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Abstract
Understanding the neurophysiology of human cognitive development relies on methods that
enable accurate comparison of structural and functional neuroimaging data across brains from
people of different ages. A fundamental question is whether the substantial brain growth and
related changes in brain morphology that occur in early childhood permit valid comparisons of
brain structure and function across ages. Here we investigated whether valid comparisons can be
made in children from ages 4–11, and whether there are differences in the use of volume-based
versus surface-based registration approaches for aligning structural landmarks across these ages.
Regions corresponding to the calcarine sulcus, central sulcus, and Sylvian fissure in both the
hemispheres were manually labeled on T1-weighted structural magnetic resonance images from
31 children ranging in age from 4.2 to 11.2 years old. Quantitative measures of shape similarity
and volumetric-overlap of these manually labeled regions were calculated when brains were
aligned using a 12-parameter affine transform, SPM's nonlinear normalization, a diffeomorphic
registration (ANTS), and FreeSurfer's surface-based registration. Registration error for
normalization into a common reference framework across participants in this age range was lower
than commonly used functional imaging resolutions. Surface-based registration provided
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significantly better alignment of cortical landmarks than volume-based registration. In addition,
registering children's brains to a common space does not result in an age-associated bias between
older and younger children, making it feasible to accurately compare structural properties and
patterns of brain activation in children from ages 4–11.

Introduction
Advances in structural and functional neuroimaging allow for unprecedented opportunities
to discover how the development of the child’s brain supports the growth of the child’s
mind, both in typical development and in developmental disorders. Measurement of
structural and functional brain development from childhood to adulthood necessitates
quantitative comparisons of structure across ages, either to examine structural changes or to
localize functional changes. Such quantitative comparisons are typically achieved by
registering or mapping individual brains into a common or normalized stereotactic space
(Miller et al., 1993; exceptions are functional or structural regions-of-interest approaches). A
potential hazard in developmental studies is that the many changes in brain morphology that
occur in development may confound such normalization across ages in both cross-sectional
and longitudinal neuroimaging studies. Here, we examined two important issues regarding
such normalization in developmental cognitive neuroscience. First, we assessed whether
normalization is valid from ages 4 to 11, a period of major brain and mental growth.
Normalization appears to be valid in 7-to-8 year olds (Burgund et al., 2002), but there is no
evidence in younger ages. With increasingly early identification and treatment of
developmental disorders or risks for developmental disorders such as attention-deficit/
hyperactivity disorder (ADHD), dyslexia, and bipolar disorder, it is important to know if
brains of children ages 4–6 can be studied developmentally with standard spatial
normalization procedures. Second, we examined whether a surface-based approach for
normalization offers superior accuracy for cortical regions relative to more commonly used
volume-based approaches. Such quantification of the accuracy of normalization approaches,
as investigated in this study, is essential for precise characterization of developmental
changes in structure and function.

The first decade of life represents a period of extensive anatomical changes and functional
maturation of the human brain. Most major fissures or sulci are visible on the surface of the
brain at the time of birth (Cowan, 1979). However, the brain continues to expand in volume
and morphological changes persist for years after birth (see Toga et al., 2006, for a review).
Cellular (e.g., generation and pruning of neurons and synapses, myelination) and
macroanatomical (e.g., cortical thinning, white matter expansion, changes in sulci and gyri)
changes are closely associated with cognitive development. Magnetic resonance imaging
(MRI) provides a window into these developmental changes, but is currently limited to
detecting changes mainly at a macroscopic level, such as positions of sulci and gyri, cortical
thickness, connectivity, and curvature. Prior studies (Rademacher et al., 1993; Hinds et al.,
2008; Fischl et al., 2008) have reported that sulci and gyri correspond well to
cytoarchitectonic features in several regions of the brain. Therefore much can be learned
even from such coarse information. However, in order to compare these features across
children of different ages, brain images from different participants are registered or spatially
normalized into a common coordinate system.

Registration or spatial normalization is the process of transforming brains from different
participants into a common reference frame. Registering brains helps in comparing: (i)
structural and functional properties across the participants within a study; and (ii) results
from different brain imaging studies. Currently, in most fMRI group analyses, volume-based
registration is used to transform brain-imaging data into canonical spaces (e.g., Talairach
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space - Talairach and Tournoux, 1988; MNI space – Evans et al., 1992). Several algorithms
exist for performing volume-based registration (reviewed in Ardekani et al., 2005;
Gholipour et al., 2007; Klein et al., 2009). These approaches typically employ a
transformation that matches the overall extents of the brains to one another or to an average
brain template (e.g., MNI152, MNI305 spaces; Evans et al., 1993). In general, they use
intensity differences to guide registration. However, such approaches tend to ignore the
topological properties and geometric features (e.g., sulci and gyri) of the cortex. As a result,
these normalization procedures that are meant to align or register anatomical regions across
participants leave a large amount of residual inter-subject anatomical variability (Amunts et
al., 1999; Nieto-Castanon et al., 2003; Hinds et al., 2008) and therefore blur individual
anatomical distinctions.

Surface-based algorithms (Fischl et al., 1999; Davatzikos et al., 1996; Drury et al., 1996,
Thompson and Toga, 1996, Cointepas et al., 2001, Tosun and Prince, 2008) were developed
to improve the accuracy of cortical registration and thereby reduce inter-subject variability.
These approaches account for morphological and topological properties of the human brain.
When performing registrations, surface-based approaches treat the cerebral cortex as a sheet
and seek to find an alignment that matches sulcal and gyral patterns typically quantified
using some type of curvature of the cortex. Surface-based registration has been shown to
map cytoarchitectonic borders more accurately between brains than affine volume-based
registration (Fischl et al., 2008). Hinds et al. (2008) reported significant reduction in
prediction error of locating V1 using an atlas constructed via surfaced-based registration
over a nonlinear volume-based approach (Hömke, 2006; Schormann and Zilles, 1998).
Using this surface-based atlas Hinds et al. (2009) demonstrated that predicted- and
histologically defined structural boundaries of primary visual cortex align well with
functionally defined boundaries.

In this study, we chose four registration algorithms: three volume-based and one surface-
based. Two volume-based algorithms were chosen on the basis of being among the most
commonly used methods in published literature. These were SPM 5 nonlinear normalization
(Ashburner et al., 1999) and a 12-parameter affine transform (e.g., similar to FLIRT -
Jenkinson et al., 2002). In addition, we chose ANTS (Avants et al., 2006), a diffeomorphic-
registration algorithm, which consistently ranked highest among nonlinear volume-
registration algorithms evaluated in Klein et al. (2009) and which showed no significant
difference in registration accuracy compared to FreeSurfer in a study comprising labeled
data in adults (Klein et al., 2010). For surface-based registration, we used FreeSurfer, a fully
automated, freely available morphological analysis software package that does not require
manually created landmarks to perform registration. Currently, other surface registration
methods require manually assigned landmarks (e.g., Caret - Van Essen et al., 2001; curve-
LDDMM - Qui and Miller, 2007 ) or are unable to apply nonlinear transforms to arbitrary
labels (e.g., BrainVisa; Cointepas et al., 2001). They were not included in this study.

Evaluating the accuracy of registration algorithms on brain images typically requires
comparison of the automatic registration to an objective criterion based on individual
anatomy. Prior studies have used consistent, manual labeling of cortical landmarks or
features such as gyri and sulci as such a criterion to compare the accuracy of volume-based
(Klein et al., 2009) and surface-based (Fischl et al., 2004; Desikan et al., 2006) registration
approaches. However, all the underlying brain images used in these studies were from adult
participants. In contrast, the current study aimed to evaluate the accuracy of volume- and
surface-based registration in aligning macroanatomically defined brain regions across a set
of pediatric brain images of varying ages.
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Only one previous study (Burgund et al., 2002) examined the accuracy of registering
anatomical landmarks from a pediatric population. The study investigated the feasibility of
using a common volume-based stereotactic coordinate system for comparing functional
studies involving adults and children between 7 and 8 years of age. In that study, a 12-
parameter affine transform was used to normalize the structural MR images of 20 children
and 20 adults to a 12-subject average that was conformed to Talairach space (Talairach and
Tournoux, 1988). The investigators manually traced points along 10 different sulci
identifiable in specific planar sections on each of these normalized volumes, as well as
points along the outer boundaries of the brain in the three cardinal orientations (axial,
sagittal and coronal). They observed that the location and variability of these manually
traced positions after normalization was fairly consistent across the age groups.
Furthermore, using computer simulations of fMRI data with 5mm resolution, they
demonstrated that the observed variability did not generate any significant spurious effects.
Based on these observations, they concluded that: (i) stereotactic normalization does not
significantly distort brain morphology between adults and children; and (ii) the small
distortions observed do not limit the ability to compare functional activation between adults
and children in such a space. Furthermore, they indicated that “more work comparing
younger children’s brains (below 7 years) to adult brains is needed before similar
stereotactic approaches should be applied to that group.”

In this study, we extend the work described above by: i) using more anatomically precise
delineations of boundaries of cortical regions based on surface geometry as opposed to
picking points on a particular (anatomically arbitrary) imaging plane; ii) investigating a
younger and larger age-range of children (4.2–11.1 years of age); and iii) using FreeSurfer's
surface-based registration approach in addition to two commonly used volume-based
registrations (a linear 12-parameter affine transform and a nonlinear normalization approach
from SPM 5) and a diffeomorphic volume-registration method (ANTS; Avants et al., 2006).
The critical questions were whether it is valid to compare structural and functional brain
images in child development (ages 4 to 11), and whether there are advantages for any
particular kind of cortical image registration in this age range.

Materials and Methods
Participants

Participants were 31 right-handed children between the ages of 4.2 years and 11.2 years
(mean = 7.33 years; std = 1.96 years). The children were selected from a larger sample
recruited for a cross-sectional investigation of reading development. Children who were
diagnosed with developmental dyslexia or were on psychiatric medication were excluded
from this study. Written informed consent was obtained from the parents of the children and
the Institutional Review Board at the Massachusetts Institute of Technology approved
procedures.

MR protocol
T1-weighted structural scans of the children's brains were acquired using an MPRAGE
sequence on a Siemens Magnetom Trio 3T scanner (16 subjects: TR: 2350 ms, TE: 3.45 ms,
TI: 1100ms, Flip angle: 7 deg, Duration: 4:35 minutes, mean age: 8.79 yrs; 15 subjects: TR:
2000 ms, TE: 3.39 ms, TI: 900ms, Flip angle: 9 deg, Duration: 3:38 minutes, mean age:
5.77yrs; GRAPPA: ×2). The acceleration and the different scanning sequences were
necessary to minimize scan time and therefore reduce the possibility of head movement,
especially in the younger children. The structural scans had voxel dimensions of 1.3 × 1.0 ×
1.3 mm with an FOV of 256 mm and a matrix size of 256 × 256.
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FreeSurfer processing of MR images
Using the FreeSurfer software suite (http://surfer.nmr.mgh.harvard.edu), we processed the
structural MR image from each participant. Briefly, this processing includes skull-stripping
(Segonne et al., 2004), subcortical segmentation (Fischl et al., 2002; Fischl et al., 2004a),
intensity normalization (Sled et al., 1998), surface generation (Dale et al., 1999; Dale and
Sereno, 1993; Fischl and Dale, 2000), topology correction (Fischl et al., 2001; Segonne et
al., 2007), surface inflation (Fischl et al., 1999a), registration to a spherical atlas (Fischl et
al., 1999b) and thickness calculation (Fischl and Dale, 2000). FreeSurfer morphometric
procedures have been demonstrated to show good test-retest reliability across scanner
manufacturers and across field strengths (Han et al., 2006). The automated processing
resulted in a topologically correct cortical surface for each hemisphere for every participant.
These surfaces were then registered to an atlas coordinate system containing statistics
summarizing cortical geometry using a spherical morphing procedure designed to align
cortical folding patterns (Fischl et al., 1999b). The outlines of the extracted surfaces were
overlaid on the T1-weighted images and visually inspected for accuracy of the automatic
surface-extraction process. The volumes corresponding to inaccurate surfaces were edited
using FreeSurfer (edits: white matter - 16; control points – 3 of 31 participants), re-
processed to generate the surfaces, and visually inspected for accuracy to ensure surface
alignment with white matter boundary. If the surfaces were still inaccurate, the process was
repeated (the process was repeated for 3 of the participants). Details of editing procedures
may be found on the FreeSurfer Wiki
(http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData).

The editing was necessary to ensure that the surfaces were as accurate as possible, which in
turn ensured that the labels were accurate. While the necessity of such editing is decided
based on aims of an experiment, these are often done routinely to rectify surfaces that show
significant deviation from visually observable gray-white and gray-csf boundaries. Such
editing does pose a conundrum for evaluation studies such as this one. On one hand, there is
a need to make the labels as accurate as possible. On the other hand, these are the same
brains used for evaluating the registration. However, while editing is more critical for
quantitative measurements and creating accurate labels, it is much less important for
registration. Supplementary figure S2 shows the curvature map of the most edited subject,
before and after the edits. The overall curvature map remains highly similar.

Labeling protocol
The boundaries of three prominent sulci, the central sulcus, calcarine sulcus and Sylvian
fissure, were manually delineated on both left and right hemisphere cortical surface models
for every participant (Figure 1 shows an example from the youngest and oldest participant).
These sulci were chosen based on the observation that they are consistently and accurately
identifiable (Van Essen, 2005) on most participants regardless of age. Sulci and gyri are the
most prominent macroanatomical features of the cerebral cortex and are most accurately
identified on surface-based representations and not on slices. This surface labeling was
performed and assessed using information from both volumes and surfaces. In particular, the
labeling was guided by known anatomical extents from volumes and surfaces and the
curvature information from the surfaces. Furthermore, we converted the surface labels to
volume labels and all numerical comparisons were done using volumes. As such, these
volume labels served as volume landmarks although they were originally created on the
surface. The manual labeling did not use any information from the surface-based
registration. A neuroanatomist (JA) inspected the labels to ensure accuracy.

The following criteria were used to label central sulcus: 1) On the lateral surface of the
brain, we localized the precentral and postcentral gyrus on either sides of the central sulcus
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visual examination; 2) The central sulcus was extended inferiorly at its same angle along an
imaginary line and the intersection point of this line with the Sylvian fissure was verified to
be at approximately one third the distance from Sylvian fissure's anterior limit; and finally,
3) In a subset of cases, the central sulcus extended superiorly and the tip of the central sulcus
notched paracentral gyrus on the medial side.

To delineate the calcarine sulcus, we used the medial view to locate the calcarine fissure's
anterior-most and posterior-most points. For the anterior-most point, the posterior end of the
hippocampal fissure was used as a guideline and the anterior point of the calcarine was
marked at the same angle, making certain that the parieto-occipital fissure, which is merging
into the calcarine was not included. We utilized the inflated, white matter and pial surfaces
in the FreeSurfer 'tksurfer' surface rendering utility to evaluate the sulcus. Finally, in a
subset of cases, we opened the label in the FreeSurfer volume viewer (’tkmedit') to
determine and demarcate the calcarine sulcus from the parieto-occipital fissure.

For the Sylvian fissure, the major landmarks were temporal lobe inferiorly (i.e. Heschl's
gyrus and posterior of the Sylvian fissure) and frontal lobe superiorly (i.e. Inferior frontal
lobule). The temporal lobe defined the inferior limit of the Sylvian fissure and in surfaces
the hippocampal fissure was immediately next to the Sylvian fissure. In most cases, we
edited the anterior-most part of the Sylvian fissure because the sulci of the frontal opercula
created a larger surface than what is the true anatomy of the Sylvian fissure alone.

Analysis
In order to quantify the accuracy of the different registration approaches, we first converted
each of the surface labels to individual image volumes (2 hemispheres × 3 labels = 6
volumes) for every participant. The volume labels used to compute the distance measure
(see below) corresponded to a sheet of cortex at the gray matter-white matter boundary.
Transforms were obtained using the volume- and surface-based registration approaches that
mapped the T1-volume or the FreeSurfer surface of each participant to all other participants
via templates. These transforms were then applied to the volume or surface labels from each
participant (31 participants × 6 volumes × 30 participants × 4 registration methods). The
volume registrations were computed using a 12-parameter affine transform (using an
algorithm developed by Avi Snyder and incorporated and distributed in FreeSurfer), SPM 5
nonlinear normalization and diffeomorphic registration using ANTS. SPM’s nonlinear
normalization and the affine transform are two of the most common volumetric group-
normalization approaches reported in the neuroimaging literature. The ANTS algorithm was
shown to be significantly superior to the other two commonly used volumetric methods in
adults (Klein et al., 2009). For evaluating the ANTS algorithm, we created a group-specific,
skull-stripped template from these participants using the brain-only images generated by
FreeSurfer and warped each participant to that template. The template can be downloaded
from: http://www.mit.edu/~satra/research/pubdata. The affine and SPM normalization
routines registered each participant to an average adult template (affine:
711-2C_as_mni_average_305.4dfp.img distributed with FreeSurfer; SPM: T1.nii distributed
with SPM 5 and 8) in MNI space. A visual comparison of these templates is available as
supplementary material. The cortical surfaces were matched using spherical registration
(Fischl et al., 1999) using an existing adult atlas distributed with FreeSurfer. In order to
compute the overlap measures described below, the surface labels were also converted into
volumes where all the vertices in gray matter were labeled. We computed several metrics to
determine how well the labels aligned across participants. These metrics were computed for
all pairwise registrations. Details of all of these metrics can be found in an evaluation study
(Klein et al., 2009). They are summarized here.
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Modified Hausdorff distance (lower → better registration)—The modified
Hausdorff distance (Dubuisson and Jain, 1994) is a distance measure that computes the
similarity between two shapes and has been used previously for template-based image
matching. If S and T are point sets from the source and target volume respectively, then the
modified Hausdorff distance Hd between them is given by:

where || · ||2 denotes the L2-norm and NX denotes the number of elements in set X.

Typically, the point sets S and T are determined by finding all the voxels that lie on the
boundary of the labels in the volumes corresponding to the source and the target. If the
boundaries match exactly this distance will be 0 and will increase with greater differences
between the boundaries. Thus lower values indicate better registration.

Jaccard coefficient, Dice coefficient and target overlap (higher → better
registration)—The overlap metrics represent the extent of overlap between a target label T
and the source label S when the label S is mapped via registration to the target volume.
These metrics evaluate to 0 for no overlap and to 1 for perfect overlap. Thus higher values
indicate better registration. The Jaccard and Dice coefficients are also referred to as "union"
and "mean" overlap respectively.

where | · | indicates set count.

False positive and false negative error (lower → better registration)—In
addition to the overlap metrics, two error measures were defined. A false positive error is a
measure based on voxels that are labeled as belonging to the target label when the source
was mapped to the target even though these voxels are not part of the target. A false
negative error is a measure based on voxels of the target that were not labeled with the target
label when the source was mapped to the target. A value of 0 for both error metrics implies a
perfect registration. In practice, lower values indicate better registration.

where · \ · indicates set difference and | · | indicates set count.

Each metric quantifies different components or features of registration accuracy. The union,
mean and target overlap quantify intersection or overlap, but normalize the amount of
overlap by different quantities and their use is dependent on the problem at hand. The false
negative and false positive measures provide information about misclassification. Finally,
the Hausdorff distance metric focuses on the similarity and proximity of boundaries between
two regions.

Ghosh et al. Page 7

Neuroimage. Author manuscript; available in PMC 2011 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Statistical analysis
Dependent variables were the computed outcome of the distance and overlap measures.
Independent variables were participant Age, cortical Region (label), cortical Hemisphere
and the registration Methods. A non-parametric resampling with replacement method with
10,000 replications was used to test the main effects of the independent variables and the
interaction effects of Age with Method, Region and Hemisphere using a factorial design
with Age as a between-subjects factor and Region, Hemisphere, and Method as within-
subject factors. This non-parametric approach allowed treating subjects as random effects
even though the dependent metrics were derived in a pairwise cross-subjects manner. In
order to maintain treating subjects as random effects, age was treated as a dichotomous
effect. The sample was divided into an older group, n=17, and a younger group, n=14, based
on the median age of the whole group. This is similar to the comparison between the child
group and the adult group in the Burgund et al. (2002) study.

Results
This section presents the results of calculating the distance and overlap between
corresponding manually labeled brain regions from 31 children after volume-based and
surface-based registration. Two main effects were observed. First, there was no significant
effect of age on the similarity measures of any kind of registration. Second, the kind of
registration did influence measures (higher overlap and smaller distance) of cortical
registration accuracy, with surface-based registration providing significantly higher accuracy
than any form of volume based registration, and, diffeomorphic registration providing
significantly higher accuracy than the other two volume-based approaches (as in Klein et al.
2009).

Distance Measure
The surface-based approach was significantly more accurate than the volume-based
approaches (mean difference = 1.56mm) when quantified using modified Hausdorff distance
(F = 912.8; p < 0.001; Table 1). This difference was observed across all labeled regions in
both hemispheres (Figure 2). There was a significant effect of Region (F = 20.3; p < 0.001)
on modified Hausdorff distance, with the Sylvian fissure having the lowest distance. There
was also a significant effect of hemisphere (F = 5.6; p < 0.018), with the right hemisphere
regions showing better proximity after registration than the left hemisphere regions. There
was no significant effect of Age or interactions of Age with any of the other three
independent variables. For both the surface-based and the poorest volume based registration
(the affine), the error in registration was smaller than typical fMRI voxel sizes, when
comparing specific individuals and a specific region (Figure 3) or across groups and regions
(Figure 4). In addition to treating age as a dichotomous effect, we compared Hausdorff
distance between overlapped regions in the two hemispheres separately for the youngest and
the oldest participant to all other participants, thus comparing it as a function age. No age-
related trend was observed (Figure 5). ANTS performed significantly better than SPM
nonlinear normalization (F = 868.6; p < 0.001) and affine normalization (F = 363.7; p <
0.001).

Overlap Measures
The surface-based approach was significantly more accurate than the volume-based
approaches when quantified using Target Overlap (F = 2103.4; p < .001). There were also
significant effects of Hemisphere and Region (Figure 6; Table 2). Similar to the results from
the distance measure, the right hemisphere regions showed greater overlap than the left
hemisphere regions and the Sylvian fissure showed the greatest overlap among regions.
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There was no significant effect of Age or interactions of Age with any of the other
independent variables. The results from comparing the other overlap measures (see Methods
section for details) across surface-based and volume-based registration showed a similar
pattern of results as Target Overlap. These results across groups and regions are available as
supplementary material.

Discussion
Technological advances in non-invasive neuroimaging offer tremendous potential for
improving our understanding of typical and atypical cognitive development. This requires
quantitative comparison of structural and functional data from children whose brain
morphology changes well into adolescence. Such a comparison is facilitated by the
alignment or registration of individual brain into a common reference frame. The current
results demonstrate that spatial normalization into a common reference frame is feasible for
participants ranging from 4.2 to 11 years of age, without the introduction of age-related
biases. Taken together with evidence for the validity of including children 7–8 years of age
and adults in a common reference frame (Burgund et al., 2002), the present findings indicate
that it is appropriate to study structural and functional brain development in a common
reference frame.

The results also show that FreeSurfer’s surface-based registration improves the accuracy of
aligning cortical landmarks in children’s brains compared to commonly-used volume-based
registration approaches. This improvement stems from FreeSurfer’s approach to registration.
FreeSurfer extracts the cortical sheet from a brain image as parameterized-surfaces and
therefore can generate additional information about morphological properties such as
curvature and thickness of cortex. When registering one brain to another, such information
systematically improves the accuracy of aligning structural (e.g., sulci, gyri, connectivity)
and functional properties (e.g., brain activity patterns, gene expression). Therefore surface-
based registration using spherical coordinates should provide a more accurate reference
frame for comparison of functional and structural imaging results from cortical regions
across children and adults. The relative registration-accuracy across the volume-registration
methods was similar to those observed for adults (Klein et al. (2009). In a comparison of
surface- and volume- registration techniques applied to labeled brains of adult participants,
Klein et al. (2010) observed no significant difference between FreeSurfer and ANTS.
However, the results from the present study on children indicate that FreeSurfer is more
accurate than ANTS. Therefore, topographic properties used by FreeSurfer (e.g., curvature)
may provide better features for matching across participants in this age range than the
intensity-derived properties used by the volume-registration algorithms.

For all registration methods, the mean Hausdorff distance (Figure 4) between registered
regions is less than the acquisition voxel sizes used in the vast majority of fMRI studies
(typically greater than 3mm) and much less than the effective functional resolution obtained
after smoothing the data. FreeSurfer and ANTS performed significantly better than the other
volume registration techniques, they are also more computationally intensive. Therefore, in
certain situations where the underlying functional data is highly smoothed, the analysis may
not benefit from the additional computational complexity of FreeSurfer and ANTS over the
simpler methods. However, for analysis of high-resolution fMRI with minimal smoothing,
these advanced registration methods may be more appropriate.

In many studies, individual-specific functional and structural region of interest (ROI)-based
analysis approaches are typically used to alleviate problems that arise from misalignment
during whole-brain registration (e.g., in development, Golarai et al., 2007). The registration
methods evaluated here would be more useful in studies where no specific functional
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localizers are available or structural delineation is too time-consuming, or no strong a priori
reasons exist for expecting an effect to be contained within an easily defined ROI. In such
studies, functional and structural ROIs are often delineated using automatic methods (e.g.,
Fischl et al., 2004; Hinds et al., 2009) that typically rely on registering a brain to an average
template or pairwise registration of brains.

In this study two small, but significant, effects of hemisphere and region on the similarity
measures were observed. First, the mean registration error of the Sylvian fissure was smaller
than that of the calcarine and central sulci independent of the methods used. Klein et al.
(2009) observed a similar effect as a function of size of regions for overlap measures.
Overlap measures may show region-size related bias (e.g., two small regions may show a
large change if a few voxels change and vice-versa for large regions). On the other hand,
distance measures should not be subject to such a bias. But the present finding is observed
for both distance and overlap measures. This finding may reflect superior accuracy for larger
regions (Sylvian fissures) than smaller regions (calcarine and central sulci), because
increased registration accuracy measured by distance may stem from the fact that larger
regions can provide more "information" (whether intensity or curvature) to the registration
algorithms. Hence these algorithms may work better for larger regions that afford greater
details.

Second, the mean registration accuracy of right hemisphere regions was significantly greater
than the mean accuracy of left hemisphere regions. Although numerous studies have
investigated hemispheric differences, these have primarily been based on shape, extent, or
volume differences between hemispheres. These results do not directly translate to
corresponding differences in similarity metrics between hemispheres. The present results
would indicate that the right hemisphere has a more stable folding pattern in this age-range.
Speculatively, this may result from greater influences of language experience on the
language-dominant left hemisphere (although the lack of an interaction with age suggest that
these experiences occur before age 5). However, given the limited set of regions, methods
and participants, further studies are needed to validate these observations.

Caveats and limitations of the study
A surface-based approach, as evaluated here, ignores subcortical structures (e.g., basal
ganglia, cerebellum) that are often critically important towards understanding brain function
and malfunction in several neurodevelopmental disorders. Registration approaches that
combine surface and volume-based methods (e.g., Zollei et al., 2010, Joshi et al., 2007,
Postelnicu et al., 2009) provide an alternative that includes subcortical structures. It is also
important to note that this study compared only three volume-based registration methods to
one surface-based registration approach applied to a limited-dataset containing three primary
fissures in each hemisphere. These sulci were chosen based on their cross-subject stability,
as well as to be distributed across disparate parts of the brain. It is possible that one might
observe larger variations than those observed here for other parts of cortex. Although sulcal
identification was performed independently of the registration procedures that were
evaluated, surface-based registration algorithms do rely on topographic properties of the
surface (e.g., curvature). Expert labelers typically use similar geometric and topographic
information to label regions. Therefore, any labels derived from sulcal and gyral landmarks,
as was the case in this study, are likely to benefit surface-based registration algorithms more
than volume-based ones. However, sulci and gyri are the most prominent macroanatomical
features of the cerebral cortex and we believe that these are best identified on surface-based
representations and not on slice-based representations. Finally, we created a group-specific
template to evaluate ANTS, while FreeSurfer and the other volume-registration methods
relied on their own average templates based on adults. The FreeSurfer affine template and
the SPM T1 template contain skull-related information, are blurrier and therefore are not
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optimal for using with ANTS. The ANTS template cannot be used with SPM and FreeSurfer
for the opposite reasons (too sharp, no skull). Since the intent of the study was to compare
algorithms and not optimize their use, we ran the software as commonly reflected in the
literature. However, prior studies have reported that custom templates that are representative
of the participant population provide better registration targets compared to templates
supplied with current registration software packages (Yoon et al., 2009; Klein et al., 2010).
Thus, creating custom group-specific template may improve registration accuracy for the
other methods. However, based on the results of Klein et al. (2009), we do not expect the
SPM normalization and the affine registration methods to outperform ANTS even after
custom template creation.

Conclusions
The results of this study indicate that one can register or normalize brains from a group of
children between 4.2 and 11 years of age without the introduction of an age-related bias in
accuracy of normalization. Furthermore, increased accuracy of such registration can be
obtained using FreeSurfer's surface-based registration technique as compared with volume
normalization methods. As functional data is obtained with greater consistency, reliability
and at higher resolution, it becomes vital to compare such data from multiple subjects and
studies with as accurate an alignment between them as possible. In particular, these
registration approaches enable accurate comparison of structure and function from children.
Being able to compare the wide array of pediatric neuroimaging data should greatly enhance
in our understanding of typical development and developmental disorders.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manual labels displayed on inflated left hemisphere surfaces of the youngest (4.2 yrs; left)
and oldest participant (11.16 yrs; right). The central sulcus and sylvian fissure (yellow
outline) labels are displayed in the top row and the calcarine sulcus labels are displayed in
the bottom row.
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Figure 2.
Comparison of surface and volume registration accuracy using modified Hausdorff distance.
Mean effect sizes and confidence intervals from a resampling analysis of Region,
Hemisphere and Method factors and their interactions with Age on the modified-Hausdorff
distance. The volume registration refers to the 12-parameter affine transform. The middle
error bar on each column reflects the 90% confidence interval for each simple main effect.
The left and right error bars on each column reflect the 90% confidence interval for that
effect in the young age group and the old age group respectively. Lower values reflect more
accurate registration.
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Figure 3.
Modified Hausdorff Distance between the central sulcus in the youngest (4.2 yrs) and in the
oldest participant (11.16 yrs) and the central sulcus in all of the other participants. To
preserve clarity, only affine volume-based (worst accuracy) and surface registration (best
accuracy) distances are reported. The left panel shows the individual distances for each
pairwise comparison. The right panel shows a summary boxplot of the same data with the
affine registration results in the shaded plots and the surface-based registration data in
unshaded boxes. The median values are shown with the filled circle for affine registration
and the horizontal line inside the box for the surface-based registration. The length of the
shaded part and the length of the box denote the interquartile range. Outliers for the affine
registration are denoted with the symbol ‘o’ while those for the surface-based registration
are denoted with the symbol ‘+’. Lower values indicate more accurate registration.
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Figure 4.
Modified Hausdorff distance between a hemispheric region from one participant and the
corresponding region of all other participants. The summary plots are arranged as a function
of increasing age of participants. To preserve clarity, only the affine volume-based
registration results are reported with the shaded plots and the surface-based registration data
with unshaded boxes. See Figure 3 for details of the boxplot. The top and bottom rows show
the distance of the right and left hemisphere regions respectively. The three columns show
the distances computed for the calcarine sulcus, central sulcus and Sylvian fissure. Lower
values indicate more accurate registration.
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Figure 5.
Graphical relation between modified Hausdorff distance and age. Each subplot shows the
regression slopes for the modified Hausdorff distance between regions from the youngest
and the oldest participants to the corresponding regions in all other participants after
undergoing spherical registration. To eliminate the effect of strong outliers, data points were
eliminated if they were greater than 3 standard deviations from the mean. The outlier count
(out of 29) is listed in the title for each subplot. (LH = Left hemisphere, RH = Right
hemisphere, x - distance from youngest participant, o - distance from oldest participant)
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Figure 6.
Comparison of surface and volume registration accuracy using target overlap. Mean effect
sizes and confidence intervals from a resampling analysis of Region, Hemisphere and
Method factors and their interactions with Age on the Target Overlap Measure. The middle
error bar on each column reflects the 90% confidence interval for each simple main effect.
The left and right error bars on each column reflect the 90% confidence interval for that
effect in the young age group and the old age group respectively. Higher values reflect more
accurate registration.

Ghosh et al. Page 20

Neuroimage. Author manuscript; available in PMC 2011 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ghosh et al. Page 21

Table 1

Statistical results from a resampling analysis of main effects of Method, Hemisphere, Region and Age and
their interactions on the modified-Hausdorff distance (Figure 2).

Mean F P

Method 2.64 912.8 0.000

Hemisphere 0.17 5.6 0.018

Region 0.38 20.3 0.000

Age 0.13 1.0 0.307

Age*Method 0.20 1.6 0.203

Age*Hemi 0.14 1.0 0.306

Age*Region 0.33 1.1 0.286
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Table 2

Statistical results from a resampling analysis of main effects of Method, Hemisphere, Region and Age and
their interactions on the Target Overlap measure (Figure 6).

Mean F P

Method 0.72 2103.4 0.000

Hemisphere 0.02 6.9 0.009

Region 0.11 92.9 0.000

Age 0.01 0.6 0.454

Age*Method 0.05 3.3 0.069

Age*Hemi 0.01 0.6 0.443

Age*Region 0.04 0.8 0.357
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