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Abstract
Development of the human brain follows a complex trajectory of age-specific anatomical and
physiological changes. The application of network analysis provides an illuminating perspective
on the dynamic interregional and global properties of this intricate and complex system. Here, we
provide a critical synopsis of methods of network analysis with a focus on developing brain
networks. After discussing basic concepts and approaches to network analysis, we explore the
primary events of anatomical cortical development from gestation through adolescence. Upon this
framework, we describe early work revealing the evolution of age-specific functional brain
networks in normal neurodevelopment. Finally, we review how these relationships can be altered
in disease and perhaps even rectified with treatment. While this method of description and inquiry
remains in early form, there is already substantial evidence that the application of network models
and analysis to understanding normal and abnormal human neural development holds tremendous
promise for future discovery.
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The developing human brain is a dynamic, complex system. Over the course of
development, the human brain evolves from a few immature connections to an estimated 20
billion neocortical neurons each with an average 7000 synaptic connections and linked by
over 150 km of myelinated axonal projections.1 Historically, rigorous investigation laid the
foundation for clinical neurology and systems neuroscience by evaluating restricted or focal
components of a system. These reductionist methods are by their nature insensitive to the
unique and emergent properties that are evident when evaluating the system as an integrated
whole. Over the last decade, many new techniques for exploring complex and dynamic
systems have been applied toward understanding the nervous system. Drawing from graph
theory, these techniques use information regarding network components and their
connections to characterize the overall structure of a system. Analysis of these networks
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offers a rich and tractable means of describing and categorizing the architecture of complex
networks, including the developing human brain. The wide utility of these approaches
facilitates applications in neuroscience that include characterizing anatomical relationships
between brain regions as well as temporally correlated activity patterns in different brain
regions. Network methods are especially valuable for child neurologists, given the profound
changes that occur throughout neurodevelopment in both normal and pathological
circumstances.

In this review, we will highlight recent work analyzing neural networks of the normal
developing brain as well as potential clinical applications. We will focus on 4 related topics:
basic attributes of network analysis with a particular focus on functional brain networks, a
brief overview of the primary histogenetic events and sequences of anatomical cortical
development, an examination of what is known for the development of functional cortical
networks, and the clinical implications of these findings as well as future directions.

Analysis of Structural and Functional Networks
Many examples of networks exist in the world. These include structural networks (eg, the
network of roads that connect cities and towns), social networks (eg, the networks of film
actors that collaborate in movies), and biological networks (eg, a network of neurons
connected with synapses). In each instance, we can represent the network with 2
fundamental components: nodes (the cities, actors, or neurons) and edges (the roads, films,
or synapses) that connect any 2 nodes. In what follows, we will focus on binary, undirected
networks. In these simplified networks, an edge either exists between 2 nodes or does not,
and the presence of an edge provides no directional (ie, causal) information. In
neuroscience, networks are typically divided into 2 categories: structural networks and
functional networks.2 In structural networks, the edges represent physical connections
between nodes. At the microscopic spatial scale, these include synaptic or gap junctional
connections between individual neurons.3,4 At the macroscopic spatial scale, white matter
tracts are used to infer synaptic connections between brain regions and construct structural
networks.5–7

A functional network is defined by analysis of dynamic physiological activities, rather than
by anatomy per se. Any time-varying physiological signal, such as electrical activity,
magnetic activity, or blood oxygenation, can be the basis for inferring a functional network
of brain activity. Generating the network requires recording such signals from multiple
spatial locations and a metric to analyze coupling between these signals. The most
commonly available clinical measure of brain activity is the routine electroencephalogram
(EEG). To identify a functional network from the EEG, a coupling measure is applied to
pairs of voltage signals recorded at separate EEG electrodes. Strong coupling between the
activities recorded at 2 EEG electrodes defines an edge in the network, and the EEG sensors
define the network nodes.

Figure 1 illustrates this process in a simplified case of EEG data recorded from 2 scalp
electrodes. To determine whether the 2 recording sites are linked (or connected) in this 2-
node network, we must determine the extent to which the EEG data recorded at the 2
electrodes match. There is no single method to optimally characterize signal coupling and
many choices exist.8 Here, we demonstrate the process with a simple measure called the
cross correlation. Cross correlation compares the temporal patterns contained in the 2 signals
over time to see how well the voltage fluctuations align. One way to accomplish this is to
compare the signals directly (the trace of signal 1 versus signal 2 at each time point) as well
as indirectly: we can shift the traces in time with respect to one another to determine if the
signals match more strongly at a particular lead or lag. If at some time shift the 2 signals
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match, then the cross correlation between the 2 signals is strong and we represent this
graphically in a network by drawing an edge between the 2 electrodes (Figure 1A). On the
other hand, if the 2 signals never match, no matter our choice of time shift, then the cross
correlation between the 2 signals is weak and we leave the 2 electrodes disconnected in the
network representation (Figure 1B). In this simple illustration, we have described a 2-node
network that either contains 1 edge (Figure 1A) or does not (Figure 1B). The 2 nodes
represent the 2 EEG electrodes, and the edge reflects correlated activity (ie, coupling)
between the voltage fluctuations recorded from the 2 electrodes. This approach can be
extended to build larger networks by applying coupling measures to the voltage signals
recorded from all electrode pairs, for example, in routine 10–20 configuration EEGs (Figure
1C). These results can then be used to create a functional connectivity network for the entire
EEG montage (Figure 1D).

Having constructed a functional network, we now seek to analyze its structure. A useful,
first analysis is simple visual inspection of the network (eg, visual inspection of the network
in Figure 1D). Even in this 10–20 configuration, the network structure becomes difficult to
visualize. In fact, as the number of nodes in a network increases, so does the number of
possible edges, and visual inspection becomes less useful. For a network of N nodes, the
maximum possible number of edges is N(N −1)/2. When N is large (eg, in a high density
EEG recording with 128 electrodes or a multielectrode array with 100 contacts) the
networks typically become much too complicated for visual inspection (Figure 2A, B). To
go beyond visual inspection and characterize the structure of these large networks, many
measures exist.9–11 Here, we outline 3 of these measures in common use: the degree, path
length, and clustering coefficient.

The degree (d) is simply the number of edges that touch a node. In Figure 3, we show a 5-
node network, and list the degree of each node (in this case, a value of either 2 or 4). To
summarize the degree values of the entire network, we compute the average degree of all
nodes, and find in this case 2.4. We note that this average value lies between the degree
values we observe for each node (2 or 4), as expected. For much larger networks, the degree
distribution is a useful measure that illustrates the probability of observing a node of degree
d (Figure 2C). In many real world networks, including the film actor network and neural
networks,12 the degree distribution exhibits a power law: the probability of observing a node
of degree d decreases as 1 over the degree to some power (Figure 2D).13 In these networks,
high degree nodes (which appear less frequently than the low degree nodes) can serve
important functional roles in the network (ie, can act as hubs) although this is not always the
case.14 Degree distributions with power law behavior are also known as scale-free because
the degree distribution looks the same (just scaled by constant value) if we multiply the
value of d by a constant.

The path length is the minimum number of edges traversed to go from any given node to
another in the network. We assume that each node is reachable from any other node, but if
this is not the case, care must be taken to adjust for unreachable nodes. In the example 5-
node network, the path length from node i to any other node is 1; node i can reach any other
node by traversing 1 edge. Nodes ii–v can reach any other node in 1 or 2 steps. We note that
many different paths exist between nodes. For example, we can travel directly from node ii
to node iii, or we can pass through node i on the way to node iii. When computing the path
length, by convention we always choose the shortest path between nodes. The average path
length is calculated from the path length between each node and all other nodes in the
network; for the 5-node network, the average path length is 1.4, a value between 1 and 2, as
expected.
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The final measure we consider here is the clustering coefficient. The clustering coefficient
of a node is the number of connections that exist between the nearest neighbors of a node,
expressed as a proportion of the maximum number of possible connections between the
nearest neighbors of the node. In this context, nearest neighbor is not a spatial measure but a
measure of which nodes are connected. This definition is perhaps best illustrated through the
example network in Figure 3. In the 5-node network, choose node ii and notice that this
node has 2 neighbors (ie, 2 nodes directly connected to node ii by a single edge, nodes i and
iii in Figure 3B). We now examine whether an edge exists between the 2 neighbor nodes. In
this example, it does (see Figure 3A) so we complete a triangle or cluster in the network. In
social networks, clustering is typically high; the friends (nearest neighbors) of an individual
(the chosen node) also tend to be friends (ie, edges connect the nearest neighbors of the
chosen node). For node i in the 5-node network, the clustering coefficient is 1/3. This result
indicates that of all the possible completed triangles between the nearest neighbors of node i,
only one-third exist. To complete all of the triangles between the nearest neighbors of node i
would require additional connections between nodes ii and iv, nodes ii and v, nodes iii and
iv, and nodes iii and v. For all other nodes, the clustering coefficient equals 1. All possible
triangles between the nearest neighbors of these other nodes do exist. Often the average
clustering coefficient for all nodes in a network is computed; for the 5-node network, the
average clustering coefficient is 13/15.

With even these 3 simple measures in hand, we can characterize an arbitrarily large and
complicated network easily and can compare networks efficiently. These, and other
measures, therefore allow us to reduce the potentially overwhelming complexity of a
developing brain network into a few comparable and informative measures. The next
sections outline the maturation of anatomical and functional brain networks at each stage of
development. We examine the application of network analysis to track the complex, but
orderly, network topologies over neurodevelopment.

Development of Neocortical Anatomical Connectivity
The human cortex develops its familiar laminated architecture primarily in utero.15,16

During the first 2 to 6 months of gestation,17 projection neuron precursors undergo massive
proliferation in the ventricular zone,18–23 amplified by secondary divisions in the
subventricular zone.24,25 Simultaneously, neuronal precursors migrate radially to form the
early cortical plate. Directed along a glial scaffolding and guided by regulatory gene
expression, these cortical neurons distribute primarily in an inside-to-outside pattern based
on time of origin.21,22 Inhibitory interneurons, by contrast, arise in the ganglionic eminences
and reach their cortical positions by means of tangential migrations.18,19 The distinctive
laminar and columnar arrays of the 6-layered mature neocortex are evident by 8 months
gestation.22,26,27

Cortical development continues to evolve after birth, and extensive work has described
changes in white and gray matter from infancy through adolescence. Longitudinal MRI
studies demonstrated that cortical gray matter volume increases through childhood to
puberty, after which there is a net loss of volume.28 This predictable sequence is observed in
an inverse-hierarchical manner, such that changes in primary motor and sensory regions
precede the association cortices and prefrontal cortices that mediate executive functions29,30

(see Figure 4).

The mechanisms underlying the inverted U-shaped temporal pattern of cortical volume are
diverse31 (see Figure 5). The initial proliferation during fetal development is later sculpted
by selective cell death.17,32–35 Heightened synaptogenesis beginning in the third trimester
continues through 2 years of age but then is followed by a prolonged period of dendritic
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pruning which extends through childhood and adolescence. The final synaptic density is
approximately 60% of the maximum values.33 Similar to patterns of cortical volume change,
synaptic density reaches a maximum in primary sensory cortical regions before association
cortices. For example, in the primary auditory cortex maximal synaptic density is observed
around 3 months of age, approximately 1 year earlier than maximal synaptic density is
reached in the prefrontal cortex.33 In addition, deeper cortical layers (4, 5, and 6) develop
more rapidly than superficial layers (2 and 3).33 The cortical volume loss evident on MRI
correlates in time with increased synaptic pruning, as observed in pathology specimens of
neurologically normal subjects.

In contrast to the expansion and pruning patterns of cortical gray matter described
above,36,37 cerebral white matter volume grows steadily over time, largely attributed to
intra-cortical fiber myelination. Myelination improves impulse conduction to such an extent
that signal velocity is primarily determined by segments of unmyelinated intracortical
conduction length.38 Myelination begins during the second trimester of fetal development
and increases over the first 2 years of life.39 Myelination continues throughout the first 3
decades of life, but at a much slower pace.40 The temporal sequence of white matter
myelination is similar to that of cortical development, with fibers mediating primary sensory
then motor systems myelinated first (in infancy), followed by association and then prefrontal
cortices (in childhood).41,42

White matter tract visualization can be accomplished in vivo with an MRI-based technique,
diffusion tensor imaging. A full review of diffusion tensor imaging and related techniques is
beyond the scope of this article but can be found in several excellent reviews.43,44 Briefly,
the preferred direction of water diffusion is used to define white matter tracts by a metric
called fractional anisotropy, even in unmyelinated fibers in immature brains.45 Recent work
has demonstrated that diffusion tensor imaging can even distinguish glial fiber density
between fetal cortical layers effectively.46

Longitudinal studies of normal development have shown that prominent white matter tracts
can be visualized at birth, although fractional anisotropy values are lower in the immature,
incompletely myelinated white matter.47,48 As myelination occurs, water diffusion becomes
more directional with an accompanying dramatic increase in fractional anisotropy values
over the first 2 years. Adult values are generally obtained by 4 years of age. Although the
corpus callosum and anterior commissure are detected by diffusion tensor imaging in
newborns, association fibers (superior longitudinal fasciculus, inferior longitudinal
fasciculus, and inferior fronto-occipital fasciculus) are not observed until 3 to 12 months of
age47(see Figure 6). Localized age- and region-specific maturation of discrete white matter
tracts continues through adolescence.49

Network topology has been evaluated using diffusion tensor imaging-based connectivity
graphs. Evaluation of cortico-cortical anatomical connections reveals high clustering and
short characteristic path lengths, typical of “small-world” networks.50,51 In such networks,
most nodes can be connected through only a small number of steps, reflecting a high
efficiency of information transfer, computational power, and synchronizability across the
network.2,12 Small-world topology of brain anatomical networks is evident at 1 year of age
and increased efficiency and modular organization develops over the first 2 years.52 Over
adulthood, network efficiency decreases, possibly due to age-dependent white matter
degeneration.53

Anatomical connectivity patterns are disrupted in a variety of acquired, genetic, and
idiopathic neurodevelopmental disorders.54–57 Much future work, characterizing the
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relationship between network topology and clinical symptoms in pediatric
neurodevelopmental disorders remains to be done.

The developing anatomical networks reviewed here provide the physical substrate for
functional connections. Below we describe observed functional network topologies over
early development in both normal and pathological circumstances.

Development of Neocortical Functional Connectivity
Physiological interactions among brain regions are influenced and constrained by the
underlying anatomical frameworks that arise from the developmental processes discussed
above.58 Similarly, spontaneous and experience-dependent neural activity guides all aspects
of architectural development, from neurogenesis, neuronal differentiation, and migration to
synaptogenesis and dendritic pruning.59–66 Thus, anatomy and physiology interdependently
direct the development, sculpting, and stabilization of cortical functional networks. With the
advent of new measures for determining functional connectivity and analysis of networks,
these physiological connectivity patterns can now be observed over development.

As described above, networks can be constructed from correlated activity between EEG
voltage traces. These networks are taken to reflect both (relatively) static, anatomical
connectivity between the cortical neuronal populations being measured and dynamic
connectivity between active neural populations. Functional connectivity networks derived
from EEG therefore serve to capture anatomically mediated state-dependent, dynamic and
shifting physiological networks. One recent study evaluated synchronization patterns
between all possible electrode pairs in routine scalp EEG in developmentally normal
children ages 5 and 7 years while at rest.67 The older children demonstrated an overall
decrease in functional connectivity and increases in both average clustering and path length,
which the authors speculated could be related to synaptic pruning. High-density (128-
channel) EEG has been used to investigate differences in coherence between EEG channels
of school-aged children compared with young adults in the alpha frequency (8–12 Hz)
range.68 Local coherence between nearby pairs of electrodes was similar between the
groups. However, young adults exhibited increased coherence between longer range pairs of
electrodes, in particular between anterior and posterior electrodes. Similar findings have
been reported by other groups,69,70 possibly reflecting increased myelination of long-
distance fasciculi or increased small-world properties in the older maturing brain.

Another technique for probing functional connectivity patterns involves use of sensory
stimulation to perturb or trigger physiological signals (or evoked responses) and measure
phase synchronization of the signals by EEG. Delta brushes, characterized by asynchronous
delta activity (0.3–1.5 Hz) with overriding faster (8–22 Hz) frequencies are normal features
of the EEG recording in premature infants.71 Spontaneous movements and sensory
stimulation have been shown to evoke somatotopically organized delta brushes in the
contralateral sensorimotor cortical region of premature infants, possibly reflecting early
organization of sensory neural circuits.72 By 8 months of age, bursts of gamma frequency
activity (~40 Hz) can be evoked in the left frontal region in response to complex visual
stimuli.73 Gamma oscillations can be related to the process of “binding,” or conceptual
association of sensory inputs, and in this case can be involved in the development of
complex visual processing. Age-specific changes in visually to evoked gamma oscillation
patterns have been demonstrated from childhood through young adulthood.60,74

Other frequency bands also demonstrate maturation in visual stimulus-evoked synchrony, as
one group demonstrated with high density EEG over the age range of 6 to 21 years.73 For
example, a period of relative desynchronization in the beta band (12–16 Hz) correlated with
task performance (stimulus detection rate and reaction time to stimulus onset), with
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adolescents showing both decreased synchronization and lower performance compared with
other age groups. Furthermore, younger age groups demonstrated widespread synchrony
whereas the older group showed more focal synchronization patterns. Such age-specific
dynamics suggest that the normal maturation of functional cortical connections likely
involves complex system dynamics rather than a simple incremental process. Although these
groups did not map synchronization patterns into a network space, their findings are in
essence an unstructured map with altered degrees of connectivity. Future work involving
formal application of graph theoretic approaches will allow for further characterization of
these functional relationships.

One area of intense research involves measuring brain activity under task-free or “resting”
conditions. This so-called “default” network shows activity that is higher at rest than during
tasks requiring attention,75–78 although there is ongoing discussion of the meaning and
definition of this network.79 Low frequency (<0.1 Hz) fluctuations in blood oxygenation
level-dependent signals can be treated similarly to EEG voltage fluctuations, with
correlations measured between voxels or brain regions of interest. Resting activity is
obtained while a subject is awake, usually with eyes closed and without any particular task
or instruction, such that the blood oxygenation level-dependent fluctuations are thought to
indirectly reflect spontaneous neural activity. Brain regions of interests are considered as
nodes in a network in the same sense that EEG channels can be, and the connections
between the nodes are determined by the strength of the coupling between blood
oxygenation level-dependent signals.

Functional connectivity in the default network has been measured across development using
functional connectivity MRI in quiet or resting states. Even in preterm infants, resting state
functional connectivity MRI identified 5 networks, in this case observed during sleep.80 This
activity can represent a precursor to the default network seen in adults (which also persists
into sleep, interestingly81). In preterm infants, coherence was prominent between homotopic
cortical regions likely mediated by the relatively mature underlying transcallosal white
matter tracts in this age group. A separate study similarly identified a putative precursor to
the default network in term infants.82 Of interest, there was no indication of default network
activity in preterm infants scanned at term-equivalent. The gradual maturation of the default
functional network is further suggested by the finding of an intermediate, sparsely connected
network profile evident in school age children, distinct from the pattern seen in infancy and
the mature form of adulthood83 (Figure 7). The apparent incremental evolution of the default
network over development and the relative persistence of this network through wakefulness
and sleep suggest that it can reflect the robustness of underlying structural connectivity
patterns as opposed to less stable, state-dependent, shifting physiological frameworks, which
can be more apparent in modalities with higher temporal resolution.

Near-infrared spectroscopy is a related indirect metric of neuronal activity, which measures
cerebral blood oxygenation by means of hemoglobin saturation content. Like blood
oxygenation level-dependent fluctuations of functional MRI, fluctuations in near-infrared
spectroscopy signals can also be used to infer correlated activity between brain regions.
Using this method, functional connectivity networks have been defined by correlated near-
infrared spectroscopy fluctuations during sleep in infants 0 to 6 months of age.84

Connectivity between homotopic temporal regions was evident by 3 months of age and
persisted. In addition, high coherence between parietal and temporal regions on the left was
seen at 6 months of age, which the authors speculated can be related to the development of
early language networks.

Another example of immature versions of adult connectivity patterns was evident in a
resting state functional connectivity MRI study of school-aged children. Decreased
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segregation between, as well as decreased connectivity within, 2 previously identified adult
attention networks (fronto-parietal and cingulo-opercular)85 was found in this age group.86

Older children, in the adolescent range (10 to 15 years) showed an intermediate network
structure. Older children also had more long-range connections and less short-range
connections. The authors suggest that developmental remodeling of these 2 networks
contributes to the acquisition of task controlling behaviors.

Graph theory analysis methods applied to functional networks are also proving useful for
quantifying developmental changes in activity patterns defined by resting state functional
connectivity MRI.87 Small-world properties (networks with high clustering coefficient and
low path length, as described above) were observed in children aged 7 to 9 years as well as
young adults age 19 to 22 years. Also, a measure of global efficiency, the harmonic mean of
the minimum path length between each pair of nodes, was similar between these age groups.
Differences were however notable in cortical-subcortical connectivity, which was greater in
children. In addition, young adults exhibited increased network hierarchy (characterized by
the presence of small densely connected clusters that combine to form large less-
interconnected clusters) and stronger cortico-cortical connections. These attributes are
consistent with the development of advanced network specialization with age. The finding
of increased distant and decreased local connections in adolescents could reflect the
combined influence of improved myelination and relative weakening of local, nonspecific
connections as networks become more specialized and distributed.

Not all studies of functional connectivity support or parallel gross anatomical development.
For example, beta frequency activity measured in a large cohort ranging in age from infants
to adolescents reported an initial increase in connectivity between all electrode pairs
followed by a sharp decline by age ~3 years, and then a steady rise in short-range
connections (6–12 cm in this study) subsequently.88 The suggested decrease in long-distance
connections over development appears to contrast with myelination patterns and EEG68–70

and resting state functional connectivity MRI work above.86,87,89 This discrepancy
highlights the challenges in comparing functional networks defined by different measures of
neuronal activity such as EEG versus functional MRI, which use distinct frequency
preferences (lower in functional MRI) and distinct anatomical resolutions (higher in
functional MRI), as well as distinct analysis strategies (only intrahemispheric coherence
versus intra- and interhemispheric coherence, for example). Although further studies,
particularly simultaneous EEG and functional MRI recordings, can shed some light on these
differences, it is worth noting that, unlike anatomically defined networks, there is no gold
standard against which to compare functional connectivity networks.

Clinical Implications
Although many questions remain regarding how brain networks change over the course of
development, the tools and approaches hold tremendous promise for future discovery.
Improved characterization of the developmental changes in brain network connectivity, by
anatomical and functional measurements, is beginning to provide a framework for
understanding how dysregulation at various stages can cause significant neurodevelopmental
pathology. Although only a few investigations have been reported thus far, the techniques of
network analysis can prove useful for children suffering from neurological disorders,
whether through improved phenotypic characterization, natural history prediction, or,
ideally, improved treatment strategies.

From the standpoint of phenotypic characterization, one study used functional MRI during
an auditory listening task in 8-year-old children with a history of premature birth as well as
low intelligence scores.90 Increased functional connectivity was observed among language
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processing regions (Wernicke’s area, right inferior frontal gyrus, left and right
supramarginal gyri, and components of the inferior parietal lobules). It remains unknown
whether the abnormal functional connectivity caused the cognitive impairment, resulted
from it, or whether both observations are merely epiphenomena.

Despite the limitations of extrapolating mechanism from correlational studies, in many
cases, the network abnormalities appear reasonably linked to clinical observations. For
example, adolescents with Tourette syndrome exhibit immature functional connectivity
patterns in networks thought to be involved in impulse control, such as fronto-parietal and
cinguloopercular networks.91 Both resting and task-related functional MRI studies in
untreated children diagnosed with attention deficit hyperactivity disorder revealed decreased
functional connectivity in the cortical-striatal-thalamic circuit, and increased connectivity in
the orbitofrontal and superior temporal cortices.92 Observed network abnormalities
improved or reversed with treatment,93 highlighting the potential utility of network analysis
for treatment monitoring and/or response prediction.

The clinical suggestion that a common theme in autism spectrum disorders is disrupted
sensory integration matches well with the concepts emphasized in functional connectivity
approaches.94 Consistent with abnormal connectivity, diffusion tensor imaging studies
reveal white matter abnormalities in the corpus callosum, superior temporal gyrus, and
temporal stem in patients with autism spectrum disorders.95,96 Similarly, functional MRI
network connectivity studies show overall weaker functional connectivity in the resting state
as well as during a social attribution task.97 Further studies have identified decreased
functional connectivity in specific regions, including the insula98 and multiple default mode
sub-networks99 in patients with autism spectrum disorders. Importantly, the extent or
severity of the clinical syndrome (measured across social interactions, behavioral
restrictions, and language difficulties) correlated with functional connectivity abnormalities,
including the default network.99–101 Functional connectivity patterns, however, were
independent of treatment status, suggesting a possible role for these biomarkers to guide
treatment selection99.

At present, only a single study has evaluated functional connectivity networks in children
with epilepsy.102 Twelve children with continuous spike and waves during slow wave sleep,
an epileptic encephalopathy typically characterized by epileptiform discharges during at
least 85% of slow wave sleep and progressive cognitive deficits, were evaluated with
simultaneous EEG and functional MRI. Although individual differences were noted, all
children were found to have activation of bilateral perisylvian regions and the cingulate
gyrus. Since epilepsy is a disorder of aberrant neurophysiology, functional connectivity
networks analysis can provide a sensitive clinical tool to track and better understand the
pathophysiological impact of altered neurophysiology during critical periods of
neurodevelopment.

Although research in this field is still at the earliest stages, these early studies identify
network analysis as an important toolkit with potential applicability ranging from diagnostic
biomarkers to the prognosis and treatment guidance in pediatric neurodevelopmental
disorders.

Conclusions
The developing human brain follows a complex and tightly regulated trajectory of dramatic
anatomical and physiological changes. The majority of studies in both animals and humans
have examined focal abnormalities or only specific components of the brain from
embryogenesis on. The establishment and continued advancement of network measures
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provide a tractable method to evaluate and compare the dynamic global and interdependent
properties present in this complex, plastic system taken as a whole. As new technologies that
allow for precise characterization of the evolution of functional and anatomical networks in
the immature brain are increasingly available, investigation of developmental brain networks
is exploding with rapid advances in both basic science and therapeutic applications. Work in
this field has thus far demonstrated that, at each stage in normal neurodevelopment, age-
specific skill sets correlate with age-specific distributed brain networks, which progress in a
nonlinear, nonincremental, and yet predictable manner. Ultimately, insights from these
approaches can offer new opportunities for early detection, prognostication, and guided
clinical intervention in a variety of neurodevelopmental disorders. Further work will help us
to better understand the short and long-term clinical consequences of focal and global
network disruptions in the developing brain, and perhaps reveal new pathways to treatment.
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Figure 1.
Example illustration of constructing functional networks from voltage signals. (A) In this
simulated example, electroencephalogram (EEG) data are recorded from 2 electrodes on the
scalp surface. The EEG data (black and upper gray curve) are simple sinusoids with added
noise, and the lower gray trace is the middle trace shifted to the right by ~25 ms—this time
advance of the EEG signal causes it to align with the top (black) trace, indicated by the
vertical dashed lines. Because the 2 signals align, the cross correlation is strong enough, and
we connect the 2 electrodes with an edge (black line) to form a simple 2-node network. (B)
In this contrasting example, the EEG data never match, no matter the choice of time shift,
and the 2-node network lacks an edge. (C) Simulated multivariate data recorded from many
EEG electrodes, results in (D) a much more complicated network.
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Figure 2.
Two larger networks consisting of 200 nodes. (A,B) We arrange the nodes (gray) in the
network as a ring, although this does not suggest a literal spatial sensor location in the “real”
recording space. Each node represents an individual electrode or sensor, and each edge
(black line) indicates sufficiently strong coupling between activity recorded simultaneously
at 2 nodes. For such large networks, the network structure becomes much more difficult to
characterize through visual inspection. (C,D) The degree distributions for each network. For
the network in (A) most of the nodes have a degree near 5. For the network in (B), most of
the nodes have a degree less than 5, but some nodes have a high degree (up to 35 edges).
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Figure 3.
An example 5-node network to illustrate 3 simple measures of network structure. (A) We
label the 5-nodes (circles) with roman numerals and connect the nodes with edges (lines).
The number in parentheses next to each node indicates its degree (d). (B) To determine the
clustering coefficient of node ii, we first determine its nearest neighbors (the other 2 nodes
in the network are grayed out). We then determine if an edge exists between these neighbors
(the dotted line). Because this edge exists in (A), the 3 nodes form a triangle or cluster.
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Figure 4.
Dynamic sequence of gray matter maturation over the cortical surface from age 5 to 20
years, demonstrating maturation of primary motor and sensory regions before association
cortices and prefrontal cortices. (Reprinted with permission from Gogtay N, Giedd JN, Lusk
L, et al. Dynamic mapping of human cortical development during childhood through early
adulthood. Proc Natl Acad Sci U S A. 2004;101:8174–8179. Copyright 2004 National
Academy of Sciences.)
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Figure 5.
Observed timeline of some of the progressive and regressive structural changes present over
the course of prenatal through adolescent brain development. This figure can be taken to
represent the general hierarchical elaboration of forebrain neural systems where the events
in primary representations anticipate those in successively more integrative regions.33

(Reprinted with permission from Casey BJ, Tottenham N, Liston C, Durston S. Imaging the
developing brain: what have we learned about cognitive development? Trends Cogn Sci.
2005;9:104–110. Copyright 2005 Elsevier Ltd.)
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Figure 6.
Representative axial fractional anisotropy maps at 0, 3, 6, 9, 12, 24, 36, and 48 months.
(Reprinted with permission from Hermoye L, Saint-Martin C, Cosnard G, et al. Pediatric
diffusion tensor imaging: normal database and observation of the white matter maturation in
early childhood. Neuroimage. 2006;29:493–504. Copyright 2006 Elsevier, Ltd.)
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Figure 7.
Graph visualization of the correlation between default network regions in children (aged 7–9
years) and in adults (aged 21–31 years) represented in pseudoanatomical organization.
Statistically significant differences in functional connectivity between children and adults
are highlighted on the right. Connections between interhemispheric homotopic regions are
relatively prominent in both children and adults, however the default network is fragmented
with sparse connections in children compared with adults. (Adapted with permission from
Fair DA, Cohen AL, Dosenbach NU, et al. The maturing architecture of the brain’s default
network. Proc Natl Acad Sci U S A. 2008;105: 4028–4032. Copyright 2008 National
Academy of Sciences.)
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