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Cell biology of fat storage

ABSTRACT  The worldwide epidemic of obesity and type 2 diabetes has greatly increased 
interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized 
for the storage of energy in the form of triglycerides, but research in the last few decades has 
shown that fat cells also play a critical role in sensing and responding to changes in systemic 
energy balance. White fat cells secrete important hormone-like molecules such as leptin, adi-
ponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin 
secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, 
thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that 
there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In 
addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where 
they are in dynamic communication with immune cells and closely influenced by innervation 
and blood supply. This review is intended to serve as an introduction to adipose cell biology 
and to familiarize the reader with how these cell types play a role in metabolic disease and, 
perhaps, as targets for therapeutic development.

INTRODUCTION
The global epidemic in obesity and related disorders such as type 2 
diabetes has fueled an explosion of interest in adipose (fat) cells. 
Adipose cells play several critical roles in systemic metabolism and 
physiology. There are at least two classes of fat cells—white and 
brown. White fat is specialized to store energy in the form of triglyc-
erides, an especially efficient method because this class of mole-
cules is highly energetic and stored anhydrously. On fasting, the re-
lease of fatty acids and glycerol to provide fuel for the rest of the 
body occurs via enzymatic hydrolysis called lipolysis. These crucial 
functions of fat, storage, and release of fatty acids are tightly con-
trolled by the key hormones of the fed and fasted states—insulin 
and catecholamines. In addition to these classic functions, the 

importance of white fat tissue as a central signaling node in systemic 
metabolism was first identified by the cloning of adipsin and leptin, 
two important “adipokines” (Cook et al., 1987; Zhang et al., 1994). 
In fact, fat cells and fat tissues secrete many molecules with crucial 
roles in metabolism, including tumor necrosis factor α (TNF-α), adi-
ponectin, resistin, and RBP4, among others (Rosen and Spiegelman, 
2014). Healthy and robust adipose development is absolutely re-
quired for proper metabolic control. Of importance, defects in adi-
pose differentiation do not lead to healthy, lean animals but instead 
to lipodystrophy, a serious disease by which other tissues, especially 
the liver, subsume the function of fat storage, with deleterious 
effects, including insulin resistance, diabetes, hepatomegaly, and 
hypertriglyceridemia (Garg, 2011).

TYPES OF FAT
In contrast to white fat, brown fat is specialized to dissipate chemical 
energy in the form of heat, defending mammals against hypother-
mia. It does so by running futile metabolic cycles, most notably the 
futile cycle of proton exclusion from and leak back into the mito-
chondrial matrix via the electron transport chain and uncoupling 
protein 1 (UCP1; reviewed in Cohen and Spiegelman, 2015). UCP1 
expression is strictly limited to brown and beige fat cells. Although 
UCP1 was typically believed to be regulated transcriptionally, a re-
cent study showed that UCP1 can also be regulated posttranslation-
ally, by reactive oxygen species–driven sulfenylation of a key cyste-
ine residue (Chouchani, Kazak, et  al., 2016). Recently a separate 
futile cycle involving creatine phosphorylation/dephosphorylation 
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obesity on a high-fat diet compared with controls. Moreover, this 
obesity occurs exclusively via an excess of subcutaneous fat, a rather 
unusual finding. These animals have severe hepatic insulin resis-
tance and hepatic steatosis, suggesting that beige fat protects the 
liver; whether this occurs through oxidation of circulating lipids by 
beige cells or through production of a secreted hormone that pro-
tects the liver from fat accumulation is not known. An increasing 
number of factors have been identified that lead to increased 
(“browning”) or decreased (“whitening”) beige fat activity (Figure 1).

CELL BIOLOGY OF ADIPOSE TISSUE
Adipose tissue was once viewed as a passive repository for triglyc-
eride accumulation within adipocytes but is now appreciated to be 
a complex tissue containing a host of interacting cell types, includ-
ing fat cells, immune cells, endothelium, fibroblasts, neurons, and 
stem cells. Although adipocytes account for >90% of fat pad vol-
ume, these other cells types (collectively referred to as the stromal 
vascular fraction), predominate by overall number (Kanneganti and 
Dixit, 2012). Several immune cell subsets are now known to accumu-
late in adipose tissue and serve important functions. This can be 
traced back to the observation that adipose tissue produces TNF-α 
and other proinflammatory cytokines, with levels increased in the 
setting of obesity; these mediate local and systemic insulin resis-
tance (Hotamisligil et  al., 1993). These cytokines are largely pro-
duced by macrophages within the adipose tissue (Weisberg et al., 
2003; Xu et al., 2003). Histologically, macrophages can be seen sur-
rounding adipocytes in what have been termed “crown-like struc-
tures” (Cinti et al., 2005)

In recent years, the role of immune cell subsets in adipose tissue 
has become increasingly well understood. In addition to proinflam-
matory or M1 macrophages, fat also contains alternatively activated 

was identified in mitochondria of beige fat cells, a type of brown-like 
adipocyte (Kazak et al., 2015). Of importance, brown fat, in all of its 
dimensions, plays a role in defending animals against metabolic dis-
eases such as obesity, type 2 diabetes, and hepatic steatosis (the 
earliest manifestation of nonalcoholic fatty liver disease [NAFLD]). 
The first evidence in this regard was the observation that mice with 
genetically ablated UCP1+ cells are prone to obesity and diabetes 
(Lowell et al., 1993), whereas those with genetically elevated brown 
fat function are markedly protected from the same disorders 
(Cederberg et al., 2001).

Until recently, the term “brown fat” was used to refer to UCP1+ 
cells in two distinct anatomical locations: 1) developmentally formed 
depots in the interscapular and perirenal regions, composed mainly 
of UCP1+ adipocytes, which have many small lipid droplets (termed 
multilocular) and dense mitochondria, giving the tissue its character-
istic brown color; and 2) UCP1+ cells, which are interspersed in many 
white fat depots, particularly in the subcutaneous regions of rodents 
and humans. These two types of “brown fat” are not only distinct 
cell types (Wu et al., 2012), but they are also from completely differ-
ent cell lineages (Seale et al., 2008). The developmentally formed 
brown fat cells, now termed “classical brown fat cells,” are derived 
from a skeletal muscle–like lineage, as marked by Myf5 or Pax7 
(Seale et al., 2008; Lepper and Fan, 2010). The beige cells are de-
rived, at least in part, from a vascular smooth muscle–like lineage, as 
marked by the Myh11 promoter (Long et  al., 2014; Berry et  al., 
2016).

Most studies have not distinguished between the functional roles 
of these two types of UCP1+ fat cells, as cold exposure or β-
adrenergic stimulation activates both cell types. Recently a murine 
model has been developed that lacks beige fat cells but has fully 
functional brown fat (Cohen et al., 2014). These mice develop mild 

FIGURE 1:  Depiction of beige adipose tissue, which consists of a mixture of white and beige adipocytes. A schematic of 
stimuli that lead to increased (“browning”) or decreased (“whitening”) beige fat activity, together with the physiological 
consequences.
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2013). We know from human genetics that any inhibition of fat de-
velopment will cause ectopic lipid deposition and serious disease 
(Savage et al., 2003). With that in mind, what are potential targets 
relating to fat tissues? First, with respect to white fat, we might tar-
get abnormalities that link the adipose tissues to the consequences 
of obesity, including diabetes, cardiovascular disorders, and fatty 
liver disease. As mentioned earlier, adipose tissues in obesity 
demonstrates aspects of inflammation, including secretion of in-
flammatory cytokines; neutralization of cytokines such as TNFα im-
proves insulin resistance in rodents (Hotamisligil et  al., 1994). 
Similarly, antagonism of the inflammatory protein kinases I-kappa-B 
kinase epsilon (IKKε) and TANK binding kinase 1 (TBK1) has been 
shown to improve diabetes in mice (Reilly et al., 2013). The chal-
lenge going forward will be to obtain therapeutic benefit in diabe-
tes or cardiovascular diseases without causing the toxicity associ-
ated with generalized suppression of inflammation.

For brown and beige fat, the challenge will be to increase their 
amounts and activities in humans in a safe and effective way. That 
increased adaptive thermogenesis through brown and beige fat in 
rodents protects from obesity and diabetes is completely settled sci-
ence (Cederberg et al., 2001; Seale et al., 2011). It is also clear that 
adult humans have substantial stores of beige fat and perhaps some 
classical brown fat as well (Sharp et al., 2012; Wu et al., 2012; Cypess 
et al., 2013; Jespersen et al., 2013; Lidell et al., 2013). Cold exposure 
or administration of a β-3-adrenergic compound have been shown to 
increase activity of these thermogenic fat depots, as ascertained by 
fluorodeoxyglucose positron-emission tomographic imaging (Cy-
pess et al., 2009, 2015; van Marken Lichtenbelt et al., 2009; Virtanen 
et al., 2009). Of course, whether human thermogenic fat can be acti-
vated and/or increased in amount to play a strong therapeutic role in 
diabetes and obesity remains to be seen. Several polypeptides, such 
as fibroblast growth factor 21 (FGF21) and bone morphogenetic pro-
tein 7 (BMP7), can do this in rodents (Tseng et  al., 2008; Fisher, 
Kleiner, et al., 2012), but whether the same will be seen in humans 
with a favorable toxicity profile remains to be seen. Additional se-
creted proteins with thermogenic actions on adipose tissues con-
tinue to be discovered (atrial and ventricular natriuretic peptides and 
Slit2; Bordicchia et al., 2012; Svensson et al., 2016). It is also worth 
noting that rodent data cited earlier suggest a hepatoprotective role 
for beige fat, and so diseases such as NAFLD may well be the first 
therapeutic targets for agents that increase beige fat function. The 
extent to which the diverse metabolic benefits of brown and beige 
fat are due to enhanced thermogenesis per se or to an endocrine 
role of these tissues remains an important point to be clarified.

or M2 macrophages, with the M1/M2 ratio increasing in obesity 
(Lumeng et al., 2007). These cell types serve an important role in 
tissue remodeling. Moreover, M2 macrophages can promote beige 
fat activation. Cold exposure leads to a polarization toward the M2 
phenotype, and these M2 cells can produce and secrete catechol-
amines that stimulate beige fat cells (Nguyen et al., 2011). Eosino-
phils and type 2 innate lymphoid cells (ILC2s) within adipose tissue 
are also central to beige fat biogenesis. Eosinophils produce inter-
leukin (IL)-4 and IL-13, which activate M2 macrophages, and eosino-
phils themselves can be activated by muscle-derived meteorin-like 
protein (Qiu et al., 2014; Rao et al., 2014). ILC2s stimulate beige fat 
via production of IL-33 and enkephalin (Brestoff et al., 2015; Lee 
et al., 2015). Regulatory T-cells (Tregs) are present in visceral adipose 
tissue but decrease in number with the development of obesity, pro-
moting the development of insulin resistance (Feuerer et al., 2009). 
Of interest, the properties of visceral fat Tregs depend on the ex-
pression of peroxisome proliferator-activated receptor γ (Cipolletta 
et al., 2012). In addition to these immune cell types, roles have also 
been defined for other T-cell subsets, B-cells, neutrophils, mast 
cells, and natural killer T-cells (Brestoff and Artis, 2015).

Adipose tissue phenotypes also depend on blood supply and 
innervation, although the regulation of these processes has been 
comparatively less studied. As fat mass expands in the setting of 
overnutrition, local hypoxia can develop, and the oxygen-sensitive 
transcription factor hypoxia-inducible factor 1α (HIF1α) can become 
activated (Krishnan et al., 2012). Genetic and pharmacologic studies 
show that adipose-specific deletion or inhibition of HIF-1α can pro-
tect against obesity-related metabolic dysfunction (Jiang et al., 2011; 
Sun et al., 2013). Data also indicate that white and brown adipose 
tissue can make vascular endothelial growth factor A and other fac-
tors to enhance its blood supply (Fredriksson et al., 2000; Mick et al., 
2002). Adipose tissue, particularly brown fat, is also extensively in-
nervated with sympathetic fibers that stimulate lipolysis in the setting 
of fasting, leptin administration, and cold exposure (Bartness et al., 
2010a,b; Zeng et al., 2015). In contrast, parasympathetic fibers may 
stimulate lipid accumulation (Kreier et al., 2002). Brown and beige 
adipocytes both express high levels of the β3-adrenergic receptor, 
and pharmacologic activation by CL 316,243 promotes thermogen-
esis (Himms-Hagen et al., 1994). The factors that regulate the inner-
vation of fat cells remain an area of active investigation.

UNANSWERED QUESTIONS AND PROSPECTS 
FOR HUMAN THERAPEUTICS
Successful targeting of adipose tissue for therapeutic benefit will 
depend on further clarification of several key unanswered questions. 
First, what is the full complement of transcriptional regulators that 
govern the development and maintenance of white, brown, and 
beige fat? Second, what is the complete spectrum of phenotypes of 
each type of adipocyte? For example, it is becoming increasingly 
clear that brown and beige fat do much more than generate heat 
and may be important endocrine organs (Kajimura et  al., 2015). 
Third, how do different types of fat cells signal to other cell types 
and tissues, and how do these signals affect systemic metabolism 
and susceptibility to diabetes, hypertension, cardiovascular disease, 
and cancer? Finally, can key molecular regulators of adipose tissue 
be modulated to engineer healthier adipose tissue? Achieving this 
goal will require a basic understanding of how important factors like 
PRDM16 are physiologically regulated (e.g., transcriptionally, trans-
lationally, posttranslationally).

Ultimately, any discussion of fat tissues as a target for human 
therapeutics has to go back to the notion of adipose tissues as the 
healthiest site for deposition of excess caloric energy (Unger et al., 
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