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CD1 proteins present microbial lipids to T cells. Germline-encoded mycolyl lipid-reactive

(GEM) T cells with conserved ab T cell receptors (TCRs) recognize CD1b presenting

mycobacterial mycolates. As the molecular basis underpinning TCR recognition of CD1b

remains unknown, here we determine the structure of a GEM TCR bound to CD1b presenting

glucose-6-O-monomycolate (GMM). The GEM TCR docks centrally above CD1b, whereby

the conserved TCR a-chain extensively contacts CD1b and GMM. Through mutagenesis and

study of T cells from tuberculosis patients, we identify a consensus CD1b footprint of TCRs

present among GEM T cells. Using both the TCR a- and b-chains as tweezers to surround and

grip the glucose moiety of GMM, GEM TCRs create a highly specific mechanism for

recognizing this mycobacterial glycolipid.
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ab T cells use their clonotypic ab T cell antigen receptors
(TCR) to sense microbial-derived peptides that are
presented by molecules encoded by the polymorphic major

histocompatibility complex (MHC)1. More recently, studies show
that TCRs can recognize foreign non-peptide antigens, including
bacterial vitamin B metabolites bound to MR1 and microbial
lipid-based antigens bound to CD1 (refs 2–4). These studies
broadly expand the biochemical range of natural antigens that
trigger ab T cell responses.

A second new and general insight into ab T cell function is that
the monomorphic CD1 and MR1 antigen-presenting molecules
can activate conserved populations of responding T cells, which
are not restricted to the genetic background of the donor. Such
‘donor-unrestricted T cells’ can show characteristic TCR gene
usage patterns that are more broadly conserved across the human
species than even the most public MHC-restricted TCRs3,5–7. The
two most widely studied examples are type I Natural Killer T cell
(NKT) TCRs, which typically express TCR a-chains encoded
by the TRAV10-TRAJ18 gene segments and recognize CD1d
(ref. 8), and mucosal-associated invariant T cells (MAIT) that are
typically encoded by TRAV1-2 joined to TRAJ33 and recognize
MR1 (refs 9,10).

In addition to CD1d, which is designated as a group 2 CD1
protein, the human CD1 locus encodes three group 1 antigen-
presenting molecules, CD1a, CD1b and CD1c. Each of these
proteins possesses distinctly shaped antigen-binding clefts and
show differing expression on B cells, myeloid dendritic cells and
Langerhans cells, which increasingly point to separate immuno-
logical functions11–15. CD1b differs from the other human CD1
proteins in that it binds both to adaptor protein 2 (AP-2) and
AP-3 complexes, which promote trafficking to lysosomes, where
antigen loading is more strongly controlled by acid pH (ref. 16).
Also, CD1b possesses a particularly large and deep antigen-
binding cleft that contains two pockets (C0, T0) not found in other
CD1 proteins. The four antigen-binding pockets (A0, F0, C0

and T0) of CD1b bind the hydrocarbon chains of amphipathic
antigens (Ag), allowing the hydrophilic head groups to protrude
from the F0-pocket through the F0-portal4. The outer surface of
CD1b near the F0-portal is the presumed surface for TCR contact,
but the mode of TCR binding to CD1b has not been directly
observed.

The development of group 1 CD1 tetramers now increases our
understanding of human lipid-reactive T cell populations17–19.
For example, CD1b tetramers carrying a mycobacterial glycolipid,
glucose-6-O-monomycolate (GMM), demonstrated the existence
of polyclonal T cells recognizing GMM lipids and among
tuberculosis (TB) patients20,21. CD1 proteins are non-
polymorphic and the responding T cells show two defined TCR
conservation patterns. Namely, germline-encoded mycolyl lipid-
reactive (GEM) T cells express nearly identical TCR a-chains
encoded by TRAV1-2 and TRAJ9, and TCR b-chains that are
biased toward usage of TRBV6-2 or TRBV30 (ref. 20). This TCR
a-chain was also identified in one T cell clone (clone 18) that
recognizes free mycolic acid, a deglycosylated form of GMM. In
addition, LDN5-like T cells are a distinct T cell population that
expresses TRBV4-1þ TCRs, which bind CD1b–GMM complexes
with lower affinity than the GEM TCRs22. Thus, TCR-defined T
cell types exist in the human CD1b-reactive repertoire. Here we
describe the structure of a GEM TCR bound to the CD1b–GMM
complex, thereby representing the first description of a TCR–
CD1b–Ag ternary complex and sheds light on the general nature
lipid-reactive TCRs that are broadly conserved in humans21.
These data provide specific structural explanations for the TCR
variable (V) and joining (J) genes that define GEM T cells,
identify two distinct modes of typical and atypical antigen
recognition, as well as conceptual insight into the biased TCR

selection of GEM T cells towards a glycolipid antigen by a
pathogen of worldwide importance.

Results
Overview of the GEM TCR–CD1b ternary complex. GEM TCRs
from clones 1, 42, 21 bind CD1b–GMM with relatively high
affinity (KDE1mM)20. We refolded the TCR from clone 42
(GEM42) that was encoded by three gene segments typical of
GEM TCRs: TRAV1-2, TRAJ9 and TRBV6-2 (Supplementary
Table 1). Next we generated a panel of CD1b mutants, of which
one (Ile160Ala) was expressed at a particularly high yield. Like
wild type CD1b, CD1b-Ile160Ala readily loaded a natural GMM
with an average chain length of C32 (C32 GMM) and bound the
GEM42 TCR with a comparable but slightly higher affinity that
wild type CD1b. We subsequently determined the structure of the
ternary complex to 3.2 Å resolution (Table 1; Supplementary
Fig. 1).

The GEM42 TCR docked over the a1 and a2-helices of CD1b
with a centrally located footprint (Fig. 1). A comparison of the
first footprints of TCRs on CD1a and CD1b show an extreme
contrast. Namely, the CD1a autoreactive TCR (BK6) binds at a
site distant from the F0-portal of CD1a and does not contact
the bound lipid ligands23 (Supplementary Fig. 2). Instead, the
GEM42 TCR is positioned near the centre of the CD1b platform
and directly covers the F0-portal, thereby fully surrounding
and extensively contacting the protruding glucose headgroup
(Fig. 1b). Specifically, the GEM TCR bound in an orthogonal
orientation with respect to the long axis of the CD1b antigen-
binding cleft, whereupon the TCR a-chain and b-chains sat over
the a2-helix (residues 151–160) and a1-helix (residues 68–80) of

Table 1 | Data collection and refinement statistics.

CD1b–GMM GEM 42
TCR–CD1b–GMM

Data collection
Space group P212121 P6422
Cell dimensions
a, b, c (Å) 57.66, 78.11, 91.33 175.00, 175.00, 170.87
Resolution (Å) 57.66–1.65

(1.68–1.65)
48.45–3.20
(3.37–3.20)

Rpim* (%) 4.5 (67.0) 11.4 (99.2)
CC1/2 (%) 99.8 (58.4) 99.6 (63.8)
I/sI 13.6 (2.1) 14.4 (1.8)
Data completeness (%) 100.0 (100.0) 100.0 (100.0)
Multiplicity 13.0 (13.2) 67.7 (61.1)

Refinement
Resolution (Å) 35.91–1.65 43.75–3.20
No. reflections 50306 26029
Rfactor

w/Rfree
w (%) 17.3/19.8 18.5/23.1

No. atoms
Protein 3072 6383
Ligand/ion 180 100
Water 367 6

B-factors
Protein 23.1 84.3
Ligand/ion 37.3 106.0
Water 34.0 45.3

Rms deviations from ideality
Bond lengths (Å) 0.010 0.010
Bond angles (�) 1.06 1.27

Ramachandran plot (%)
Allowed region 100.0 99.1
Disallowed region 0 0.9

*Rp.i.m¼Shkl [1/(N� 1)]1/2 Si | Ihkl, i �oIhkl4|/Shkl oIhkl4.
wRfactor¼Shkl||Fo|� |Fc||/Shkl|Fo| for all data exceptE5% which were used for Rfree calculation.
Highest resolution shell is shown in parenthesis.
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CD1b, respectively (Fig. 1b; Supplementary Table 2). The buried
surface area (BSA) on complexation by the GEM TCR was
B1,600 Å2, of which the TCR a- and b-chains contributed 52%
and 48%, respectively. At this interface, the CDR3a loop and
CDR3b loop contributed the most to the interaction with
CD1b–GMM, with 27% and 35% of BSA, respectively (Figs 1b
and 2a). Thus, the GEM TCR formed an extensive interaction
network with CD1b–GMM complex, thereby providing
immediate molecular insight into the basis for the previously
observed patterns of TCR a- and b-chain conservation in
polyclonal GEM T cells from latent TB patients20.

Role of GEM TCR a-chain in CD1b recognition. Critical
questions we aimed to address were whether and how
GEM-defining TRAV and TRAJ regions control specificity for

CD1b and GMM. The TRAV1-2 gene element encodes the
CDR1a and CDR2a germline-encoded loops, which played an
important role (10% BSA each) in contacting CD1b–GMM.
In contrast, the corresponding CDR1b and CDR2b loops from
the TCR b-chain played a lesser role (BSA of 5% and 4%,
respectively) (Fig. 2a; Supplementary Table 2). These differential
contributions from the TRAV and TRBV regions of the GEM
TCR reflected the different extent of the TCR a- and b-chain bias
in GEM T cells.

Considering the particular roles of GEM TCR-defining
residues in CD1b–GMM recognition, the positioning of Gly29a
and Phe30a enabled the CDR1a loop to lay flat and proximal to
the a2-helix of CD1b, with the main chain backbone of the
CDR1a loop mediating van der Waals and polar contacts with a
cluster of CD1b residues including Glu156, Arg159 and Glu164
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Val57α
Asn31α

Asn31α
Leu151

TCR-CD1b-lipid TCR-MHC-peptide TCR-MR1-metabolitea c e

b d f
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Vβ
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Vβ
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Glu156

CD1b-lipid MHC-peptide Glu159 MR1-metabolite

Arg84α
Tyr55α
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Leu58α Leu58α
His148
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Figure 1 | TRAV1-2 TCRs recognize CD1b, MHC-I and MR1. Overview of the TRAV1-2 TCRs in complex with CD1b (coloured white; a,b,g), MHC-I

(coloured dark grey; c,d,h) and MR1 (coloured light grey; e,f,i) molecules. The top panels show the overview of each complex represented in cartoon format

with the antigen in black spheres. The TRAV1-2 gene segment is coloured in light pink, the TRAJ gene segment in vibrant pink, and the b-chain in blue,

orange and green for GEM42 TCR (a,b), ELS4 TCR (c,d) and MAIT TCR (e,f), respectively. A schematic of each TCR gene segment is represented as two

rectangles for the a and b-chains, with TRAV1-2, TRAJ and the b-chains coloured as per the top panels. The middle panels show the footprint of each TCR

on the surface of the CD1b-lipid (b), MHC-peptide (d) and MR1-metabolite (f). The black spheres on the middle panels represent the centre of mass of the

Va and Vb domains, while the light grey spheres represent the antigen bound in each molecule. The atomic footprint is coloured according to the TCR

segment making contact. The bottom panels show the TRAV1-2 gene segment (light pink) contact with (g) CD1b-lipid (white), (h) MHC-peptide

(dark grey) and (i) MR1 (light grey).
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(Supplementary Table 2). These interactions were complemented
by the Asn31a side chain forming a hydrogen bond with Thr157
from CD1b (Fig. 2b). The TRAV1-2-encoded CDR2a loop
mediated hydrophobic contacts with CD1b, whereby Val57a and
Leu58a wedged between the aliphatic side chains of Gln152 and
Glu156 of CD1b (Fig. 2c). These hydrophobic contacts were
flanked by two closely associated framework residues, Tyr55a and
Arg84a from the TRAV1-2 chain, which interacted with CD1b.
Here, Tyr55a is within hydrogen bonding distance to the main
chain of CD1b (Gly153), and Arg84a extended towards CD1b
and formed a salt bridge with Glu156 (Fig. 2c).

The TRAJ9-encoded CDR3a loop played a key role at the GEM
TCR–CD1b–GMM interface, abutting the GMM antigen, and
residing between the helical jaws of the CD1b antigen-binding
cleft, forming mostly hydrophobic contacts with residues from
both the a1- and a2-helices of CD1b. Here, Thr109a and
Gly110a packed against Thr157 from the a2-helix of CD1b, while
Phe112a plugged into a hydrophobic crevice formed by Ile69,
Val72 and the aliphatic moiety of Glu68 (Fig. 2d). In comparison
to the other CD1 isoforms, the invariant TCR a-chain of the
GEM TCR made a series of contacts that were either unique to
CD1b, or absent in some of the other CD1 family members
(Supplementary Fig. 3).

Role of the TCR b-chain in CD1b recognition. The role of the
CDR1b loop was restricted to Tyr31b contacting Val72 on CD1b,
the latter of which was also contacted by Val57b from the CDR2b
loop (Fig. 2e). This CDR2b loop contact was supported by an
adjacent framework residue Tyr55b, which hydrogen-bonded to

Glu68 of CD1b (Fig. 2e). Thus the germline-encoded regions of
the TRBV6-2 gene played a limited role in contacting CD1b
(Fig. 2a and Supplementary Table 2), consistent with its present,
but weak contribution to GEM TCR motifs observed in poly-
clonal T cells. Nevertheless, Glu30b from the CDR1b loop, while
not contacting CD1b, played a key role in maintaining the
conformation of Arg109b from the CDR3b loop, which formed
many contacts with GMM and CD1b (Supplementary Table 2).
Here, Arg109b extended into a niche formed by Phe75, Arg79
and Glu80, forming a salt bridge with Glu80 from CD1b (Fig. 2f).
Glu80 abutted Leu110b, which, together with Ala111b also
stacked against Tyr151 from CD1b (Fig. 2f). Collectively,
our observations suggest a potential role of the CDR3b loop in
fine-tuning the interactions with the F0-pocket of CD1b, thereby
refining GEM TCR recognition of CD1b–GMM (ref. 20).

A two-chain tweezers mechanism grips GMM. The mechanism
of glycolipid recognition by the GEM TCR is visually striking
and can be compared to tweezers, whose jaws are formed by
the CDR3a and CDR3b loops, grasping at the protruding
glucosyl moiety of GMM (Fig. 3a). This headgroup grasping
mechanism is highly distinct from a recently solved CD1a–lipid–
TCR complex23, in which the TCR does not directly contact
bound lipid. Further, this two-chain mechanism in which glucose
is sandwiched between TCR a- and b-, is distinct from type I
and type II NKT TCR antigen recognition, in which only one
TCR chain contacts antigen24–27. This tweezers mechanism
prompted functional studies of the GEM TCR’s fine specificity
for GMM.

Glu156

Arg84α
Tyr55α

Val57α
Leu58α

Gln152

Thr109α

Gly110α

Phe112α

Thr157
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Arg109β
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Tyr31β

Leu110β

Tyr151

d e f

Vα

Vβ

GMM

Ile154

GEM42 TCR  TRAV1-2  TRAJ9 
gct gtt cga aat act gga ggc ttc aaa act atc
 A V R N T G G F K T I

Gly153GMM

Asn31α
Gly29α
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Arg159
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Figure 2 | GEM TCR footprint on CD1b–GMM. (a) Footprint of the GEM42 TCR on the surface of CD1b (white) and GMM (pale orange spheres) is

represented according to the atoms contacted and coloured as per the TCR segment making contact. Framework residue from the a-chain in pale pink, the

CDR loops coloured in teal (CDR1a), green (CDR2a) and purple (CDR3a) for the a-chain and red (CDR1b), orange (CDR2b) and yellow (CDR3b) for the b-

chain, respectively. Pink and blue spheres represent the centre of mass of the GEM42 TCR a and b-chains, respectively. The insert below the footprint

represents the characteristic CDR3a loop sequence of the GEM TCR. GEM42 TCR interactions with the CD1b (panels b–f), with the CD1b in white, GMM in

pale orange and the GEM 42 TCR coloured as per panel (a). The panels represent residues from the (b) the CDR1a (teal); (c) CDR2a (green) and

framework residue from a-chain (pale pink); (d) CDR3a (purple); (e) CDR1/2b (red and orange) and framework b-chain (pale blue); (f) CDR3b (yellow)

interacting with the CD1b molecule (white). Hydrogen bonds are shown as red dashed lines, and the sphere represents the Ca atom of the glycine 29a
residue.
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Whereas most GEM T cells recognize GMM, the extent of fine
specificity for antigen structure remains unknown. One ‘atypical’
GEM TCR expressed by clone 18 (GEM18 TCR) recognized free
mycolic acid (MA). This antigen lacks the glucosyl moiety,
pointing toward possible promiscuity20. On the other hand,
CD1b-reactive clones known as LDN5-like T cells, do show
specificity for the glucosyl group of GMM22,28. We measured
GEM clone 42 and clone 18 responses to molecules with altered
head groups, including MA, which lacks glucose, as well as
mannose-6-O-monomycolate (ManMM) and galactose-6-O-
monomycolate (GalMM), which differ from GMM only in the
orientation of one hydroxyl group in the hexosyl ring at position
C2 or C4, respectively. In all cases alteration of the headgroup
abolished the GEM clone 42 T cell response, demonstrating
precise specificity for the glucosyl moiety (Fig. 3b).

This fine specificity for GMM arose from the extensive contacts
made by the GEM42 TCR. Here, the double glycine motif,
Gly110a-Gly111a, enabled the CDR3a loop of the GEM42 TCR
to pack against the glucose headgroup, while the main chain
carbonyl of Gly110a also formed a hydrogen bond with the
mycolyl b-hydroxyl group of GMM (Fig. 3c). In addition,
Arg107a rested above GMM, where it hydrogen-bonded with the

2-OH moiety of the glucose headgroup. The axial position of
2-OH in ManMM likely accounted for the lack of recognition by
the GEM42 TCR (Fig. 3b). Moreover, Arg107a ‘collaborated’ with
Asp113b from the CDR3b loop, by forming a salt bridge with it,
which held Asp113b in place so that it formed hydrogen bonds
with the 2-OH and 3-OH groups of glucose (Fig. 3b). Thus,
Arg107a functioned like a ‘capstone’ as its positioning allowed
two key interdomain interactions: stabilization of the TCR a and
b-chains, as well as binding with glucose. The lack of response to
GalMM and other related analogues correlated with the finding
that glucose moiety formed hydrogen bonding contacts with
the main chain of the CDR3b loop (Supplementary Table 2).
While there is space to accommodate a galactose moiety between
the molecular tweezers, the altered stereochemistry of the C4
hydroxyl would result in loss of interactions with the TCR b-
chain at positions Ala111b and Gly112b and unfavourable
contacts with CD1b.

GMM was also contacted by other germline-encoded elements
of the GEM42 TCR. Namely, Asn31a from the CDR1a loop
formed a hydrogen bond with the C1 hydroxyl moiety of GMM,
and Tyr31b from the CDR1b loop formed a hydrogen bond with
the carbonyl oxygen of the glucosyl ester linkage to mycolic acid
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Figure 3 | Molecular tweezers grip the glucose headgroup of GMM. (a) Surface representation of the CDR3a (purple) and CDR3b (yellow) loops acting

as ‘tweezers’ grasping the GMM glucose head group (pale orange stick). (b) Schematic of the GMM analogues tested against the GEM T cells. Red shows

the different hydroxyl orientation of Galactose monomycolate (MM) and Mannose MM. Each GMM analogue was used to stimulate IL-2 production upon

presentation to GEM clone18 (black bar) and GEM clone 42 (pink bar), error bar representing triplicate wells. The experiments was performed twice with

similar results. (c) Interaction network between the GMM (pale orange stick) and the GEM42 TCR (coloured as per Fig. 2a). The red dashed lines represent

hydrogen bonds, while the blue dashed line represent hydrophobic interactions. (d) CDR3a loop sequences of the GEM TCR, element from the TRAV1-2

gene are highlighted in sand colour, N region in green and TRAJ9 gene in pink, while the CDR3b loop is coloured in yellow as per panel c.
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(Fig. 3c). As such, every polar moiety of the GMM antigen was
involved in an interaction with the GEM42 TCR (Fig. 3c). Indeed,
of the 230 Å2 solvent exposed surface area of GMM available for
TCR contact, 93% was buried upon ligation with the TCR.
Accordingly, the tweezers-like grip of the GMM antigen provided
the molecular basis for the high affinity and strict specificity of
this GEM42 TCR for this mycobacterial glycolipid.

Roles of germline and N-region encoded residues in GEM TCRs.
GEM T cells were so named based on the use of germline-
encoded sequences and the paucity of N-region additions at the
TRAV–TRAJ junction. Comparison of the CDR3a sequences
from GEM T cells suggests a candidate mechanism by
which N-region additions, when present, do not interfere with
CD1b–GMM binding. In half of the known GEM TCR a-chains,
position 108 is encoded by N nucleotides. This residue is variable,
and can be Asn, Arg, Val or Gly (Fig. 3d). This relative
insensitivity of GEM TCRs to changes encoded by N-region
additions at position 108a agrees with the structural observation
that this residue is rotated outward on the CDR3 loop so that it
makes no interactions with TCR b-chain, CD1b or GMM.

The Arg107a is conserved among all GMM-specific GEM
TCRs. Arg107 is encoded by TRAV1-2 in GEM clones 21 and 1,
as well as two TCRs from donor A14, known as A14PCR1 and
A14PCR2 (ref. 20). In one of the GEM TCR a-chains, A14PCR2,
the consensus GEM CDR3a is formed without any N nucleotides,
and thus entirely encoded by the genome. However, in the
GEM42 TCR, TRAV1-2 was trimmed so that it lost sequences
that would have encoded Arg107a, but the N nucleotides encoded
Arg107a (Fig. 3d). Combining these observations with the
structural evidence that Arg107a serves a capstone function
(Fig. 3a), we propose a capstone switch mechanism whereby

TRAV1-2 usually encodes Arg107a. In the case that nucleotides
encoding this residue are chewed back, the relatively rare event of
random N-nucleotide recovery of arginine can nevertheless be
selected based on the crucial structural role of the arginine
side chain.

Typical and atypical GEM TCRs. The GEM18 TCR can be
considered atypical, because it recognizes unglucosylated mycolic
acid whereas the other typical clones recognize GMM. Clone 18
differs from all five typical GEM TCRs in that it lacks arginine at
position 107a, and possesses a Leu107a instead, thereby
explaining the lack of specificity for glucose (Fig. 3d). Clone 18
also lacks the key Asp113b, which is found in three typical GEM
TCRs and contributes TCR a and b pairing20 (Supplementary
Table 1). Conversely, clone 18 does possess two residues, Gly110a
and Phe112a, which interact with the A0-roof of CD1b and
aspects of the mycolyl moiety that are shared between GMM and
MA. Thus, the GEM42 TCR provides a framework for identifying
the particular mechanisms of atypical TCR mediates recognition
of mycolic acid.

Remoulding of CD1b–GMM on GEM TCR ligation. To
establish the extent of conformational plasticity occurring upon
TCR engagement of CD1b–GMM, we compared the GEM42
TCR–CD1b–GMM ternary complex to the binary CD1b–GMM
(C32) structure (Table 1, Supplementary Fig. 4), and the
previously solved structure of the non-liganded GEM42 TCR
(ref. 20). With the exception of the CDR3b loop, the CDR loops
of the GEM TCR did not move appreciably after CD1b–GMM
binding. The CDR3b loop moved maximally byB4 Å to avoid
steric clashes and make favourable contacts with CD1b–GMM
(Fig. 4a). Thus, the invariant TCR a-chain of the GEM TCR was a
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fixed recognition determinant of CD1b–GMM. Our binary
structure of CD1b-C32 GMM was similar to one previously
determined with C54 GMM (C51-C57) bound to CD1b (ref. 29)
(Supplementary Fig. 5). The glucosyl moiety extends substantially
out of the CD1b cleft and can exhibit mobility (Supplementary
Fig. 4). TCR engagement caused two major conformational
changes. Namely, the glucose headgroup was flattened by the
CDR3a loop, being displaced by B5 Å towards the a2-helix of
CD1b (Fig. 4b,c). This bulldozing of the headgroup was essential
to enable favourable contacts between glucose and the GEM TCR,
and also enabled TCR contacts with the CD1b molecule itself
(Fig. 4c). To accommodate the altered position of GMM, the
hinge region of the CD1b a2-helix was remoulded (Fig. 4c).
Repositioning of Gln152 caused a ripple of conformational
change, including the displacement of Tyr151, which caused
re-orientation of Phe84 and Phe88 as well as shifting of Phe144
(Fig. 4d). Collectively these changes altered a segment of the
a2-helix of CD1b itself (residues 146–150), undergoing a rigid
body shift of 1.5–2.0 Å (Fig. 4b). Thus a relatively rigid GEM TCR
forced a series of large conformational changes in GMM and
CD1b to enable high affinity engagement.

TRAV1-2 recognition of MHC-I, MR1 and CD1b. TRAV1-2
gene usage is a defining feature of polylconal TCRs present on
both MAIT cells and GEM T cells, and it is present in some
MHC-reactive TCRs20,30,31. In all three corresponding TCR
ternary complexes30,32 (Fig. 1; Supplementary Table 3), a large
part of the footprint was made by the germline-encoded
TCR a-chain, highlighting the basis for the TRAV1-2
usage. The axis of orientation (80–90�) and the position of the
footprint of TRAV1-2-encoded regions were similarly
placed atop the MHC-I, MR1 and CD1 platforms, a remarkable
finding given the lack of sequence homology in the three
footprint regions.

Next we carried out a comparative analysis of the surface
interactions to identify shared or distinct mechanisms of binding,
emphasizing CD1b and MR1 as the two non-polymorphic
proteins that generate species-wide patterns of TCR response
(Fig. 1; Supplementary Table 3). One identifiable shared aspect of
recognition was notable in the CDR1a loop, where all three TCRs
used Asn31a to engage the respective antigen-presenting
molecules (Fig. 1; Supplementary Table 3). Also, the CDR2a
loop docked a similar portion of the CD1b, MHC and MR1
molecules. TRAV1-2 encodes a hydrophobic motif of the CDR2a
loop (Val57-Leu58), which forms a ‘clamp’ that docked onto the
a2-helix of CD1b, MR1 and MHC. These interactions are further
helped by the framework residue Tyr55a, which packs its
aromatic ring with the ‘hydrophobic clamp’ and directly contacts
the CD1b, MHC and MR1 molecules. Upstream of this
hydrophobic patch, Arg84a points towards the a2-helix and is
forming either a salt bridge with CD1b (Glu156) or hydrogen
bond with MR1 (Asn155) and MHC (Gly162). Overall the
TRAV1-2 exhibits a docking mimicry with three evolutionarily
conserved antigen presenting molecules.

TCR energetic footprint on CD1b. To determine the role of
residues near the entrance to the CD1b cleft, we made six single-
site alanine mutants of the a1-helix and eight mutants of the
a2-helix. Each CD1b mutant was loaded with GMM, and assessed
by surface plasmon resonance (SPR) for binding the GEM42 TCR
(TRBV6-2þ ) and the GEM21 TCR (TRBV30þ ). These two
GEM TCRs use the two most common TCR b-chain variable
genes seen among polyclonal GEM T cells20 (Supplementary
Table 1). The GEM42 and GEM21 TCRs possess an affinity (KD)
of 1.15 and 0.70 mM for CD1b–GMM (Supplementary Table 4),

respectively, and lacked detectable affinity towards the untreated
CD1b (Fig. 5a). Compared to wild type CD1b, the CD1b-
Ile160Ala mutant slightly improved the affinity of both GEM42
and GEM21 TCRs (Supplementary Table 4; Supplementary
Fig. 6a). An alanine at position 160 might allow the GEM TCR
to approach closer to the CD1b–GMM complex, thereby
favouring the interaction (Supplementary Fig. 6b).

For the GEM42 TCR, one mutant improved (3–5 fold), seven
had no impact (o3-fold change), two had moderate impact
(3–5 fold reduction), and four (Ile69Ala, Val72Ala, Ile154Ala and
Thr157Ala) were critical (45-fold reduction) to affinity (Fig. 5b).
All four critical residues form contacts with the CDR1a and
CDR3a loops of the invariant TCR a-chain or the CDR3b loop,
and two of the critical residues, Ile154 and Thr157, interacted
with the GMM headgroup (Fig. 2f; Supplementary Fig. 7). For the
GEM21 TCR, these same four CD1b mutants were critical
(Fig. 5c, Supplementary Table 4), indicating a common energetic
‘hot spot’ for these two GEM TCRs.

Notably, however, CD1b residues located near the F0-pocket
had different effects on binding the two TCRs (Fig. 5d,e). Namely,
the Arg79Ala and Tyr151Ala mutants increased and moderately
decreased the affinity of the interaction towards the GEM42 TCR
(Fig. 5b,d), respectively, but these mutants had no impact on the
affinity of the interaction for the GEM21 TCR (Fig. 5c,e). These
residues mapped to the site of the interaction with the
hypervariable CDR3b loop, which suggests a potential role of
this loop in fine-tuning the interactions with the F0-pocket of
CD1b. Similarly the Glu68Ala mutant moderately impacted the
GEM42 TCR affinity, while being critical for the GEM21 TCR
recognition. More generally, the patterns of mutation that
affected binding were shared between the two TCRs, pointing
to a common energetic hot spot on CD1b, which coincided with
the observed GEM42 TCR a-chain footprint.

Analysis of polyclonal T cells from subjects with latent tuber-
culosis. Next, we loaded 11 mutant CD1b proteins with GMM
and generated a panel of fluorescent CD1b–GMM mutant tet-
ramers. As expected, treating GEM clone 42 with wild type CD1b
tetramers showed bright staining that was dependent on loading
CD1b with GMM (Fig. 6). The pattern of the position of CD1b
mutation could be discerned (Supplementary Table 4), with loss
of staining by CD1b mutants Ile154Ala, Val72Ala, Thr157Ala and
Ile69Ala (Fig. 6). The pattern generally matched that seen in SPR
assays, thereby creating a new tool to dissect the CD1b specificity
of polyclonal T cells.

Polyclonal GEM T cells were obtained from two unrelated
Mycobacterium tuberculosis-infected subjects, A22 and C58,
which had been expanded with autologous CD1bþ APCs and
GMM for one round (Fig. 6). Co-staining with anti-CD3,
anti-TRAV1-2 and CD1b–GMM tetramers identified triple
positive GEM T cells, which comprised between 10 and 31% of
all TRAV1-2þ cells. Strikingly, for every mutant in both patients,
any effects of mutation seemed homogenous among each T cell
population, rather than generating a smear from high to low
staining. Thus, despite the sequence differences observed among
GEM TCRs in vivo20, every CD1b mutant affects nearly all GEM
T cells in a similar way, suggesting homogeneity in their TCR
binding to CD1b (Fig. 6). Second, with the possible exception of
Val72Ala, the position of the mutation on CD1b affected staining
in both subjects in a similar way. Third, the observed pattern for
polyclonal T cells largely matched (Fig. 6), those seen previously
for GEM42 and GEM21 TCRs (Fig. 5) and also matched the
pattern of residues making TCR contacts in the ternary structure
(Fig. 2; Supplementary Fig. 7). We therefore conclude that
polyclonal GEM TCRs that recognize CD1b–GMM use relatively
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conserved molecular mechanisms, and the GEM42 TCR is
representative of in vivo GEM T cell populations.

Discussion
The antigen display platform present in all four human CD1
proteins is asymmetric. When depicted in the conventional way,
the ‘left’ side of CD1 platforms are dominated by the A0-roofs,
while the ‘right’ side of CD1 platforms is characterized by a small,
round portal through which antigens can protrude4,12–14,33. This
feature suggests a hypothetical mechanism whereby TCRs
approaching the ‘left’ side would mainly contact CD1 itself, but
a central or ‘right’-sided footprint would overlie the F0-portal and
contact protruding antigen4. Indeed, a CD1a-autoreactive TCR
bound directly to the A0-roof of CD1a such that its left-shifted
footprint made no contact with a lipid ligand23. In contrast the
GEM42 TCR adopts a central position and extensively contacts
the glycolipid, thereby revealing that highly distinct TCR
recognition mechanisms exist in the group 1 CD1 system.

GEM T cells are defined by the particular TRAV1-2þ TCR
they express20. These data using tetramers with mutant CD1b
proteins demonstrate that the pattern of CD1b-lipid complex
recognition is conserved among polyclonal T cells from unrelated
donors. The GEM TCRs specificity towards GMM is notable
given that GMM arises in mycobacteria from the esterification of
host glucose with mycobacterial-derived mycolic acid, and thus
the existence of GMM is considered to represent a signature for
mycobacterial infection of hosts34. Indeed, the intricate network
of interactions provide a basis for understanding the strict
specificity of the GEM42 TCR towards GMM, including its C2
and C4 hydroxyl groups of the glucosyl moiety. GMM is a foreign
lipid that is structurally distinct from all known self lipids.
Although self mono-glucosyl lipids exist, the 6-linked glucose
present in GMM is pivoted in a way that differs substantially
from 1-linked glucose in b-glucosyl ceramides. For Type I and
Type II NKT TCR recognition of glycolipids, the TCR a and
TCR-b chains, respectively, dominate contacts with the glycolipid
headgroup25,26. Here the TCR a- and b-chains function together
so that the headgroup lies between the two chains, acting like
tweezers. Thus GEM TCRs are exquisitely and simultaneously
sensitive to two fixed components, namely CD1b and the
mycobacterial glycolipid antigen itself. In contrast to broad
expression of antigens for MAIT and NKT cells, GEM T cells are
specific for an antigen found only in a limited range of
Actinobacteria and so detection or manipulation of their
response could serve diagnostic or therapeutic purposes.

The GEM TCR–CD1b–GMM structure provided specific
insights into both the function of aspects of the TCR that are
highly conserved (TRAV1-2, TRAJ9) and less conserved
(TRBV6-2). Moreover, CD1b mutagenesis studies showed that
the ‘energetic hot spot’ matched with the invariant TCR a-chain
footprint of two characterized GEM TCRs, as well as polyclonal
GEM T cells isolated from tuberculosis patients. Thus GEM T cell
recognition is underpinned by a conserved CD1b–GMM
footprint driven by the invariant TCR a-chain usage. As CD1b
can present mycolates of different length (C32-C80), the impact
of such variation could effect GEM TCR recognition by altering
the conformation of CD1b platform itself. We observed a
conserved footprint of TRAV1-2 encoded residues in GEM T
cells, MAIT cells and MHC-reactive T cells, which was surprising
based on the markedly differing primary structures of these three
antigen-presenting molecules. The conserved mode of binding is
not determined by individual, residue-specific interactions.
Instead, key contacts are made with a shared aspect of tertiary
structure, highlighting the versatility of this scaffold in recogniz-
ing distinct classes of antigen-presenting molecules. In summary,

here we report the first structure of an ab TCR bound to CD1b–
antigen complex, and simultaneously provide a molecular basis
into how the immune system uses conserved recognition features
to target a mycobacterial lipid antigen formed during infection of
the host.

Methods
Lipid antigens. Lipids from Rhodococcus equi and Mycobacterium phlei
(American Type Culture Collection) were isolated using prior methods28,34 with
minor modifications, including supplementation of with 30 g per litre d-glucose,
D-(þ )-mannose, D-(þ )-galactose, or glycerol to influence the glycolipids
produced. The bacteria were harvested, washed by PBS twice and distilled water
once, followed by chloroform (CHCl3)/methanol (MeOH) extraction. After loading
onto an open silica column, lipids were eluted with an CHCl3/acetone gradient.
C32 GMMs were found in 50–60% acetone in CHCl3 fractions. C80 GMMs, C80
mannose monomycolates, and C80 galactose monomycolates were found in 30%
acetone fractions. C80 glycerol monomycolates were found in 10–15% acetone in
CHCl3 column fractions. The column fractions with the desired glycolipid were
further purified by one dimensional thin layer chromatography using silica-coated
glass plates (Scientific Absorbents). After plates were precleared in CHCl3/MeOH/
H2O 60:30:6 (v/v/v), hexosyl mycolates were purified by preparative TLC with
CHCl3/MeOH/H2O 60/16/2 (v/v/v). Glycerol monomycolates were purified
with CHCl3/MeOH 97/3. Glycolipids were validated by nanospray ESI mass
spectrometry performed on the LXQ ion-trap mass spectrometer. C80 mycolic
acids (#M4537) were from Sigma-Aldrich, Natick, MA.

Protein expression, purification and crystallization. The GEM42 and GEM21
TCRs were expressed as inclusion body, and then refolded in a cold buffer con-
taining 5 M urea, 400 mM L-Arginine-HCl, 100 mM Tris–HCl pH 8, 2 mM EDTA
pH 8, 0.5 mM oxidized glutathione and 5 mM reduced glutathione. The TCRs were
then dialyzed three times against 10 mM Tris–HCl pH 8 over 24 h, and purified by
anion exchange and size exclusion chromatography20. CD1b was expressed either
in High Five insect cell lines or HEK 293S GnTI- cells (from ATCC). Alanine
mutants of the CD1b molecules were generated by site directed mutagenesis and
expressed in mammalian cells as per the wt CD1b molecule. The CD1b molecule
and mutants were firstly loaded using C16 lyso-sulfatide lipid (from Matreya, LLC).
The charged wt or mutant CD1b-lyso-sulfatide was then purified over an anion
exchange column. Subsequently the CD1b-lyso-sulfatide was loaded with the C32
GMM lipid and the CD1b–GMM complex (and mutants thereof) was purified over
an anion exchange column.

Crystallization and structure determination. Crystals of the CD1b–GMM
complex were grown by the hanging-drop, vapour-diffusion method at 20 �C with
a protein/reservoir drop ratio of 1:1, at a concentration of 10 mg ml� 1 in
10 mM Tris–HCl pH 8, 150 mM NaCl using 20–30% PEG 4 K, 0.2 M Na Iodide
and 2% ethylene glycol. Crystals of the GEM42 TCR in complex with the
CD1b-Ile160Ala-GMM were obtained at a concentration of 2 mg ml� 1 using
1.5–2 M NH4SO4, 0.1 M Tris–HCl pH8.5, 10 mM MgCl2 and 10 mM CeCl2.

Crystals were soaked in a cryoprotectant solution containing mother liquor
solution with PEG4000 concentration increased to 30% (v/v) for the CD1b–GMM
crystals and 20% ethylene glycol for the ternary complex crystals, and flash frozen
in liquid nitrogen. Data were collected (at 100 K) on the MX2 beamline at the
Australian Synchrotron, using the ADSC-Quantum 315r CCD detectors (at 100 K).
Data were processed with XDS software35, and scaled using SCALA software from
the CCP4 suite36. Due to the weak diffraction of the ternary complex crystals,
multiple crystals (B10–15) were merged together, resulting in a multiplicity of
almost 70. This allowed a gain in intensity, resolution as well as having better
2Fo-Fc and mFo-Fc density maps for the lipid antigen (Table 1). In a similar
fashion, the CD1b–GMM data set represents a 360� sweep of data to improve the
density of the lipid by increasing the multiplicity from a single crystal. The density
for the acyl tails and the ester were clear; however the glucose moiety is solvent
exposed and highly mobile. The glucose is most likely adopting a multitude of
alternate conformations. Due to the high resolution and high multiplicity, we were
able to build one conformation described here (Supplementary Fig. 4) that
represents B20–30% occupation of the glucose moiety and was the only clear
conformation that we could build. In turn the glucose is bulging out of the cleft,
and is not stabilised by interaction with either the CD1b molecule itself or crystal
packing, resulting in a mobile head group and weak density around it. The GEM42
TCR structure was determined by molecular replacement using PHASER program
with the previously solved free GEM42 TCR as the search model for the TCR
(Protein Data Bank accession number, 4G8F (ref. 20)), and we used previously
solved CD1b structure as the search model (Protein Data Bank accession number,
1UQS (ref. 29)). Manual model building was conducted using the Coot software37

followed by maximum-likelihood refinement with Buster38. The final models have
been deposited to the Protein Data Bank under the accession code: 5L2J for
CD1b–GMM (Ramachandran plot: 0% outlier) and 5L2K for GEM42
TCR–CD1b–GMM (Ramachandran plot: 0.9% outlier), and the final refinement
statistics are summarized in Table 1. All molecular graphics representations were
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created using PyMol (DeLano WL. The PyMOL Molecular Graphics System.
http://www.pymol.org 2002)39. The buried surface area is calculated with the
AreaIMol program, the contacts generated by the Contact program, both form
the CCP4 suite. The structures used to generate the comparison and figures are
the MAIT-MR1-metabolite (PDB code: 4PJ7) (ref. 40); ELS4-MHC-peptide
(PDB code: 2NX5) (ref. 30); BK6-CD1a-lipid (PDB code: 4X6C) (ref. 23) and
RL42-MHC-peptide (PDB code: 3SJV) (ref. 41).

Surface plasmon resonance measurement and analysis. Surface plasmon
resonance experiments were conducted at 25 �C on the BIAcore 3,000 instrument
with TBS buffer (10 mM Tris–HCl, pH 8, 150 mM NaCl) and was supplemented
with 1% BSA42. The GEM42 and GEM21 TCRs (maximum concentration of
20mM) were used as analytes, while the CD1b–lipid complexes were amine coupled
to CM5 chips. BIAevaluation Version 3.1 was used for data analysis using the 1:1
Langmuir binding model. Experiments were carried out in duplicate (nZ2), with
the wild type CD1b–GMM complexes as positive controls and CD1b-endogenous
lipid as negative controls.

T cell assays. Peripheral blood mononuclear cells (PBMCs) from tuberculin
positive subjects with no evidence of active tuberculosis were obtained after
informed consent, with oversight of institutional review boards of the Lemuel
Shattuck Hospital and Partners Healthcare. PBMC (50� 106) from two latent
tuberculosis patients (A22 and C58) were stimulated with 20� 106 autologous
GM-CSF and IL-4 treated monocytes and 2 mg ml� 1 M. phlei GMM and cultured
for 20 days in the presence of 1 nM human IL-2 (BD Pharmingen, catalogue
number 554424 and 554426). The resulting cells were stained with Allophyco-
cyanin-labeled, GMM-loaded CD1b tetramers for 10 min at room temperature,
followed by addition of anti-CD3-Fluorescein (clone SK7, Becton Dickinson, cat-
alogue number 349201, was used at a dilution of 1:12.5) for 10 min at room
temperature, followed by addition of anti TRAV1-2-Phycoerythrin (clone 3C10
from Biolegend, catalogue number 351706, was used at a dilution of 1:62.5) for
20 min on ice, followed by a wash and analysis on a 5-laser BD Fortessa flow
cytometer. After gating for live, single lymphocytes based on forward and side
scatter properties, CD3þ tetramerþTRAV1-2þ were isolated, and integrated
mean fluorescence (iMFI) was calculated by multiplying the percentage of T cells in
the lymphocyte gate with the tetramer MFI. The variable regions of the human
TCRa- and TCRb-chains from GEM clones 18 and 42 were cloned in-frame with
the respective constant regions of mouse TCRs into retroviral vectors. The
respective TCR sequences of the a and b chains from clone 42 and 18 were cloned
into mouse stem cell virus-based retroviral plasmids with an internal ribosomal
entry site plus sequences encoding either green fluorescent protein or human nerve
growth factor receptor as reporters. All TCR constructs were expressed by retro-
viral transduction in 5KC-78.3.20, a hybridoma clone selected for loss of both
TCRa and TCRb. TCR constructs in retroviral plasmids were transfected into
Phoenix cells together with the pCLEco accessory plasmid with Lipofectamine
2,000 (Invitrogen) according to the manufacturer’s instructions. Retrovirus-con-
taining supernatants were collected 48 h after transfection and were centrifuged to
remove cell debris. Hybridomas (1� 105 cells) were ‘spin-infected’ at 3,300 g for
90 min at 37 C in 1.5-ml microcentrifuge tubes along with retroviral supernatants
containing polybrene (8 mg ml� 1). After ‘spin infection’, hybridomas were sorted
on a MoFlo cell sorter (Dakocytomation) on the basis of retroviral reporter and
TCRb expression43. The capacity of GMM analogues to stimulate clone 18 and 42T
cells was determined by incubating 105 hybridoma cells with 5� 104 allogeneic
GM-CSF and IL-4 treated monocytes in the presence of 10 mg ml� 1 of lipid and
20 ng ml� 1 phorbol 12-myristate 13-acetate. After 24 h, the IL-2 concentration in
the supernatant was determined by ELISA.

Data availability. The final model has been validated using the Protein Data Base
validation web site and the coordinates relating to the data reported in this study
are deposited in the PDB database, code: 5L2J for CD1b–GMM structure and 5L2K
for GEM42 TCR–CD1b–GMM complex structure. All remaining data are available
within the article and its supplementary information files and from the corre-
sponding authors on reasonable request.
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