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Analysis of cancer genomes reveals basic features
of human aging and its role in cancer development
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Somatic mutations have long been implicated in aging and disease, but their impact on fitness

and function is difficult to assess. Here by analysing human cancer genomes we identify

mutational patterns associated with aging. Our analyses suggest that age-associated

mutation load and burden double approximately every 8 years, similar to the all-cause

mortality doubling time. This analysis further reveals variance in the rate of aging among

different human tissues, for example, slightly accelerated aging of the reproductive system.

Age-adjusted mutation load and burden correlate with the corresponding cancer incidence

and precede it on average by 15 years, pointing to pre-clinical cancer development times.

Behaviour of mutation load also exhibits gender differences and late-life reversals, explaining

some gender-specific and late-life patterns in cancer incidence rates. Overall, this study

characterizes some features of human aging and offers a mechanism for age being a risk

factor for the onset of cancer.
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R
ecent analyses of human whole-genome germline
mutations revealed that mutation load in offspring behaves
on average as a monotonic function of paternal age,

affecting the risk of autism and schizophrenia in the children
of older fathers1–4. Growth of somatic mutation load and
burden also modulates the risk of disease by increasing the
likelihood of mutations directly affecting the relevant genes and
perturbing gene regulatory networks. For example, studies
suggest that mitochondrial DNA mutations are involved in
the development of Alzheimer’s and Parkinson’s diseases5,6, and
an aging-associated increase in mtDNA mutations would
thus lead to an increase in the risk of these neurological
diseases with age. Cancers grow from clonal expansions of single
mutated somatic cells. Initiation of clonal expansion and
transition from a non-malignant to malignant regime are
associated with mutations in two to seven gene drivers of
cancer7, and an age-dependent increase in the overall somatic
mutation load naturally leads to a proportional increase in
somatic mutation burden, affecting probability of driver
mutations and making cancer a disease of aging8,9.

Although identification and quantitative analysis of age-related
somatic mutations are extremely important for understanding the
aetiology and estimating the baseline risk of cancer and other
diseases of aging, such analysis remains a major technical
challenge. Human somatic mutation accumulation rates
were previously estimated to be within the range of 70–700
mutations per year in proliferating cells, and an order of
magnitude lower in non-replicating cells10. Variability in
estimated mutation rates highlights many difficulties associated
with accurate measurement and quantitative analysis of age-
related somatic mutations. In particular, since somatic mutations
differ among individual cells of the organism11, numerous single
cell genomes from subjects of different age are needed to assess
the age-dependence of average mutation load and to quantify
mutation accumulation rates.

A key feature of somatic mutations in proliferating cells is that
they may lead to cancer. It is known that somatic mutation
numbers increase with age in many cancers12,13, consistent with
earlier reports of age-related accumulation of mutations in model
animals11. Genomes of cells in the clone include multiple
mutations originating well before the onset of cancer13, and
clones may be thought of as ‘lenses’ amplifying mutational
patterns in single cells observed at premalignant stages. Thus,
cancer genomes become a powerful tool for characterizing
age-related accumulation of human somatic mutations14, and
an alternative to single cell technologies. Here we show
that analyses of cancer genomes allow estimation of the
aging-associated increase in mutation load and burden, in turn
leading to insights into both aging and cancer.

Results
Non-linear increase and slowdown of mutation load with age.
Taking advantage of the availability of thousands of human
cancer genomes in the Cancer Genome Atlas (TCGA)15, we
quantitatively assessed age-related mutational patterns in cancers.
First, we combined different cancer types sequenced by five major
research centers (Baylor College of Medicine, Broad Institute,
Canada’s Michael Smith Genome Sciences Centre, the University
of California Santa Cruz and Washington University School
of Medicine) and analysed the resulting statistical ensembles
of whole-exome samples to assess multi-tissue age-related
changes in mutation load. We found that each of the ensembles
produced by different sequencing centres was characterized
by a non-uniform distribution of cumulative mutation load
(Fig. 1a–c), with most cancer samples having o150 mutations/

exome and a few samples showing much larger numbers of
mutations. As estimated values of somatic mutation load in a
given sample depend on the choice of sequencing technology and
variant-calling pipelines, and because the lists of cancer types
sequenced by individual centres varied, the median mutation
loads and their behaviour with age were slightly different among
the ensembles of samples produced by different centres. However,
in all cases, they were located at relatively low values of 10–150
mutations per exome, and grew with age monotonically but
non-linearly, significantly slowing down in late life (Fig. 1d). This
non-linear accumulation of somatic mutations with age is also
consistent with recent estimations of the behaviour of mutation
load with age in hematopoietic clones16,17.

Patterns of mutation accumulation in individual tissue types.
Analysis of the distributions of mutation loads P(N, t) was then
carried out for the data sets representing individual cancer types
and segregated according to patient gender, sequencing centre
and variant-calling pipeline (Fig. 1e shows a representative
example). For every large data set, the distribution P(N, t)
possessed a distinct Poisson peak N¼Nfull(t) with the position of
the peak Nfull(t) and its width dNfull(t) being of the same order.
The position of the peak Nfull(t) grew monotonically with age t,
then stopped growing in late life (a representative example is in
Fig. 1f). The position of the Poisson peak was always located close
to the median value of the distribution P(N, t).

Somatic mutation accumulation rates were then extracted from
the dynamics of the peak N¼Nfull(t), revealing 0.93 mutations per
exome per year on average in all tissues and in both genders
(Supplementary Tables 1 and 2). Behaviour of the load Nfull(t)
remained distinctly non-linear for all considered tissue types, in
particular, the exponential dependence Nfull tð Þ� eafullt was a
significantly better fit then the linear one, Nfull(t)Bt, at early and
intermediate ages. This observation can be compared with other
studies. An analysis based on tri-nucleotide mutational signatures
followed linear mutation growth patterns with age18, while another
study suggested that the exponential age-dependent growth
provides a better fit for the behaviour of the full mutational
load with age19. It was also found that the linear growth rates
do not correlate well among different cancer types18. We observed
a similar pattern. It can be argued that the linear mutation
accumulation rates are not well-defined physically: if the behaviour
of mutational load with age is Nfull tð Þ¼N0eat , the linear growth
rate is given by N0a. The value of N0 and thus the linear rate itself
depend on the choice of variant-calling pipeline used to estimate
the mutation load (Supplementary Figs 1–18). On the other hand,
we observed (see below) that the mutation accumulation rate
doubling time a� 1 does correlate well between cancers.

A noticeable slowdown of mutation accumulation was
consistently observed in late life, at 50–80 years, although the
age of the beginning of the slowdown varied among cancers
(Fig. 1g–i, Supplementary Figs 1–18). For all considered tissue
types, the width of the peak dNfull(t) remained of the same
order as Nfull(t) at all ages, although the lack of statistical power
due to strong heterogeneity of cancers precluded discriminating
with certainty between the linear, dNfull(t)Bt, and the
exponential, dNfull tð Þ� eafullt , dependences of the load distribution
width on age.

Mutation accumulation rates match all-cause mortality rates.
As cancer incidence rates are also known to slowdown in late
life20,21, we compared the behaviour of characteristic age-adjusted
mutation loads Nfull(t) for different cancers with the corresponding
US cancer incidence curves (Fig. 1g–i, Supplementary Figs 19–31)
obtained from the CDC Wonder Database22. We have also
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compared the patterns with the cancer incidence curves for the
UK (obtained from Cancer Research UK23) and Australia
(obtained from Australian Government24) (Fig. 2a–f,
Supplementary Figs 32–42). Since for all considered cancer types,
the incidence doubling rates and the ages of cancer incidence
reaching plateau were the same among the three countries, we
focused subsequent analyses on the largest data set that
represented US cancer incidence.

It was found that age-adjusted mutation loads and cancer
incidences were correlated across all ages. This correlation was
particularly strongly expressed in the relation between somatic
mutation accumulation and cancer incidence doubling rates. For
all considered cancers and tissue types, both age-adjusted mutation
loads Nfull(t) and cancer incidence numbers Nincidence(t) grew
exponentially with age as Nfull tð Þ� eafullt and Nincidence tð Þ� eaincidencet

during most of the adulthood. Remarkably, the exponential rates
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Figure 1 | Accumulation of mutations with age and cancer incidence. (a) Somatic mutation distribution and combined mutation load for gender-

nonspecific cancers (ESCA, LIHC, PAAD, PCPG, SARC, STAD and UVM in both men and women) sequenced by Canada’s Michael Smith Genome Sciences

Centre (BCGSC). Each point represents a particular cancer sample. Black line denotes behaviour of the median of the distribution with age. (b) The same

for samples sequenced by Baylor College of Medicine (BCM); cancers include ESCA, LIHC, LGG, PAAD, PCPG, STAD, THCA and UVM. (c) The same for

samples sequenced by the University of California-Santa Cruz (UCSC); cancers include ESCA, KIRP, LIHC, PAAD, PCPG, SARC and UVM. (d) Behaviour of

the mutation load distribution medians with age for distributions depicted in a–c. (e) Mutation load distribution for patients with colon adenocarcinoma

(COAD), samples sequenced by BCM, IlluminaGA pipeline. Cancers in men are shown in blue, and in women in red. (f) Dynamics of the mutation load

distribution P(N, t) of somatic mutation counts N with age t for breast adenocarcinoma (BRCA) in women. Samples sequenced by Washington University,

IlluminaGA human-curated pipeline. The actual histograms of mutation loads are approximated by 8 degree polynomials. For each age cohort, the

distribution peak is denoted by a coloured arrow. (g) Somatic mutation load versus cancer incidence (cases per 1,000 capita) for pheochromocytoma and

paraganglioma (PCPG) cancers in women; samples sequenced by Broad Institute, IlluminaGA automated variant-calling pipeline. Cancer incidences (green)

and age-related somatic mutation accumulation pattern (blue). (h) The same for cervical squamous cell carcinoma and endocervical adenocarcinoma

(CESC). Samples sequenced by BCGSC, IlluminaHiSeq automated pipeline. (i) The same for pancreatic adenocarcinoma (PAAD) in men. Samples

sequenced by BCM, IlluminaGA automated pipeline. Results for other cancers, datacenters and variant-calling pipelines are presented in Supplementary

Figs 1–16. Errors are s.d., calculated using bootstrapping as described in Methods.
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afull and aincidence were always close to each other and
corresponded to the human all-cause mortality doubling rate of
0.125 per year (Fig. 3a,b). In fact, the average of the rates afull and
aincidence among different cancers was within the 1s bound from
the human all-cause mortality doubling rate 0.125 per year, and
more than half of cancers were within the 2s bound from it,
that is, for different cancers mutations accumulate at essentially
the same pace, related to the human all-cause mortality
doubling rate.

We have also performed a similar analysis of whole genomes
for several cancers (Supplementary Figs 43 amd 44). A much
smaller number of whole-genome samples compared with the
number of available whole exomes has prevented us from
identifying the mutation accumulation doubling rates with
statistical significance, although we were able to detect
mutational load accumulation slowdown at late ages (for
example, breast adenocarcinoma and liver hepatic carcinoma
(LIHC)). The total characteristic mutational loads in whole
genomes exceeded those in whole exomes by 2 orders of
magnitude, as should be expected.

Differences in mutation accumulation among human tissues.
By calculating values of afull for different cancer types
(Supplementary Tables 1 and 2), we estimated the mutation
accumulation rates in the corresponding tissues, as well as
variability of these rates (Fig. 3a,b). One class of outliers located
more than the 2s bound away from the human all-cause
mortality doubling rate included reproductive organs represented
by gender-specific cancers, such as CESC (cervical squamous
cell carcinoma), OV (ovarian serous cystadenocarcinoma), TGCT
(testicular germ cell tumours), PRAD (prostate adenocarcinoma),
UCEC and UCS (cancers of corpus uteri). Acute myeloid

leukaemia (LAML) was also a notable 2s outlier, although the
rate afull for LAML was close to the average. Another 2s outlier
was uveal melanoma, with both afull and aincidence significantly
below the average.

To test whether the observed correlation between the rates afull

and aincidence is not due to the sample selection bias for
mutational catalogues, we estimated the distributions of
chronological age for different samples represented in TCGA
(Supplementary Figs 45 and 46); determined the median
chronological ages from these distributions; and calculated the
median ages of cancer incidence from incidence curves
(Supplementary Tables 3 and 4). For all cancer types represented
in TCGA, the median age of cancer incidence was significantly
below the median age of patients. On the other hand, the
correlation between cancer incidence doubling rate and mutation
accumulation rate was observed for early–late mid ages.

Analysis of silent mutation load. To shed light on the nature of
the observed behaviour of the median age-adjusted load Nfull(t),
the same quantitative analysis of cancer genomes was repeated for
silent mutations only. A strong linear correlation was found
between afull and asilent (the exponential rate of silent mutation
accumulation) among all analysed cancers (Fig. 3c). While the
analysis of age-adjusted mutation load Nfull(t) was largely similar
to the analysis of silent mutation load Nsilent(t), the former had a
higher statistical power, since for every tissue type and age
the total median mutation load was significantly higher than
the median silent mutation count (Fig. 3d,e). The fact that the
behaviour of silent mutation counts with age is completely
similar to the one of full mutation counts supports the idea that
the observed mutation accumulation is the result of a passive
stochastic process.
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Mutational patterns most consistently associated with aging.
To identify which types of mutations are most strongly
accumulated with age, we performed the analysis of mutational

patterns in available TCGA samples12,25,26 by applying the
method of proper orthogonal decomposition to the TCGA data
sets for both developed and early stage cancers (Fig. 3f–h,
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Figure 3 | Mutation accumulation doubling rates and mutational patterns. (a) Somatic mutation accumulation doubling rate afull versus cancer incidence
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scheme on the right. A black spot is an average of rates over all cancers. Grey ovals are the contours of the 1s and 2s deviations from the average. Straight

grey lines correspond to the human mortality doubling rate of 0.125 per year. Pinkish clouds correspond to cancers representing reproductive tissues

(upper) and leukaemia (lower). The blue cloud represents cancer of the uvea. (b) Magnification of a showing cancers within the 1s, 2s areas. (c) Somatic

mutation accumulation doubling rate afull versus doubling rate asilent for accumulation of silent mutations for different cancer types (gender-specific data

combined). Points of the same colour correspond to the data sets representing the same cancer type, sequenced by different datacenters using different

variant-calling pipelines. (d) Full average counts of somatic mutations per exome versus silent mutations for bladder urothelial carcinoma (BLCA) in men.

Samples sequenced by Broad Institute, IlluminaGA pipeline. (e) The same for glioblastoma multiforme (GBM) in men. Samples sequenced by Broad

Institute, IlluminaGA pipeline. (f) Identifying age-dependent mutational signatures for the breast invasive carcinoma (BRCA) data set. Samples sequenced

by Washington University School of Medicine, IlluminaGA human-curated pipeline. Relative weights of different mutation types in the first mutational

signature. The signature is dominated by CT and GA mutations (dark red rectangle), the contribution of simple indels is subdominant (violet rectangle).

(g) Relative weights of the first six signatures, normalized to 1; the first signature dominates, corresponding to the pattern of somatic mutation

accumulation associated with aging. (h) Behaviour of projections onto the first and second leading mutational signatures with age.
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Supplementary Figs 47–69). A strong prevalence of age-associated
CT and GA mutations was found, while the contribution of
various indels into the dominating age-correlated mutational
signature was generally low (Fig. 3f). The majority of CT and GA
mutations occur at CpG sites due to replication errors27,
corresponding to CpG-TpG and CpG-CpA transitions.

For all considered cancers, the leading age-correlated
mutational pattern contributed 450% to the total mutation
counts (Fig. 3g), and the projection of mutation counts onto
the leading mutational pattern strongly correlated with the
characteristic mutation loads Nfull(t) (Fig. 3h), thus providing
an additional method to assess the behaviour of the median
age-adjusted mutation load without constructing and analysing
full mutation count distributions P(N, t).

It is interesting to note that the mutational signatures 1 and 5
identified in a recent study18 as the signatures associated with
clock-like mutational processes typically have a contribution to
mutational load subdominant to the contribution of signatures
associated with extrinsic factors. Thus, they cannot be in the
one-to-one correspondence with the leading age-correlated
mutational pattern discussed above. If the latter pattern is due
to aging, it is expected to have contributions from multiple
mutational processes, leading to accumulation of mutations with
age. This also explains why the leading pattern is associated with a
Poisson-like distribution of mutational loads among different
samples. Since it is due to a superposition of the effects of many
mutational processes, the distribution of the resulting load is
subject to the central limit theorem.

Time lag between somatic mutation load and cancer incidence.
Another feature common to most cancers identified from the
comparison of age-adjusted mutation loads Nfull(t) and cancer
incidence curves Nincidence(t) was a time delay D between the
onsets of Nfull(t) and Nincidence(t).

We used several methods to estimate the magnitude of the
delay D for each cancer. First, the ages of inflection, where the
initial exponential regimes of mutation load and incidence
growth cease and are followed by slowdown, were calculated
for Nfull(t) and Nincidence(t). For all considered cancer types,
the incidence inflection and subsequent slowdown were reached
10–20 years later than the same event in mutation accumulation
(Fig. 4a). Second, we estimated the time delay between Nfull(t) and
Nincidence(t), normalized to the same scale, by minimizing the
Euclidean distance functional

P
i(Nfull(ti)�Nincidence(ti))2

between the two curves (Fig. 4c,d). Both methods revealed that
the cancer incidence lags behind the age-adjusted mutation rate
by DE15±10 years (s.d., see Fig. 4e, Table 1), with the
lower bound reached by cancers for which early diagnostics
methodologies are available (including CESC and breast invasive
carcinoma (BRCA)) or slowly developing cancers, such as THCA.

The observed lags between age-dependent cancer incidence and
somatic mutation load (Table 1) coincided with known estimations
of pre-clinical cancer development times28–33, as well as tumour
volume doubling times34–40. The latter can be related to cancer
pre-clinical development time by evaluating the time required for a
clonal expansion initiated from a single cell to reach the size of
109� 1010 cells, when diagnosis becomes inevitable.

Gender specificity in somatic mutation accumulation. By
examining cancers common to both genders, that is, excluding
gender-specific (testicular, prostate, breast, cervical, ovarian and
uterine) cancers, we found that the total mutation load was
noticeably higher in men than in women, and this pattern was
observed for all sequencing centres (Fig. 5a–c). Men also had a
higher age-adjusted total cumulative burden of mutations,

indicating a higher probability of encountering a damaging
mutation at each age (Fig. 5d–f). Analysis of individual common
cancers demonstrated that half of the analysed cancer types
(10 out of 20, Supplementary Figs 1–22) exhibited a higher
age-adjusted mutation load in men than in women, and most of
the remaining cancers showed approximately equal mutation
loads in men and women.

To further quantitatively assess the gender effects on the
landscape of all cancers, we estimated the difference in
the mutation load score between men and women (Male–Female,
denoted further as ‘MF score’). The MF scores of incidence and
mutation load were defined as integrals of cancer incidence
curves and age-adjusted mutation load curves over the accessible
interval of ages of patients, with subsequent subtraction of the
result of integration for women from the result of integration
for men (Fig. 5g,h). This analysis showed that a higher
overall mutation load in men characterized cancers with an
overall higher incidence in men and vice versa. For example,
analysis of BRCA showed both a higher mutation load and an
earlier inflection in women than in men (Fig. 5i), consistent with
the known higher incidence rate for breast cancer in women.
In the case of HNSC, the mutation accumulation load and late life
slowdown in mutation accumulation were similar in men and
women (Fig. 5j), whereas STAD showed a higher mutation
accumulation in men than in women (Fig. 5k), which again
agreed with the incidence rates.

Discussion
The results of both statistical analysis of somatic mutation
load/burden distributions and age-dependent mutational patterns
in various cancers suggest that the age-dependent behaviour of
median mutation load and burden has the origin common to
different cancers. We suggest that the growth of mutation load
and burden, as well as behaviour of the identified dominant
age-dependent mutational signatures are due to the progressive
decrease in fitness with age, that is, the process of aging itself. This
possibility is supported by several lines of evidence.

First, as somatic mutations are identified by comparing tumour
and control sequences from the same patient, there exists a
significant bias towards detection of mutations, which occur
during the early stages of clonal expansion, including mutations
that occur well before cancer initiation13. Similarly, as cancers are
typically very inhomogeneous12,41–45, mutations common to
all subclones of the sequenced tumour will be most significantly
enriched in the final mutation count. This again includes
mutations originating prior to initiation of the clonal
expansion, leading to cancer. Thus, careful analysis of mutation
load and burden distributions in cancer samples allows one to
estimate behaviour of the median mutation (non-cancer) load
and burden with age in a normal tissue.

Second, as age-related accumulation of somatic mutations in
normal tissues is a stochastic passive point-like process, the
corresponding distributions of mutation load and burden should
be expected to be Poisson-like, unlike distributions of somatic
mutations in developed cancers. The latter are strongly influenced
by the effects of positive selection46, leading to the distributions of
somatic mutation loads in the corresponding samples
acquiring heavy non-Poisson tails. We have found that the
peaks N¼Nfull(t) of mutation load and burden distributions are
essentially Poisson-like, pointing towards the passive nature of
mutation accumulation processes contributing to the peaks of the
distributions P(Nfull, t). This is further confirmed by the analysis
of distributions of somatic silent mutation load in different cancer
types. Behaviour of such distributions with age is found to be
similar to the behaviour of the Nfull distributions.
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Third and most importantly, mutation load and burden
doubling times for the 30 considered cancer types coincide by
the order of magnitude with the human all-cause mortality
doubling time (Fig. 3a,b). Mutational clocks run with the same
pace in different cancer types despite differences in physiology of
those cancers, and despite them being characterized by different
development time scales and supported by mutations in different
drivers. The human all-cause mortality rate doubling time is a
known universal characteristic quantifying human morbidity and
the accumulation of molecular damage during the process of
aging47: it is well-known that the incidence of diseases of aging
follow the Gompertz mortality curve, parameterized in turn by
the human mortality rate doubling time. An age-related increase
in the overall mutation burden, proportional to the probability of

deleterious mutations, is also a proxy of accumulation of
molecular damage in cells. Detected variability in mutation load
doubling times among considered cancers thus suggests
differences in morbidity increase rates and the rates of aging
among different human tissues. In particular, we find a faster (by
B20%) aging of the human reproductive system, consistent with
the reduction in fertility in humans. We also observed a
noticeably slower aging of the uvea.

In this respect, we should emphasize that the genome of the
most recent ancestor cell of a tumour will also contain a
number of mutations realized after the cancer initiation, and our
estimates of the characteristic mutational load should only be
considered as a lower limit on this quantity. Thus, delays between
onsets of mutational load and cancer incidence estimated here are

60

a

b d

c

40

20 30 40 50 60

Age, years

Delay, years

S
ca

le
d 

lo
ad

E
rr

or
, y

ea
rs

40 60 80

20

Incidence rate inflection, years

M
ut

at
io

n 
lo

ad
 in

fle
ct

io
n,

 y
ea

rs

0 years

0 years
−1 years
−2 years
−3 years
−4 years
−5 years
−6 years
−7 years
−8 years
−9 years

10 years

20 years

UCS

BRCA

STAD

UVM
UVM

OV

SKCM

LUHC

READ

READ

STAD COAD

COAD

PAAD25

20

52 53 54

1

0.5

0
20

−20 −10 0 10 20

20

10

0

CESC

CESC

BCGSC

4±10 years
6±9 years

7±7 years

BI
UCSC

S
ca

le
d 

in
ci

de
nc

e

D
el

ay
, y

ea
rs

30

20

10

0

B
LC

A

C
O

A
D

LA
M

L

LI
H

C

P
A

A
D

P
C

P
G

R
E

A
D

S
K

C
M

S
T

A
D

P
R

A
D

O
V

B
R

C
A

U
C

E
C

Men

Women

Figure 4 | Lags between cancer incidence and mutation accumulation. (a) Inflection points in cancer incidence versus inflection points in somatic

mutation accumulation. Bounds corresponding to 0, 10 and 20 year delays in cancer incidence versus mutation accumulation are shown, and the select

cancers are labelled. The red rectangle is amplified in the inset. The area coloured in grey corresponds to the situation when mutation load inflection occurs

later than incidence inflection; no cancers were found to belong to this region. (b) Identifying the delay between reported cancer incidence and somatic

mutation accumulation for cervical cell carcinoma and endocervical adenocarcinoma (CESC). Samples sequenced by BCGSC, IlluminaGA pipeline. The

cancer incidence (red) and somatic mutation accumulation (black) curves are renormalized to the same scale, then the incidence curve is displaced until

the Euclidean distance functional between the two curves reaches its minimum. (c) Behaviour of time delay estimation error for data sets produced by

BCGSC (blue), BI (green) and UCSC (red), cervical cell carcinoma and endocervical adenocarcinoma (CESC). The estimated time delay between cancer

incidence and somatic mutation accumulation patterns corresponds to the minimum of the error (denoted by blobs). (d) Estimated time delays between

cancer incidence and somatic mutation accumulation patterns for non-gender-specific (left) and gender-specific (right) cancers. For every cancer type,

averaging over estimates based on the results by different datacenters/pipelines was performed. Red bars correspond to women, and blue to men. Errors

are s.d., calculated using bootstrapping as described in Methods.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12157 ARTICLE

NATURE COMMUNICATIONS | 7:12157 | DOI: 10.1038/ncomms12157 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


also lower limits, and the actual delays should be
somewhat higher than those found by the method outlined in
this study.

For all 30 studied cancer types, the median mutation load and
burden in different tissues were found to be Granger-causal48 to
the cancer incidence in the same tissues, preceding the latter
by 15±10 years (s.d., Fig. 4a–d). As continuous accumulation
of somatic mutations leads to a proportional increase in
mutation burden, probability of cancer driver mutations and
transformation of clonal expansions to tumours, we interpret the
observed delays in cancer incidence versus somatic mutation
accumulation as pre-clinical development time scales for cancers.
For many cancers (among the 30 cancers discussed here), such
time scales were previously unknown. The Granger causality
between the median mutation load and cancer incidence also
naturally extends the celebrated argument of Armitage and
Doll49, explaining why the cancer incidence doubling rates are the
same among different cancer types.

It is important to note that the hard causality was not
established in this analysis, as other factors influenced by aging,
for example, epimutations, immune system dysregulation and
stem cell niche depletion, were not factored in. However,
similarity between the doubling rates of mutational load
accumulation, burden accumulation and cancer incidence, as
well as Granger-causality relation between mutational load, and
cancer incidence do suggest that the accumulation of mutational
load with age is a component of cumulative damage and therefore
is one of the many factors behind the age-dependent growth of
cancer incidence. What leads to the growth of mutational load
with age is a separate important question, and here we argue that

it is the process of aging itself. One would expect the latter to lead
to systematic dysregulation of various functional subsystems
of an organism, for example, immune system and epigenetic
dysregulation, stem cell niche depletion and so on, on the very
same characteristic time scale. In a sense, somatic mutations are
just a particular representation of molecular damage, the
deleteriome, accumulated in an aging organism50.

Finally, our analysis showed that the total somatic mutation
load is generally higher in men than in women, which is in good
agreement with total cancer incidences in men and women.
While the difference in age-adjusted cancer incidence between
men and women is well-known51,52, its molecular explanation
was previously lacking. It is tempting to hypothesize that such
difference is largely due to differences in mutation accumulation
patterns between men and women and, ultimately, differences in
the rates of aging between two genders. Interestingly, the total
estimated mutation load in men exceeded that in women mostly
because somatic mutations started to accumulate earlier by
approximately a decade in men than in women, rather than due
to faster accumulation rates in men—somatic mutation
accumulation rates in men and women were approximately the
same for most cancers (Supplementary Tables 1 and 2). This fits
well with the behaviour of human Gompertz all-cause mortality
curves: while all-cause mortality rate doubling times are similar
for men and women, male mortality seems to increase faster in
early life than female mortality.

Since cancer is a disease of aging8,9, age-related changes in
mutation accumulation also expose patterns of damage
accumulation in cells53. An increase in average somatic
mutation burden was consistent with an increase in cumulative

Table 1 | Delays of cancer incidence relative to somatic mutation accumulation patterns for different cancer types.

Cancer Delay (men),
years

Error estimation
(men), years

Delay (women),
years

Error estimation
(women), years

Pre-clinical
development, years

Tumor volume doubling
time, years

BLCA 16.0 ±2.2 10.6 þ4.5 0.35 (ref. 35)
� 3.9

BRCA 0.0 ±5.6 10.2 þ 6.1 12 (refs 30,32) 0.4 (refs 30,32)
� 5.8

CESC NA NA 5.1 ±8.8 12 (ref. 31) 0.24 (ref. 35)

COAD 12.3 þ 3.0 17.0 þ6.5 17 (ref. 29) 0.36 (ref. 30)
� 2.9 � 3.5

LAML 20.3 þ4.2 19.0 þ4.8
� 3.7 � 2.0

LIHC 13.8 þ 12.9 12.7 þ6.5 6–12 (ref. 30) 0.2–0.3 (ref. 34)
� 9.4 � 5.6

OV NA NA 6.8 þ4.0 44 (ref. 28)
� 3.5

PAAD 7.5 þ4.1 13.8 ±2.8 11–17 (ref. 33) 0.18–0.7 (ref. 36)
� 3.5

PCPG 9.3 þ 10.1 2.7 þ 5.0
�6.3 � 5.1

PRAD 14.4 ±3.5 NA NA 0.5–2 (ref. 39)

READ 6.4 þ 3.1 4.1 þ 7.3 17 (ref. 29)
� 3.0 � 7.7

SKCM 17.7 þ 3.6 6.1 ±3.2 0.13 (ref. 35)
� 2.7

STAD 12.5 þ 2.5 11.3 þ 5.3 0.17–2.0 (ref. 37)
� 1.7 � 5.0

UCEC NA NA 4.2 þ 7.4 0.24 (ref. 35)
�6.8

BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical cell carcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma; LAML, acute myeloid leukemia;
LIHC, liver hepatic carcinoma; NA, not applicable; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate
adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneous melanoma; STAD, Stomach adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
Delay times for different data centres/variant-calling pipelines were calculated as described in the text. Results from different data centres and variant-calling pipelines were then averaged for every
cancer type. The last column is tumour volume doubling time as defined in ref. 35. Errors are s.d., calculated using bootstrapping as described in Methods.
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damage, leading to an exponential increase in mortality as
expressed by the Gompertz law. Mortality rate decelerates and
reaches plateau in very old humans and laboratory animals54

approximately at the age of an average lifespan, which again is
consistent with the observed deceleration of the aging process in
late life, presumably due to population heterogeneity and other
factors. Thus, we suggest that the decline in the rate of aging
observed at the population level explains deceleration in the
somatic mutation rate in late life, and therefore, reduction in
cancer incidence and mortality.

Overall, a cancer genome-derived quantitative assessment of
somatic mutations has direct implications for understanding the
aging process, causal relationships between aging, accumulation

of somatic mutations and the incidence of cancer, and evaluation
of the risk for the diseases of aging. The patterns of growth of
somatic mutation load and burden with age characterize the rates
of aging in different tissues and different individuals, expose
gender effects and offer insights into deceleration of aging,
mortality rate and cancer incidence in late life. Taken together,
this analysis provides a quantitative validation for age being a
cancer risk factor.

Methods
Collecting data and estimating somatic mutation load. Human whole
exomes available from TCGA15 corresponding to 30 different cancer types were
analysed. For every available cancer type, whole-exome samples were segregated
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women in red. (b) The same for cancers (ESCA, LIHC, LGG, PAAD, PCPG, STAD, THCA and UVM) sequenced by BCM, IlluminaGA automated pipeline.

(c) The same for cancers (ESCA, KIRP, LIHC, PAAD, PCPG, SARC and UVM) sequenced by UCSC, IlluminaGA automated pipeline. (d–f) Total mutation

burdens for the same combinations of cancers, sequencing centres and pipelines as in a–c. Values of mutation burden were estimated using PolyPhen2

(ref. 55). (g) The MF (Male—Female) scores of mutation accumulation rates versus cancer incidence rates characterizing differences in mutation

load between men and women. The blue area on the plots corresponds to cancers with higher overall mutation load in men than in women, and the pink
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IlluminaGA human-curated pipeline. Mutation load in men is significantly lower than mutation load in women for all ages. (j) Head and neck squamous cell

carcinoma (HNSC). Samples sequenced by BI using IlluminaGA automated pipeline. Mutation load in men and women is approximately the same

for all ages. (k) Stomach adenocarcinoma (STAD), samples sequenced by BCM using IlluminaGA automated pipeline. Mutation load in men is higher than

in women for all ages.
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according to the sequencing centre which produced the sample, used variant-
calling pipeline, and age and gender of the patient. Somatic mutation
numbers were directly extracted from the MAF files (Level 2 data of TCGA)
corresponding to each patient. For the whole-genome study, the same full
genome data for BRCA, chronic lymphocytic leukaemia, liver hepatic carcinoma
(LIHC), B-cell lymphoma, medulloblastoma and pilocytic astrocytoma were used
as in refs 12,18.

For every cancer type and every available whole-exome/genome sample, the
total number of somatic mutations N was calculated. The gender and age data of
patients were collected from the corresponding clinical data files available in
TCGA. For whole genomes, age data were available from ref. 18. The distribution
function P(N, t) of somatic mutation loads in different age-stratified cohorts was
then constructed. The appropriately normalized distributions P(N, t) can be
interpreted as probabilities to find a number N of somatic mutations per exome/
genome in a sample from a patient with age t.

The distributions P(N, t) have the following properties:

� The distributions P(N, t) significantly differ from the normal distribution
N m; s2ð Þ even under the assumption of time dependence of the mean m and the
s.d. s; in particular, distributions P(N, t) are skewed,

� For different cancer types, the distributions P(N, t) typically possess a single
distinct peak at a relatively low somatic mutation count 10oN(t)o300 for
exomes and N(t) of the order of a few thousands for genomes,

� Behaviour of the distribution P(N, t) in the vicinity of the peak at N¼Nfull(t) is
distinctly Poisson-like in the sense that the width of the peak is of the same order
as the value of N at the peak,

� The position Nfull(t) of the peak depends on the average age t in the cohort and
slowly grows with t, while the value P(Nfull, t) of probability density at the peak
decreases with age,

� Away from the Poisson-like peak at N¼Nfull(t) the distributions are
characterized by distinctly non-Gaussian, non-Poisson heavy tails, representing
relatively rare events of hypermutable cancers or mutation accumulation due to
non-Poisson processes.

For every cancer type considered, analysis of the data produced by different
sequencing centres has often led to a noticeable variability in somatic mutation
count numbers (up to 50% difference in somatic load for less represented cancers).
The same observation applied to data sets produced using different variant-calling
pipelines for the same sequencing centre. To minimize the effects of variability, all
available data produced by different sequencing centres, variant-calling pipelines
for every available cancer type have been considered.

Statistical significance of mutational load dependence on age was independently
estimated by three methods:

(1) For every cancer and every age cohort, bootstrapping procedure was
performed, which included random draws (with replacement) of five
samples out of the available pool and repeating the procedure of estimating
the mutational load outlined above. The error bars for characteristic mutation
load were then estimated as s.d. of results of bootstrapping from the mean.

(2) For every cancer type/sequencing centre/variant-calling pipeline, a generalized
linear model was constructed, relating the source mutational count data
(GLM predictors) and the constructed characteristic mutational load
(GLM response variable). Statistical significance of the identified values of
characteristic mutation load was extracted from GLM errors.

(3) The errors in determination of Poisson l¼Nfull(t) extrated from the univariate
distributions were collected and then the error provided by moving average of
Nfull(t) was straightforwardly estimated.

All three methods provided estimates of statistical errors of Nfull(t) of the
same order. Smallness of error at early ages is explained by a relatively small
number of samples available for those ages. A relatively low overall magnitude
of error is fully explained by the fact that moving average over the interval
of ages 420 years has been taken. As moving averages are essentially the sum
of Nfull(t) in subsequent time points, the overall error is suppressed by central limit
theorem.

Statistical analysis of mutation load distributions. For every individual cancer
type, sequenced by a given centre among five represented in TCGA (Baylor College
of Medicine, Broad Institute, Washington University School of Medicine, Canada’s
Michael Smith Genome Sciences Centre and the University of California Santa
Cruz), the distributions of somatic mutation load in different patient age
cohorts were constructed. For every sample, the total mutation burden was
estimated using PolyPhen2 (ref. 55), and the distributions of somatic mutation
burden were then constructed for every analysed cancer type. Somatic mutation
load and burden typical for a particular age cohort were estimated by locating
the position of the Poisson peak of the distribution of somatic mutation load and
burden.

Accumulation of mutations in non-malignant/non-cancer tissues is known to
be a random point-like stochastic process satisfying the Poisson distribution. Most

recent common ancestor cell contains many such mutations, originating prior to
cancer initiation. For the latter (and clonal expansion) to happen, a subsequent
number of mutations in two to seven genes-drivers of cancer and/or genes–tumour
suppressors is required7. After such a transition from the malignant to non-
malignant regime is initiated, one can no longer generally expect the somatic
mutation count number N in the cells of the expanding area to follow the Poisson
law, as somatic mutation accumulation becomes strongly subjected to positive
selection forces, and heavy non-Poisson tails in the distribution P(N, t) should be
expected. Every hypermutable cancer is characterized by its own history of
mutation accumulation46, and the relative fraction of mutations originating prior
to cancer initiation in most recent common ancestor cell is relatively low in
this case; such cancers represent events on the heavy tails of the distributions
P(N, t). These considerations allow one to focus on the behaviour of Nfull

corresponding to the Poisson peak of the distribution P(N, t), interpreting it as a
characteristic number of accumulated somatic mutations or characteristic somatic
mutation load.

In order to determine dynamics of this load with age, the following strategy has
been pursued:

We have constructed a univariate fit of the distribution P(N, t) derived from the
data to the Poisson distribution; a fit to the univariate Poisson distribution has
allowed us to analyse both relatively small (such as ACC) and relatively large (such
as BRCA) data sets in a similar manner,

� The Poisson distribution parameter l provided an approximate position of the
peak N¼Nfull(t) of the distribution P(N, t),

� The function N¼Nfull(t) was then subjected to moving average filtering to
suppress the effects of noise and statistical fluctuations due to the smallness of
the sample size; the window sizes Dt¼ 20, 25, 30, 35 years were chosen; we have
found that the result for the moving-averaged N¼Nfull(t) depends only very
weakly on the window size at Dt420 years, while a notable degree of
stochasticity is present in the filtered N¼Nfull(t), if window sizes smaller than 20
years are chosen.

� Since the moving average filtering introduces (a) a time shift of dt� n� 1
2 , where

n is the total number of time points, and (b) a bias at ages toDt� dt smaller
than the window size minus dt, the behaviour of Nfull(t) at t4Dt� dt was
extrapolated to small ages, see below.

It has been found that the characteristic somatic mutation load Nfull(t)
approximately depends on age according to the law

Nfull tð Þ � N0;full � exp afull � tð Þ ð1Þ
in the interval of ages 20 yearsoto60 years for most cancer types and exhibits
slowdown at later ages (Supplementary Figs 1–18). This dependence was also
extrapolated to smaller ages as explained above. The approximate somatic
mutation accumulation rate RfullENo,fullafull was then estimated by constructing
the linear least square fit to the mutation count Nfull(t), while the exponential
growth rate afull was found by constructing the linear least square fit of the
logarithm log(Nfull(t)) of characteristic mutation load Nfull(t). Results of these
estimations are presented in Supplementary Tables 1 and 2.

An alternative approach for estimation of mutation accumulation rates, which
we have pursued, was based on the fact that cancers are only very rarely initiated by
silent mutations. For every analysed cancer type and every data sample, we have
calculated the distribution functions of silent somatic mutations and followed the
steps described above to estimate the characteristic somatic silent mutation number
Nsilent(t), accumulation rates of silent mutations Rsilent and exponential growth rates
asilent (Supplementary Tables 1 and 2). As discussed in the text, the exponential
growth rates asilent and afull are linearly correlated with each other.

Estimating lags between mutation load and cancer incidence. For the collected
cancer incidence data, it was found that estimated cancer incidence behaved
similarly for different cancer types during most of the adult life:

Nincidence tð Þ � No;incidence � eaincidence t : ð2Þ
The exponential dependence slowed down reaching plateau (and sometimes
decreasing subsequently) in late life for all considered cancer types. We have found
that for every cancer type, the magnitude of aincidence was essentially the same for
US, UK and Australian data (Fig. 2, Supplementary Figs 32–39), and so were the
characteristic times of reaching incidence plateau/slowdown. The factors Rincidence

and aincidence in equation (2) were estimated using the procedure outlined above.
The lag between cancer incidence curves and Nfull(t) was estimated using the

following two methods:

1. Since both incidence and characteristic somatic mutation loads decreased at late
life for all cancers, we estimated the locations of inflection points of incidence
curves Nincidence(t) and mutation accumulation load curves Nfull and compared
them with each other for every cancer type and data set. The inflection point of
a curve/function is defined as a point, where its second derivative changes sign:
d2N t¼tinflð Þ=dt2¼0. The delay between the age-related mutation accumulation
pattern and cancer incidence can be then estimated as the difference
tinfl,incidence� tinfl,full.
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2. For every cancer type and data set, we have estimated the Euclidean distance
functional between the delayed incidence and characteristic somatic mutation
load curves normalized to 1. Such distance (as a function of delay D) is defined
as the integral

d2 Dð Þ ¼
Ztend

tinit

dt
Nincidence t�Dð Þ

max Nincidence tð Þð Þ �
Nfull tð Þ

max Nfull tð Þð Þ

� �2

ð3Þ

Over the available interval of ages tA[tinit, tend]. The Euclidean distance d2(D)
was then minimized with respect to D, and the resulting Dmin (such that
d2(Dmin)¼minD d2(D)) was interpreted as the time lag between mutation
accumulation pattern and cancer incidence. The error dD in estimation of Dmin was
found by solving the equation d2(Dmin±dD)E2d2(Dmin).

Chronological age distributions for samples covered by TCGA. To make sure
that the found lag between the characteristic mutational load and cancer incidence
is not due to a possible age-dependence bias present in mutational catalogues, we
have constructed chronological age distributions for samples representing indivi-
dual cancers covered by the TCGA atlas (Supplementary Figs 45 and 46). It was
found that the median chronological age of corresponding patients is typically
noticeably higher than the median chronological age of cancer incidence for every
particular cancer (Supplementary Tables 3 and 4).

Analysis of mutational patterns. To identify leading age-dependent mutational
patterns in TCGA cancer samples, the method of proper orthogonal decomposition
was applied. Our approach is different from the one employed in refs 12,18 in
several respects: (i) as we would like to identify the effect of aging on the overall
mutation load, we do not need to deconvolve effects of individual mutational
processes (many such processes will contribute to the pattern of aging) and thus do
not need to perform our analysis in the context of trinucleotides; (ii) since we do
not need to identify signatures common to all cancers, instead of pulling all
mutational catalogues we independently perform proper orthogonal decomposition
for mutational catalogues of individual cancer types (as a result, it is possible to
identify differences in age-dependent mutation accumulation for different cancer
types/tissues), (iii) while non-negative matrix factorization does not guarantee
orthogonality of detected independent components and expansion completeness,
singular value decomposition of mutational catalogues does; the identified leading
age-dependent component encodes the imprints of all mutational processes
characterized by continuous accumulation of mutations with age.

The method included the following steps:

1. For every cancer type and every sample, the numbers of AC, AT, AG, CA, CG,
CT, GA, GC, GT, TA, TG, TC SNVs and -A, -C, -T, -G, A-, C-, T-, G-indels
were counted; the age of the patient was collected from the clinical data files
available in the Cancer Atlas and put to the correspondence to these numbers
(20 variables in total, further denoted as yi(t), i¼ 1,y, 20),

2. A rectangular 20� n matrix ||aij||¼ yi(tj) was constructed for every cancer type,
where n is the number of available data points,

3. A singular value decomposition of every matrix ||aij|| was performed (in what
follows, we denote singular values of the matrix ||aij|| as l(k) and a(k), b(k) as
corresponding left and right singular vectors),

4. It was explicitly checked that for every matrix ||aij|| the largest singular value l(1)

dominates over the rest, thus implying the fidelity of the low rank
approximation aij

�� �� � l 1ð Þb
1ð Þ

i a 1ð ÞT
j ,

5. The matrix ||aij|| was projected on its right singular vectors b(k) according to the
prescription z kð Þ

j ¼
P

i
b kð Þ

i aij

�� ��; the resulting projections (or ‘modes’)
z kð Þ

j ¼z kð Þ tj
� �

then represented functions of time z(k)(t) denoting behaviour of
different accumulation patterns b(k) of SNVs and indels with age t.

We found that for every considered tissue type the mode z(1)(t), corresponding
to the leading singular value l(1) of the matrix, fitted very well with the overall
change in the characteristic somatic mutation count Nfull(t) monotonically
increasing with age and slowing down the increase at late ages, while the second
dominant mode z(2)(t) together with the rest of the modes oscillate stochastically
near 0 (Supplementary Figs 48–69). This observation allowed us to associate the
patterns b(1) with the process of aging. As discussed in the main text of the paper,
for the pattern of SNVs/indels most consistently changing with age in non-
malignant tissues is strongly dominated by CT and GA single nucleotide variants.

Calculating the MF score. The integral MF (‘Male–Female’) score of somatic
mutation load discussed in the text of the paper was defined according to the
following procedure:

1. Integrals

IM ¼
Ztend

tinit

dt NM
full tð Þ; IF ¼

Ztend

tinit

dt NF
full tð Þ ð4Þ

of characteristic somatic mutation loads for men and women were calculated over
full accessible intervals of ages.

2. The MF score for mutation load was then defined as MFfull¼ IM� IFð Þ=1; 000.
The MF score for incidence was calculated similarly, with a different normalization:
MFincidence¼ IM � IFð Þ=107.

Data availability. All data used in this study are publicly available. Whole exomes
used in the study were obtained from TCGA15 (https://tcga-data.nci.nih.gov).
Somatic mutation count data for whole genomes analysed in the study can be
found in Supplementary Information of ref. 18. Cancer incidence data were
collected from 1998–2011 CDC WONDER database of United States
Department of Health and Human Services, Centers for Disease Control and
Prevention22 (US data were used in Figs 1, 3 and 4), Cancer Research UK23 and
Australian Government24. Any other data is available from the authors upon
request.
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