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The crucial roles of apolipoproteins E and C-III in apoB 
lipoprotein metabolism in normolipidemia and 
hypertriglyceridemia

Frank M. Sacks
Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA

Abstract

Purpose of review—To describe the roles of apolipoprotein C-III (apoC-III) and apoE in 

VLDL and LDL metabolism

Recent findings—ApoC-III can block clearance from the circulation of apolipoprotein B 

(apoB) lipoproteins, whereas apoE mediates their clearance. Normolipidemia is sustained by 

hepatic secretion of VLDL and IDL subspecies that contain both apoE and apoC-III (VLDL E+C-

III+). Most of this VLDL E+C-III+ is speedily lipolyzed, reduced in apoC-III content, and cleared 

from the circulation as apoE containing dense VLDL, IDL, and light LDL. In contrast, in 

hypertriglyceridemia, most VLDL is secreted with apoC-III but without apoE, and so it is not 

cleared until it loses apoC-III during lipolysis to dense LDL. In normolipidemia, the liver also 

secretes IDL and large and medium-size LDL, whereas in hypertriglyceridemia, the liver secretes 

more dense LDL with and without apoC-III. These pathways establish the hypertriglyceridemic 

phenotype and link it metabolically to dense LDL. Dietary carbohydrate compared with 

unsaturated fat suppresses metabolic pathways mediated by apoE that are qualitatively similar to 

those suppressed in hypertriglyceridemia.

Summary—The opposing actions of apoC-III and apoE on subspecies of VLDL and LDL, and 

the direct secretion of LDL in several sizes, establish much of the basic structure of human apoB 

lipoprotein metabolism in normal and hypertriglyceridemic humans.
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Introduction

Because the apolipoprotein B (apoB) lipoproteins, VLDL and LDL, cause atherosclerosis, 

mechanisms that produce high levels are important to identify, especially mechanisms that 
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sustain levels of potently atherogenic subspecies such as those that have apoC-III. Some 

diets and drugs may suppress mechanisms that form atherogenic lipoproteins and some may 

accelerate their removal from plasma. Knowing which treatments do this could be useful to 

anticipate beneficial clinical effects before results from clinical outcome trials become 

available.

VLDL and LDL Metabolism are Both Independent and Connected

A common view of apoB lipoprotein metabolism has the liver producing mostly VLDL, a 

large spherical particle that has a core rich in triglyceride and cholesterol. Exposure to 

lipoprotein lipase (LpL) first, and hepatic lipase later, hydrolyzes most of the triglyceride to 

unesterified fatty acids, which are delivered to muscle and fat, and to the liver. During this 

process, some VLDL is cleared from the circulation by interacting with hepatic receptors. 

Over a few hours in circulation, the remaining VLDL is metabolized in plasma to LDL, a 

much more slowly turning-over lipoprotein that circulates for days. LDL, cholesterol-rich 

and triglyceride-poor, is viewed mostly as a product of VLDL metabolism, and VLDL is 

considered mainly as a precursor of LDL.

In reality, this standard framework for apoB lipoprotein metabolism oversimplies a 

fascinatingly intricate, finely tuned metabolic system that handles two very different lipids, 

triglyceride used for cellular energy production, and cholesterol for diverse physiological 

functions like bile acid synthesis, steroid hormone synthesis, lipoprotein synthesis, and 

many vital processes carried out by cell membranes. The body's need for metabolites of 

triglyceride and cholesterol differs over time. It would be efficient for VLDL and LDL 

secretion into plasma to be loosely coupled, so as to respond to time-varying nutritional 

status and needs of hepatic and extrahepatic tissues. Lipoprotein kinetic studies, using 

diverse techniques of labeling, lipoprotein preparation, and kinetic analysis, have identified 

secretion of LDL by the liver, at the same time the liver secretes VLDL [1–8]. Nonetheless, 

LDL is still most commonly thought of as a product of lipolysis of VLDL. A substantial 

percentage of plasma LDL is secreted directly, for example, 38% in normolipidemic 

individuals compared with 27% in hypertriglyceridemia [7]. The percentage of LDL that is 

directly secreted decreases as plasma triglyceride increases [8]. Fisher et al. [9] proposed 

that the relative amounts of VLDL and LDL secreted into plasma reflect the body's status of 

triglyceride and cholesterol pools that need to be mobilized during metabolism. Direct 

secretion of LDL presumably serves an important function in regulating hepatic and 

extrahepatic cholesterol content. It also plays a rolein the establishment of the dense LDL 

phenotype in hypertriglyceridemia by increasing the secretion of dense LDL as explained 

later (Fig. 1).

Apolipoprotein E and Apolipoprotein C-Iii Define Subspecies of 

Apolipoprotein B Lipoproteins

Besides the obligatory protein, apoB, some VLDL and LDL have small apolipoproteins on 

their surfaces that are not required for their synthesis or secretion but modulate the 

metabolism of these particles and their lipid contents. ApoE and apoC-III are the most 

extensively studied of these. ApoE and apoC-III are not uniformly distributed among every 
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VLDL and LDL, even though there is enough apoC-III in apoB lipoproteins for every 

VLDL and LDL particle to have at least one molecule, and there is also enough apoE to 

exist on every VLDL particle and on most LDL [7,8,10]. Instead, apoE and apoC-III cluster 

on a portion of VLDL and LDL and thereby form distinct subspecies that contain many 

molecules of each (Fig.2). In normolipidemic people, 35–60% of VLDL has apoE and40–

80%has apoC-III, varying with age and level of triglycerides [7,8,10–12]. On average, a 

VLDL with apoC-III has 60–100 molecules of apoC-III, and VLDL with apoE has 10–20 

molecules of apoE. Some VLDL and LDL have both apoE and C-III. This concept of 

speciation was proposed and developed by the late Petar Alaupovic who named apoB 

lipoproteins according to the proteins they contained [13,14]. Alaupovic's idea was that the 

proteins on lipoproteins governed their function and their relation to coronary heart disease 

(CHD), which has been proven true. For example, apoE and apoC-III have opposing effects 

on the metabolism of VLDL and LDL [7,8,10] that align with their divergent associations 

with risk of CHD [15–17,18■■].

Control of VLDL and LDL Metabolism by Apolipoprotein E and C-III

ApoE is a high-affinity ligand for the LDL receptor and other hepatic receptors and 

proteoglycan [19,20]. Chylomicrons and VLDL utilize apoE as their main ligand for 

clearance from the circulation. Experiments in mice, rats, and rabbits, which altered content 

or functionality of apoE, showed predicted effects on apoB lipoprotein levels and 

metabolism [21–24]. ApoE mimetic treatment reduced hypercholesterolemia and prevented 

atherosclerosis in apoE null mice and in LDL receptor-deficient mice [25■,26].

Owing to speciation of VLDL according to presence or absence of apoE on the lipoprotein, 

metabolism of the VLDL species that has apoE (VLDL apoE+) can be compared directly 

with the VLDL species that does not have apoE (VLDL apoE−) to determine how apoE 

functions on VLDL in vivo in humans. VLDL apoE+, prepared by anti-apoE immunoaffinity 

chromatography and ultracentrifugation, was cleared from the circulation much faster than 

VLDL apoE−, and was not readily converted to IDL [27]. In contrast, dense VLDL apoE− 

was the VLDL subspecies converted to IDL. These findings supported a role in humans for 

apoE as a ligand for receptor-mediated clearance of VLDL. However, apoC-III was present 

on most VLDL apoE+, and could have partially obscured the effect of apoE.

To evaluate separately the metabolism in plasma of apoE and apoC-III containing apoB 

lipoproteins, our next kinetic studies separated from plasma by sequential anti-apoE and 

anti-apoC-III immunoaffinity chromatography four subspecies: (1) E–C-III−, no apoE or 

apoC-III; (2) E-C-III+, no apoE, apoC-III present; (3) E+C-III−, apoE present, no apoC-III; 

and (4) E+C-III+, apoE and apoC-III present. Next, we prepared from each subspecies six 

apoB lipoprotein types using ultracentrifugation: light VLDL, dense VLDL, IDL, large 

LDL, medium LDL, and small LDL. This procedure resulted in four apolipoprotein-defined 

subspecies for each lipoprotein density classes shown in simplified form in Figure 2. These 

are distinct subspecies whose concentration is stable among individuals [28], that vary in 

metabolism [7,10], respond selectively to dietary macronutrients and statins [28,29], differ 

in hypertriglyceridemia [8], and have diverse associations with CHD [15–17].

Sacks Page 3

Curr Opin Lipidol. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We found that the dominant effect of apoC-III is to reduce clearance by the liver of 

triglyceride-rich VLDL particles [7,8,10], as found in animal models [21,30–32] (Fig. 3). 

Delayed clearance allows VLDL to circulate, while its triglyceride is transferred to 

peripheral tissues. VLDL and IDL that have apoC-III are speedily and nearly quantitatively 

metabolized to LDL [7,8,10]. The rate constants for lipolytic conversion of light VLDL to 

dense VLDL, which is LpL-mediated, were actually higher for apoC-III+ than apoC-III−. 

Similarly, the rate constants for metabolism of dense VLDL to IDL, effected by both 

lipoprotein and hepatic lipase, were also faster in C-III+ than C-III−. The metabolism of 

VLDL, IDL, and large LDL that have both apoE and apoC-III is divided between continued 

lipolysis to smaller subfractions and clearance from plasma, showing the actions of both 

apoE and apoC-III. During lipolytic conversion of larger to smaller apoB lipoproteins, 

apoC-III content per particle progressively decreases. This allows apoE and apoB100 access 

to hepatic receptors that clear its associated lipoprotein from the circulation. In summary, the 

presence of apoE and apoC-III appeared to markedly influence the metabolism of the apoB 

lipoproteins (Fig. 3). VLDL and IDL that have apoE but not apoC-III are cleared rapidly 

from the circulation before they can be metabolized to smaller lipoproteins. In fact, LDL E

+C-III− is nearly undetectable in plasma, and LDL E+C-III+ is a quantitatively minor 

subspecies in contrast to its major presence in VLDL. Starkly contrasting, VLDL and IDL 

that do not have apoE or apoC-III are mostly converted by lipolysis to LDL, and have a 

lower fractional catabolic rate (FCR) than their counterparts with apoE, as summarized in 

Figure 3. This metabolic heterogeneity of apoE and apoC-III containing VLDL, IDL, and 

LDL is present in participants who are normolipidemic or hypertriglyceridemic [7,10]; on 

high-carbohydrate or high-fat diets [29]; or in the fasting or continuous postprandial states.

Isolating the Influence of Apolipoprotein C-III Itself on Metabolism of VLDL 

and IDL

ApoB lipoproteins that have apoC-III also may carry other apolipoproteins besides apoE that 

could affect their metabolism such as apoA-II, apoC-I, or apoC-II. Approximately 23% of 

plasma VLDL apoC-III+ and 76% of VLDL apoC-III− do not have these other 

apolipoproteins [8]. We prepared these subpopulations by immunoaffinity column 

chromatography of plasma first using antibodies against apoA-II, C-I, C-II, and E together 

on a gel filtration column, and second by antiapoC-III chromatography of the bound and 

unbound fractions. We compared the metabolism of these two subpopulations, which we 

called ‘OtherApos-C-III+’ and ‘OtherApos-C-III−’. They had similar conversion rates to 

IDL. Thus, again we did not find evidence for slow lipolysis of apoC-III containing VLDL 

and IDL [8]. We also studied the ‘OtherApos+ C-III+’ and ‘OtherApos+C-III−’ sub-

populations. Light VLDL ‘Other apos+C-III+’ had faster conversion to dense VLDL 

compared with light VLDL ‘Other apos+C-III−’; and in turn, dense VLDL ‘Other apos+C-

III+’ had faster conversion to IDL than dense VLDL ‘Other apos+C-III−’. VLDL and IDL 

‘Other apos+C-III+’ had much slower clearance than ‘Other apos+C-III−’. These results 

support a specific and dominating role for apoC-III in decreasing the clearance of 

triglyceride-rich apoB lipoproteins, whereas they are efficiently lipolyzed to LDL, whether 

or not apoA-II, apoC-I, apoC-II, or apoE are also present.
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Apolipoprotein C-III and Lipoprotein Lipase

ApoC-III is thought to slow the metabolism of chylomicrons and VLDL by inhibiting 

lipoprotein lipase and blocking the engagement of apoE and apoB-100 with their hepatic 

receptors. Slowing the rate of hydrolysis of lipoprotein triglyceride presumably makes 

unesterified fatty acids available more gradually to extrahepatic tissues. Plausible as it 

seems, this mechanism has not been elucidated in humans. The metabolic studies in humans 

described previously [7,8,10] showed normal conversion rates to LDL for VLDL apoC-III+ 

and IDL apoC-III+; in fact, they were faster than for VLDL and IDL apoC-III−. As these 

steps are performed partly by lipoprotein lipase and partly by hepatic lipase [33–35], the 

findings suggest that apoC-III does not inhibit lipolytic enzymes in vivo, at least enough to 

slow the conversion rates. In-vitro incubation studies show that apoC-III reduces triglyceride 

hydrolysis by LpL [36–38]. These experiments use ratios of apoC-III to apoC-II, a required 

cofactor of LpL, from 10:1 to 100:1. A recent study added further insight on the inhibitory 

effect of apoC-III by showing that apoC-III, in at least a 5:1 ratio with apoC-II, reduced 

triglyceride hydrolysis by displacing LpL from the surface of lipid droplets, allowing it to be 

inactivated by angptl2 [39■]. In marked contrast, the apoC-III to apoC-II ratio in human 

VLDL apoC-III+ is approximately 0.7 to 2.0 [8,10]. Thus, the apoC-III content in human 

plasma VLDL of normal or mildly hypertriglyceridemic individuals may not be high enough 

to inhibit LpL in vivo. Two laboratories produced human apoC-III-over-expressing mice and 

found that LpL had normal activity toward the apoC-III-enriched lipoproteins [30,32]. 

Tissue LpL activity was also normal. Reduced VLDL FCR was caused by slow VLDL 

clearance from plasma. Reduced VLDL FCR and the clearance rate occurred in both apoC-

III low-expressing and high-expressing strains in a dose effect [30]. Thus, results of human 

metabolic studies are consistent with those of these apoC-III over-expression mouse models 

showing that apoC-III slows metabolism of VLDL by impairing the clearance mechanism.

Other experiments in mice and humans provided some support for LpL inhibition by apoC-

III. Mice overexpressing human apoC-III at very high levels had slow clearance of VLDL-

triglyceride, and their sera produced less activity of LpL than sera from control mice [40]. 

Clearance of VLDL-triglyceride was reduced, and thought to be secondary to impaired 

binding of apoC-III-enriched VLDL to glycosaminoglycan [40]. The amount of apoC-III on 

the VLDL was very high, judging from the severely elevated triglyceride levels, perhaps in 

the range in which apoC-III inhibits LpL in vitro, but more than in the previous apoC-III 

overexpression experiments [30,32] and in normal or mildly hypertriglyceridemic people 

[8,10]. Furthermore, since clearance of VLDL apoB was not studied, it cannot be assumed 

that lipolysis inhibition accounted for the full extent of the hyperlipidemia. Other research 

found that apoC-III increases the binding of apoB lipoproteins to a vascular proteoglycan, 

biglycan [41,42]. A different approach in mouse models utilized single or double knockout 

apoE and apoC-III [43]. The apoC-III knockout mice, whether singly or in combination with 

apoE knockout, cleared triglyceride from plasma more rapidly than control mice, suggesting 

that apoC-III inhibits LpL. ApoB metabolism was studied in two patients who had apoC-III 

deficiency in the context of apoA5/A4/C3/A1 gene cluster mutation [44]. The phenotype is 

remarkable for very low apoA-I and HDL-cholesterol levels. The patients' VLDL not only 

lacked apoC-III but also apoE. The VLDL FCR was very high attributed to the absent apoC-
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III, and the rapidly metabolized VLDL was converted to LDL. Sera from the apoC-III-

deficient patients did not inhibit LpL, whereas control sera that had apoC-III did. The 

experiment suggests that apoC-III inhibits LpL, in vivo [44]. Still, the very low apoE content 

of VLDL could have reduced clearance from plasma and shifted the flux of VLDL to 

conversion to LDL. Multiple apolipoprotein abnormalities in apoAI-C-III deficiency lend 

caution to an interpretation that focuses only on apoC-III.

Combining Actions of Apolipoprotein E and C-III and Secretion of LDL to 

Form an Integrative Model of Apolipoprotein B Metabolism in 

Normolipidemic and Hypertriglyceridemic People

ApoC-III secretion is high in hypertriglyceridemia [45,46], which translates to more 

secretion of light and dense VLDL E-C-III+ and less of VLDL E+C-III+ (Fig. 1). ApoC-III 

itself may be involved in VLDL assembly in the liver, and may increase secretion of VLDL 

[47]. However, inhibition of apoC-III synthesis in the liver by apoC-III antisense treatment 

did not reduce VLDL secretion in mice [48■■], although it substantially lowered plasma 

apoC-III and triglyceride levels in mice, monkeys, and humans. It is not known whether 

apoC-III increases VLDL secretion in humans, or whether its influence is solely on 

metabolism of VLDL as it circulates in plasma. In humans, in hypertriglyceridemia, the shift 

in the secretion of VLDL away from apoE subspecies and toward apoC-III subspecies or 

subspecies having neither apoE or apoC-III (Fig. 1) reduces the flux in apoE-mediated 

clearance pathways, and increases the flux in the lipolysis pathways to smaller apoB 

lipoproteins all the way to dense LDL (Fig. 3). In hypertriglyceridemia, this apoC-III-

dependent pathway from triglyceride-rich VLDL to dense LDL contributes to the excess 

production of dense LDL (Fig. 3). In addition, in hypertriglyceridemia, the liver secretes 

more dense LDL apoC-III+ and dense LDL apoC-III− than normal (Fig. 1). Normolipidemic 

compared with hypertriglyceridemic individuals secrete more large and medium-size LDL. 

Finally, for reasons that are unclear, dense LDL is cleared more slowly in 

hypertriglyceridemic than in normolipidemic people (10). Therefore, these pathways for 

apoB lipoproteins involving apoE and apoC-III establish the hypertriglyceridemic phenotype 

and link it metabolically to dense LDL.

Modulation of Apolipoprotein B Metabolism by Dietary Carbohydrate and 

Fat

Dietary carbohydrate when it replaces fat increases fasting blood triglyceride dose-

dependently [49]. Carbohydrate increases the secretion into plasma of VLDL and IDL that 

does not have apoE, and decreases the secretion of VLDL and IDL that contains apoE [29] 

(Fig. 1). Carbohydrate also reduces the fractional catabolic rate of triglyceride-rich 

lipoproteins by decreasing apoE and increasing their conversion to LDL. These mechanisms 

are similar to those in hypertriglyceridemia. Diets high in carbohydrate compared with 

unsaturated fat, especially linoleic acid, are associated with increased risk of CHD 

[50,51■■]. The specific changes in metabolism of VLDL and LDL produced in 

hypertriglyceridemia and by dietary carbohydrate are thus likely to be a benchmark for 

atherogenic apoB lipoprotein metabolism.
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Conclusion

The opposing actions of apoC-III and apoE present in subspecies of VLDL and LDL, and 

the direct secretion of LDL in several sizes, establish much of the basic structure of human 

apoB lipoprotein metabolism in normal and hypertriglyceridemic humans, and in response 

to changes in dietary carbohydrate and unsaturated fat.
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Abbreviations

apo apolipoprotein

CIII+ containing apoC-III

CIII- not containing apoC-III

E+ containing apoE

E- not containing apoE

E+CIII+ containing apoE and apoC-III

CHD coronary heart disease

IDL intermediate density lipoproteins

LDL low density lipoproteins

LpL lipoprotein lipase

VLDL very low density lipoproteins
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Key Points

• Normal apoB lipoprotein metabolism is sustained by a balanced action of apoC-

III and apoE; apoC-III delaying clearance of triglyceride-rich lipoproteins, 

giving time for their triglyceride to be hydrolyzed to fatty acids; and apoE 

binding to high affinity hepatic receptors to clear the lipoproteins after lipolysis 

removes some or all of the apoC-III.

• In hypertriglyceridemia, excessive production of a VLDL subspecies that does 

not have apoE but has many molecules of apoC-III results in accumulation of 

triglyceride-rich VLDL that is metabolized by lipolytic enzymes to dense LDL 

before it is cleared.

• In hypertriglyceridemia, the liver secretes dense LDL, which has a slow 

clearance rate from plasma. In contrast, in normolipidemia, the liver secretes 

large and medium-size LDL, which are converted rapidly to dense LDL. The 

dense LDL in normolipidemia has a faster clearance rate than in 

hypertriglyceridemia.

• High concentrations of apoC-III, five or more times those in human VLDL, 

inhibit lipoprotein lipase, in vitro, by displacing the enzyme from triglyceride-

rich droplets. However, kinetic studies in normal and mildly 

hypertriglyceridemic humans and in mice mildly overexpressing human apoC-

III show that the principal action of apoC-III is to inhibit the removal of apoB 

lipoproteins from plasma and so direct them to active lipolytic pathways to 

become smaller lipoproteins.

• Increasing intake of carbohydrate and decreasing unsaturated fat suppresses 

mechanisms in VLDL and LDL metabolism that involve apoE, increasing 

triglycerides, VLDL, and dense LDL, similar to what occurs in 

hypertriglyceridemia.
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Figure 1. 
Spectrum of apoB lipoprotein secretion by the liver across VLDL, IDL, and LDL 

subspecies. The figure illustrates VLDL, IDL, and LDL subspecies that shift in 

hypertriglyceridemia compared with normal, and on a high-carbohydrate compared with 

high-unsaturated fat diet. A need to export triglyceride stimulates secretion of VLDL, 

whereas cholesterol export occurs on both VLDL and LDL. In hypertriglyceridemia, 

secretion of the subspecies of VLDL that has apoC-III but not apoE is increased; and 

decreased of VLDL that has both apoC-III and apoE. In hypertriglyceridemia, secretion of 

dense LDL with or without apoC-III is increased. +: secretion increased in 

hypertriglyceridemia. −: secretion decreased in hypertriglyceridemia. *: secretory pathways 

decreased by dietary carbohydrate.
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Figure 2. 
Speciation of apoB lipoproteins by content of apoE and apoC-III [7]. Plasma was separated 

first by anti-apoE immunoaffinity chromatography. Second, the bound fraction containing 

apoE and the unbound fraction not having apoE were separated by anti-apoC-III 

immunoaffinity chromatography. In this way, four subfractions were prepared; E−C-III−, no 

apoE or apoC-III; E−C-III+, no apoE, apoC-III present; E+C-III−, apoE present, no apoC-

III; and E+C-III+, apoE and apoC-III present. Third, VLDL, IDL, and LDL were separated 

from each subfraction by ultracentrifugation. Numbers are the numbers of molecules of TG, 

cholesterol, apoE and apoC-III per apoB in each subspecies.
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Figure 3. 
VLDL, IDL, and LDL metabolism in plasma. Percentages indicate the percentage of flux of 

a lipoprotein species converted to another lipoprotein or cleared from the circulation. Width 

of arrows represents the amount of flux of apoB in a metabolic pathway. Arrows pointing up 

or down show flux pathways that are increased or decreased by dietary carbohydrate 

compared with unsaturated fat. +: flux pathways that are increased in hypertriglyceridemia 

−: flux pathways that are decreased in hypertriglyceridemia.
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