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Defining a Radiomic Response 
Phenotype: A Pilot Study using 
targeted therapy in NSCLC
Hugo J. W. L. Aerts1,2,3,*, Patrick Grossmann1,3,*, Yongqiang Tan4, Geoffrey G. Oxnard5, 
Naiyer Rizvi6, Lawrence H. Schwartz4 & Binsheng Zhao4

Medical imaging plays a fundamental role in oncology and drug development, by providing a 
non-invasive method to visualize tumor phenotype. Radiomics can quantify this phenotype 
comprehensively by applying image-characterization algorithms, and may provide important 
information beyond tumor size or burden. In this study, we investigated if radiomics can identify a 
gefitinib response-phenotype, studying high-resolution computed-tomography (CT) imaging of forty-
seven patients with early-stage non-small cell lung cancer before and after three weeks of therapy. On 
the baseline-scan, radiomic-feature Laws-Energy was significantly predictive for EGFR-mutation status 
(AUC = 0.67, p = 0.03), while volume (AUC = 0.59, p = 0.27) and diameter (AUC = 0.56, p = 0.46) were 
not. Although no features were predictive on the post-treatment scan (p > 0.08), the change in features 
between the two scans was strongly predictive (significant feature AUC-range = 0.74–0.91). A technical 
validation revealed that the associated features were also highly stable for test-retest (mean ± std: 
ICC = 0.96 ± 0.06). This pilot study shows that radiomic data before treatment is able to predict 
mutation status and associated gefitinib response non-invasively, demonstrating the potential of 
radiomics-based phenotyping to improve the stratification and response assessment between tyrosine 
kinase inhibitors (TKIs) sensitive and resistant patient populations.

The response of tumors as measured on imaging is historically one of the oldest biomarkers used in drug discov-
ery and clinical practice. Response has been assessed by measuring tumor burden with a number of surrogates 
such as unidimensional measurements according to the RECIST criteria1 bidimensional measurements as defined 
by the World Health Organization2. The purpose of these criteria as well as the modifications to the criteria are 
twofold; first, to enhance the ability of the biomarker to be prognostic or predictive and/or to improve the accu-
racy and reproducibility of the biomarker. Tumor burden and change in tumor burden during therapy, as meas-
ured at imaging, has been demonstrated to have value as a biomarker3.

However, medical imaging can provide more information about the tumor phenotype, beyond volumetric 
measurements; a process referred to as image-based phenotyping. Medical imaging is intuitively very suitable 
as a biomarker source to predict treatment response, as it is able to visualize and quantify time series of disease 
processes in a non-invasive way in individual patients. The characterization of quantitative imaging features 
which reflect tumor biology, physiology and tumor phenotype is increasingly being explored. Radiomics is the 
study of these quantitative features and their correlation with tumor phenotypes4–6. For example, recent stud-
ies have used CT-based radiomic signatures to successfully predict overall survival, disease free survival, and 
distant metastases in lung cancer4,7,8. Other examples have demonstrated that an imaging feature which could 
be quantified, for example, the percentage of ground-glass opacity (GGO) volume, is significantly higher in 
patients with the exon 21 missense mutation than in tumors with other EGFR mutation status9. This is thought 
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be related to the fact that exon 21 missense mutation was significantly more frequent in lepidic predominant 
adenocarcinomas10. While these quantitative imaging features are under investigation in many cancers for their 
correlation with tumor phenotype and mutational status there is preliminary evidence to suggest that there may 
be an association between these features and both clinical outcomes and the underlying genomic signatures in 
lung cancer4,8,11.

In this pilot study, we look for the first time at the value of quantitative radiomic imaging features, in addition 
to tumor burden which was previously studied, for predicting known sensitizing EGFR mutations associated with 
Gefitinib response, to understand the relationship between imaging features and mutational status at baseline and 
especially with change in therapy in patients with and without the sensitizing mutation.

Material and Methods
This is a re-analysis of an existing dataset; imaging and tissue data were obtained prospectively as an exploratory 
analysis within a phase II trial of neoadjuvant Gefitinib in patients with NSCLC12. Correlation results of early 
diameter and volume changes with EGFR mutation status was published previously3. As described previously3, all 
experiments were performed in accordance with relevant guidelines and regulations, and approved by the insti-
tutional review board (IRB) at Columbia University College and New York Presbyterian Hospital. Also, informed 
consent was obtained from all subjects included in this study.

Figure 1.  Example images of a patient with EGFR mutation and without (wild-type; WT) at baseline and 
follow-up scan. Radiomic feature values are given below each image for baseline and follow-up time points, as 
well as their delta differences.
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Clinical data.  At time of resection, tumor tissue was snap frozen in liquid nitrogen and stored in a −​80 °C 
freezer. Representative areas of these specimens were pathologically reviewed to confirm the diagnosis and pres-
ence of tumor. Genomic DNA was analyzed for the most common EGFR-sensitizing mutations (exons 19 and 21)  
using previously described PCR-based methods13,14. EGFR wild-type (WT) tumors were also tested for KRAS 
mutations, which were found in a non-overlapping subset of lung adenocarcinomas that have been found to 
be resistant to EGFR tyrosine kinase inhibitor therapy15. If no EGFR or KRAS mutations were found, then 
the remaining EGFR exons were assessed by standard dideoxynucleotide sequencing. Selected specimens 
that were found to be EGFR/KRAS WT were submitted for more detailed mutational testing using mass 
spectrometry.

Tumor imaging and measurement.  Baseline computed tomography of each patient was done within 
2 weeks before gefitinib initiation. A follow-up computed tomography scan was done using the same imag-
ing acquisition technique about three weeks post therapy, before surgery. Non–contrast enhanced diagnostic 
chest computed tomographies were done with a LightSpeed 16 scanner (GE Medical Systems) during a breath 
hold. High-resolution images with 1.25-mm slice thickness and lung kernel were reconstructed3. Three patients 
were excluded because 1.25-mm slice thickness reconstructions were not collected as required by protocol (two 
patients) and delineation of lesion contour did not reach radiologists’ consensus during the data review of this 
study (one patient), leaving 47 of 50 patients remained in our analysis. Tumor contours were semi-automatically 
delineated using a three-dimensional segmentation algorithm3,16.

Quantitative Radiomics analysis.  In this work, we extracted 183 radiomic features from both baseline 
and follow up scan images that were resampled down to 0.25 mm resolution in all three directions. The definitions 
of these features are provided in Supplemental 1. The Delta dataset was defined as the pre-treatment radiomic 
feature values minus the post-treatment values. On the Delta dataset, the 15 most variant features were selected 
using the coefficient of variation. From this set, highly correlated features were removed who had a mean cor-
relation of higher than 0.95. This procedure yielded 11 independent features; we added Volume and maximum 
diameter for comparison, resulting in 13 features in total. A correlation matrix for these features was calculated 

Figure 2.  Study Design. Patients included to the study were received Gefitinib treatment. CT scans at baseline 
and first follow-up were used to segment the tumor and to extract radiomic features. Baseline, follow-up, and 
delta radiomics (differences between baseline and follow-up) were used to assess EGFR sensitizing mutation 
status.
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using Spearman rank statistic. For every dataset, the area under the curve (AUC) of the receiver operator charac-
teristic (ROC)17 was calculated to assess predictive power of EGFR-sensitizing mutation. Since only 13 features 
were tested, correction for multiple testing was not considered. All statistical analysis was conducted using the R 
statistical software version 3.1.018 on a Linux operating system.

Technical validation.  Technical validation of the features were conducted in a test-retest setting on the 
RIDER dataset, which contains of 31 patients each two lung CT scans taken approximately 15 min. apart. The 
RIDER lung cancer dataset19 of the same-day repeat CT scans and the intraclass correlation coefficient (ICC) was 
used to assess the stability of features for test-retest. The CT imaging protocol of the RIDER data set was identical 
to the one used in this study20.

Results
To investigate if radiomic biomarkers are associated with mutational status and response to Gefitinib treatment, 
we analyzed clinical data of 47 early stage NSCLC patients whom were imaged before and after treatment. In 
Fig. 1 representative CT scans of an EGFR mutant and an EGFR wild-type tumor are shown before and after 
Gefitinib treatment, demonstrating clear phenotypic differences. To quantify these differences, we performed 
a radiomic analysis (see Fig. 2). The analysis was restricted to features with high and independence variance 
(Supplement I), resulting in eleven radiomic features and two volumetric features (volume and max diameter), 
that were included in our analysis (see Table 1). Using this strategy, we were able to identify a limited number 
of independent features, and only these features were assessed for performance to predict mutational status and 
associated Gefitinib response.

Baseline radiomics associations with mutational status.  We investigated the correlations between 
the image features evaluated in our analysis. In Fig. 3 the correlations between the features extracted from the 
before treatment CT scan are shown. Although the GLCM features showed high positive and negative correla-
tions, overall the correlations between those features were low (mean ±​ std: −​0.16 ±​ 0.95), demonstrating inde-
pendency of those features. Note the low correlation of total tumor volume with the other features (mean ±​ std: 
0.01±​ 0.33).

Feature Description

Volume Tumor volume is calculated by multiplying the number of tumor voxels by the image resolutions in x-, y- and 
z-directions.

Gabor Energy feature class

Gabor filters are linear filters designed for edge detection. This is an oriented Gaussian function modulated 
by a sinusoidal wave. The Gabor Energy feature is defined as the sum of the square of density over all lesion 
pixels on the images pre-processed by Gabor filter.
· Gabor_Energy-dir135-w3: the Gabor Energy feature calculated on the images pre-processed using the 
Gabor filter built with an orientation of 135° and a wavelength of 3 pixels.
· Gabor_Energy-dir45-w9: the Gabor Energy feature calculated on the images pre-processed using the Gabor 
filter built with an orientation of 45° and a wavelength of 9 pixels.

Sigmoid Function feature class

To quantify lesion margins, Sigmoid curve is used to fit density change along a sampling line drawn 
orthogonal to the lesion surface. Each sampling line, going through one voxel on the lesion surface, has a 
certain length inside and outside the lesion.
· Sigmoid-Offet-Mean-d5: The average of the densities between a lesion and lung parenchyma on all lines. 
The line length is 5 mm at both sides of the lesion.
· Sigmoid-Slope-Mean-d5: The average of the density change speed between lesion and lung parenchyma on 
all lines. The line length is 5 mm at both sides of the lesion.

Shape Index feature class
Local surface shape of a 3D object can be intuitively captured by 9 Shape Index features, Shape_SI1-9. The 
value of each Shape Index ranges from 0 to 1. The larger the value, the greater the portion of the shape on the 
surface.
· Shape_SI6: Describes the saddle ridge shape.

Boundary_Radius_Std This feature is defined as the standard deviation of the lengths of the line segments from the center of an 
object to any voxel on the surface of the object. A spherical shape has the smallest value of zero (0).

GLCM feature class

GLCM stands for grey-level co-occurrence matrix. This feature class characterizes image textures by creating 
a new matrix, GLCM, which is based on the frequency of image pixel pairs having particular gray-level 
values in a particular spatial arrangement (i.e., distance and direction). A number of statistical features can 
then be extracted from GLCM to characterize homogeneity, contrast, entropy and so on. In the following 
feature names, “mean” specifies average of feature values calculated at 13 directions. “d1” and “d4” indicate 
pixel pairs separated by 1-pixel distance and 4-pixel distance.
· GLCM_IMC1-mean-d1: The average of informational measure of correlation 1 calculated at pixel pairs 
separated by 1-pixel distance
· GLCM_IMC1-mean-d4: The average of informational measure of correlation 1 calculated at pixel pairs 
separated by 4-pixel distance
· GLCM_MCC-mean-d1: The average of Maximum Correlation Coefficient calculated at pixel pairs 
separated by 1-pixel distance. calculated at pixel pairs separated by 4-pixel distance.

Laws Energy feature class

Laws’ Energy emphasizes edge, spot, ripple and wave patterns through Laws filters generated by the following 
5 basic raw vectors: Average L5 =​ (1, 4, 6, 4, 1), Edge E5 =​ (−​1, −​2, 0, 2, 1), Spot S5 =​ (−​1, 0, 2, 0, −​1), Ripple 
R5 =​ (1, −​4, 6, −​4, 1), and Wave. By multiplying and combining the transpose of one basic vector and/or 
the vector itself, 14 standard Laws filters can be built, each generating one feature. A Laws Energy feature is 
computed by summing the square of image pixel value over all tumor pixels on images processed by one of 
the 14 Laws filters.

  •​ Laws_Energy-10: Energy calculated on the images processed by Laws filter #10 × + ×R W W R( )T T
5 5 5 5 .

  •​ Laws_Energy-13: Energy calculated on the images processed by Laws filter #13 ×⁎W W(2 )5 5 .

Table 1.   Definitions of evaluated quantitative image features.
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To assess the associations of radiomic features and EGFR mutational status, we evaluated the predictive power 
using the AUC of the ROC. Figure 4 shows the AUC values that were measured for imaging features extracted 
from the scan before treatment, after treatment, and the difference between both scans (delta). Interestingly, Laws 
Energy 10 is the only radiomic feature that is significantly predictive for mutational status extracted from the 
pre-treatment scan (AUC =​ 0.67, p =​ 0.03). Note that pre-treatment tumor volume (AUC =​ 0.59, p =​ 0.27) and 
maximum diameter (AUC =​ 0.56, p =​ 0.46) are not predictive of mutation status. No features are significantly 
predictive extracted from the image scan after treatment (highest AUC =​ 0.64, p =​ 0.08, Shape SI6). Also, the 
remaining volume after treatment is not predictive (AUC =​ 0.54, p =​ 0.63).

Response phenotyping by radiomics feature change to predict mutational status.  To assess 
the difference in radiomic feature values between the two scans (delta), showed strong predictability for muta-
tion status (Fig. 4C). The strongest predictors are delta volume (AUC =​ 0.91, p =​ 10−25) and delta maximum 
diameter (AUC =​ 0.78, p =​ 10−5). However, one radiomic feature was also significantly predictive: delta Gabor 
Energy (dir135-w3), which is Gabor Energy calculated at the wavelength of 3 pixels and direction of 135 grade 
(AUC =​ 0.74, p =​ 3 × 10−4). Although, this feature is predictive, the correlations with tumor volume (r =​ −​0.31) 
and maximum diameter (r =​ −​0.43) are low (Fig. 3). These results demonstrate the predictability of radiomic 
features quantifying phenotypic characteristics other than volumetric features.

Technical validation of radiomic features for stability.  As a technical validation, we assessed the sta-
bility of the four features that showed significantly predictive capabilities on either the pre, after, or delta scans, i.e. 
(I) Laws Energy, (II) Gabor Energy, (III) tumor volume, and (IV) maximum diameter (Fig. 4). For this purpose 
we used the independent RIDER lung cancer dataset consists of same-day repeated CT scans for 31 patients. The 
intraclass correlation coefficient (ICC) was used to assess the stability of each feature for test-retest. We found that 
all four significantly associated features with mutation status were also highly stable for test-retest (mean ±​ std: 
ICC =​ 0.96 ±​ 0.06). Feature Laws_Energy_10, the only feature significantly associated with mutational status 
extracted from the pretreatment scan, had a high stability of ICC =​ 0.87. The stability of the features significantly 
associated with mutational status between the two time points, was also very high: Volume (ICC =​ 0.99), Gabo 
Energy (ICC =​ 0.97), and maximum diameter (ICC =​ 0.99). These results validate that features significantly asso-
ciated with mutation status are also stable for test-retest.

Figure 3.  Correlations of Radiomics features. Correlation coefficient matrix between the 13 imaging features 
evaluated in the analysis. Note the overall low correlation between radiomic features. Correlations were assessed 
using pearson correlation coefficient.
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Discussion
Biomarkers that are able to predict treatment response are crucial for clinical introduction of targeted thera-
pies. Erlotinib and Gefitinib are examples of targeted therapies that were successfully introduced in practice, 
largely due to accurate predictive biomarkers (i.e. EGFR mutation status). Others have failed to become clinically 
approved, such as Cetuximab in NSCLC, to a great extent because an accurate response biomarker is lacking21–24. 
Medical imaging is intuitively very suitable for this purpose, as it is able to visualize and quantify time series of 
disease processes in a non-invasive way in individual patients. “Radiomics”, the extraction and analysis of large 
amounts of advanced imaging features, is able to quantify tumor phenotypic properties, thereby potentially pro-
viding valuable diagnostic, prognostic or predictive information. Radiomic features have been associated with 
clinical outcomes4,8,25–29, however the predictive capability of radiomics for response to targeted therapies remains 
largely unknown.

The goal of this study was to investigate if radiomic data could define a response phenotype for NSCLC 
patients treated with Gefitinib therapy. Our data show strong associations between radiomic features and tumors 
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Figure 4.  Value of radiomic features to predict mutational status extracted from (A) before treatment scan, (B) 
post-treatment scan, and (C) delta (difference between the scan before and after treatment). Predictive value is 
assessed using the area under the curve (AUC) of the receiver operator characteristic (ROC). Asterisk denotes 
features that significantly predict mutation status better than random (p <​ 0.05). Note, before treatment only 
the radiomic feature Laws_Energy was significant for predicting mutation status, and conventional imaging 
markers showed no significant predictive power. After treatment no features are predictive, however delta 
feature values between the pre and post-scan show strongest predictive value.
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with and without sensitizing mutations. The radiomics feature Laws Energy extracted from the baseline, pretreat-
ment CT scan showed the strongest performance to predict mutation status (AUC =​ 0.67, p =​ 0.03). In contrast, 
we found that tumor volume and maximum diameter were both not significantly predictive (p >​ 0.27). These data 
show that radiomics analyses can reveal more phenotypic characteristics than standard imaging features, such as 
size and volume, and have tremendous potential to be incorporated into precise response biomarkers. However, 
before clinical applicability, the predictive performance of these features have to be evaluated in large independent 
cohorts across institutions.

As expected, response of imaging phenotype was extremely different for patients with and without sensitiz-
ing mutations. We compared the radiomic data extracted from the change in pre- and post-treatment scans. As 
expected, tumor volume and maximum diameter had the highest performance; however the radiomic feature 
Gabor Energy was also significantly predictive. The correlation of this feature with tumor volume and maximum 
diameter was low. This could indicate the independent predictability for mutational status; however, future stud-
ies are needed to show if these features have complementary value in multivariate models for response prediction 
or may be seen earlier in treatment response. Due to the limited sample size of this study, we were not able to 
identify and validate multivariate biomarkers. The analysis supports CT-based response assessment as one effec-
tive tool for distinguishing sensitive and resistant tumor, but there may be other metrics that are additive and 
would allow a more comprehensive measure of response. The specific radiomic features may depend upon the 
specific mechanism of action of the drug or class of therapy.

Correlations between our selected radiomics features demonstrated that in general, the features originally 
derived from CT segmentation of tumors are indeed independent measures of phenotypic characteristics. Each 
feature has the potential to offer unique insight to the tumor behavior. This was demonstrated by the fact that 
different radiomic features predicted for tumors with and without EGFR mutations, and confirmed by the relative 
independence between most of the imaging features. However, future studies have to investigate how these pat-
terns in the imaging data captured by these radiomic features, are associated with the underlying driving biology.

As a technical validation we assessed if the four features significantly associated with mutation status, iden-
tified by our analysis, could be stably extracted from CT scans. We evaluated this stability using another dataset 
with repeated test-retest CT scans for 31 patients (RIDER). All four features could be validated and had high 
stability for test-retest (ICC >​ 0.87).

Variability in CT acquisition and reconstruction parameters is inherent in clinical practice. In this study 
we used a prospective collected dataset with high resolution CT scans with the same imaging protocol for all 
included patients. However, the optimal scanning parameters still have to be defined and more domain specific 
quantitative features are anticipated to be developed. The Quantitative Imaging Network (QIN) of the National 
Institute of Health, and others, play an important role in this process by performing phantom studies, radiomic 
feature definition standardizations, and segmentation challenges30. Furthermore, they establishes open and stand-
ardized protocols for image acquisition, reconstruction, and analysis30–32. It is expected that these efforts will 
improve the predictive performance of radiomic response biomarkers even further.

As this was a pilot investigation our analysis had several limitations. A main limitation was the limited sample 
size as we included only 47 patients in our analysis. As the data was acquired in a research study, with high qual-
ity imaging data and imaging before and after gefinitib treatment, more data was not available. Also, we limited 
our analysis to eleven independent radiomic features. A full radiomic analysis4, evaluating hundreds of features, 
could potentially achieve higher performance radiomic biomarkers for gefitinib response, however requires large 
independent training and validation cohorts. Furthermore, before clinical application imaging protocols have to 
be standardized and hence variability in CT acquisition and reconstruction parameters in clinical practice has 
to be reduced. The Quantitative Imaging Biomarker Alliance from the Radiological Society of North America 
(RSNA) and the QIN play an important role in this process by establishing standards for image acquisition and 
reconstruction, by conducting phantom studies, and by performing segmentation challenges. In addition, multi-
ples studies have already documented the robustness of radiomic feature extractions in terms of reproducibility 
and repeatability in test/re-test settings4,19,27. However, before clinical utility, future studies have to evaluate radi-
omic biomarkers in independent and prospective validation cohorts with large sample sizes, and show improved 
performance compared to volumetric imaging features.

In conclusion, we found that radiomics features are able to define a Gefitinib response phenotype non-invasively,  
that is able to distinguish between tumors with and without EGFR sensitizing mutations at baseline and a quan-
titative change in these radiomic features at follow up. The use of radiomics based response assessment tools 
could improve the stratification between sensitive and resistant patient populations and the detection of response 
to treatment. This may provide an opportunity to improve decision-support at low aditional cost, as imaging is 
routinely and repeatedly used in clinical practice.
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