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A priority for HIV cure research is measuring latent infection that can fuel viral recrudescence
if patients cease antiretroviral therapy (ART). One important quantity that is difficult to mea-
sure is the rate at which latently infected cells activate, giving rise to spreading infection [1].
Pinkevych et al. recently estimated this rate by analyzing several clinical cohorts and concluded
that one cell activates every 6 days [2]. This rate is 24-fold lower than our previous estimate of
4 cells/day [1], resulting in far more optimistic predictions for the prospects of reservoir-reduc-
ing therapy. We question their estimation approach and suggest that a higher rate is likely for
most infected individuals.

The main problem with the analysis is that it treats all participants as identical, with a
homogeneous virus population that activates and grows at the same rate. The only variation
between participants considered is the (random) timing of viral activation. After treatment
interruption, it is common to see one person rebound after two weeks, and another after three
weeks. By their model, the first person's virus must have activated one week before the second
person's virus did. If the activation rate were high, this would be extremely unlikely. The
authors conclude that viral activation occurs about once per week, not multiple times per day
as previously proposed [1,3-5]. Below, we offer an alternative explanation. We show that inter-
person variation in viral activation or growth rates can explain the observed variation in
rebound times. While Pinkevych et al. discuss the issue of interperson variation, they hypothe-
size that their fitted values properly estimate cohort averages. Our analysis below challenges
this hypothesis: interperson variation does not merely lead to variation around a central esti-
mate in activation rate but rather skews the estimate downward. We conclude by arguing that
high activation rates are suggested by the weak correlation between preinterruption latent res-
ervoir sizes and postinterruption viral rebound times.

In the Pinkevych et al. model, latently infected cells reactivate at a constant rate (k). Reacti-
vated virus cannot spread until drug “washes out” following ART interruption. Viral activation
occurs at a random, exponentially distributed time (average value 1/k) after washout. Plasma
virus levels then grow exponentially from V), at rate r. The proportion of individuals with viral
rebound to detectable levels by a particular time can be calculated and compared to participant
data to estimate parameters.
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Pinkevych et al. use data from four cohorts [6-9] in which rebound times were recorded fol-
lowing treatment interruption: median rebound times were 8 to 14 days. They estimate that
one activation occurs every 7.6, 6.3, 5.1, or 6.3 days for cohorts 1 through 4, respectively (equiv-
alent to k = 0.13, 0.16, 0.20, 0.16/day). Following their model, we recreate fits to cohort 3 data
in Fig 1A. We chose cohort 3 because it was the only study in which an actual estimate of
rebound time was given, instead of just a time of first detectable value, which—depending on
the frequency of sampling—could be off from the rebound time by up to a week. Cohort 3
therefore has a data point for each patient, not just for each sampling point. Results for addi-
tional cohorts are provided in S1 Text. In the lower panel, we provide viral load trajectories of
10 simulated participants, following their model but allowing for exponentially distributed acti-
vation events subsequent to the first (shown as randomly timed “jumps” in viral load).

While this model provides a good fit for rebound times (Fig 1A), it is not unique. Models
allowing variation in viral dynamic parameters also fit well, and even slightly relaxing the
assumption of cohort homogeneity dramatically changes the interpretation. Here, we consider
three such modifications of the Pinkevych et al. model: one allowing variation in viral growth
rate r, one allowing variation in activation rate k, and one allowing variation in both. Apart
from this added variability, the model structure follows Pinkevych et al. exactly (see S1 Text).

A) No interpatient parameter variation B) Interpatient variation in growth rate  C) Interpatient variation in activation rate D) Interpatient variation in both rates
(Pinchevych et al result)
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Fig 1. Alternatives to the Pinkevych et al. interpretation of rebound dynamics. Time-to-rebound data can be explained equally well by frequent
reactivation in a realistically heterogeneous cohort (Fig 1B-D) as by rare reactivation in a homogeneous population (Fig 1A). Top row: Observed
rebound times in “Cohort 3” [8] and best fits from models described in text. Bottom row: Representative rebound trajectories from 10 participants
randomly simulated with the best-fit parameters for each model. (A) The best-fit model derived by Pinkevych et al. All participants are identical, with
k=1/(5.1 days). We fixed r = 0.4/day and fit V, = 4 ¢/ml. (B) Allowing interperson variation in growth rate, r. We assumed the population distribution
of r was log4o-normal with log;o-mean p, = —0.4 (10" = 0.4/day) [1,8,10—12] and fit the log4o-standard deviation o, = 0.2 (consistent with [1,12]). We
fixed k = 4 cells/day and fit V, = 0.15 ¢/ml. (C) Allowing interperson variation in the activation rate, k. We assumed the population distribution of k was
logso-normal with = 0.6 (10¥% = 4 cells/day) [1,12] and fit the log,,-standard deviation oy = 0.55 (less than estimated in [1,12], similar to [13]). We
fixed r = 0.4/day and fit V, = 0.15 c/ml. (D) Allowing interperson variation in both activation rate and growth rate. We assumed the population
distribution of k and r were log4-normal. Taking y, and o, to be —0.4 (10" = 0.4/day) and 0.1 and p, = 0.6 (1 0M = 4 cells/day), we fit o = 0.45. We
additionally fit Vo = 0.15 c/ml. For all simulations, the definition of viral rebound was set to 50 c/ml and the drug washout time to zero. In general, only
two model parameters are identifiable from the cohort data and so the choice of which were fixed and which were fit was arbitrary. Higher V, values
paired with lower r values could fit equally well, as could either paired with higher drug washout times. Note that in simulating the Pinkevych et al.
model, we allow for the possibility that multiple reactivating cells contribute to viral rebound, as otherwise the model cannot be used to describe
higher activation rates.

doi:10.1371/journal.ppat.1005679.9001
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By demonstrating that modest levels of interperson variation alter the estimated (median) acti-
vation rate, we will conclude that rebound times alone are insufficient data for identifying the
activation rate: wider interperson variation is consistent with higher activation rates, and nar-
rower variation is consistent with lower rates. While we use an activation rate k = 4/day in the
examples below, a range of values could be used to make this same point, and our previous
work (which uses a different set of models) acknowledges uncertainty in this and related
parameters [1].

First, consider variation in r. This rate depends on many factors, including infectivity, burst
size, the density and lifespan of infectable cells, and the free virus clearance rate. These quanti-
ties can vary between individuals. Studies involving frequent viral load sampling following
rebound find r ~ 0.4/day + 0.2/day (sampling every 2-7 days in [8], every 2 days in [10], and
every 3 days in [11,12]). Using a distribution derived from one study [12], we show that even if
no other parameters vary between participants, observed rebound dynamics are consistent
with frequent activation (k = 4/day) (Fig 1B).

The activation rate k can also vary between individuals. Differences in the reservoir size, the
fraction containing replication-competent virus, the reactivation rate of individual cells, or the
probability that each reactivated viral clone escapes stochastic extinction can produce variation
in k. Reservoir size varies by >2 logs between infected individuals [13], and the activation state
of the immune system, which influences maintenance of latency, also likely varies. Fig 1C dem-
onstrates that this degree of variation, with frequent reactivation for the typical person (median
k = 4/day), explains observed rebound dynamics.

Finally, if both r and k vary, there is less required variation in each (Fig 1D). Together, these
three models show how variation in rebound times may be caused by many different factors
and that rebound time alone is insufficient to estimate k when r or k vary between individuals.

Pinkevych et al. acknowledge that variation in viral dynamic parameters may exist but
underestimate its importance using an underpowered statistical test for assessing the effect of
this variation. One prediction of the model in which r varies is that rebound times are longer in
participants with lower r. For three cohorts, the authors estimate r for each participant from
the exponential phase of rebound. They then reason that, since the correlation between r and
rebound time fails to reach statistical significance, variation in growth rates must be unimpor-
tant. One must be cautious, however, when employing this test using small cohorts in which
statistical power for detecting a true trend may be poor. To make this point concrete, we simu-
lated cohorts of 20 participants using the model in which k and r both vary as in Fig 1D, and
we found that half of the time, no statistically significant correlation between r and rebound
time was recovered, despite the relationship forced by the model. The true statistical power of
the test is even lower: when data are censored realistically—sampling viral load only once or
twice a week, estimating r from regression of a few points, and estimating rebound time from
the first detectable viral load (cohorts 1, 2) or an interpolation (cohort 3)—then true trends are
less likely to be discerned. The failure to find a trend therefore lends little confidence to the
claim that variation in growth rate can be ignored in an analysis of rebound times.

Intriguingly, one of the most detailed analyses of rebound dynamics [12] does support a
link between r and rebound time. In this study, viral loads were measured every 3 days follow-
ing ART interruption and fit to a viral dynamic model using Bayesian methods. There was a
significant correlation between r and rebound time (R = -0.49, p = 0.005). These data show
another trend contradicting the assumptions of the Pinkevych et al. model. In their model,
each separate treatment interruption follows the same distribution of rebound times, regardless
of participants’ identity. In other words, a single participant who undergoes multiple treatment
interruptions should exhibit as much variation in rebound times as a similarly sized sample of
interruptions from a population of unique participants, each undergoing a single interruption.
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In this frequently measured cohort, however, each participant experienced three interruptions,
and there were significant differences between the participants (nonparametric ANOVA,
p=0.02).

Pinkevych et al. present an independent analysis to support low reactivation rates that does
not rely on rebound times, although it makes the same assumption of homogeneity. They use
viral sequence data derived from rebounding participants in cohort 4 [9,14] to compare ratios
of genetically distinguishable viral strains. They posit that if each strain behaves identically
once activated, then differences in strain prevalence reflect only the different times at which
each one started growing (ratio of strain 1 to strain 2 = exp(r(t;-t,)). From the observed ratios,
they infer the average time between activation events to be 3.6 days (assuming r = 0.4/day).
However, an equally plausible explanation is that viral lineage frequencies vary because of fit-
ness differences. Genetic differences between strains (on average 1.4% different [14]) may affect
growth rates after activation, which can determine the observed ratios if two activate at the
same time (ratio of strain 1 to strain 2 = exp((r;-7,)t). We repeat their analysis for an alternate
scenario in which strains activate simultaneously (limit of high activation rate) but grow at dif-
ferent rates, fitting a standard deviation of 0.09-0.19/day in growth rate (depending on the
number of clones per individual (S1 Text) (Fig 2). In the context of naturally occurring HIV
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Fig 2. Alternatives to the Pinkevych et al. interpretation of founder virus ratios. Viral genotyping during early
rebound in six participants in cohort 4 [9,14] identified multiple unique viral strains contributing to rebound and
characterized their relative frequencies. Ratios were defined as the number of sequences from one strain divided
by the number of sequences from the next most prevalent strain. The cumulative distribution function (CDF) for the
frequency of each ratio, with all participant data combined, is shown (solid black line). Pinkevych et al. used
maximum likelihood estimation to determine the activation rate k that best explains this distribution, assuming all
strains start at the same level and grow at the same rate once reactivated. The CDF for the ratios using their
estimated activation rate (k = 1/(3.6 days)) is shown (dashed blue line). Alternatively, we assume that strains
activate at the same time (high activation rate) but that the growth rates of individual strains are normally distributed
with unknown mean and variance. Using maximum likelihood estimation, we infer that an interstrain standard
deviation in growth rate of 0.09/day can explain the observed clone ratios (dotted red line). This estimate increases
to 0.19 under alternate assumptions about the sampling procedure (see S1 Text).

doi:10.1371/journal.ppat.1005679.9002
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fitness variation, this standard deviation is not large: protease variants sampled from the same
HIV-infected donor may have catalytic efficiencies varying by over 50% [15], and single drug-
resistance mutations can decrease viral replication capacity by 90% [16]. Because of this varia-
tion, we do not believe that strain ratios alone can be used to estimate activation rate: as we
argued previously, wider interperson variation is consistent with higher activation rates, and
narrower variation is consistent with lower rates.

While simple models are often preferred, we believe that the foregoing discussion provides
strong biological evidence against the simplifying assumption of homogeneity used in the Pin-
kevych et al. model. Using this model may have resulted in rate estimates considerably lower
than the true values. Simplicity and realism both have merit in modeling, but the general prin-
ciple behind our argument is this: even if data fits a simple model well, it is appropriate to reject
conclusions that depend sensitively on the simplifying assumption if other data or biological
principles contradict it.

Stepping back from the debate over modeling techniques, infrequent reactivation is at odds
with aspects of clinical experience. Whether we consider the original Pinkevych et al. model,
the variations presented above, or our previous model [1], if reactivation is infrequent, then
time to rebound is governed by the waiting time until the first cell activation. This relationship
implies that rebound time should follow the inverse of reservoir size, which seems to be contra-
dicted by the observation that interperson variation in reservoir sizes [13,17-21] far outstrips
variation in rebound times [6-11]. For the same reason, a low activation rate (less than one per
viral generation) implies that any therapeutic reduction in latency is expected to prolong viral
rebound, which is far more optimistic than our previous prediction that ~100-fold reduction
must be achieved before substantial delays can be realized [1]. Pinkevych et al. acknowledge
this point about latency reduction as well, and we hope that this discussion can spur much-
needed experimental and analytical work into understanding the rate at which latently infected
cells activate and fuel viral replication.

Supporting Information

S1 Text. Supplementary Methods and Results. The sources of data, model simulation, and
parameter estimation are described, and results for fitting models to cohorts 1, 2, and 4 are pre-
sented.

(PDF)
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