014 and BK-VII). The observed maps,
Qobs and Uobs, are then given by(

Qobs

Uobs

)
= R

(
Q′

U ′

)
+

(
Qnoise

Unoise

)
. (13)

Here Q′ and U ′ are an input signal realization—in this case
lensed-ΛCDM+dust—and the second term is a noise realiza-
tion. The observed map suffers from some mixing of E- and
B-modes induced by e.g. the survey boundary and the filter-
ing. To mitigate the mixing between E- and B-modes, the
observed E- and B-mode maps are multiplied by purification
matrices ΠE and ΠB respectively to recover pure E- and B-
modes. This operation is simply expressed as (Tolan 2014)(

Q̂E

ÛE

)
= ΠE

(
Qobs

Uobs

)
, (14)(

Q̂B

ÛB

)
= ΠB

(
Qobs

Uobs

)
, (15)

where Q̂E (Q̂B) and ÛE (ÛB) are purified Stokes Q and U maps
containing as much of the original E (B) modes as possible.
The purified Q and U maps are further multiplied by the stan-
dard inverse variance apodization mask to downweight noisy
pixels around the survey boundary. The Fourier transforms
of the purified, apodized Q/U maps are converted to purified
E- and B-modes, Ê and B̂, and these are used as inputs to the
lensing reconstruction analysis.

The input CMB Fourier modes require proper weighting to
optimize the lensing reconstruction. In the ideal case (i.e.,
white noise, full-sky observation with no filtering), the lensing
reconstruction is optimized by a simple diagonal weighting
of E` and B`. Denoting X = E or B, the optimally-weighted
Fourier modes are given by (Hu & Okamoto 2002)

X` =
X̂`

ĈXX
`

. (16)

Here Ê and B̂ are, again, the purified E and B-modes ob-
tained by the Fourier transform of the purified Q/U maps in
Eqs. (14) and (15), and ĈXX

` is an isotropic power spectrum
including noise and foregrounds. In more realistic situations,
using diagonal filtering degrades the sensitivity to the lensing
potential (Hirata & Seljak 2003b; Smith et al. 2007; Hanson
& Lewis 2009; Planck Collaboration 2014a). To take into
account the anisotropic filtering and noise we multiply two-
dimensional functions in Fourier space to the purified E- and
B-modes

X` '
f X
` X̂`

ĈXX
`

, (17)

where ĈXX
` is the mean of the two dimensional E-/B-mode

spectra of the lensed-ΛCDM+dust+noise simulations, and the
factor f X

` describes the beam and filtering suppression of the
E- and B-modes. We calculate these suppression factors by
comparing the mean input and output power spectra of the
lensed-ΛCDM signal-only simulations, CXX,in

` and CXX,out
` , as

( f X
` )2 = CXX,out

` /CXX,in
` .

In addition to the above filtering function, we filter in mul-
tipole space to select E and B-modes with the baseline ranges

FIG. 1.— Raw temperature, E- and B-mode spectra (dashed lines) mea-
sured from BK14, compared with those from lensed-ΛCDM+dust+noise sim-
ulations. (Both have been noise debiased but no beam or filtering correction
has been applied.) For the simulations the solid line shows the mean value
and the shaded region the ±1σ range. The temperature sky input to the sim-
ulations is constrained to be the actual sky pattern as observed by Planck so
there is no sample variance in the simulated T T spectra.

being 30 ≤ ` ≤ 700 and 150 ≤ ` ≤ 700 respectively. The
minimum multipole of the E-modes is set by the timestream
filtering—multipoles smaller than <∼ 30 are so heavily attenu-
ated as to be unrecoverable. The minimum multipole of the
B-modes is chosen so that the dust foreground is subdominant
compared to the lensing B-modes. The nominal maximum
multipole is set by the resolution of the standard BK14 maps
which have 0.25◦ pixel spacing. We will see later (in Sec. 5)
that restricting to ` < 600 makes very little difference to the
final result.

We have not previously published any results for ` > 350
because the beam correction becomes very large, and hence in
principle so does the uncertainty on that correction. As shown
in Fig. 1, we find that the mean of the signal simulations actu-
ally remains very close to the observed bandpower values for
multipoles all the way up to the pixel scale. However there
is a small positive deviation at higher ` which reaches 20%
at ` = 600 implying that we have slightly under-estimated our
beam function in this range. This is very clear in the T T spec-
trum because the input sky for the simulations is constrained
to the actual sky pattern as observed by Planck (as described
in Sec. V.A.1 of BK-I), and hence there is no sample vari-
ance in this comparison. Based on this observation we apply
a small additional beam correction for the baseline lensing
analysis presented in this paper. In practice, we multiply the
inverse square root of the `-dependent correction to the ob-
served (and also simulated noise) E-/B-modes, and then com-
pute the weighted Fourier modes of Eq. (17). As shown in
Sec. 5, this correction only leads to small changes in the final
results.

3.3. Estimating the lensing potential
We now describe the estimator for the lensing potential.

Eq. (10) motivates the following quadratic estimator for the
lensing potential (Hu 2001; Hu & Okamoto 2002)

φ̂L = AφL (φL − 〈φL〉) , (18)



Measurement of gravitational lensing from large-scale B-mode polarization 5

where 〈· · ·〉 is the ensemble average over realizations of puri-
fied E and B modes, and φL is the unnormalized EB estimator

φL =
∫

d2`

(2π)2 wφL,`E`BL−` . (19)

Here wφL,` is the weight function given in Eq. (11). The sec-
ond term, 〈φL〉, is a correction for the mean-field bias, and
is estimated from the simulations. The quantities, E and B,
are the weighted Fourier modes given in Eq. (17), and AL is a
normalization that makes the estimator unbiased.

Similarly, the curl-mode estimator is constructed by replac-
ing the weight function with wϖ

L,`, which is given in Eq. (12).
Up to first order in φ and ϖ, the estimator of the lensing po-
tential is unbiased even in the presence of the curl-mode, and
vice versa (Namikawa et al. 2012).

Unlike the lensing reconstruction from the temperature and
E-mode, the mean-field bias due to the presence of the sky
cut is typically small for this EB estimator with an appropri-
ate treatment for E/B mixing (Namikawa & Takahashi 2013;
Pearson et al. 2014). Other non-lensing anisotropies could
generate a mean-field component (e.g. Hanson et al. 2009),
but our simulations show that the mean-field bias is smaller
than the simulation noise which corresponds to AφL divided by
the number of realizations (see e.g. Namikawa et al. 2013).
We also note again that our simulated maps are generated with
the temperature sky constrained to that observed by Planck.
However, the use of these constrained realizations results in
a contribution in the mean-field bias which is consistent with
the simulation noise, and therefore has a negligible effect on
our results.

In the ideal case, the normalization of the estimator is given
analytically by

A
φ
L =

{∫
d2`

(2π)2

|wφL,`|2

ĈEE
` ĈBB
|L−`|

}−1

. (20)

In BICEP / Keck, different CMB multipoles are mixed by
the survey boundary and anisotropic filtering. Therefore, we
calculate the normalization factor using simulations, as other
experiments have done (POLARBEAR Collaboration 2014b;
van Engelen et al. 2015; Story et al. 2015). In practice, we
use the following additional normalization:

AφL =
〈|φin

L |2〉
〈φin

L (φ̂sim
L )∗〉

A
φ
L , (21)

where φin
L and φ̂sim

L are the input and reconstructed lensing
potential from simulation.

3.4. Estimating the lensing potential power spectrum
We estimate the lensing potential power spectrum using the

reconstructed lensing potential from BK14 data alone, and
also by cross-correlating the reconstructed lensing potential
from BK14 with that from Planck.

The power spectrum of the lensing potential is estimated
by squaring φ̂L. The lensing potential estimator is quadratic
in the CMB, and its power spectrum is the four-point corre-
lation of the CMB anisotropies. This power spectrum can be
decomposed into the disconnected and connected parts

〈|φ̂L|2〉 = 〈|φ̂L|2〉C + 〈|φ̂L|2〉D . (22)

The disconnected part |φ̂L|2D comes from the Gaussian part of
the four-point correlation, while the connected part contains
the non-Gaussian contributions from lensing. The connected
part gives the lensing power spectrum, CφφL , with a correction
from the higher-order bias (Kesden et al. 2003) which is neg-
ligible in our analysis. On the other hand, the disconnected
part of the four-point correlation remains even in the absence
of lensing, and is given by

〈|φ̂|2L〉D = (AφL )2
∫

d2`

(2π)2

∫
d2`′

(2π)2 wφL,`wφ
−L,`′

× [CEE
`,`′C

BB
L−`,−L−`′ + CEB

`,L−`′C
EB
`′,−L−`] , (23)

where AφL is the angle average of the estimator normalization
in Eq. (21), and CXY

`,`′ ≡ 〈X`Y `′〉 is the covariance matrix. The
disconnected part of the four-point correlation is produced by
both the CMB fluctuations and instrumental noise. We de-
scribe the treatment of the disconnected bias for auto- and
cross- lensing power in the next two sections.

3.4.1. Auto-spectrum of BK14

For the auto-spectrum of the BK14 lensing potential, the
disconnected bias is a significant contribution that must be
subtracted. The de-biased lensing potential power spectrum
is given by

ĈφφL ≡ |φ̂L|2 − N̂φ
L , (24)

where N̂φ
L is the disconnected bias, and a normalization fac-

tor (the correction for the apodization window) is omitted for
clarity. In principle, this Gaussian bias can be estimated from
the explicit formula in Eq. (23) or dedicated Gaussian simu-
lations. However, these approaches rely on an accurate model
of CXY

`,`′ . Using an inaccurate covariance matrix, CXY
+ ΣXY ,

Eq. (23) results in an error O(ΣXY ).
In our analysis, the disconnected bias is estimated with the

realization-dependent method developed by Namikawa et al.
(2013) for temperature and extended by Namikawa & Taka-
hashi (2013) to include polarization. In this method, part of
the covariance is replaced with the real data, and is given by

N̂φ
L = 〈|φ̂E1,B̂

L + φ̂Ê,B1
L |2〉1 −

1
2
〈|φ̂E1,B2

L + φ̂E2,B1
L |2〉1,2 . (25)

Here φ̂XY
L is the lensing estimator computed from the

quadratic combination of X and Y . Ê and B̂ are the purified
E- and B-modes from real data, while E1 (E2) and B1 (B2) are
generated from the first (second) set of simulations. The en-
semble average 〈· · ·〉i is taken over the i’th set of simulations.
Our simulation set is divided into two subsets multiple times
to estimate the second term.

Note that this form of disconnected bias is obtained nat-
urally from the optimal estimator for the lensing-induced
trispectrum using the Edgeworth expansion of the CMB likeli-
hood (Appendix A). Realization-dependent methods have the
benefit of suppressing spurious off-diagonal elements in the
covariance matrix. Furthermore, the disconnected bias esti-
mated using this method is less sensitive to the accuracy of
the covariance, i.e., it contains contributions from O(Σ2) in-
stead of O(Σ).

The curl-mode power spectrum is also estimated in the
same way but with the quadratic estimator of the curl-mode
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ϖ̂L, while the disconnected bias becomes very small in esti-
mating the cross-spectrum between the lensing potential and
curl mode.

3.4.2. Cross-spectrum with Planck

In cross-correlation studies involving Planck we expect the
disconnected bias in cross-spectra to be completely negligi-
ble. The reasons are as follows.

In cross-spectrum analysis, the instrumental noise of the
two experiments is uncorrelated. Disconnected bias can only
arise from sky signal. The Planck 2015 lensing potential is es-
timated from all of the quadratic estimators, including those
involving polarization. Therefore, even in the absence of lens-
ing, two of these quadratic estimators (the EB and T B estima-
tors) are correlated with the EB estimator computed from the
BK14 data through the common sky signal.

In practice, this disconnected bias is small. The correlation
of B-modes between these two experiments does not contain
noise contributions. The four-point correlation, EBEB and
T BEB, are then produced by the CMB B-mode signals but not
by the instrumental noise in B-modes. The uncertainties in the
Planck lensing potential are dominated by instrumental noise,
which is much larger than any possible B-modes on the sky
that can lead to a disconnected bias. To see this more quanti-
tatively, we evaluate the disconnected bias expected from the
ΛCDM B-mode power spectrum and appropriate noise levels,
using the analytic formula based on Hu & Okamoto (2002).
We find that the bias is indeed negligible compared to the re-
construction noise (see Fig. 5).

In addition, since the Planck 2013 lensing potential is
reconstructed from the temperature maps alone, the cross-
spectrum between BK14 and Planck 2013 is free of any dis-
connected bias. In the next section, we show that the cross-
spectrum results with Planck 2013 and Planck 2015 are con-
sistent, again confirming that the disconnected bias in the
Planck 2015 - BK14 cross-spectrum is not significant.

3.4.3. Binned power spectrum and its amplitude

In our analysis the multipoles between 30 and 700 are di-
vided into 10 bins and the bandpowers of the lensing potential
power spectrum Cb are given at these multipole bins. We es-
timate the amplitude of the lensing potential power spectrum
as a weighted mean over multipole bins

AφφL =
∑

b abAb∑
b ab

, (26)

where Ab is the relative amplitude of the power spectrum com-
pared with a fiducial power spectrum Cf

b, i.e., Ab≡Cb/Cf
b, and

the weights, ab, are taken from the bandpower covariance ac-
cording to

ab =
∑

b′
Cf

bCov−1
bb′C

f
b′ . (27)

The fiducial bandpower values and their covariances are eval-
uated from the simulations. Consequently, AφφL defined as
above is an amplitude relative to the Planck ΛCDM predic-
tion.

4. RESULTS
Fig. 2 shows the cross-spectrum of the BK14 and Planck

lensing-mass fields, and the auto-spectrum of the BK14 data
alone. Table 1 shows the bandpowers and 1σ statistical errors

FIG. 2.— The lensing-mass power spectrum, Cκκ
L = L4Cφφ

L /4, estimated
from the cross-spectrum between BK14 and Planck 2015 data (red), and the
auto-spectrum of BK14 data (blue). The black solid line shows the theoretical
spectrum assuming the ΛCDM cosmology. The BK14 auto-spectrum is offset
in L for clarity.

TABLE 1
THE BANDPOWERS OF THE LENSING-MASS POWER SPECTRUM AND 1σ
STATISTICAL ERRORS AT THE CENTER OF EACH BIN, Lc , AS SHOWN IN

FIG. 2. THE VALUES OF THE BANDPOWERS AND ERRORS ARE
MULTIPLIED BY 107 .

Lc BK14×Planck BK14

63.5 2.33±0.80 2.70±1.53

130.5 0.86±0.47 1.84±0.89

197.5 1.94±0.38 1.05±0.72

264.5 1.11±0.40 0.78±0.67

331.5 0.87±0.40 0.55±0.99

398.5 −0.18±0.43 0.90±1.51

465.5 0.65±0.68 0.28±2.23

532.5 1.03±0.72 4.80±2.85

599.5 0.25±0.71 −0.47±3.66

666.5 1.03±0.98 4.97±6.56

of the lensing power spectrum. Fig. 3 compares the ampli-
tude of the lensing cross-spectrum between BK14 and Planck
to lensed-ΛCDM+dust+noise simulations, while the line and
blue histogram in Fig. 4 do the same thing for the BK14 auto-
spectrum. The observed amplitude estimated from the cross-
spectrum is AφφL = 1.13± 0.20 and the amplitude estimated
from the auto-spectrum is AφφL = 1.15±0.36. In each case the
uncertainty is taken from the standard deviation of the lensed-
ΛCDM+dust+noise simulations. We find that these values are
mutually consistent, and are also consistent with the Planck
ΛCDM expectation within the 1σ statistical uncertainty.

To evaluate the rejection significance of the no-lensing hy-
pothesis in Fig. 4 we also show the results of a special set
of unlensed-ΛCDM+dust+noise simulations where there is no
sample variance on the lensing component. Assuming Gaus-
sian statistics we find that the no-lensing hypothesis is re-
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FIG. 3.— The amplitudes of the cross-spectra of BK14 and Planck 2015
lensing potential maps reconstructed from lensed-ΛCDM+dust+noise simu-
lations (histogram), and the observed value (vertical line).

FIG. 4.— The amplitudes of the auto-spectra of BK14 lensing poten-
tial maps reconstructed from lensed-ΛCDM+dust+noise simulations (blue
histogram), and from unlensed-ΛCDM+dust+noise simulations (green his-
togram). The observed value is indicated by the vertical line.

jected at 5.8σ which is the highest significance achieved to
date using EB lensing estimator.

The B-mode power spectrum can also be used to constrain
the amplitude of the lensing effect and in BKP we quoted the
value ABB

L = 1.13± 0.18 when marginalizing over r and the
dust foreground amplitude. Updating to the BK14 spectrum
and setting r = 0 we find ABB

L = 1.20±0.17. The agreement of
this result with that from the lensing reconstruction described
above verifies that the B-mode observed by the BICEP / Keck
experiments at intermediate angular scales is dominated by
gravitational lensing.

To show that the disconnected bias in the cross-spectrum
is small, an analytic estimate multiplied by 10× for clarity is
compared in Fig. 5 to the BK14/Planck 2015 cross-spectrum.
The inclusion of this bias changes the value of the lensing
amplitude by less than 1%. In addition, we show an al-

FIG. 5.— The lensing-mass power spectrum, Cκκ
L = L4Cφφ

L /4, estimated
from the cross-spectrum between BK14 and Planck 2015 data compared with
that between BK14 and Planck 2013 data. We also show the theoretical ex-
pectation of the disconnected bias in the cross-spectrum between the BK14
and Planck 2015 data multiplied by 10. The cross-spectrum between BK14
and Planck 2013 is offset in L for clarity.

ternate cross-spectrum taken between BK14 and the Planck
2013 data. As mentioned earlier, the BK14 and Planck 2013
cross-spectrum is free of any disconnected bias. Therefore,
the similarity of these two spectra also suggests that the dis-
connected bias in the BK14 and Planck 2015 cross-spectrum
is small.

5. CONSISTENCY CHECKS AND NULL TESTS
In this section, we discuss systematics in the reconstructed

lensing potential. B-modes in the EB estimator for φ are an
order of magnitude fainter than the E-modes, and need to
be tested for non-negligible contributions from systematics or
leakage from E-modes. The matrix-purified BK14 E- and B-
modes up to ` ' 350 used in this paper have already passed
the long list of systematics and null tests described in BK-I,
BK-III and BK-VI. In the baseline results presented above we
include additional modes up to `max = 700, and we see below
that the modes in the range 350 < ` < 600 carry a significant
portion of the total available statistical weight. In this sec-
tion we therefore discuss additional tests that demonstrate the
robustness of the reconstructed φ map and the lensing spec-
trum. Furthermore, note that the cross-spectrum of BK14 and
Planck, which produces the most stringent constraint on AφφL
in this paper, is immune to additive bias from all known sys-
tematics, and is highly insensitive to the dust foreground.

5.1. Null tests
In the following we present results of i) a curl-null test, and

ii) jackknife tests, which are expected to be consistent with
zero unless there are systematics remaining in the data.

To test this quantitatively, we use the probability to exceed
(PTE) the value of χ2 obtained from observations, under the
assumption that the fiducial power spectrum is zero in all mul-
tipole bins. The PTE is evaluated from the simulation set with
the same method as in the BK-I paper. Table 2 summarizes
the PTE values obtained. Fig. 7 shows the distribution of the
jackknife χ2 PTE.

5.1.1. Curl null test
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FIG. 6.— Curl null test: The cross-spectrum of the curl-mode reconstructed
from BK14 data and the Planck lensing-mass field (red), the auto-spectrum
of the BK14 curl-mode (green), and the cross-spectrum of the BK14 lensing-
mass field and curl-mode (blue). For comparison, we also show the theoret-
ical lensing-mass power spectrum (black). The power spectra are offset in L
for clarity.

FIG. 7.— Distribution of the jackknife χ2 PTE values.

The curl-mode is mathematically similar to lensing but can-
not be generated by scalar perturbations at linear order. As
described in Sec. 3, the curl-mode is estimated by replacing
the weight function with wϖ

`,L, and the reconstruction noise
level in the curl-mode is similar to that in the lensing poten-
tial. It is therefore commonly used as an important check for
any residual systematics in lensing reconstruction analysis.

Fig. 6 shows the cross-spectrum between the BK14 curl-
mode and the Planck lensing potential, the BK14 curl-mode
auto-spectrum, and the cross-spectrum between the BK14
lensing potential and curl-mode. For illustrative purposes,
similar to the relationship between κ and φ, we define ψL =
−L2ϖL/2, and show the power spectrum of ψ instead of ϖ.
We compute the corresponding PTEs for these power spec-
tra (see Table 2), finding no evidence of systematics in these
curl-null tests.

5.1.2. Jackknife tests

TABLE 2
PROBABILITY TO EXCEED A χ2 STATISTIC FOR THE CURL NULL TEST

AND THE JACKKNIFE TESTS.

BK14 × Planck BK14

φ×φ ϖ×φ φ×φ ϖ×φ ϖ×ϖ

Curl — 0.77 — 0.92 0.34

Deck 0.51 0.48 0.34 0.06 0.12

Scan Dir 0.37 0.43 0.87 0.15 0.57

Tag Split 0.30 0.85 0.36 0.86 0.73

Tile 0.30 0.16 0.20 0.05 0.54

Phase 0.69 0.68 0.92 0.76 0.25

Mux Col 0.18 0.22 0.46 0.38 0.35

Alt Deck 0.18 0.72 0.39 0.16 0.16

Mux Row 0.49 0.80 0.60 0.58 0.09

Tile/Deck 0.20 0.36 0.83 0.84 0.88

Focal Plane inner/outer 0.09 0.12 0.41 0.35 0.28

Tile top/bottom 0.84 0.51 0.51 0.77 0.28

Tile inner/outer 0.31 0.05 0.91 0.64 0.78

Moon 0.02 0.84 0.18 0.53 0.83

A/B offset best/worst 0.93 1.00 0.57 0.24 0.59

As part of our standard data reduction we form multiple
pairs of jackknife maps which split the data into approxi-
mately equal halves, and which should contain (nearly) iden-
tical sky signal, but which might be expected to contain differ-
ent systematic contamination. We then difference these pairs
of maps and search for signals which are inconsistent with
the noise expectation—see BK-I, BK-III and BK-VI for fur-
ther details. Here we take these jackknife maps, perform the
lensing reconstruction on them, and as usual look for signals
which are inconsistent with null.

Table 2 gives the PTE values. We find no evidence of spu-
rious signals in the lensing potential.

5.2. Consistency checks
As consistency checks of the BK14 lensing potential, we

calculate the lensing power spectrum while varying the fol-
lowing analysis choices from their baseline values, and give
the resulting alternate values of AφφL in Table 3.

• Maximum multipole: `max
In our baseline analysis, the nominal maximum multi-
pole of the E- and B-modes used for the lensing recon-
struction in Eq. (19) is `max = 700. Reducing the value
of `max to 650 and 600 we see small changes in the con-
straint on AφφL . However, if we reduce `max to 350 to
match the range probed by jackknife tests in BK-VI,
the values of AφφL shift up, and the statistical errors in-
crease. To quantify how likely the up-shifts are to occur
by chance we compute the corresponding shifts when
making the same change in the simulations, and find a
positive shift greater than the observed one 10% of the
time for the cross-spectrum and 15% of the time for the
auto-spectrum.
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TABLE 3
THE AMPLITUDE OF THE LENSING POTENTIAL POWER SPECTRUM Aφφ

L
ESTIMATED WITH DIFFERENT ANALYSIS CHOICES.

BK14 × Planck BK14

Baseline 1.13±0.20 1.15±0.36

`max = 650 1.07±0.20 1.21±0.36

`max = 600 1.14±0.20 1.26±0.36

`max = 350 1.41±0.30 1.97±0.84

`min = 150 1.13±0.20 1.14±0.36

`min = 200 1.07±0.20 0.95±0.40

`B
max = 350 1.24±0.22 1.33±0.45

Diff. beam ellipticity 1.11±0.20 1.14±0.36

Apodization 1.07±0.22 0.99±0.39

• Minimum multipole: `min
For the baseline analysis the minimum multipole of the
E-modes is set to 30 in Eq. (19) (due to the timestream
filtering), while the minimum multipole of the B-modes
is set to 150 (to ensure that the contributions of the dust
foreground is small compared to the noise and lens-
ing signal). Raising `min for the E-modes to 150 we
see very small changes to the AφφL results, while raising
both to 200 we see modest changes.

• Maximum multipole of the B-mode polarization: `B
max

As mentioned above, B-modes are used up to a nom-
inal `max = 700 in our baseline analysis. The B-mode
polarization at `& 350 is not as well tested against var-
ious systematics. However, unlike E-modes, B-modes
at smaller scales ` > 350 do not contribute significantly
in estimating AφφL . We repeat the analysis removing B-
modes at ` > 350, and find only a moderate change in
the results and their statistical uncertainties.

• Differential beam ellipticity:
In our pair-differencing analysis differences in the
beam shapes between the A and B detectors of each
pair generates temperature-to-polarization leakage. We
filter out the leading order modes of this leakage us-
ing a technique which we call deprojection (see BK-III
for details). For differential beam ellipticity, however,
we do not use deprojection because it introduces a bias
in T E. Instead, in our standard analysis, we subtract
the expected temperature-to-polarization leakage based
on the measured differential beam ellipticity. To test
whether the lensing results are sensitive to differential
beam ellipticity, we repeat the lensing reconstruction
from maps without this subtraction and find only a very
small change in the results.

• Apodization:
To mitigate the noisy regions around the survey bound-
ary, after obtaining the purified E and B modes, our
standard analysis applies an inverse variance apodiza-
tion window. We also perform the analysis using the
sine apodization defined in Namikawa & Takahashi
(2013) and find only a small change in the results.

FIG. 8.— The difference of the lensing power spectrum when subtracting
from the BK14 Q/U maps a nominal undeprojected residual as derived from
per-channel beam maps (red: BK14×Planck, blue:BK14), divided by the 1σ
statistical uncertainty.

5.3. Effects of beam systematics
Beam shape mismatch of each detector pair leads to a leak-

age from the bright temperature anisotropies into polarization
(e.g. Hu et al. 2003; Miller et al. 2008; Su et al. 2009). In
our analysis, this leakage is mitigated by deprojecting (or for
ellipticity, subtracting) several modes corresponding approxi-
mately to the difference of two elliptical Gaussians (see BK-
III for details). To assess the level of leakage remaining after
deprojection, we use calibration data consisting of high preci-
sion, per-detector beam maps described in BK-IV. In special
simulations, we explicitly convolve these beam maps onto an
input T sky and process the resulting simulated timestream in
the normal manner, including deprojection, to produce maps
of the “undeprojected residual.” In BK-V, this residual was
treated as an upper limit to possible residual systematics.
Here, as an additional check, we try subtracting this nominal
residual from the maps and re-extracting the lensing potential.
Fig. 8 shows the differences in the resulting spectrum in units
of the bandpower uncertainties, finding that the difference is
small compared to the 1σ statistical uncertainty.

In addition to temperature-to-polarization leakage caused
by beam mismatch, beam asymmetry as well as detector-to-
detector beam shape variation can produce a spurious lensing
signal if non-uniform map coverage leads to an effective beam
that is spatially dependent (e.g. Planck Collaboration 2014a).
The beam map simulation procedure described above does not
probe this effect in the EB estimator because the input maps
do not contain polarization. However, we note that elliptic-
ity is the dominant component of beam asymmetry and beam
shape variation in BICEP2 and Keck (see BK-IV, Table 2).
We also note that beam ellipticity is a strong function of ra-
dial position in the focal plane (see BK-IV, Figures 12-13), so
that the focal plane inner/outer jackknife listed in Table 2 is a
good proxy for a beam ellipticity jackknife. The fact that this
null test passes limits the contribution from beam asymmetry
and beam variation to less than the uncertainty.

We finally test the effects of the beam correction to
E-/B-modes based on the observed level of temperature
anisotropies at high ` (Sec. 3). We repeat the same lensing
reconstruction without the beam correction, and estimate the
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lensing amplitude. We find that AφφL increases while the statis-
tical error is unchanged compared to the baseline results, and
the differences of AφφL are ∆AφφL = 0.05 for BK14× Planck
and ∆AφφL = 0.15 for BK14. These changes are within the 1σ
statistical error.

5.4. Effects of absolute calibration error
Although the lensing potential is in principle a dimension-

less quantity, the measured lensing potential depends on the
overall amplitude of the polarization map. The calibration
uncertainties in E- and B-modes therefore propagate into an
error in the amplitude of the lensing potential spectrum (e.g.
POLARBEAR Collaboration 2014b). The absolute calibration
uncertainty, δ, is 1.3% in the BICEP2/Keck polarization maps
(BK-I). Given this uncertainty on amplitudes of the E- and
B-modes, the resultant systematic uncertainties in the lensing
spectral amplitudes are ∆AφφL = 4δ = 0.052 for the BK14 auto-
spectrum and ∆AφφL = 2δ = 0.026 for the cross-spectrum with
Planck, significantly smaller than the statistical uncertainties.
Since the estimate of the curl-mode power spectrum is also
affected in the same manner, non-detection of the curl mode
also indicates that the effect of these uncertainties is negligi-
ble compared to the statistical errors.

6. CONCLUSIONS
In this paper we have reconstructed the lensing potential

from the BK14 polarization data, and taken its cross-spectrum
with the public Planck lensing potential, as well as the auto-
spectrum of the BK14 alone. The amplitude of the cross-
spectrum with Planck is constrained to be AφφL = 1.13±0.20,
while the auto-spectrum has amplitude AφφL = 1.15± 0.36.
By comparing the auto-spectrum to special unlensed simula-
tions we reject the no-lensing hypothesis at 5.8σ significance,
which is the highest significance achieved to date using EB
lensing estimator. We have performed several consistency
checks and null tests, and find no evidence for spurious sig-
nals in our reconstructed map and spectra.

This paper demonstrates for the first time lensing recon-
struction using B-modes in the intermediate multipole range.
The results verify that the B-mode power observed by the BI-
CEP / Keck experiments on these intermediate angular scales
is dominated by gravitational lensing. The good agreement
between these results and ABB

L = 1.20± 0.17 from the BK14
B-mode spectrum starts to place constraints on any alterna-
tive sources of B-modes at these angular scales, such as cos-
mic strings (e.g., Seljak & Slosar 2006; Pogosian & Wyman
2008), primordial magnetic fields (e.g., Shaw & Lewis 2010;
Bonvin et al. 2014) and cosmic birefringence induced by in-
teraction between a massless pseudo-scalar field and photons
(e.g., Pospelov et al. 2009; Lee et al. 2015; POLARBEAR Col-
laboration 2015). The calculation of formal quantitative con-
straints is rather involved and depends on the assumed statis-

tical properties of the alternative B-mode sources. We leave
that to future work.

Looking ahead, the reconstructed lensing potential can be
used to cross-correlate with other astronomical tracers. How-
ever, the reconstruction noise of the BICEP / Keck data will
limit its usefulness as a cosmological probe in the era of DES
(The Dark Energy Survey Collaboration 2016), DESI (The
DESI Collaboration 2013), and LSST (LSST Dark Energy
Science Collaboration 2012). As the sensitivity of BICEP
/ Keck improves, our main objective is to use a well-measured
deflection map φ to form a degree-scale B-mode lensing tem-
plate, which can then be used to improve our final uncertain-
ties on r (i.e., “delensing”). Multiple studies have shown that
high resolution CMB polarization data (e.g., Seljak & Hirata
2004; Smith et al. 2012), the CIB (Simard et al. 2015; Sher-
win & Schmittfull 2015), galaxy clustering (Namikawa et al.
2016), or weak lensing (Sigurdson & Cooray 2005; Marian &
Bernstein 2007) can all improve measurements of φ. In addi-
tion to the lensing potential presented here there already exists
in the BICEP / Keck field data from the Planck CIB measure-
ments (Planck Collaboration 2014b,c), as well as high reso-
lution CMB maps from SPTPOL. We are exploring the for-
mation of a lensing template using an optimal combination
of these and anticipate using this in our likelihood analysis in
the near future. This template will considerably improve as
SPT3G(Benson et al. 2014) comes online.
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APPENDIX

A. DISCONNECTED BIAS ESTIMATION

The realization-dependent method for the disconnected bias given in Eq. (A6) comes naturally from deriving the optimal
estimator for the lensing-induced trispectrum. Here we briefly summarize derivation of Eq. (A6) (see appendix A of Namikawa
& Takahashi 2013 for a thorough derivation).
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The lensing-induced trispectrum which is relevant to our analysis is given by (see e.g. Lewis & Challinor 2006)

T`1`2`3`4 ≡ 〈E`1 B`2 E`3 B`4〉C ' δD
`1+`2+`3+`4

[wφ`1+`2,`1
wφ`3+`4,`3

Cφφ|`1+`2| + wφ`1+`4,`1
wφ`2+`3,`2

Cφφ|`1+`4|] , (A1)

where wφL,` is given in Eq. (11), CφφL is the lensing potential power spectrum, and δD
L is the Dirac delta function in Fourier space.

In the Edgeworth expansion of the E- and B-mode likelihood, the term containing the above trispectrum is given by (Regan et al.
2010)

L ∝

[
4∏

i=1

∫
d2`i

(2π)2

]
T`1`2`3`4

∂

∂E`1

∂

∂B`2

∂

∂E`3

∂

∂B`4

Lg , (A2)

where Lg is the Gaussian likelihood of the E- and B-mode:

Lg ∝ exp

−
1
2

[
2∏

i=1

∫
d2`i

(2π)2

] ∑
a,b=E,B

a`1{C
−1}a`1 b`2 b`2

 . (A3)

Here {C}a`b` = 〈a`b`′〉 is the covariance matrix, and we omit the normalization of the above Gaussian likelihood.
The optimal estimator for the lensing power spectrum in the trispectrum is obtained by maximizing the CMB likelihood. The

approximate formula which is numerically tractable is proportional to the derivative of the log-likelihood with respect to CφφL .
The derivative of the above likelihood with respect to the lensing potential power spectrum is given by (Namikawa & Takahashi
2013)

∂L
∂CφφL

∝

[
2∏

i=1

∫
d2`i

(2π)2

]
wφL,`1

wφ
−L,`2

∂

∂E`1

∂

∂BL−`1

∂

∂E`2

∂

∂B−L−`2

Lg '

(
|φEB

L |2 −
N̂φ

L

(AφL )2

)
Lg . (A4)

After correcting the normalization for the unbiased estimator, the above equations leads to Eq. (24).
Realization-dependent methods are useful to suppress spurious off-diagonal elements in the covariance matrix of the power

spectrum estimates (e.g., Dvorkin & Smith 2009; Hanson et al. 2011). As discussed in Namikawa et al. (2013), the disconnected
bias estimation described above is less sensitive to errors in covariance compared to the other approaches. To see this, using
Eq. (18), we rewrite Eq. (23) as

N̂φ
L = (AφL )2

∫
d2`

(2π)2

∫
d2`′

(2π)2 wφL,`wφ
−L,`′

[
CEE

`,`′BL−`B−L−`′ + CBB
L−`,−L−`′E`E`′ − CEE

`,`′C
BB
L−`,−L−`′

+ CEB
`′,L−`E`B−L−`′ + CEB

`,−L−`′E`′BL−` − CEB
`,−L−`′C

EB
`′,L−`

]
. (A5)

For example, replacing the covariance matrix with an incorrect covariance model, CEE
+ ΣEE, we obtain

N̂φ
L = (AφL )2

∫
d2`

(2π)2

∫
d2`′

(2π)2 wφL,`wφ
−L,`′Σ

EE
`,`′ (BL−`B−L−`′ − CBB

L−`,−L−`′ ) +O([ΣEE]2) . (A6)

and 〈N̂φ
L 〉 has no contribution from O(ΣEE).

Note that the estimators for Cϖϖ
L and Cφϖ

L are also derived in the same way (Namikawa & Takahashi 2013). The estimator for
the curl-mode power spectrum is given by replacing φ̂L with ϖ̂L, while the disconnected bias for Cφϖ

L is estimated from

N̂φϖ

L = 〈<[(φ̂E1,B̂
L + φ̂Ê,B1

L )(ϖ̂E1,B̂
L + ϖ̂

Ê,B1
L )∗]〉1 −

1
2
〈<[(φ̂E1,B2

L + φ̂E2,B1
L )(ϖ̂E1,B2

L + ϖ̂
E2,B1
L )∗]〉1,2 . (A7)
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