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Histoplasma capsulatum is a dimorphic fungus that develops a yeast-likemorphology in host’s tissue, responsible for the pulmonary
disease histoplasmosis.The recent increase in the incidence of histoplasmosis in immunocompromised patients highlights the need
of understanding immunological controls of fungal infections. Here, we describe our discovery of the role of endogenous galectin-1
(Gal-1) in the immune pathophysiology of experimental histoplasmosis. All infected wild-type (WT) mice survived while only 1/3
of Lgals1−/− mice genetically deficient in Gal-1 survived 30 days after infection. Although infected Lgals1−/− mice had increased
proinflammatory cytokines, nitric oxide (NO), and elevations in neutrophil pulmonary infiltration, they presented higher fungal
load in lungs and spleen. Infected lung and infected macrophages from Lgals1−/− mice exhibited elevated levels of prostaglandin E

2

(PGE
2

, a prostanoid regulator of macrophage activation) and prostaglandin E synthase 2 (Ptgs2) mRNA. Gal-1 did not bind to cell
surface of yeast phase of H. capsulatum, in vitro, suggesting that Gal-1 contributed to phagocytes response to infection rather than
directly killing the yeast.The data provides the first demonstration of endogenous Gal-1 in the protective immune response against
H. capsulatum associated with NO and PGE

2

as an important lipid mediator in the pathogenesis of histoplasmosis.

1. Introduction

Histoplasmosis is a worldwide known disease caused by
the fungus Histoplasma capsulatum. The real geographic
distribution of this mycosis could be more widespread than
what was previously thought [1, 2]. The incidence of this
fungal disease is higher in the Mid- and Southeast USA,
Latin America, China, and other world areas [2]. Addition-
ally, asymptomatic cases are escalating and are reported to
predominately affect immunocompromised individuals as an

acute pulmonary infection similar to mild flu-like symptoms
[1, 3, 4]. Likewise, the most severe symptomatic form of the
disease, referred to as disseminated histoplasmosis, develops
most commonly in immunosuppressed patients. However,
unlike the mild form, disseminated histoplasmosis can lead
to death [4]. Although antifungal therapies have been used
against the fungus, there are no current alternative therapies
to treat or protect against H. capsulatum infection.

H. capsulatum is a dimorphic, facultative, intracellular
pathogen found as a yeast phase when in host tissue [5].
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In the early stages of infection, the fungus is phagocytosed
by resident alveolar macrophages, dendritic cells, and neu-
trophils [6]. Once phagocytosed, the fungus survives in the
phagosome and consequently transforms into a yeast. In
immunocompromised individuals or when left untreated,
the reservoir phagocytes can travel to lymphatic tissue and
spread infection. However, induction of a strong cellular
immune response can contain or clear the infected phago-
cytes, therefore preventing the spread of the infection. An
effective host defense toH. capsulatum infection is dependent
on adequate activation of T cells and phagocytes [6, 7].
Appropriately, the balance between theTh1 andTh2 response
is fundamental for solving H. capsulatum infection [6, 7],
with Th1 proinflammatory cytokines IFN-𝛾 (interferon-𝛾),
interleukin-12 (IL-12), TNF-𝛼 (tumor necrosis factor-𝛼),
and GM-CSF (granulocyte macrophage colony-stimulating)
being essential to elicit macrophage activation and clearance
of H. capsulatum. In addition, a balanced production of lipid
mediators, such as prostaglandin E

2

(PGE
2

) and leukotriene
B
4

(LTB
4

), is critical for the host defense in histoplasmosis,
since high levels of PGE

2

and low levels of LTB
4

impair
the yeast clearance and increase the severity of this fungal
disease [8, 9]. Nitric oxide also participates in the host defense
against H. capsulatum [10, 11]; however, overproduction of
this mediator increases the susceptibility of the host to yeast
infection [8, 12].

In addition to cytokines and lipid mediators, a member
of the galectin family, known as galectin-3 (Gal-3), has
been suggested to be involved in the immune response
against H. capsulatum infection [13]. Galectins belong to an
endogenous lectin family that recognizes glycans present in
microorganisms and participates in the pathophysiology of
inflammatory responses, infectious diseases, autoimmunity,
and cancer [14–18].

Interestingly, galectin-1 (Gal-1) has been shown to partic-
ipate in an innate and adaptive immune response to different
models of experimental infections such as in Trypanosoma
cruzi (T. cruzi) [19], situation in which a dual role for this
lectin was described. These authors showed that, in a low
concentration, Gal-1 was able to decrease proinflammatory
interleukin-12 (IL-12) and nitric oxide (NO), while in a high
concentration, it has induced infectedmacrophage apoptosis.
Gal-1 was also found to promote Human Immunodeficiency
Virus-1 (HIV-1) infectivity [20]; in dengue virus infection,
it could cause an inhibitory effect on virus replication [21].
Thus, several Gal-1 exogenous properties have been related to
CRD binding to cell surface receptors, modulating immune
cell functions, migration, differentiation, activation, and cell
survival [22–27]. Nevertheless, the interactions of this lectin
with the intracellular ligands can also occur independently to
carbohydrates [28, 29].

Although Gal-1 can participate in various pathophysio-
logical processes, there is little information about the role
of Gal-1 in fungal infections. Therefore, the present study
evaluated the biological impact of the absence of Gal-1 on
a murine model of histoplasmosis. While mice genetically
deficient inGal-3 (Lgals3−/−) were able to clearH. capsulatum
infection more efficiently than wild-type (WT) mice [13], it
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Figure 1: Gal-1 knockout mice are sensitive to H. capsulatum
infection. WT and Lgals1−/− mice were infected i.t. with 5 × 105
viable H. capsulatum yeast (sublethal inoculum) and survival was
monitored for 30 days. Controlmice (uninfected) received i.t. 100 𝜇L
PBS (data not shown). Data are representative of one of the two
experiments performed independently (𝑛 = 10 per group) and
Mantel-Cox log-rank (𝜒2 “chi-squared”) was used. #𝑝 < 0.05 WT
versus Lgals1−/−, both infected.

was reported for the first time that Gal-1 (Lgals1−/−) mice are
more susceptible toH. capsulatum infection compared toWT
group. This unique immune phenotype suppresses the host
response against the fungus and is followed by high levels
of neutrophil infiltration and proinflammatory cytokines in
the lungs which causes a strong anti-inflammatory response
with high levels of PGE

2

and NO. These findings indicate a
novel contribution of endogenous Gal-1 to the development
of a protective immune response to H. capsulatum.

2. Results

2.1. Lgals1−/−-Infected Mice Fail to Control H. capsulatum
Infection. WT and Lgals1−/− mice were injected with 5 ×
105 H. capsulatum yeasts cells directly into the lungs and
survival was monitored up to 30 days. 14 days after infection,
Lgals1−/−-infected mice began to die. 33% of Lgals1−/−-
infected mice survived 30 days after infection, whereas 100%
of the infectedWTmice survived over that period (Figure 1).

2.2. Lgals1−/−-Infected Mice Have a Higher Yeast Load and
Infiltration of Neutrophils in the Lung. To determine if the
high mortality rate in Lgals1−/− mice is correlated with
impaired fungal clearance, the H. capsulatum load was
quantified in the lung and spleen. Considering that Lgals1−/−
mice began to die day 14 after infection and that day 15
after infection is a critical point on the evolution of exper-
imental histoplasmosis using mutant mice and a sublethal
fungus dose [9], on day 15 after infection, lung parenchy-
mal histopathological analysis and quantification of fungal
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Figure 2: Lgals1−/− mice have a higher yeast burden in the lung and spleen day 15 after infection. On day 15 after infection withH. capsulatum
(5 × 105 viable yeasts), animals were sacrificed and tissue samples were harvested. (a) Lung sections (5𝜇m) from WT and Lgals1−/− mice
were stained with silver (Grocott’s methanamine silver (GMS); bar: 50 𝜇m; insert bar: 25 𝜇m) and (b) yeast cells were quantified (yeast/mm2
lung) using magnifications ×400. Fungal burden was quantified from tissue homogenates and expressed as the number of colony-forming
units (CFU) per gram of tissue CFU/g in lung (c) and CFU per spleen (d). Data are representative of one of the two experiments performed
independently (𝑛 = 10 per group). Values are mean ± SEM. #𝑝 < 0.05WT versus Lgals1−/−, both infected.

burden in the lung and spleen were performed. Lgals1−/−-
infected mice presented a higher number of yeast cells in
pulmonary parenchyma (Figures 2(a) and 2(b)) and higher
fungal load in lung (Figure 2(c)) and spleen (Figure 2(d)).
Even though infected Lgals1−/− mice presented a higher
fungal burden in the lung, an increased neutrophil influx was
detected in their pulmonary tissue (Figures 3(a) and 3(b)).
It is known that an efficient immune response against H.
capsulatum is associated with fungicidal/fungistatic effects
of pulmonary infiltrated phagocytes [6, 30]. Thus, these
findings suggest that endogenous Gal-1 is required to develop
a protective immune response against H. capsulatum and
that Gal-1 could be associated with the control of fungal
replication as an efficient anti-H. capsulatum activity along

with effectors functions and regulation of tissue accumulation
of neutrophils.

2.3. Lgals1−/−-Infected Mice Show Increased Proinflammatory
Cytokines in the Lung. It is well known that increased
expression of inflammatory cytokines, including IL-12, IFN-
𝛾, and TNF-𝛼, is critical for the immune-protective response
in H. capsulatum-infected mice [31–34]. Thus, to analyze
the pattern of inflammatory cytokines in WT and Lgals1−/−
mice day 15 after H. capsulatum infection, the levels of IL-
12p40, TNF-𝛼, IL-1𝛼, IL-10, IL-4, and IL-6 in the pulmonary
homogenates were measured. There were higher levels of
IL-12p40 (Figure 4(a)) and IL-1𝛼 (Figure 4(c)) and similar
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Figure 3: Lgals1−/− mice have increased neutrophil infiltration in the lung parenchyma.H. capsulatum-infected mice were euthanized on day
15 after infection and lung sections (5𝜇m) were embedded in paraffin blocks. Lung sections from WT + H. capsulatum (I, bar: 100 𝜇m; III,
bar: 25 𝜇m) and Lgals1−/− +H. capsulatum (II, bar: 100𝜇m; IV, bar: 25 𝜇m)were stained with hematoxylin (a) and neutrophils were quantified
(neutrophils/mm2) using magnifications ×400 (b). Data are representative of one of the two experiments performed independently (𝑛 = 10
per group). Values are mean ± SEM. #𝑝 < 0.05WT versus Lgals1−/−, both infected.

concentrations of TNF-𝛼 (Figure 4(b)) in homogenized lungs
of Lgals1−/−-infected mice, when compared to WT infected
mice. Furthermore, no statistically significant differences in
TNF-𝛼 (Figure 4(b)) were observed, and IL-10, IL-4, and IL-
6 (data not shown) were not produced in detectable levels.

2.4. Lgals1−/−-InfectedMiceDemonstrate Prostaglandin E2 and
Nitric Oxide Overproduction. Based on the aforementioned
results, it was also analyzedwhether inflammatorymediators,
such as NO and PGE

2

, are associated with increased levels of
proinflammatory cytokines and consequently immunosup-
pression in the absence of endogenous Gal-1 in experimental
histoplasmosis. It has been reported that the inhibition of
COX-2 improves the host defense against H. capsulatum [8].
Therefore, PGE

2

was quantified from homogenized lungs
derived from infected WT and Lgals1−/− mice on day 15 after
H. capsulatum infection.The lungs of infected Lgals1−/− mice
exhibited higher levels of PGE

2

(Figure 5(a)) when compared
to infected WT mice. Thus, consistent with other published
results [8, 35], these findings suggest that higher levels of
PGE
2

may contribute to susceptibility of infected Lgals1−/−
mice. Interestingly, not only PGE

2

but also NO levels in the
lung of this group were increased when compared to WT
(Figure 4(d)).

2.5. Uninfected Lgals1−/− Macrophages Express High Levels
of Prostaglandin E Synthase 2 after Fungal Infection. The
immune response against H. capsulatum is mediated by
Th1 cells, which requires macrophages activation [6, 7]. The
pathogenic yeast fungus replicates inside these cells and
results in metabolites of arachidonic acids production, such
as prostaglandins and leukotrienes [35]. To assess the role

of endogenous Gal-1 in PGE
2

production, prostaglandin E
synthase 2 (Ptges2) mRNA expression in peritoneal macro-
phages from Lgals1−/− and WT mice infected or not with
H. capsulatum in vitro was evaluated. Interestingly, 24 hours
after H. capsulatum infection, Lgals1−/− macrophages had
increased Ptges2 mRNA expression when compared to
infected WT macrophages. In addition, higher levels of
PGE
2

were detected in the supernatants 24 hours after the
infection of Lgals1−/− macrophages when compared to WT
macrophages (Figure 5(c)).Thus, the in vitro results correlate
with overproduction of prostaglandins in vivo (Figure 5(a)).

2.6. Galectin-1 Does Not Bind to and Kill the Yeast Form of
H. capsulatum. Recently, it was reported that galectins can
bind glycans not only on the host cell surface, but also on
molecules on pathogens, which has been found to result
in pathogen killing and modulation of immune responses
against bacterial infections [36, 37]. To assess the binding
capacity of Gal-1 on H. capsulatum surface, biotinylated-
human recombinant Gal-1 (hrGal-1 : 1 𝜇M and 4 𝜇M) was
incubated with the yeast form ofH. capsulatum. Gal-1 did not
bind to the yeast form of this fungus (Figure 6(a)) although
the hrGal-1 was active, since it did bind to glycans on HL-
60 cells (Figure 6(b)). As expected, different concentrations
of hrGal-1 (0.5, 1.0, 2.5, 4.0, and 10.0 𝜇M) did not alter
the viability of H. capsulatum after 24 and 48 h of in vitro
incubation (Figure 6(c)).This result suggests that the binding
effect can be related to killing activity as Stowell et al. [36]
described for E. coli strains in the presence of Gal-4 and Gal-
8.Thus, the yeast form ofH. capsulatum seems not to express
ligands forGal-1 and indicates that the protectivemechanistic
effects of Gal-1 toH. capsulatum infection do not involve Gal-
1 binding to the yeast.
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Figure 4: Lgals1−/− mice exhibit increased inflammatory response day 15 after infection with H. capsulatum. Cytokines IL-12p40 (a), TNF-
𝛼 (b), IL-1-𝛼 (c), and NO

2

− (d) were quantified from homogenized lungs on day 15 after infection with H. capsulatum. Cytokines levels
(pg/mL) were determined in the supernatants by ELISA and NO

2

− (𝜇M) by using a Griess reaction. Data are representative of one of the two
experiments performed independently (𝑛 = 10 per group). Values are mean ± SEM. ∗𝑝 < 0.05 infected mice versus control (uninfected),
#𝑝 < 0.05WT versus Lgals1−/−, both infected.

3. Discussion

Galectins have been described as regulators of immune
response in models of inflammatory and infectious diseases
and host pathogen recognition [14, 25, 27, 36, 38–41]. Gal-1
and Gal-3 are the best studiedmembers of the galectin family
and the expression of these proteins is increased or decreased
in distinct cell types following infections caused by different
pathogens [42, 43]. Previous reports demonstrate that Gal-
3 participates in yeast infections [13, 39, 44]; however, the
role of Gal-1 in fungal diseases has not yet been explored.
Although the expression of Gal-3 in dendritic cells is not
upregulated in WT mice infected with H. capsulatum, mice
genetically deficient in Gal-3 clear this fungal infection more
efficiently than WT mice [13], showing that high Gal-3
expression inWTmice is not required for the participation in
the immune response againstH. capsulatum andmay actually
contribute to pathogenesis [13].

Unexpectedly, Gal-3 knockout mice are more suscepti-
ble to Candida albicans infection than WT mice and the
susceptibility is associated with high fungal burden in the
brain. Additionally, Gal-3, but not Gal-1, can induce yeast
cell death upon binding to 𝛽-1,2-linked oligomannosides
on the surface of pathogenic fungus Candida albicans [44].
Thus, Gal-3 and Gal-1 appear to be differentially involved in
host defense mechanisms against fungal infections, and this
featuremay arise from the specific pathogen. In disseminated
candidiasis model, the absence of Gal-3 is responsible for
increased susceptibility [39]. In the present study, in contrast
to Gal-3-deficient mice [13], the novel observation that
the absence of endogenous Gal-1 increased susceptibility
to H. capsulatum accompanied by higher fungal loads in
the lung and spleen was made. Recently, it was reported
that Lgals1−/− mice infected intradermally with T. cruzi are
resistant to this parasitic infection compared to their WT
counterparts and this resistant phenotype could be associated
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Figure 5: Absence of endogenous Gal-1 increases prostaglandin PGE
2

production and Ptges2 expression in peritoneal macrophages. (a)
In vivo prostaglandin E

2

was quantified in supernatants from homogenized lungs on day 15 after infection with H. capsulatum (5 × 105
yeasts/mice) by ELISA. (b) 5 × 105 peritoneal macrophages were incubated in vitro withH. capsulatum (MOI 1 : 1) during 2 and 24 hours and
mRNA levels for Ptges2 were quantified and plotted as Fold Regulation by Log

2

. In addition, PGE
2

was assessed in vitro in the supernatants
by ELISA 24 hours after infection (c). In vivo data are representative of one of the two experiments performed independently (𝑛 = 10 per
group). Values are mean ± SEM. ∗𝑝 < 0.05 infected mice versus control (uninfected), #𝑝 < 0.05WT versus Lgals1−/−, both infected.

with a dysfunction in the regulatory properties of Gal-1 fol-
lowed by high production of Th1 proinflammatory cytokines
and improvement of Th1 and CD8+ T cells responses [25].
However, another report from the same group described
that Lgals1−/− mice infected intraperitoneally with T. cruzi
showed elevated parasitemia, less tissue inflammation, and
higher mortality rates as compared to infected WT mice
[45]. These authors suggest that this discrepancy could be

associated with the presence of different phagocytes at sites
of infection and distinct local immune response induced by
T. cruzi. Based on these reports and the present data, it is
suggested that the infection of Lgals1−/−mice, intratracheally,
with H. capsulatum promotes a unique immunophenotype
that suppresses the host response against the fungus. This
special immunological scenario is characterized by an imbal-
anced inflammation associated with high levels of neutrophil



Mediators of Inflammation 7

1𝜇M Gal-1 + Lac
1𝜇M Gal-1 + Sac

4𝜇M Gal-1
1𝜇M Gal-1
Control

C
ou

nt

FITC-A

0

102 103 104 1050

(a)

1𝜇M Gal-1 + Lac
1𝜇M Gal-1 + Sac

1𝜇M Gal-1
Control

C
ou

nt

0

FITC-A
102 103 104 1050

(b)

0 0.5 1.0 2.5 4.0 10 0 0.5 1.0 2.5 4.0 10
0

2

4

6

8

10

𝜇M Gal-1

48h24h

RF
U

×
10

8

(c)

Figure 6: Gal-1 does not bind and kill the yeast form of H. capsulatum. (a) Yeasts were incubated for 1 hour at 4∘C with 1.0 𝜇M and 4.0 𝜇M
biotinylated-hrGal-1, in the presence or absence of 20mM lactose (Gal-1 inhibitor) or sucrose (control, noninhibitor). After that, yeasts were
incubated with streptavidin-FITC and labeled cells were acquired on a FACS Canto (Becton Dickinson, Mountain View, CA, USA) and
analyzed in the DIVA software (Becton Dickinson). (b) As a control, HL-60 cells (1 × 106) were incubated with 1 𝜇M biotinylated-hrGal-1
for 1 hour at 4∘C, in presence or absence of 20mM lactose or sucrose. (c) Several hrGal-1 concentrations (0.5, 1.0, 2.5, 4.0, and 10𝜇M) were
incubated with 1 × 106 H. capsulatum cells during 24 and 48 h. After each time, relative fluorescent units (RFU) (560–590 nm) were measured
and represent yeast cells metabolically active through the dye resazurin reagent. Data are representative of two independent experiments and
expressed as the mean ± SEM.

infiltration and proinflammatory cytokines in the lungs
that causes a strong anti-inflammatory response induced by
high levels of PGE

2

and nitric oxide that could modulate
phagocyte and T cell functions.

Based on evidence that Gal-4 and Gal-8 can bind and kill
bacteria that express a human blood group B-like antigen and
a common mammalian antigen 𝛼-Gal [36, 46], it is hypothe-
sized that Gal-1 might have the same effect on the yeast form
of H. capsulatum. However, in contrast to Gal-4 and Gal-8
killing activities toward bacteria, Gal-1 neither bound to nor
killed the yeast form (Figure 6). This data suggests that the

ability of Gal-1 to contribute to proper control of the fungal
infection arises from an indirect contribution, since Gal-1
is clearly involved in the modulation of immune response
against H. capsulatum.

Next, it was evaluated whether the absence of Gal-1 could
interfere with the recruitment of neutrophils to the lungs dur-
ing the infection, since this lectin could modulate the inflam-
matory response [24, 47]. It is known that neutrophil migra-
tion to sites of infection helps the clearance of pathogens
[48]. Human neutrophils are able to impair the growth of
H. capsulatum yeast form, and this microbiostatic effect is
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mediated mostly by compounds present in the azurophil
granules [49]. Moreover, in experimental histoplasmosis,
depletion of GR-1+ cells, primarily neutrophils, promotes the
increase in fungal load in the lungs and spleens and decreases
the survival of animals even in the presence of high levels
of TNF-𝛼 and NO [50]. Previous reports demonstrate that
mice genetically deficient in Gal-1 have enhanced neutrophil
emigration in response to IL-1𝛽 compared to their wild-
type counterparts [51]. Furthermore, in an animal model of
zymosan-induced peritonitis, exogenous Gal-1 was shown to
cause decreased production of proinflammatory cytokines
and expression of adhesion molecules on the surface of neu-
trophils, thus diminishing their rates of migration [47]. The
present results are consistent with those of others, indicating
that H. capsulatum promotes intense neutrophil recruitment
in the lung of Lgals1−/−mice (Figure 3); however, these phago-
cytes were not able to clear the fungus in the lung pulmonary
parenchyma. Other authors have demonstrated that upreg-
ulation of proinflammatory cytokines/chemokines resulted
in higher numbers of lung neutrophils and also reduced the
capacity of the host defense to eliminate the fungus [9]. Since
Gal-1 canmodulate the adhesionmolecules expression aswell
as releasing mediators of immune response [22–24, 47], it
was evaluated whether the increase of neutrophil infiltration
into the lung was associated with exacerbation of cytokines
during the inflammatory response against H. capsulatum
infection. The intense neutrophil accumulation in the lung
of Lgals1−/− mice could be explained by high levels of IL-
1𝛼 (Figure 4(c)), since this cytokine is a chemoattractant
for neutrophils [52, 53]. Moreover, the presence of high
number of neutrophils may be a major source of IL-12
detected in the lung from infected-Lgals1−/− mice, as neu-
trophils have been reported to produce IL-12 [54]. Curiously,
inhibition of dectin-1 expression, a host receptor for fungal
beta-glucan, reduces the severity of fungus infection and
its effect was associated with decrease of proinflammatory
cytokines, including IL-12, and neutrophil infiltration [55].
Furthermore, it is known that proinflammatory cytokines,
including IL-12 [32, 34, 56, 57], are essential for host defense
against H. capsulatum. Conversely, on the present model,
the increase of IL-12 did not promote fungal clearance in
the lungs of Lgals1−/− mice. Based on these results, it may
be hypothesized that the excessive production of IL-12p40
and IL-1𝛼 in Lgals1−/−-infected mice is deleterious to the
animals. Interestingly, Lgals1−/− mice are more resistant to
Trypanosoma cruzi infection than wild-type mice and this
phenotype is associated with upregulation of IFN-𝛾 and no
significant production of IL17A [25]. However, the HSV-1
infection in Lgals1−/− mice promotes a severe disease, com-
pare to wild-type, that is correlated with the elevated number
of neutrophil infiltrations and IFN-𝛾-producing CD4 T cells
and no significant change of IL-17-producing T cell in the
ocular [58]. Then, considering that (i) immunoregulatory
properties of Gal-1 are associated with regulation of TH 1
and TH 17 responses [59], (ii) IL-12 and IL-23 share p40
subunit [60], and (iii) IL-17/IL-23-axis cytokines participate
in immune response against H. capsulatum infection [33],
further investigation should be done in order to elucidate

the impact of IL17/IL23 in experimental histoplasmosis in
the absence of endogenous Gal-1. In addition to cytokine
production, it was analyzed whether microbicidal factors,
such as NO, could be modulated by the deficiency of Gal-1,
which could underlie the suppression of host defense against
H. capsulatum. It was found that the deficiency of Gal-1
promotes the increase of NO concentration in the lung of
infected mice when compared with infectedWTmice. These
results are in concordance with other studies that show that
Gal-1 negatively modulates the NO production by activating
macrophage or microglia-like cells [23, 61] and activated
microglia from Lgals1−/− mice produce high concentration
of NO [62]. Moreover, the high levels of NO produced
(Figure 4(d)) in the lung have no microbicidal effect on H.
capsulatum, since lungs fromGal-1 Lgals1−/−mice had higher
CFU (Figure 2). Thus, NO appears to be important for the
host defense against primary infection by H. capsulatum
[11]; nonetheless, the overproduction of NO has also been
shown to suppress phagocytic activities of macrophage in H.
capsulatum infection and inhibit the CD4T cells proliferation
response to T. cruzi infection [12, 34, 50].

Alveolar macrophages are the first line of host defense in
the lung against respiratory pathogens, and this phagocyte
is an important source of lipid mediators, such as PGE

2

in
infected lung [63]. PGE2 has an important role in suppression
of host defense involvedmodulation of alveolar macrophages
functions in different pulmonary infection models, such as
Streptococcus pneumoniae [64], Klebsiella pneumoniae [65],
Pseudomonas aeruginosa [66], and recently H. capsulatum
[8]. Lung and macrophages from Lgals1−/−-infected mice
produced higher levels of PGE

2

when compared to WT
mice. Then, it is hypothesized that high levels of NO and
PGE
2

in the lungs of Lgals1−/−-infected mice inhibit the
effector functions of macrophages and neutrophils against
H. capsulatum. Whether the absence of endogenous Gal-1
can inhibit the effector functions of neutrophils against H.
capsulatum remains unknown, though.

PGE
2

is able to inhibit IL-12 production by macrophage
and dendritic cells [67], although lung parenchyma from
infected Lgals1−/− mice contained higher levels of IL-12 than
those from infected WT mice even in the presence of high
levels of PGE

2

. This finding is in agreement with other
studies reporting that the inhibition of prostaglandin has no
effects on the production of IL-12 in H. capsulatum-infected
mice [8]. In addition, the present data is similar to others,
demonstrating that the immunoregulatory effects of Gal-1
(endogenous or exogenous) are associated with suppression
of Th1 cytokines, including the negative modulation of IL-12
production by activated macrophage or tolerogenic dendritic
cells [19, 68–71].

Because of the low yield of murine alveolar macrophages,
peritoneal macrophages from Lgals1−/− mice were used to
examine the ability of endogenous Gal-1 to modulate the
expression of mRNA Ptges2 and PGE

2

after H. capsulatum
infection (Figure 5(b)). The high fungus burden in lungs and
spleen in infected Lgals1−/−mice could be associated with the
downregulation effects of PGE

2

in antimicrobial functions of
phagocytes [8, 72].
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Exaggerated inflammatory response could be responsible
for higher production of PGE

2

in lungs of H. capsulatum-
infected Lgals1−/− mice that inhibited fungal clearance, since
the PGE

2

biosynthesis is increased under inflammatory
conditions, and this prostanoid has been described to impair
phagocytosis and kill by alveolar macrophages [73]. In
addition, the effector functions of phagocytes from Lgals1−/−
could be altered, since Gal-1 is a multifunctional molecule
with intra- and extracellular effects [28, 29]. This immune
suppressive effect is in line with current results, demon-
strating the positive impact on mRNA Ptgs2 expression
and PGE

2

secretion of the Gal-1 deficiency in macrophages
from Lgals1−/− mice after fungal infection. This data is in
agreement with the results described by Rabinovich and
colleagues, since this lectin can reduce arachidonic acid
release and PGE

2

secretion from activated macrophage [27].
Besides that, celecoxib treatment, a selective cyclooxygenase
2 inhibitor, improved the immune response against H. cap-
sulatum infection through the inhibition of prostaglandin
production [8]. Curiously, celecoxib induces expression of
Gal-1 in activated macrophage and Gal-1 could be involved
in the anti-inflammatory mechanisms of this drug [74].
Furthermore, Gal-1 inhibited the expression of activating
transcription factor 3, a negative regulator of mRNA Ptgs2
in macrophage [75]. Despite that, further investigations
are needed to elucidate the mechanism by which Gal-
1 inhibits Ptgs2 expression. It has now been shown that
PGE
2

is a DAMP (damage-associated molecular patterns)
and is induced and released by dying cells, which leads to
suppressed expression of genes associated with inflammation
and thereby limits immunostimulatory activities [76]. Also,
PGE
2

is downregulated in human systemic inflammatory dis-
eases and mice with reduced PGE

2

exhibit systemic inflam-
mation [77]. In summary, the present results demonstrate
that the endogenous Gal-1 plays an important role in host
defense againstHistoplasma capsulatummodulating of PGE

2

,
IL-12, and NO production, as well as pulmonary neutrophil
accumulation. Future studies are needed to better understand
the cellular andmolecular mechanisms in which endogenous
galectin-1 could participate in host defense against fungus
infection.

4. Materials and Methods

4.1. Animals. Six-to-eight-week-old wild-type (WT) male
mice and mice genetically deficient in Gal-1 (Lgals1−/−), both
in a C57BL/6J background, were housed and bred at the
animal facility of the School of Pharmaceutical Sciences of
Ribeirão Preto (University of São Paulo, Brazil). Wild-type
mice were originally purchased fromThe Jackson Laboratory
(Bar Harbor, ME, USA) and Lgals1−/− mice were provided
by Dr. Richard D. Cummings (Department of Surgery,
Beth Israel Deaconess Medical Center and Harvard Medical
School, Boston, MA, USA). The experimental protocol was
approved and conducted in accordance with guidelines of the
Institutional Animal Care Committee. To check the depletion
of Lgals1, Gal-1 expression (mRNA and protein) analysis
on WT and Lgals1−/− cells were performed as previously

described [21] using conventional RT-PCR and western blot,
respectively (data not shown). We used C57BL/6J mice as
wild-type counterparts in our experiments.

4.2. H. capsulatum Strain and Infection of Mice. H. cap-
sulatum strain was isolated from a patient at the Clinical
Hospital, School of Medicine of Ribeirão Preto, University of
São Paulo, and the characterization andpreparation ofH. cap-
sulatum yeast cells were performed as previously described
[9, 78, 79]. The yeast cultures were used at ≥90% viability
according to fluorescein diacetate (Sigma-Aldrich, St. Louis,
MO) and ethidium bromide (Sigma-Aldrich) staining [80].
Mice were given intratracheally (i.t.) dispersion containing
100 𝜇L phosphate buffered saline (PBS, vehicle control) or a
sublethal dose in PBS (5× 105 yeasts/animal).The appropriate
inoculum size was chosen based on procedure described
by Sá-Nunes and colleagues [78]. On day 15 after infection,
both uninfected and infected mice were euthanized in a CO

2

chamber, and lungs and spleens were collected for analyses.

4.3. Fungal Load andHistopathology. H. capsulatum-infected
mice were euthanized on day 15 after infection and tis-
sue samples were harvested. Lung sections (5 𝜇M) were
embedded in paraffin blocks and stained with Grocott’s
methanamine silver (GMS) and quantification of yeasts was
expressed as yeast/mm2 (original magnification: 400x). Also,
fungal burden was determined from homogenized lung and
spleen (Mixer Homogenizer; Labortechnik, Staufen, Ger-
many) as previously described [7, 9]. Serial dilutions of these
tissue homogenates were plated onto BHI blood agar and
incubated at 37∘C for 21 days. The results were expressed as
mean colony-forming units (CFU) per gram of lung ± SEM
(CFU/g) or CFU per whole spleen ± SEM (CFU/spleen).
Lungswere collected, fixed in 10% formaldehyde, and embed-
ded in paraffin blocks. For neutrophils analyses, lung sections
(5 𝜇m) were stained with hematoxylin and eosin (H&E) and
the cells were quantified in the ocular lens containing 10 ×
10 graticules (0.0624mm2 each in magnifications: 400x).The
results are expressed as neutrophils/mm2.

4.4. Measurement of Cytokines, PGE
2

, and Nitric Oxide.
Lungs were collected 15 days after infection, weighed and
homogenized (Mixer Homogenizer; Labortechnik, Staufen,
Germany) in 2mL of RPMI1640 (Sigma) and the super-
natants were stored at −70∘C until being assayed. Commer-
cially available ELISA antibodies were used to measure TNF-
𝛼, IL-1𝛼, IL-12p40, IL-10, IL-4, and IL-6 (BD OptEIA ELISA
sets; BD Pharmingen) according to the instructions of the
manufacturer. PGE

2

from lung homogenate and from in vitro
assay (in vitro assay is described below) were purified by Sep-
Pak C18 cartridges according to the manufacturer’s instruc-
tions (Waters Corp., Milford, MA). Quantification of PGE

2

was assessed also by ELISA (Cayman Chemical, Ann Arbor,
MI) and the results for cytokines and PGE

2

are expressed in
ng/mL. The sensitivity of the assay was <10 pg/mL. Nitrite
(NO
2

−) concentrations (𝜇M) in lung homogenates was mea-
sured by Griess reaction using a standard curve with serial
dilutions ofNaNO

2

(Sigma-Aldrich). Griess reagent was used
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in order to measure NO levels indirectly from nitrite as
described previously [10].

4.5. Gene Expression by Real-Time Polymerase
Chain Reaction (qRT-PCR)

4.5.1. In Vitro Assay. WT or Lgals1−/− peritoneal macro-
phages (5 × 105 cells/well) were incubated withH. capsulatum
(MOI 1 : 1) during 2 and 24 hours. PGE

2

was assessed in
the supernatants 24 hours after infection and expression of
mRNAwas performed in plated macrophages 2 and 24 hours
after H. capsulatum exposure.

4.5.2. Gene Expression. Total mRNA was isolated using the
RNeasyMini kit (Qiagen Inc., Valencia, CA), according to the
manufacturer’s instructions. cDNA (complementary DNA)
was synthesized from 600 ng of total RNA using random
primers (High Capacity cDNA Reverse Transcription Kit,
Applied Biosystems, Temecula, CA). Aliquots of 2 𝜇L of
the total cDNA were amplified by qRT-PCR (StepOne Plus,
Applied Biosystems, Singapore) using the primers (IDT�,
Integrated DNA Technologies, California, USA) for Ptges2
(the gene encoding prostaglandin E synthase 2, Mm.PT.
58.7480753) and probe (TaqMan� Gene Expression Assay,
Applied Biosystems, Foster City, USA). Actb (Mm00607939)
was used as reference gene. Amplification was performed
in duplicate under the following conditions: denaturation at
95∘C for 10min, followed by 40 cycles of 95∘C for 15 s and
60∘C for 1 minute. Relative quantification was performed
using the ΔΔCt method and plotted as Fold Increase or Fold
Regulation by Log

2

.

4.6. Human Recombinant Galectin-1 (hrGal-1) Purification.
hrGal-1 was prepared as previously described [26, 81]. Briefly,
purified hrGal-1 was treated with 100mM iodoacetamide
(Sigma-Aldrich) in 100mM lactose/PBS overnight at 4∘C
[82]. To ensure that hrGal-1 samples were endotoxin-free,
Detoxi-Gel Endotoxin removing gel (Pierce Biotechnology,
Rockford, IL) was used and hrGal-1 activity was assessed by
haemagglutination (data not shown).

4.7. Binding by Flow Cytometry and Resazurin Cell Viability
Assays. To measure the capacity of Gal-1 to bind on yeast
form of H. capsulatum, 1 𝜇M and 4 𝜇M biotinylated-hrGal-
1 were incubated for 1 hour at 4∘C, in presence or absence
of 20mM lactose or sucrose (Sigma-Aldrich). After washing,
yeasts were incubated with streptavidin-FITC (Jackson IR)
for 30 minutes at 4∘C, washed, and formalin-fixed (1% in
PBS). Labeled cells were acquired on a FACS Canto (Becton
Dickinson, Mountain View, CA, USA) and analyzed in
the DIVA software (Becton Dickinson). As a control, we
used HL-60 cells obtained from the American Type Culture
Collection (ATCC, Manassas, VA) and maintained in RPMI
medium supplemented with 10% fetal bovine serum. To test
H. capsulatum viability in a presence of Gal-1, we incubated,
in vitro, several hrGal-1 concentrations (10, 4, 2.4, 1, and
0.5 𝜇M)with 1× 106 yeast cells during 24 and 48 h.The relative
fluorescent units (RFU) using a plate reader were detected

(560–590 nm) in order to analyze the number of yeast cells
metabolically active using the dye resazurin reagent (Sigma-
Aldrich).

4.8. Statistical Analysis. The data are presented as the mean
± SEM. Comparisons were performed using an ANOVA
followed by a Bonferroni posttest by the Prism 4.0 statistical
program (GraphPad Software, San Diego, CA). Survival
analyses were performed using the Mantel-Cox log-rank (𝜒2
“chi-squared”) test. Differences in survival were analyzed
by the log-rank test. Values of 𝑝 < 0.05 were considered
statistically significant.
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[60] D.M. Floss, J. Schröder,M. Franke, and J. Scheller, “Insights into
IL-23 biology: from structure to function,” Cytokine & Growth
Factor Reviews, vol. 26, no. 5, pp. 569–578, 2015.

[61] J.Wang, J. Xia, F. Zhang et al., “Galectin-1-secreting neural stem
cells elicit long-term neuroprotection against ischemic brain
injury,” Scientific Reports, vol. 5, article 9621, 2015.

[62] D. Pineda, C. Ampurdanés, M. G. Medina et al., “Tissue
plasminogen activator induces microglial inflammation via
a noncatalytic molecular mechanism involving activation of
mitogen-activated protein kinases and Akt signaling pathways
and AnnexinA2 and Galectin-1 receptors,” Glia, vol. 60, no. 4,
pp. 526–540, 2012.

[63] S. L. Hempel, M. M. Monick, and G. W. Hunninghake,
“Lipopolysaccharide induces prostaglandin H synthase-2 pro-
tein and mRNA in human alveolar macrophages and blood
monocytes,” The Journal of Clinical Investigation, vol. 93, no. 1,
pp. 391–396, 1994.

[64] D. M. Aronoff, C. Lewis, C. H. Serezani et al., “E-prostanoid
3 receptor deletion improves pulmonary host defense and



Mediators of Inflammation 13

protects mice from death in severe Streptococcus pneumoniae
infection,” Journal of Immunology, vol. 183, no. 4, pp. 2642–2649,
2009.

[65] C. H. Serezani, J. Chung, M. N. Ballinger, B. B. Moore, D. M.
Aronoff, and M. Peters-Golden, “Prostaglandin E2 suppresses
bacterial killing in alveolar macrophages by inhibiting NADPH
oxidase,” American Journal of Respiratory Cell and Molecular
Biology, vol. 37, no. 5, pp. 562–570, 2007.

[66] R. Domingo-Gonzalez, S. Katz, C. H. Serezani, T. A. Moore,
A. M. LeVine, and B. B. Moore, “Prostaglandin E2-induced
changes in alveolar macrophage scavenger receptor profiles
differentially alter phagocytosis of Pseudomonas aeruginosa and
Staphylococcus aureus post-bone marrow transplant,” Journal of
Immunology, vol. 190, no. 11, pp. 5809–5817, 2013.
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