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Abstract

In randomized experiments, randomization forms the “reasoned basis for inference.”
While randomization inference is well developed for continuous and binary outcomes, there
has been comparatively little work for outcomes with nonnegative support and clumping
at zero. Typically outcomes of this type have been modeled using parametric models
that impose strong distributional assumptions. This article proposes new randomization
inference procedures for nonnegative outcomes with clumping at zero. Instead of making
distributional assumptions, we propose various assumptions about the nature of response
to treatment. Our methods form a set of nonparametric methods for outcomes that are
often described as zero-inflated. These methods are illustrated using two randomized trials
where job training interventions were designed to increase earnings of participants.
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1 Introduction

1.1 Censored Outcomes in Randomized Trials

In many applications, outcome data are nonnegative with a large proportion of recorded zeros.

These are often modeled as being a censored version of an underlying continuous outcome, or

a mixture of two distributions, one of which is a point mass. An early example of a statistical

model for censoring is the “Tobit Model” ?, first developed to a study expenditures on capital

goods such as automobiles and major household appliances. In this study, when households were

asked if they have purchases such a capital good in the last 12 months, they often reported zero

expenditures. Here, under the assumption that the observed data arise from a censored normal

distribution, maximum likelihood-based estimation leads to an appropriate regression model for

the censored outcomes.

When modeled as a mixture, outcomes with a clump at zero are often described as zero-inflated.

The canonical example of zero-inflation occurs with count data that display a higher proportion of

zeros than expected under the Poisson distribution. For a zero-inflated count outcome, analysts

might assume that are at least two processes that might produce a nonzero outcome. For example,

consider an anti-smoking intervention. We might observe that a person smoked no cigarettes

either due to the intervention or because they were already a non-smoker. Zero-inflated models

for such processes are based on likelihoods that are typically a mixture of binomial and poisson

distributions (?). See ? for a detailed overview of parametric modeling approaches to outcomes

with point masses at zero.

Both Tobit models and zero-inflated models rely on strong parametric assumptions. If the under-

lying errors of the Tobit model are either heteroskedastic or non-normal, the maximum likelihood

estimates for the Tobit model are inconsistent (?). Zero-inflated models require strong parametric

assumptions or the presence of an exclusion restriction for identification (?). In a randomized

trial, where the goal is to make robust causal claims, this is particularly problematic as the para-
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metric assumptions necessary for both models are not implied by the randomization. This could

undermine the integrity of any subsequent analysis.

One alternative to parametric based inference is randomization inference which only assumes

random assignment of the treatment. Here, randomization serves as the “reasoned basis for

inference,” and does not require assumptions beyond the randomization itself (?). Here under

some alternative assumptions arguably weaker than full parametric ones, randomization inference

tests of no effect can also be inverted to provide distribution-free confidence intervals, and analysts

can use the method of Hodges-Lehmann to obtain point estimate for treatment effects. See ?,

ch. 2 for a review of randomization inference methods.

While randomization inference methods are well developed for continuous outcomes, there has

been comparatively little work for outcomes with point masses at zero. Existing work tends to

focus on testing without consideration of interval or point estimation (??). In this paper, we de-

velop procedures for handling outcomes with clumping at zero within the randomization inference

framework with a particular focus on point and interval estimates. While we avoid parametric as-

sumptions, we must make assumptions about the nature of individual level response to treatment.

To that end, we also develop procedures for assessing the assumptions we invoke.

After giving an overview of the two empirical examples we use to illustrate this approach, we then

review randomization inference and the Tobit model of effects developed by ?. We then outline

the more general testing framework and develop targeted test statistics that focus on different

consequences of Tobit-style assumptions. We then extend the Tobit model to allow for scaling

in the positive outcomes and discuss how to estimate parameters for this more general approach.

We finally illustrate using two empirical jobs training examples, which we describe next.

1.2 Empirical Applications

Outcomes with point masses at zero are particularly common in job training RCTs when the

outcome is measured as earnings. One example is the JOBS II Intervention Project developed at
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the University of Michigan and designed to enhance the reemployment prospects of unemployed

workers (?). The intervention in the JOBS II RCT was to teach unemployed workers skills related

to searching for employment, such as how to prepare job applications and resumes, successfully

interview, contact potential employers, and use social networks to obtain job leads. An additional

focus of the intervention included activities to enhance self-esteem, increase a sense of self-control,

and cope with set-backs.

In the RCT, a large sample of unemployed workers first underwent a screening process. After

screening, the researchers randomly assigned 1249 to the job search seminar (treatment) and 552

to a short pamphlet on job search strategies (control). Workers assigned to treatment attended

a 20-hour job search seminar over one week. Follow-up interviews on all workers were conducted

6 weeks, 6 months, and 2 years after the intervention. Researchers focused on a number of

employment related outcomes including employment status and monthly earnings. After the

trial, a number of subjects in both the treated and control remained unemployed and thus had

no earnings, producing a point mass at zero in the outcome measure.

Another well known job training intervention is the National Supported Work Demonstration

(NSW). In the mid-1970’s, the Manpower Demonstration Research Corperation (MDRC) operated

the NSW program in ten sites across the United States (?). The NSW was designed to move

unemployed workers into the job market by giving them work experience and training. Those

assigned to the treatment in the NSW were guaranteed employment for 9 to 18 months. However,

wages were at below market rates. Once the program expired, trainees were expected to find

work in the labor market. Participants assigned to the control condition were not given any aid

in finding a job. Participation into treatment and control groups was randomized. One primary

endpoint was earnings 27 months after participants left the NSW program.

Figure 1 contains density plots for the subjects with nonzero earnings from both RCTs stratified

by treatment status. In JOBS II, 21% of subjects reported zero earnings, and in the NSW RCT,

31% of subjects reported zero earnings. Even after we remove point masses at zero, the earnings
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Figure 1: Nonzero earnings for participants in the two job training interventions. The dotted
lines represent average earnings by treatment condition in each experiment. In JOBS II, 21% of
subjects reported zero earnings. In NSW, 31% of subjects reported zero earnings.

distribution for both treated and control groups clearly depart from Normality, and we may wish

to use statistical methods tailored to these distributions.

2 A Review of Randomization Inference and the Tobit

Model of Effects

First, we outline randomization inference method with a particular emphasis on the Wilcoxon rank

sum test, since existing methods for outcomes with clumping at zero use this test statistic.

2.1 Notation

In our setup, there are n subjects, i = 1, . . . , n. Of the n subjects, m are selected at random to

receive treatment, and the remaining n−m are assigned to control. For each subject i observed

in the experiment, the indicator Zi = z ∈ {0, 1}, records then randomly assigned treatment

status.
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Subject i has two potential outcomes: the outcome rT i that would be observed if i were assigned

to treatment and the outcome rCi that would be observed if i were assigned to control (??).

Combining potential responses with the treatment indicator, we define the observed outcome for

each unit i: Ri = ZirT i + (1− Zi)rCi. Finally, we define Z = (Z1 . . . ZN)T , Y = (Y1 . . . YN)T ,

YC = (Y01 . . . Y0n)T The causal effect is defined as the counterfactual contrast of rT i − rCi.

Unfortunately, this contrast cannot be observed in the data, since for each subject we only

observe one potential outcome as revealed by treatment assignment. This is the fundamental

problem of causal inference (?).

Under randomization inference, the only stochastic quantity is the assignment of treatment (?).

The potential outcomes rT i, rCi are fixed features of the finite population of n subjects. Random-

ization creates the distribution used for inference and forms what Fisher termed “the reasoned

basis for inference.” The observed response, Ri varies with treatment assignment and thus is

not fixed. Under this view of inference, parametric distributions such as the t-distribution or

Normal distribution are approximations to the randomization distribution and are not models for

data.

2.2 Randomization Test of No Effect

With randomization inference, we test the sharp null hypothesis of no individual treatment ef-

fect:

H0 : rT i = rCi for i = 1, . . . n.

To test the sharp null, we generate the randomization distribution of a test statistic given the

null, and compare the observed value of our test statistic to this distribution. We write the test

statistic as t(Z,Y), a function of the observed outcomes and the treatment assignment. One

common such statistic is Wilcoxon’s rank sum statistic in which the responses Y are ranked from

1 to n with average ranks for ties, and the ranks of the treated (Zi = 1) units are then summed

(?). Large values of this statistic suggest that rT i is generally larger than rCi. The null hypothesis
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is then tested by computing t(Z,Y) and asking whether it falls in the tail of the randomization

distribution.

Under H0, the only randomness is from Z, and we know its distribution. Therefore, we only need

to calculate the probability of observing a value of t(Z,Y) equal to or greater than T , some

critical value. The p-value for the test of the sharp null is therefore calculated as follows:

Pr(t(Z,Y) ≥ T ) =
∑
z∈Ω

1 {t(z,Y) ≥ T} · Pr(Z = z) (1)

with Ω being the set of allowed random assignment vectors. For the rank sum statistic without

ties, the randomization distribution is the random sum of m numbers randomly selected from

{1, . . . , n}.

2.3 Confidence Intervals and Point Estimate for Constant Treatment

Effects

Both interval and point estimation require two assumptions that are unnecessary for the test of

no effect. First, we assume that the stable unit value treatment assumption (SUTVA) holds (?).

Second, we must make an assumption about the nature of response to the treatment. ? refers

to this second assumption as a “model of effects.” A model of effects ties the potential outcomes

of a unit together. Under this model, if we observe rT i we can impute rCi. First, we use the

more common model of a constant response to treatment to review basic principles of interval

and point estimation in the randomization inference framework. Later, we use alternative models

of effects to account for clumping at zero.

If the treatment effect is constant then Yi1 = Yi0 + τ for every i = 1, 2, · · · , N for some τ . This

model of effects implies that Yi0 = Ri − Ziτ . The quantity Ri − Ziτ is sometimes referred to

as the “adjusted response.” and can be calculated for all units with observed data, given tau.

Testing the null hypothesis Hτ : τ = τ0 is the same as testing that Y−Zτ0 satisfies the original
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sharp null hypothesis of no treatment effect.

Once we have an exact test for any specific τ , the set of τ not rejected by a hypothesis test of

level α form a valid 1−α confidence interval. Generating confidence intervals in this way is called

inverting a test. For example, in the case of an additive constant treatment effect, we construct

a 95% confidence interval by testing H0 : τ = τ0 for all possible values of τ0, and keeping the

values of τ0 that are not rejected at the 5% level.

We can generate point estimates via the method of Hodges-Lehmann. The Hodges-Lehmann

estimate, in general, asks the following question: what is the value of the treatment effect such

that the test statistic equals its expectation under the null hypothesis of no treatment effect?

Under the model of constant-additive effects, the Hodges-Lehmann point estimator for τ is the

value of τ̂ such that the adjusted responses, Ri− τ̂Zi, are exactly without treatment effect. The

test-statistic under the null is t(Z,Y−Zτ0). We define t0 as the expectation of the test-statistic

under H0 : τ = τ0. The Hodges-Lehmann estimator is the solution to the equation:

t0 = t(Z,Y − Zτ̂)

In practice, t(Z,Y−Zτ̂) may vary in discrete jumps, so that either no solution or infinitely many

solutions may exist. When this occurs, the estimator is computed as:

τ̂ = inf{τ : t0 > t(Z,Y − Zτ)}+ sup{τ : t0 < t(Z,Y − Zτ)}
2 .

As a variant of Hodges-Lehmann, we, instead of solving for the expectation, simply take the value

of τ that maximizes the p-value as our point estimate.

In the randomization inference framework, interval and point estimates depend on the model of

effects. For outcome measures such as earnings, a constant additive model of effects is unrealistic

since under this model negative earnings are possible for those in the treatment group. Next,

we demonstrate how we might account for clumping at zero via a ore appropriate model of
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effects.

2.4 The Tobit Model of Effects

?, pg. 48 extends the classic Tobit model of effects to a randomization framework with no normal-

ity assumption. The Tobit model assumes a latent pre-treatment worth wi. Under Rosenbaum’s

Tobit model of effects, τ , the treatment effect, is a constant shift on this latent worth. We do not

directly observe this wi, however, but instead observe 0 if the worth is negative. Under this model

we would then have potential outcomes for unit i of rCi = max(0, wi) and rT i = max(0, wi+τ).

Under this model a constant treatment effect on the latent worth will lead to a change in the

point mass at 0 as well as a shift in the non-zero distribution.

Given a specific model of effects we can, for any observed rT i impute the corresponding rCi

(assuming τ ≥ 0). We cannot, however, impute rT i from rCi in all cases: if rCi > 0 we know

rT i but for rCi = 0 we only know rT i ≤ τ . Nevertheless, for any valid model of effects, under

the null, we can impute all control outcomes, and we can conduct valid hypotheses tests for the

adjusted outcomes of max(Ri − τZi, 0). If tau is correct, and the model of effects is correct,

these quantities will be the same regardless of treatment assignment. Given this fact, estimation

of a point estimate and confidence interval for τ then proceeds under the methods outlined

above.

? uses the Tobit model of effects in conjunction with a rank based test statistic. Specifically,

one applies the Tobit model of effects to the observed data to compute adjusted responses, and

then applies a rank based test statistic to these adjusted responses. If the adjustment is correct

then the treatment and control units should have the same distribution of ranks.
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3 Extending the Tobit Model of Effects

3.1 Test Statistics for Clumping at Zero

Here, we propose an alternative set of test statistics that may have greater power than the

Wilcoxon rank sum test for specific alternative hypotheses. If the Tobit model of effects holds,

two features should be apparent in the distribution of outcomes in the treatment and control

arms. First, if the shift of τ is correct, proportion of zeros in the adjusted responses of the

treatment group should match the proportion of zeros in the control group. Second, under the

correct value for τ , the distribution of adjusted non-zero outcomes in the treated group should

have the same shape as the non-zero outcomes in the control group. These two observations

motivate different types of test statistics. We then combine these two types of test statistics to

form an omnibus test to produce a more powerful test.

The first test statistic we propose is the difference in the proportion of zeros across treated and

control arms:

p̂ = p̂C − p̂T

This test statistic will tend to reject if the adjusted treatment group and the control group

have different proportions of zeros, but will be insensitive to any differences in the non-zero

outcomes.

The next test statistic can be any measure of difference across the treated and control units

that have non-zero outcomes. For example, one test we apply in the application section is the

Kolmogorov–Smirnov (KS) test statistic (?). Formally, the KS test statistic is defined as follows:

let F̂C be the empirical CDF of the positive outcomes under the control condition and let F̂T be

the same for the treatment. Using these quantities, the KS test statistic on the positive outcomes

is

KS+ = max
y>0

∣∣∣F̂T (y)− F̂C(y)
∣∣∣ .
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We can also look at specific differences in the distributions rather than this overall approach. For

example we could focus on the difference in variances, possibly measured as

σ̂ = σ̂C/σ̂T ,

the ratio of the variance of the control group outcomes and the treatment group outcomes.

Alternatively, we might take as our test statistic the difference in medians.

For any test statistic, we can generate a confidence interval by inverting a sequence of tests.

Denote our test statistic of interest tk. The α-level confidence interval based on tk is then

constructed by testing H0 : τ = τ0 for all possible values of τ0, and keeping the values of τ0

that are not rejected by an α-level test using our test statistic tk. We then have, for tk, the

corresponding confidence interval

CIk ≡ {τ0 : pk(τ0) > α}

where pk(τ0) is the p-value obtained by testing H0 : τ = τ0 with the test statistic tk. One

should think of these intervals as the set of all τ where the predicted control outcomes in the

treatment group and the actual control outcomes in the control group are similar as measured by

the given test statistic. So, for example, if we used the proportion test, our confidence interval

would consist of all possible shifts such that the proportion of zeros is similar. Different test

statistics can give different confidence intervals. In particular, depending on the character of the

data, we might imagine different test statistics giving shorter intervals, in general, than other test

statistics.

Given the Tobit model of effects, all confidence intervals are valid. This is easy to show: for a

given interval CIk, take τ0 as the truth, i.e., that the null is true for this value of τ . Then the

probability that τ0 is not included in CIk is the probability that pk(τ0) ≤ α which, as these tests

are all of correct size, is no more than α.
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For the analysis to be fully principled, the test statistic or set of test statistics should be selected

as part of the analysis plan before any outcome data are collected. However, if the RCT is to be

repeated, an exploratory analysis could be conducted using outcomes from the first trial. This

exploratory analysis could then inform the analysis plan for a later trial.

3.2 Goodness of Fit Tests

Some test statistics allow us to test whether the Tobit model of effects is a reasonable fit to the

data. Specifically, we can test:

Hm
0 : ∃ τ s.t. rCi = max(0, rT i − τ) for i = 1, . . . , n

To do this we generate a confidence interval for τ using a given test statistic. If this test rejects

for all τ , i.e., the confidence is the empty set, then we conclude that no shift is appropriate and

reject Hm
0 . Some test statistics have no power to detect violations of the model, while others

do. In particular, there is always a τ such that the corresponding Wilcoxon rank statistic on the

adjusted responses equals its expected value. Similarly, the test of an equal proportion of zeros

will also have no power to detect violations of the Tobit model of effects, as we can always find

a shift to make the proportions of zeros the same. The KS statistic, however, can detect such

violations due to its overall focus on shape.

To prove that this goodness of fit test is valid, consider the null. If it were true, then there exists

some τ , say τ0 such that rCi = max(0, rT i− τ0) for i = 1, . . . , n. When testing τ0, we will reject

(erroneously) with probability no greater than α, regardless of choice of test statistic. Therefore,

our confidence interval will be non-empty with probability greater than or equal to 1− α. Since

we only reject Hm
0 if the confidence interval is empty, we reject with probability no greater than

α.

When using these goodness of fit tests, we advocate being conservative. In these circumstances,

this means rejecting the goodness of fit test at a higher α, e.g., α = 0.10, or calculating confidence
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intervals at 90% confidence to assess if they are empty. Goodness of fit tests are known to have

low power, in general, but valid confidence intervals under permutation style approaches require

correctly specified models. It is therefore important to assess model fit in the process of generating

confidence intervals, and one should be wary of even weak evidence against a model of effects

specification.

3.3 An Omnibus Test

Above, we suggested several different test statistics when there is clumping at zero. It is natural

to jointly use multiple test statistics to take these different consequences into account (?). One

straightforward method for doing this is to create a test based on a combination of the different

test statistics. We outline this omnibus approach next.

To form an omnibus statistic, first take a vector of test statistics, t1, . . . , tK , that correspond

to K different consequences of our modeling assumptions, with an observed vector of tobs =

(tobs1 , . . . , tobsK ). We will combine these statistics to form an omnibus statistic to give an omnibus

test.

Consider the case where τ is known and the null is true. We then know all the control out-

comes for all our units. In this circumstance, we could obtain the joint null distribution of

t1, . . . , tK by, for each possible randomization, calculating (t1, . . . , tK). Call these permutation

tuples t(j)∗ = (t(j)∗1 , . . . , t
(j)∗
K ) with j = 1, . . . , R where R is the number of possible permutations

under randomization. In practice, we likely examine only a subset of all possible permutations.

For each t(j)∗k , we calculate its marginal p-value by calculating

p
(j)∗
k = P

{
t
(j)∗
k ≥ T ∗k

}
= 1
R

R∑
r=1

1{t(j)∗k ≥ t
(r)∗
k }.

This gives p(j)∗ = (p(j)∗
1 , . . . , p

(j)∗
K ). Similarly, we can calculate marginal p-values for tobs by, for

each k, calculating pobsk = P
{
tobsk ≥ t∗k

}
. This gives pobs = (pobs1 , . . . , pobsK ).
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We now have the joint null distribution of K p-values corresponding to K tests. We also have

the observed marginal p-values for our observed data and random assignment. We treat these

p-values as test statistics in their own right and calculate an omnibus test statistic such as

tp = min{p1, . . . , pK}

or

tp =
K∑
k=1

log pk.

The latter is equivalent to the product of the p-values. If we calculate tp for all the vectors p(j)∗

we have the null distribution of tp. We then calculate tobsp and compare it to this null distribution.

Our final p-value is then

p = P
{
tobsp ≤ Tp

}
= 1
R

R∑
r=1

1{tobsp ≤ t∗(r)p }.

By construction, lower values are more extreme since low p-values are indicate greater evidence

against the null.

As shown above, the formation of omnibus test statistics, we can combine p-values by either

taking the minimum or taking the product. The choice of minimization versus products will have

different power against different alternatives. The minimum will have power against alternatives

where only one of the primary tests has power. The product will have power against alternatives

where all the primary tests have moderate power.

One can also form omnibus test statistics directly, such as taking the sum of the initial tk; this

can be difficult, however, if the tk are all on different scales. Converting them to p-values first

makes them directly comparable. Finally, one might weight one test more heavily than another,

such as by taking a weighted sum of the log p-values. Any of these choices provide different

tests which will have different power for various alternatives. They will all, however, be valid

tests.
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For the Tobit model of effects, we might set K = 2, t1 = p̂, and t2 = KS. This omnibus test

allows us to test whether the proportions of zeroes in the shifted treatment arm is the same as

compared to control, and also for whether the shifted treatment arm has the same empirical CDF

in the nonzero mass of the distribution as the control arm. Thus we only consider possible τ that

align both these quantities, which increases the power to detect departures from the Tobit model

such as when we are testing the wrong shift τ .

We note that one could also use the more general KS statistic (denoted KS in our paper) which

compares the CDFs of all the outcomes including the point mass at 0. In principle this statistic

should be sensitive to the difference in 0s as well as the shape of the positive outcomes. However,

this statistic tends to have poor behavior when applied to distributions with point masses and

ties.

3.4 Two Simulations

We next illustrate the concepts from above by conducting two simulations: one where the To-

bit model is correctly specified, and one where it is not. Before each simulation we illustrate

how to generate confidence intervals and point estimates using a single simulated dataset. We

then replicate the simulation to illustrate how different testing procedures behave over repeated

trials.

3.4.1 Simulation 1: The Tobit Model is correct

In our first simulation, the Tobit model is correctly specified. For each simulation trial, we take

1000 units, each with a latent w drawn from a N(1, 52) distribution and a true Tobit shift of 2.

We randomize the units to treatment and control and observe their outcomes.

We next generate a confidence interval for τ using four different test statistics. The first, W ,

is based on on the Wilcoxon rank sum test for the Tobit model as devised by Rosenbaum. The

second, p̂, is the difference in the proportion of zeros in the treated and control groups, while
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Figure 2: p-values for different possible values of τ under a Tobit model for a single illustrative,
synthetic data set. Each line corresponds to the different test statistics of p̂, KS, W , and the
omnibus test formed from p̂ and KS. The true τ = 2 is marked with the solid vertical line. The
corresponding 95% confidence intervals for specific test statistics would be the range of τ where
the p-value is above the 0.05 line.

the third, KS, is the KS test applied to the nonzero outcomes. Finally, we include an omnibus

statistic by adding the log p-values for p̂ and KS.

For a sequence of possible τ , we calculate p-values against the null of that τ for each of the four

statistics. For each considered τ , the permutation p-values are calculated using 1000 permutations

of the treatment vector. We plot the p-values against the values of τ for each test in Figure 2.

Plots of p-values like these serve as a useful visual diagnostic for whether a test statistic is

behaving as we expect. Also, as we demonstrate later, such plots can usefully reveal when the

model of effects is misspecified. We see that, for example, all four tests have very low p-values for

the null of τ = 4, so all four tests reject that τ could be 4. Corresponding confidence intervals are

shown in Table 1. These are formed by taking all τ that are not rejected. That is, the support of

the portion of the curves lying above the horizontal 0.05 line on Figure 2 form our intervals.

Table 1: Confidence intervals and Hodges-Lehmann estimates for a simulated dataset from dif-
ferent test statistics ordered by interval length.

Test Statistic Lower CI Upper CI Hodges-Lehmman Point Est Length
KS 0.67 3.60 1.83 2.93
KS + p̂ 1.27 2.98 2.11 1.71
p̂ 1.46 3.04 2.11 1.58
W 1.55 2.98 2.23 1.43
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In Table 1 we observe that, for this particular randomization on this particular dataset, the

omnibus test returns a wider interval than the Wilcoxon or difference in the proportion of zeros.

This does not necessarily have to occur; since the p-value depends on the joint distribution, its

behavior is complex and difficult to characterize. That being said, in general if one or the other

of its components has a low p-value, the omnibus will be low. It therefore tends to be low overall

when the component curves are not aligned, unlike in this figure, which allows for goodness of

fit tests as discussed below.

We can also obtain point estimates by taking the τ with the highest p-value (if multiple τ have

the same p-value we take the median of these τ). This is related to the Hodges-Lehmann point

estimation discussed above. These are the peaks of the curves on Figure 2 and are also listed on

Table 1. In our single example, the point estimates are close to the true value of 2.

We next simulated 100 datasets, and generated the four confidence intervals for each set. The

data generation is as described above. Figure 3 shows the distribution of confidence interval

lengths for the four different approaches and one additional test statistic: the KS test applied to

the entire outcome distribution instead of just the nonzero portion of the distribution. We see

that the Wilcoxon test statistic tends to result in the shortest intervals, with an average length

of 1.32. The omnibus test has a mean length of 1.50, 14% longer. KS+, which conditions on

the positive units only, has no ability to detect differential rates of 0 outcomes and thus has

little power; it therefore does poorly. The test statistic based on the shift in zeros also has poor

performance y because it does not exploit anything about the shape of the positive outcomes.

The KS test applied to all of the outcome data performs almost as well as the omnibus test, but

apparently a sharper focus on the proportion of zeros, which the omnibus test has, is important

here. Unfortunately, as the power of each test depends on the underlying distribution, we cannot

extend these relationships to other circumstances.
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Figure 3: Length of confidence intervals for 100 simulated data sets (with a true Tobit model of
effects) for five different test statistics.

3.4.2 Simulation 2: The Tobit Model is misspecified

In our second simulation, we investigate the performance of different test statistics when the

Tobit model of effects does not hold. We again simulate the latent w, but now treatment scales

w as well as shifts it by 2. In particular, we generate the data under the following misspecified

Tobit model of effects:

rT = max(1.3w + 2, 0).

We generated data according to this model and then applied the same set of test statistics

to the observed outcomes to generate confidence intervals for all of our statistics. Here, if a

confidence interval is the empty set, we reject the overall null that the Tobit model of effects fits

the data.

Figure 4, analogous to Figure 2, contains the p-values for a range of τ for each test. First, we

note how each of the individual test statistics produce non-empty confidence intervals, erroneously

suggesting the Tobit model of effect correctly characterizes response to treatment. However, the

omnibus test based on the KS test and the test of the proportion of zeros does not achieve high

p-values for any τ , giving an empty set for the confidence interval. The omnibus test detects our

misspecification of the Tobit model of effects. Thus while the omnibus test may have lower power
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Figure 4: p-values for different possible values of τ under a misspecified model. See Figure 2 for
annotation details. Only the omnibus test statistic produces an empty confidence interval.

relative to the more conventional Wilcoxon test statistic, it can clearly provide useful information

about the overall suitability of the Tobit model of effects.

We replicated this simulation 200 times to estimate the power of the test using single test

statistics and three different omnibus test statistics. Specifically, we combined the p̂ test statistic

with the KS test, the KS test applied to only the positive part of the response distribution, and

the Wilcoxon rank sum statistic. Table 2 contains the results of the simulation.

All the non-omnibus test statistics have very low power to detect misspecification. In general, if

there always is some value of the shift that can make the test statistic small, the power to detect

misspecification will be reduced to 0. There is always a value of τ to make the Wilcoxon statistic

equal to its expected value, for example. The KS test statistic has some power because it only

has a low value if the adjusted treatment group has the same CDF as the control group. It is

attending to the entire shapes of the two distributions.

The simulation exercise also reveals that the use of an omnibus test statistic is no panacea. The

omnibus test based on a combination of p̂ andW still have no power to detect poor fit of the Tobit

model of effects. A combination of p̂ and the KS test is an improvement, although the results

are less than acceptable. For this data generation process, the KS statistic on the non-negative

outcomes combined with the proportions has the highest power of about 96%. However, this

omnibus test statistic did not give the smallest confidence intervals when the model is correctly
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specified, as demonstrated above. Therefore, we face a a trade-off between using a test that has

no power to detect departures from the modeling assumptions and the expected length of the

final confidence interval.
Table 2: Estimates of power, along with uncertainty intervals in brackets, for different test
statistics for Tobit model fit. Uncertainty intervals are 95% intervals based on the 200 results of
Monte Carlo simulation.

Test Statistic Est. Power (%)
p̂ 0 [0-2]
KS 36 [29-43]
W 0 [0-2]
KS Positive Support 38 [31-45]
Omnibus Tests
p̂+KS 50 [43-57]
p̂+KS Positive Support 96 [92-98]
p̂+W 0 [0-2]

4 The Multi-Tobit Model

While the Tobit model of effects outlined above may be an adequate model for many outcomes

with zero clumping, we may wish avoid the assumption of a constant shift due to treatment and

fit something that is more flexible. In the randomization inference framework, we can introduce

a more complex model of effects parameterized by more than a single parameter. Specifically,

we conceive of the response to treatment occurring in two stages: a shifting up of one’s latent

worth by a constant effect, and then a scaling of one’s latent worth if it is positive. Specifically,

for an individual with latent worth wi:

rCi = max(0, wi) as before, and

rT i = max(0, β (wi + τ))

This additional flexibility allows for the treatment group to have a longer tail than the control

group. The order of operations is unimportant here: this model of effects is equivalent to a scale
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followed by a shift, with β′ = β and τ ′ = τβ. We call this model of effects the Multi-Tobit

model.

4.1 Testing and estimation

Under this model we can still test the sharp null of no effect under the usual randomization

inference framework using permutations of the data and repeatedly applying the test statistic.

For this model of effects, (τ, β) = (0, 1) corresponds to no treatment effect. Moreover, τ = 0

and β > 1 corresponds to a treatment effect that only impacts those who would otherwise have

positive outcomes. The test of the sharp null under this model of effects has identical properties

and behavior to the Tobit model of effects from above because randomization tests do not depend

on the alternative hypothesis. The additional flexibility of this model is apparent in the estimation

of treatment effects.

Since this model of effects has two parameters, we produce a confidence region defined by all

pairs of values that do not reject the null. Unfortunately, classic tests such as the Wilcoxon rank

sum can have perverse behavior for interval estimation since selecting extreme values of τ and β

can align a treatment and control distribution’s median rank, and thus all pairs of such values

will appear in an associated confidence region. To rectify this problem, we need statistics that

measure differences in at least two ways, such as both the center and spread of the distribution.

The KS test does this by measuring differences of the entire cumulative distribution between the

adjusted treatment and control units. Another alternative would be to measure the alignment

of the two distributions at two pre-specified quantiles, or by combining multiple tests with an

omnibus test as described above.

4.2 Illustration

We illustrate the generation of confidence intervals for the Multi-Tobit model of effects using

the same simulated data from the misspecified Tobit model simulation above. In this simulation,
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(b) Omnibus (p̂ and KS) test statistic

Figure 5: Confidence intervals created by different statistics under the misspecified Tobit model
of effects.

we set β = 1.3 and τ = 1.54. Results from this simulation are shown in Figure 5. Panel 5a

demonstrates how using the Wilcoxon rank sum test produces perverse confidence regions. The

very small τ coupled with very large β, for example, allow for the overall mean ranks to be

aligned, causing the Wilcoxon rank sum test to not reject. On the other hand, if we use statistics

that attend to the relative shapes of the two distributions, we can get reasonable regions such as

illustrated in Panel 5b. For the results in Panel 5b, we applied the omnibus statistic that tests

both the proportion of zeros with p̂ and the overall shape of the nonzero part of the response

distribution with KS. For this test statistics, the confidence region is relatively compact. Since

the confidence region does not include β = 1 (marked with the horizontal line), we can reject

the Tobit model as a reasonable fit.

One drawback of the Multi-Tobit model is that confidence regions of this nature are difficult to

interpret. To improve interpretability, it is often worth projecting them into a more interpretable

space. Each point in the confidence region, coupled with the observed data, gives full knowledge

of the control potential outcomes of all treated units. This means that, for each such point,

we could calculate quantities such as average treatment on the treated, the proportion of units
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who would be zero under control, or the average shift for treated units with a counterfactual

positive outcome. We then take the set of the projected points as a confidence set on the chosen

quantity.

5 Applications

We now analyze data from the JOBS II intervention and the NSW study. As we noted earlier,

the earnings distributions from both interventions have non-trivial amounts of clumping at zero

earnings. We treat this analysis as exploratory in that we fit a number of different tests, primarily

to illustrate how these approaches work. Our approach might be viewed as “fishing” in an actual

trial. In an actual trial, the analysts would specify which tests would be conducted through the

use of an analysis plan before any data are collected.

5.1 The JOBS II Intervention

Let’s change the entire analysis in these sections to 90% confidence instead of swapping back

and forth?—Luke M

As an initial step, we test for presence of any treatment effect by using the classic Wilcoxon rank

test. We are able to reject the sharp null hypothesis (p = 0.016). The treatment had some

impact. We turn next to assessing the degree of that impact.

By inverting this same test under the assumption of a constant effect assumption, we find that

subjects in the treated condition had earnings that were $88 higher with a 95% confidence interval

of [$0.01, $260]. However, this model of effects is implausible, since it implies that some treated

units would have received negative earnings under the control condition. We therefore apply the

Tobit model of effects with a Wilcoxon test statistic as recommended in ?, pg. 48. Recall that

the Tobit model of effects implies that the JOBS II intervention raises the marginal value of

every worker’s labor by the same constant, but that workers are employed only if the marginal

value of their labor is positive. Under the assumption of this Tobit model of effects the point
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estimate is τ̂ = $216 and the 95% confidence interval for τ is [$42, $394]. The Wilcoxon statistic

gives a fairly wide confidence interval since a wide range of shifts still provides a relatively equal

distribution of ranks between the treated and control groups in large part due to the low density

of observations in the low hundreds. That is, shifting the treated distribution by a small τ does

not change many ranks.

We now use the methods proposed above to see if we can glean any deeper insights into the

effectiveness of the JOBS II intervention. First, we apply the test statistic p̂ to examine whether

there is a difference in the proportion of zeros across the treated and control groups. The point

estimate is 6% with a 95% confidence interval of 1% to 11% percentage points, with a p-value

against no difference of 0.01, using a simple binomial test of proportions. This test indicates that

the JOBS II intervention moved a significant number of workers into employment as they moved

from zero to positive earnings. Next, we explore whether whether the intervention increased

earnings as well.

As shown in Figure 1, there appears to be a thicker tail of higher incomes in the treatment group.

This could be due to a constant shift. To assess this, we applied the KS test to the nonzero values

of the earnings distribution, testing a sequence of nulls τ0 ∈ [0, 400]. Under this test statistic,

τ̂ = $41, and the 95% confidence interval for τ is [$0, $151]. Under a constant shift model, we

have no evidence of an effect when focused on positive earnings with this statistic.

This might signal model misspecficiation, so we turn to a set of omnibus test statistics. While

the omnibus test statistics may have wider confidence intervals than the Wilcoxon test statistic,

they also have power to detect violations of the Tobit model of effects. We applied three different

omnibus tests to the data by combining the p̂ test statistic with the KS test statistic, the Wilcoxon

test statistic, and a difference in medians statistic. In each case, we calculate the KS, Wilcoxon,

and difference in medians test statistics on the non-zero portion of the earnings distribution. We

now test at the 90% level to remain sensitive to misspecification. The corresponding p-value

curves are on Figure 6.
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The tests signal that the Tobit model of effects is a poor fit. F

For the median and KS omnibus tests, the 90% confidence intervals give the empty set, indicating

model misfit. The plots of the p-values in Figure 6 are instructive. First, the curves lie below the

0.10 line which is why the corresponding confidence intervals are empty. The range of p-values is

generally low and flat along the range of possible value of τ0. No value of τ0 makes the adjusted

treatment response look like the control group. The omnibus test built from p̂ and KS gives a

maximum p-value of ≈ 0.05 for τ0 = 33. The reason for these rejections is the amount of shift

necessary to align the proportion of zeros is much larger than what is needed to align the positive

distributions. There are no values of τ that satisfy both of these constraints.

The third test, the omnibus Wilcoxon test, has a non-empty confidence interval, but the low

shape of the curve on Figure 6 suggests the model of effects is a poor fit; no τ makes the

adjusted responses look much like the control responses. If we truly believe the model of effects,

then our results are roughly similar to the Wilcoxon test alone with a Hodges-Lehmann point

estimate of $228 with a 95% confidence interval of [$176, $355]. The key difference is the length

of the confidence interval for the omnibus test is nearly half the length of the Wilcoxon test alone.

Under our modeling assumption, the omnibus gives a narrow interval, but this is likely due to all

the tests signaling model misspecification. This underscores the importance of model checking

when generating confidence intervals by test inversion.

In general, the empirical analysis suggests that the JOBS II intervention moved workers from

being unemployed to being employed. Overall, there is little evidence that those who would have

obtained employment in the absence of the program would have had higher earnings. Since the

Tobit model of effects assumes that the treatment raises the marginal value of every worker’s

labor by the same constant, it fits the data from JOBS II poorly. Moreover, given that there

is little evidence that wages were increased by the intervention, we see little reason to attempt

to fit the Multi-Tobit model to the JOBS II data. However, this evidence is consistent with the

goals of the JOBS II intervention which focused on job-search skills. That is, the treatment was
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Figure 6: P -value curves for different three omnibus test statistics. Horizontal lines mark the
0.05 and 0.10 α levels. The low curves all suggest that the Tobit model of effects is poor. The
two left curves lying below 0.10 indicate actual rejection of the goodness of fit test at the 90%
level.

designed to help job-seekers find jobs, but the intervention did not focus on skills that might

boost earnings.

5.2 The NSW Intervention

Next, we examine the data from the NSW program. We again begin with a plot of earnings by

treatment status for those workers with nonzero earnings. Figure 7 contains density plots for

nonozero earnings. In the NSW data, the earnings distribution has a longer and thicker right tail

among the treated than the control, even discounting a single treated worker with earnings in

excess of $60,000. This suggests that for some treated workers earnings were much higher.

Furthermore, the standard deviation of outcomes among the treated is substantially larger than

the in control group ($7867 as compared to $5484). The standard deviation among the workers

with positive earnings is also larger ($8042 vs. $5380).1 This difference in standard deviations

might be due to a causal effect of the NSW intervention on those who would have positive

earnings regardless of treatment status. Or it could be due to shifting and pulling observations

away from 0. We investigate this next.

We first fit a series of test statistics to the data, including a series of omnibus tests, under
1Although this is not, strictly speaking, a fair comparison since some workers moved from no earnings are in

the treatment group which could inflate the standard deviation.
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Figure 7: Density of positive earnings for treated and control groups in the NSW program.

the Tobit model. We include a test statistic of the ratio of standard deviations on the positive

outcomes to directly assess whether the difference can be solely due to a shift. The corresponding

intervals and point estimates are in Table 3. First, using the rank based test statistic, we reject

the sharp null (p = 0.006). There is an effect. Again, we next address the question of how to

characterize the effect.

Assuming the Tobit model of effects is correct we have a series of point estimates and confidence

intervals corresponding to the different statistics. The Wilcoxon rank sum test gives a Hodges-

Lehmman point estimate of τ̂ = 1695 with a 95% confidence interval of [$448, $3326]. The

Wilcoxon statistic gives a fairly wide confidence interval since a wide range of shifts still provides

relatively equal distribution of ranks between the groups in large part due to the low density

of observations in the low thousands: shifting by a low-valued τ does not change many ranks.

Potentially because of this the joint Wilcoxon & proportion test gives a slightly shorter confidence

interval than the test based on Wilcoxon rank sum test alone, although it may be the case that

the shorter confidence interval signals model misspecification. Using p̂ as a test statistic produces
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results that are quite similar to those based on the Wilcoxon test statistic. The point estimate

is τ̂ = 1470 with a 95% confidence interval of [$660, $3180]. Figure 8 contains a plot of the

p-values against values of τ . Both test statistics appear well-behaved, but, as we noted above,

neither has any power to detect a failure of the Tobit model of effects.

Table 3: 90% Confidence Intervals from different test statistics ordered by length.

Point Estimate 95% CI Length
Single Test Statistics
σ̂ 2490 [2490, 3585] 1096
W 1695 [600, 3075] 2476
p̂ 1470 [660, 3180] 2521
KS+ (Positive Support) 2505 [0, 3990] 3991
Omnibus Test Statistics
W + p̂ 1650 [660, 3090] 2431
KS + p̂ 1650 [495, 3585] 3091

Next, we review results based on the KS statistic applied to the positive support of the earnings

distribution. This test statistic has no power to speak of here; it fails to reject for any considered

shift. As it never rejects, the confidence interval is actually wider than the reported interval of

[0, 3990]. The lack of power is so severe that an omnibus statistic using the KS statistic is worse

than using p̂ alone. Since KS+ is focused on the positive outcomes only, this hints that the

positive outcomes between treatment and control are in fact relatively aligned. An omnibus test

statistic composed of KS + p̂ produces a point estimate of τ̂ = 1470, similar to the omnibus

test of the Wilcoxon and p̂. This is driven by p̂.

We also used the ratio of standard deviations on the positive outcomes as a test statistic, since,

as we noted above, the standard deviations were unequal between the groups, potentially more

so than what could be accounted for by a Tobit model. This test statistic produces a much

larger point estimate of τ̂ = 2490 and a 95% confidence interval of [$2490, $3585], which is the

shortest of any interval. This test statistic, however, suggests model misspecification, as shown

on Figure 8: no considered shift gives a high p-value. That is, none of the possible shifts due to
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Figure 8: P -value curves for different test statistics. Horizontal lines mark the 0.05 and 0.10 α
levels. The σ̂ statistic suggest model misfit: no constant shift makes the treatment and control
groups comparable in terms of spread.

treatment makes the standard deviation of the adjusted treatment group response comparable

to the responses of the control group (although implausibly high shifts in the 10000 range would

align this statistic). If the Tobit model were true, then some plausible shift should align the

standard deviations. However, there appears to be greater variability in the adjusted treatment

outcomes than control. We note, however, that it does achieve p-values of 0.12 > 0.10, which

means no official rejection of the goodness-of-fit test. Various omnibus statistics incorporating σ̂

have maxima of around 0.30. Regardless, we next apply the Multi-Tobit model to see if rescaling

the positive outcomes could improve fit.

5.2.1 A Multi-Tobit Model

Recall that the multi-tobit model implies that response to treatment occurs in two stages. First,

it assumes that the marginal value of a worker’s labor is shifted up by a constant amount τ .
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Second, if the marginal value of an employed worker is positive that constant effect is scaled

by a second amount β. This allows for greater variability among the earnings in the treated

condition. We begin by fitting a multi-tobit model using five individual test statistics: p̂, KS,

KS+, the Wilcoxon rank sum test statistic, and σ̂. Figure 9 shows the fit for these five test

statistics using contour plot to show the possible joint values of the two parameters. In all cases

we observe large, diffuse regions for the parameters, which suggests low power and motivates

omnibus statistics.

For example, the Wilcoxon rank sum test statistic is not sensitive to differences in distributional

shape. Due to this insensitivity, there is a relatively large region that allows large values of β to

offset low values of τ . This is equivalent to letting large ranks in the treatment group compensate

for the low ranks from those with zero earnings. This pattern is even more pronounced when p̂

is the test statistic. The KS statistic, with a focus on overall shape of the earnings distribution,

produces a tighter confidence region than the Wilcoxon or p̂ test statistics.

Omnibus test statistics, unlike single test statistics, may be sensitive to multiple parts of the

distribution. Figure 10 shows the confidence regions for four different omnibus test statistics.

The confidence regions based on omnibus statistics inherit their general shape from the simpler

statistics. For example, the test statistic based on a combination of p̂ and the Wilcoxon rank

sum test still has a relatively large region that does not allow us to reject the possibility of large

values of β with low values of τ . For the omnibus test statistic which is a combination of σ̂

and the Wilcoxon rank sum test, the confidence region clearly includes τ < 0, suggesting that

large scalings with potentially negative shifts are possible. In general, it appears that we are not

constraining enough aspects of the two distributions and are thus getting nonsensical fits. Even

an omnibus statistic that combines all four individual test statistics, while providing evidence that

β is unlikely to be larger than 1.5, does not well determine τ , the shift in earnings.

We fit the Multi-Tobit model because the Tobit model was clearly misspecified. We next examine

whether the Multi-Tobit model itself has good fit. To assess model fit, we calculated the Hodges-
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Figure 9: Confidence regions for five test statistics with the Multi-Tobit model of effects. In all
cases, confidence regions are wide and diffuse.
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(d) Test Statistic: Wilcoxon+KS+p̂+ σ̂

Figure 10: Multi-tobit confidence region using the proportion and Wilcoxon omnibus and the
proportion and KS omnibus. Vertical lines mark the Tobit confidence interval corresponding to
fixing β at 1 (up to granularity of the grid and simulation error).
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Lehman point estimates by maximizing the p-value over the confidence region for the various

statistics and omnibus statistics examined. Because all these p-values are generated with a

monte-carlo simulation we, to reduce Monte-Carlo simulation error, first calculated an upper

95% confidence interval for the p-value at the maximum found point, and then took all points

that had p-value estimates within this interval. Finally, to get a single point estimate, we reported

the median of each cloud, reasonable when the points are tightly clustered as they usually are.

Table 4 contains the results for a variety of test statistics. The clouds are depicted on the figures.

We generally see estimates for τ in the $1000-$1500 range and scalings of 1.02 to 1.18.

Table 4: Hodges-Lehman style point estimates for the Multi-Tobit model under different test
statistics. Above line are single statistics. Below line are omnibus.

Test Statistic τ̂ β̂ p-value
p̂ 1552 1.00 1.00
KS 1086 1.10 0.98
KS Positive Support 0 1.10 0.96
W 1280 1.10 1.00
σ̂ 3414 1.53 1.00
W + p̂ 1474 1.05 1.00
W + p̂+ σ̂ 1241 1.18 0.74
KS + p̂ 1513 1.02 0.96
p̂+ σ̂ 1047 1.49 1.00
All 1397 1.08 0.76

We then adjusted the outcomes for treated workers using the point estimate corresponding to

the omnibus of all four statistics and compared these adjusted treated outcomes to actual control

outcomes using boxplots. If the multi-tobit model of effects is correctly specified, the boxplot of

the adjusted treatment units should look more similar to the control units than the unadjusted

treatment units do. The results are in Figure 11.They indeed look more similar, although we are

possibly over-shrinking with a somewhat too large value of β.

Overall, there is considerable uncertainty due to the sample size and the difficulty of assessing

goodness of fit in general. The tails, in particular, are hard to pin down due to having so few

points. Even under the very structured Tobit and Multi-Tobit models, we cannot truly differentiate
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between amplification of positive earnings and simply shifting workings into employment.

An alternate approach would be to investigate the scaling and the zero inflation separately. The

zero-inflation is relatively straight forward: the difference in proportions in those with positive

earnings is 11%, with a 95% confidence interval of 2%-20%. We can reject the null for a test of

equal proportions (p = 0.02), indicating that the NSW program did move people into positive

earnings. To estimate impacts on the positive earnings, however, we need a model of effects to

describe them. We cannot simply compare positive earnings in each group, since the positive

earnings in the treatment group is a mixture of those who would otherwise have obtained positive

earnings, and those who would not. The Tobit and Multi-Tobit model allow for this separation.

Other models are possible, such as principle stratification (?). All of these approaches usually

rely on strong distributional assumptions. We recommend a sensitivity approach of trying many,

and attempting to assess model fit.

As a final note, we acknowledge that model checking and fitting is more an art than a science.

We show many different tests and combinations to illustrate that different test statistics focus

on different aspects of model-checking. Taken as a whole, they can be considered a sensitivity

analysis in the style of ensuring overall impacts are consistent across a range of different estimation

procedures. Here, we do seem to see a suggestion of impact on both positive earnings and moving

people into positive earnings, but the former claim is not statistically significant, likely a function

of it not being directly testable without strong assumptions.

6 Summary

Outcome data with clumping at zero invariably require strong assumptions for analysis. Paramet-

ric approaches to these data rely on distributional assumptions about the data. The motivation

for these assumptions is the likelihood that distinct behaviors produce values that can only be

observed in a single distribution. In job training applications where the outcome is wages, we can

easily imagine a process whereby the intervention moves some subjects into positive earnings but
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Figure 11: Boxplots comparing Multi-Tobit adjusted treatment outcomes to control outcomes
with β̂ = 1.08 and τ̂ = $1397. Adjusted treated outcomes should be similar to control outcomes
(so in the set of three, the lower boxplot should match the middle more than the upper). Bottom
set are positive outcomes only.
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for other subjects increases earnings.

Our approach still requires modeling assumptions but these assumptions are different arguably far

weaker than those need for parametric modeling. Moreover, we develop and emphasize the need

for goodness of fit tests, to allow for model checking. In both applications, we found evidence

that the Tobit model of effects was a poor fit. Moreover, the large number of tests that are

possible suggest careful pre-specification in an analysis plan to avoid fishing and over-fitting the

data. Because the assumptions are different, conducting analysis such as these as well as the full

parametric approach could be worthwhile as a final sensitivity check.
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