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Abstract

Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has 

experienced an exponential growth since early 2000’s. The path to the commercialization of 

oncology drugs is long and carries significant risk; however, there is considerable excitement that 

nanoparticle technologies may contribute to the success of cancer drug development. The pace at 

which pharmaceutical companies have formed partnerships to use proprietary nanoparticle 

technologies has considerably accelerated. It is now recognized that by enhancing the efficacy 

and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create 

differentiated products and improve clinical outcome. This review describes the lessons learned 

since the commercialization of the first-generation nanomedicines including DOXIL® and 

Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that 

are under various stages of development, including BIND-014 and MM-398. It highlights the 

opportunities and challenges faced by nanomedicines in contemporary oncology, where 

personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental 

concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms 

proposed to enhance preferential “retention” in the tumor, whether using active targeting of 

nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated 

macrophages. The overall objective of this review is to enhance our understanding in the design 

and development of therapeutic nanoparticles for treatment of cancers.
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1. Introduction

More than 40 years ago, the foundations were laid down for nanotechnologies to deliver 

therapeutic and diagnostic agents in a safer and more efficient manner [1]. Achieving this 

vision became more realistic in recent years, with increasing numbers of nanotherapeutics 

and nanodiagnostics being commercialized or having reached clinical stage. In addition 

other important bench-to-bedside milestones are being achieved. In 2010, the first clinical 

evidence of gene silencing was obtained by systemically-administered targeted nanoparticles 

(NPs) delivering siRNA therapeutics [2]. Other clinical evidences of RNA interference have 

been obtained since then [3]. In parallel, clinical investigation of the first actively-targeted 

polymeric NPs, BIND-014, for the delivery of a small molecule drug was reported [4]. 

Although only a relatively small number of nanosized drug delivery carriers have been 

approved for human use so far, it is now accepted that nanotechnologies will likely 

constitute a growing share of the oncologist’s therapeutic arsenal over the next decades to 

come [5-7]. There are many nanoparticle technologies under development and a great 

majority are still without animal proof of concept. However, what is exciting is the 

momentum in this field and of the 73,000 articles on “nanoparticles” reported in Pubmed as 

of May 2013, more than half were published since 2010, emphasizing that research efforts 

are growing exponentially.

Nanoparticles offer the possibility to encapsulate poorly soluble drugs [8, 9], protect 

therapeutic molecules [10], and modify their blood circulation and tissue distribution 

profiles [11, 12]. These properties are attractive in oncology in order to encapsulate 

cytotoxics exhibiting wide-ranging toxicities and physicochemical properties. For instance, 

liposome-encapsulated doxorubicin (DOX) decreases cardiac toxicity of the cytotoxic drug 

[13, 14], and albumin-stabilized paclitaxel (nab-PTX) allows higher tolerated doses in 

patients [15]. Lately, drugs that modulate cancer signaling pathways (i.e., molecularly 

targeted therapies) have shifted the paradigm of cancer treatment in patients exhibiting 

specific genetic mutations [16]. Like their cytotoxic counterparts these targeted drugs have 

toxicities and suboptimal tumor distributions that motivate their encapsulation in therapeutic 

NPs [17]. Furthermore, the robustness and redundancy of the signaling networks and the 

cross-talk between molecular pathways often promote resistance in cancers treated with 

molecularly targeted therapies [18, 19]. Many of the kinase inhibitors are sensitive to plasma 

drug concentration to maintain on-target activity and molecular pathways can reactivate as 

plasma concentrations decline [20]. Using NPs to precisely control the tumor levels of 

protein kinase inhibitors could theoretically circumvent that problem and result in improved 

efficacy.

Nanotechnologies are also appealing because they can facilitate the combination regimens 

which are commonly practiced in cancer therapy. Having a single NP encapsulating multiple 
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active pharmaceutical ingredients (API) could potentially offer synergistic effects to 

promote the efficacy of therapies, while limiting the risk of resistance. When multiple drugs 

are administered separately, each API acts according to its own distinct pharmacology. 

Because drugs differ in their pharmacokinetics, biodistribution and duration of effect, there 

is no certitude that all cells will synchronously receive optimal levels of each therapeutic 

entity. Conversely, when drugs are combined in a single NP carrier, cells are always 

exposed to synergistic amounts of API. The timely co-delivery to cancer cells of multiple 

agents inhibiting distinct, essential pathways could provide improved anticancer effects. 

This synergy has been demonstrated for combinations of small molecular weight drugs in 

vitro [21], combinations of a cisplatin prodrug and siRNA in vivo [22] or the combination of 

siRNA targeting 2 different genes in humans [3], highlighting the potential of encapsulating 

multiple API in a single carrier. Nevertheless, the determination of optimal therapeutic 

combinations using NPs is challenging. In opposition to conventional anticancer regimens 

where the dose of each single drug can be adjusted individually in patients (i.e., based on 

their response or susceptibility to toxicities), the ratios of the different APIs encapsulated in 

a NP need to be optimized a priori, during the development phase. The large diversity of 

regimens possible makes the selection of ideal treatment combinations difficult. 

Furthermore, temporal exposure to the different components of the combination might also 

be important. Anticancer treatments undeniably impact transcriptional response in the tumor 

microenvironment and cancer cells, sometimes with important impact on subsequent 

response to chemotherapy (for example through p53 gene down-regulation or WNT16B 

expression) [23, 24]. Combination regimens must therefore be designed so that the 

chronology of exposure to one agent does not affect the efficacy of the second drug. This 

might be particularly true for antiangiogenic agents where the shutdown of oxygen supplies 

has been shown to significantly reduce susceptibility of cancer cells to other 

chemotherapeutics [23]. Although it is feasible to independently control the release of APIs 

from a NP, the sequence of exposure must be specifically considered to maximise synergism 

[25].

Currently, despite the broad interest surrounding nanomedicines, the development and 

clinical translation of NPs remain laborious. Among the clinically-validated nanomedicines, 

only nab-PTX has become officially part of the first-line treatment of cancer, but the picture 

is changing rapidly. Very recently, a combination of gemcitabine with nab-PTX proved to 

significantly improve survival in pancreatic cancer patients from 6.7 months to 8.5 months 

(25% increase) [26]. These findings led, during the writing of this article, to the approval of 

nab-PTX as first-line treatment of advanced pancreatic cancer (in combination with 

gemcitabine). These NPs are now established as leading treatments for 2 types of cancer 

(pancreatic and locally-advanced or metastatic non-small cell lung cancer (NSCLC) (in 

combination with carboplatin). In all likelihood, the true potential of nanomedicines to really 

improve clinical outcome will continue to emerge as we begin to understand which patients 

can benefit further from treatment with anticancer therapeutic NPs. In the era of 

personalized medicine and as our understanding of genomics, tumor biology and 

nanotechnology progresses, sophisticated strategies may be able to address interpatient 

variability when initiating a treatment and ultimately improve therapeutic response and 

cancer survival.
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Molecularly targeted therapies have paved the way for the personalized treatment of patients 

based on the genetic profile of their tumors and it is now acknowledged that all patients do 

not respond equally to therapies [16]. Given that inter- and intratumoral variability can 

affect the architecture of the neovasculature and the tumor microenvironment, it becomes 

apparent that the passive targeting of NPs to tumors may be more complex than originally 

assumed [27]. The development of future therapeutics based solely on passive targeting 

strategies might not capitalize on the full potential benefit of therapeutic NPs. More than 

ever, increasing the response rates by screening patients for optimal response to 

nanomedicines based on specific tumor characteristics or the presence of certain biomarkers 

seems attractive, if not yet fully achievable. While patients who are naturally more 

responsive to NPs might be more exposed to efficacious treatments, regimens increasing the 

susceptibility of the tumor to the nanomedicine could also be envisioned for others [28].

The parameters governing effective passive transport and retention of NPs in tumors hold 

true for actively-targeted NPs which are decorated with ligands. Although this approach has 

been proposed for quite some time [29-32], the first actively-targeted NPs have relatively 

recently made their way to human clinical trials [33]. This strategy exploits the affinity 

between surface ligands and antigens on the surface of cancer cells to facilitate the delivery 

of the NPs. Actively-targeted NPs therefore display an increased degree of complexity. To 

potentially benefit from the active targeting strategy, it is imperative that the specific antigen 

be present on the targeted cells and accessible to bind the NPs. It is also important that 

antigen localisation and expression remains adequate throughout the treatment. In this 

context, identification of predisposed patients goes beyond relatively simple genetic 

profiling.

Understanding the biological processes involved in the distribution and retention of 

nanomaterials inside the tumors is therefore essential to the development of personalized 

nanomedicine approaches. The concepts apply to therapeutic nanomaterials in general, 

whether drug carriers or nanoparticulate therapy mediators responding to external stimuli to 

exert therapeutic effects (e.g., light [34], magnetic field [35, 36]}, ultrasounds [37, 38]). In 

this review, we examine the fundamentals behind passive and active targeting of 

nanomedicines to tumors and cancer cells. We will discuss how the morphology of the 

tumor vasculature, the components of the extracellular matrix or the presence of immune 

cells in the tumor microenvironments can affect the distribution of NPs. With the 

perspective of developing new therapeutic NPs, we will also examine how the 

physicochemical parameters of the nanomaterials will affect their localization, retention, cell 

binding, internalization, efficacy and toxicity. We will highlight the opportunities that can be 

exploited and the pitfalls to be avoided by assessing the most recent developments in the 

fields of cancer biology and cancer nanotechnology. This work encompasses the current 

corpus of knowledge obtained from preclinical studies in animal models through results 

obtained in humans.

2. Passive targeting: Nearly 30 years of the EPR effect…

The observation that certain macromolecules accumulate preferentially to tumors was 

witnessed more than 30 years ago [39]. The tumor accumulation of therapeutic 
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macromolecules was first reported for poly(Styrene-co-Maleic Acid)-NeoCarzinoStatin 

(SMANCS), a 16 kDa polymer conjugate that non-covalently binds albumin in the 

circulation to reach a molecular weight of around 80 kDa [40, 41]. The distribution of 

SMANCS to the tumor vicinity was observed in early preclinical development and led 

Matsumura and Maeda to further investigate the phenomenon [39]. Using labeled albumin 

and other proteins in addition to the polymer conjugate, they showed that proteins larger 

than 30 kDa (i.e., SMANCS, murine (67 kDa) and bovine albumin (69 kDa) and IgGs (160 

kDa)) could preferentially distribute to the tumor interstitium and remain there for prolonged 

periods of time (up to 144 h) [39]. This preferential distribution to the tumors was ascribed 

to the presence of fenestrations in the imperfect tumor blood vessels and to the poor 

lymphatic drainage in the tissue. The combination of these two phenomena was coined as 

the enhanced permeation and retention effect. Since then, the EPR effect has become the 

leitmotiv of many scientists for the efficient delivery of anticancer drugs to tumors, whether 

using polymer conjugates, liposomes or NPs.

Nonetheless, the EPR effect is much more complex than initially defined and the 

phenomenon has somehow become a blanket term encompassing dozens of complex 

biological processes (e.g., angiogenesis, vascular permeability, hemodynamic regulation, 

heterogeneities in tumor genetic profile, heterogeneities in the tumor microenvironment and 

lymphangiogenesis). These factors vary among patients and their tumor types. Likewise, the 

distribution and accumulation of NPs in tumors is also multifaceted and is affected by the 

biological and physicochemical properties of each material. For these reasons, and with the 

advent of personalized medicine, the designation of EPR as a simple self-explaining 

phenomenon might be becoming outdated.

2.2. The fundamentals of EPR

When a solid tumor reaches a given size, the normal vasculature present in its vicinity is not 

sufficient to provide all the oxygen supply required for its further proliferation. As cells start 

to die, they secrete growth factors that trigger the budding of new blood vessels from the 

surrounding capillaries [42]. This process, known as angiogenesis, promotes the rapid 

development of new, irregular blood vessels that present a discontinuous epithelium and 

lack the basal membrane of normal vascular structures [43, 44]. The resulting fenestrations 

in the capillaries can reach sizes ranging from 200 to 2,000 nm, depending on the tumor 

type, its environment and its localisation [45]. When blood components reach the abnormal, 

discontinuous vascular bed, the fenestrations offer little resistance to extravasation to the 

tumor interstitium. This denotes the enhanced permeation portion of the EPR effect.

In normal tissues, the extracellular fluid is constantly drained to the lymphatic vessels at a 

mean flow velocity around 0.1-2 μm/s [46]. This allows the continuous draining and renewal 

of interstitial fluid and the recycling of extravasated solutes and colloids back to the 

circulation. In tumors, the lymphatic function is defective, resulting in minimal uptake of the 

interstitial fluid [47]; the colloids cannot rely on convective forces to return to circulation. 

While molecules smaller than 4 nm can diffuse back to the blood circulation and be 

reabsorbed [48-50], the diffusion of macromolecules or NPs is hindered by their larger 

hydrodynamic radii. Therefore, NPs that have reached the perivascular space are not cleared 
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efficiently and accumulate in the tumor interstitium. This aspect represents the enhanced 

retention component of the EPR effect.

Since the early works of Matsumura and Maeda in the mid-1980s, the EPR effect has been 

comprehensively documented using various tumor types and animal models. The parameters 

which affect the distribution of macromolecules and NPs to the tumor are better understood, 

and we are slowly unravelling the subtleties of the EPR effect [44, 51]. Importantly, it is 

now recognized that lymphatic drainage is not homogenous throughout the cancerous mass. 

Vessels in the bulk of the tumor experience higher mechanical stress, and the functional loss 

in the intratumoral regions is therefore more important than in the margin [47]. In fact, 

residual lymphatic activity and de novo lymphangiogenesis are believed to be in part 

responsible for the progress and dissemination of metastases [52]. The heterogeneity of 

lymphatic function within the tumor is therefore a factor that should be considered when 

addressing tumor NP accumulation.

2.3. Factors affecting the EPR effect

In a solid tumor, the distribution of molecules to the tumor is governed by at least three 

distinctive but interrelated phenomena: the extravasation of colloids from the blood vessels, 

their further diffusion through the extravascular tissue and their interaction with intracellular 

and/or extraceullar targets within the tumor environment (Figure 1). The first two aspects 

are the result of diffusive and convective forces and can be influenced concurrently by the 

tumor biology and the characteristics of the diffusing species. The third parameter is more 

complex and less understood. It represents the interactions of the colloids with the tumor 

whether through adsorption phenomena, cellular uptake or degradation and metabolism. 

These aspects can all affect the equilibrium of accumulation inside the tumor; they depend 

on the nature of the material, its affinity for all components of the tissue and the tumor 

composition (e.g., nature of the extracellular matrix, the type of cells present). Because we 

still lack the full understanding to completely assess all these interactions, they are 

represented as a “black box” that will be further detailed below.

2.3.1. Extravasation—Extravasation of colloids from the circulation is influenced by 

many parameters ranging from their concentration in the blood, the relative permeability of 

the vascular wall to macromolecules and NPs as well as the nature of the extravascular 

environment. In order to reflect the relative involvement of each factor on the escape of 

colloids from the blood, the phenomenon can be described by simple and general 

mathematical relations. Although these equations are difficult to use experimentally because 

of the great number of variables involved, they can be useful to represent and understand the 

consequences of each biological and physicochemical characteristic independently.

The total flux of material toward the tumor is described by adding the contributions of 

diffusive (in red) and convective forces (in blue) as well as possibly a number of unknown 

phenomena (black box):

(1)
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The diffusive component (PA(Cv-Ci) originates from the Brownian motion of colloids 

resulting in a positive net flux towards the interstitium because a gradient exists between the 

vascular (Cv) and interstitial concentrations (Ci) [46]. It is given by a modification of Fick’s 

first law to account for the permeability of the vascular wall (P) and the area of the blood 

vessel (A). The permeability incorporates both the diffusion coefficient of the colloid (D) 

and how the vascular barrier restricts its passage. This hindrance effect depends on the 

physicochemical properties of the colloid as much as on the properties of the vessel wall 

[44].

The outflow of fluids from the vessel also creates a convective force pushing the colloids 

toward the tumor. In that case the flux of fluid (LpA[(Pv-Pi)-σ(πv - πi))]) is described by the 

Starling Law where Lp is the filtration coefficient of the fluid through the vessel wall, Pv and 

Pi are the vascular and interstitial hydrostatic pressures, πv and πi are the vascular and 

interstitial oncotic pressures and σ is the capillary osmotic reflexion coefficient [46]. This 

later parameter reflects the permeability of the capillary to proteins and how effective the 

oncotic pressure gradient is to pull the fluid back in the vascular space. The flux of fluid is 

adjusted for the imperfect permeation and drag of the colloid by the fluid (σF) and the 

colloid concentration in the vascular compartment (Cv).

Finally, despite the recent progresses in cancer biology and nanotechnology, our 

understanding of the tumor microenvironment and how colloids extravasate and reach the 

tumor cells is far from complete. The “black box” in equation 1 highlights this opportunity 

for further exploration. When measuring the tumor uptake of a compound, the distinction 

between extravasated material in the vicinity of the vessels and the material which is taken 

up by tumor endothelial cells in the neovasculature is difficult. Some researchers describe 

enhanced interactions with endothelial cells, for example by cationic charges (see 

section1.3.2), as an increase in the effective P of the vessel [53, 54]; others consider these 

interactions to be the product of absorption and endocytosis by the endothelium [55, 56]. 

The black box accounts, among other things, for that uncertainty on the effective 

concentration in the vasculature available for extravasation (i.e., if endothelial cells are 

internalizing the colloids relatively fast, the actual concentration left to permeate through the 

vessel is lower than the concentration supplied by the systemic circulation, Cv).

Similarly, authors have shown that tumor accumulation of NPs increased with higher levels 

of phagocytic cells in the tumor interstitium [57]. The interactions of NPs with macrophages 

and dendritic cells can therefore affect the concentrations of NPs effectively diffusing in the 

tumor microenvironment (Ci). Finally, it is also important to decouple the accumulation of 

the NPs by EPR effect from the accumulation of their encapsulated payload. The tumor 

distribution of therapeutic NPs is usually measured by tracking their loaded cargo, whether 

it is a small molecular weight drug, a therapeutic macromolecule, a fluorescent dye or a 

radiolabelled tracer. Those entities may have very distinct properties when they are 

encapsulated in NPs compared to when they are released; the kinetics of their release as well 

as their possible interactions with the tumor micro-environment must therefore be accounted 

for.
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The black box is introduced to address all parameters which factor in the retention of the 

NPs in the tumor whether they are the product of absorptive or intracellular trafficking 

forces or the result of degradation, metabolism and drug release. It also acknowledges that 

many aspects of tumor accumulation are still not fully understood.

2.3.2. Diffusion and convection in the interstitium—Once the colloids are 

extravasated to the tumor, their surrounding environment is composed of interstitial fluid 

(with a composition similar to plasma), cancer and stromal cells and the extracellular matrix 

(ECM). Their movements in the interstitium are also guided by convective, diffusive forces 

and other phenomena and can be described by:

(2)

Here, the changes in interstitial concentration over time (δCi/δt) result from the diffusive 

component (Deff∇
2Ci ), the convective component (  ) and the effects of the tumor 

microenvironment on the colloid’s transport (Ri). The diffusive factor is governed by the 

effective diffusion coefficient (Deff) and the change in concentration in all directions (i.e., 

the Laplace operator of the interstitial concentration, ∇2Ci). The convective portion results 

from direction and intensity of the convective motion (i.e., the fluid velocity vector (v)), the 

spatial concentration gradient (∇Ci) and a coefficient (φi) to account for the fact that the 

colloid velocity in the porous ECM might be different from the velocity of the fluid (e.g., 

drag, adsorption or exclusion effects). This difference can be explained by interactions with 

the ECM retaining the colloid (φi<l) or by size-exclusion effects hastening it through larger 

pores (φi>l). Finally, the factor Ri also highlights the possible degradation, metabolism or 

binding of the colloids to ECM, their capture by extravasated components of the 

mononuclear phagocyte system (MPS) as well as their uptake by tumor cells. The negative 

sign acknowledges that higher interactions with the tumor result in decreased movement.

2.4. Tumor biology

The tumor environment is a complex milieu where normal anatomy and physiology 

principles are defied. The untamed growth of cancer cells and the secretion of angiogenic 

factors both contribute to the highly disorganized vasculature and congested extravascular 

environments. Paradoxically, these structural imperfections are both the cause of the EPR 

effect and the principal source of uneven tumor accumulation and retention of 

nanomaterials.

2.4.1. Tumor vasculature—The release of angiogenic factors from cancer cells dictates 

the blood vessel architecture and morphology of the vascular wall [42]. The neovasculature 

sprouting from capillaries is disordered, discontinuous and highly fenestrated [28]. The 

degree of leakiness of the endothelium and the enhanced vascular permeability to 

macromolecules and nanomaterials depend on many factors like the cancer type, its stage 

and in xenograft models, the implantation site of the tumor [44, 45, 58]. In equation 1, the 

vascular biology affects both the diffusion (via the permeability, P) and the convection 

through the vascular wall (via the filtration coefficient (Lp)).
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While the fenestrations offer escape routes for the colloids, the discontinuities and 

irregularities in the architecture of the vessels also affect the blood flow and the hydrostatic 

pressure in the vessels [28, 44]. The mass of hyperproliferative cancer cells also exert 

mechanical pressure on the different vessels further impeding perfusion [47]. The reduced 

pressure might be associated with a decrease in the convective forces responsible for the 

extravasation of blood components and nanomaterial (↓ Pv).

2.4.2. Tumor extravascular environment—The tumor extravascular environment is a 

congested entanglement of collagen fibres and glycosaminoglycans (GAG), with 

inhomogeneous distributions of solutes, proteins and cellular debris. In opposition to healthy 

tissues were interstitial flow is regulated to efficiently disseminate the fluid throughout the 

cell population [46, 49], the disorganized structures in tumors strongly hinder the diffusion 

and fluid convection. The abnormal traffic of fluid influences local interstitial hydrodynamic 

(Pi) and oncotic pressures (πi), two parameters which impact the convection of NPs through 

the vascular wall [59].

Once NPs have extravasated, the nature of the ECM further regulates the diffusive and 

convective movement of NPs in the tumor. Various studies in vivo and ex vivo have shown 

that the effective diffusion coefficient (Deff) in the tumor interstitium is below that measured 

for colloids in simple solutions [60, 61]. The GAGs (e.g., hyaluronic acid, heparan sulfate), 

covalently-attached to proteins (e.g., collagen, laminin), affect the viscosity of the 

environment and the tortuosity of the diffusive paths. GAGs chains organized in blotches of 

low and high viscosities which translate into a two-phase transfer process where colloids of 

different sizes show high and low mobilities, respectively (Fig. 2, closed and open symbols) 

[61]. Although these distinct mobilities can probably be explained by differences in the 

diffusion of colloids (Deff, in equation 2), the presence of some steric exclusion effects (φi) 

caused by the inhomogenous environment cannot be completely ruled out.

The collagen content and its degree of organisation in the ECM also correlates with the 

resistance exerted on the interstitial transport (↓ Deff) [62]. The disruption of the collagen 

network by collagenase can break up the protein entanglement and restore some mobility to 

slow diffusing species [61, 62]. Similarly, intratumoral injections of collagenase were shown 

to rearrange the ECM in a manner that allowed enhanced mobility of 150-nm viral vectors in 

the tumor [63], further consolidating the influence of diffusion on the two-phase transport 

(in opposition to steric effects).

On the other hand, the effects of GAG-disrupting enzymes are less clear. In xenograft 

models of various tumors, relations between the GAG content and the transport restriction 

could not be established [62]. In some instances, hyaluronidases were reported to decrease 

the diffusion of macromolecules by collapsing the hydrated protein structure and increasing 

the overall viscosity (↓ Deff and φi) [61]. In other cases, heparinases that cleave the matrix 

heparan sulfate moieties can restore mobility of positively-charged macromolecules [60], in 

this case most probably by decreasing the adsorptive interactions of the colloids with the 

ECM (↓ Ri in equation 2) .
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Finally, cells from the MPS have been found to extravasate to the tumor interstitium. The 

affinity of these macrophages for the colloid and the resulting phagocytic activity can further 

impede the NPs movement toward the cancer cells while increasing their retention in the 

tumor interstitium [27]. Recently, Zamboni and colleagues showed that xenografts of 

ovarian cancer showing increased amount of CD11c-positive cells (a marker specific for 

dendritic cells) had increased liposomal accumulation compared to melanoma cells with 

lower dendritic cell expression [57]. Although it is unclear if the increased tumor 

accumulation seen in this study has a positive or negative influence on the NPs’ therapeutic 

efficacy, it certainly implies that the MPS plays a role in their retention in tumor (decreasing 

movement in equation 2 by ↑ Ri). In humans, the age of patients and their intrinsic MPS 

activity was also correlated with the clearance of liposomes from the blood [64]; older 

patients or patients with hepatic metastases were shown to experience higher blood exposure 

to the NPs. Interestingly, older patients also had less hematologic toxicity compared to 

patients below 60 years old [65], further suggesting that interactions between NPs and the 

MPS affect the pharmacodynamics of nanomedicines. Nevertheless, this Phase 1 clinical 

trial did not focus on how the different MPS functions in the tumor correlate with the 

efficacy of the NPs. To answer this question, a new clinical trial was recently initiated to use 

iron oxide NPs as an MRI contrast agent in combination with therapeutic liposomes 

(clinicaltrial.gov, NCT01770353). This pilot study will be discussed in more details in 

section 2.6.

2.4.3. Improving EPR by changing tumor biology—As our knowledge about the 

EPR effect grows, pharmacological approaches are proposed to optimize the tumor 

microenvironment for enhanced distribution of macromolecules and nanomaterials. The 

injection of enzymes that remodel the ECM to augment the intratumoral mobility of colloids 

(↑ Deff) has been introduced before [63]. In a similar fashion, other methods remodelling the 

perivascular environment have been exploited using photo-immunotherapy [66] or small 

molecular weight drugs [67]. These approaches showed increased tumor distribution and 

therapeutic efficacy of oncolytic viruses [63, 67] and/or NPs [66, 67] in preclinical models.

Another approach relies on improving the transvascular convective movement by increasing 

the perfusing pressure (Pv). To that end, the cyclic or continuous administration of 

hypertensive molecules, like angiotensin II, was studied [59]. This approach resulted into 

significantly increased extravasation only when the antibodies had sufficient affinity to bind 

to the tumor and avoid being translocated back to the circulation upon pressure 

normalization (↑ Ri). The administration of enalapril, an angiotensin-converting enzyme 

(ACE) inhibitor, was also proposed to augment tumor accumulation of antibodies [68]. In 

this case, the ACE inhibitor was used to block the degradation of bradikinin, a potent 

physiological vasodilatory peptide that increases the vascular permeability to 

macromolecules (↑ P and Lp). The combination of enalapril with angiotensin II was 

effective to counter the hypotensive effect of the ACE inhibitor and further improve EPR. 

Other vasodilatory pathways (↑ P and Lp), like nitric oxid [69], prostaglandins [70] or 

carbon monoxide [71] were also found to improve tumor accumulation of NPs.

The normalization of the blood vasculature was also proposed as an alternative to improve 

the EPR effect [28]. This approach is believed to rectify the blood flow in the tumor (↑ Pv) 
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and consequently normalize the interstitial fluid exchanges (↓ Pi and πi). In a murine model 

of orthotopic allograft breast adenocarcinoma, the blocking of the vascular endothelial 

growth factor receptor-2 (VEGF-R2) improved penetration of small (~12-nm) albumin-

based drug complexes while not affecting the diffusion of larger (> 60 nm) nanoparticles 

[72]. It is believed that the restoration of the transvascular pressure gradient also impacted 

the size of the endothelial fenestrations and resulted in decreased permeability for the larger 

particles (↓ P and Lp).

The impact of the modulation of the vessel morphology strongly depends on the initial 

tumor architecture. The administration of various small molecular weight tyrosine kinase 

inhibitors affecting the vascular endothelial growth factor (VEGF) activation pathways had 

different effects in murine xenograft models of colon and pancreatic cancers [73]. In the 

former, VEGF-inhibition lead to decreased permeability by reducing the endothelial density 

in the tumor (↓ A and possibly P and Lp), while in the latter, it decreased the coverage of the 

vessels by pericyte and improved permeability (↑ P and Lp). The administration of 

transforming growth factor-β inhibitors (TGF-β inhibitors) in a model of hypovascular, 

poorly-permeable pancreatic cancer, was also found to increase the permeability of blood 

vessels to large nanoparticles (↑ P and Lp) [73-75].

Together, these results in preclinical models highlight certain therapeutic interventions that 

could possibly modulate the tumor biology and regulate the EPR effect. However, further 

efforts are needed to fully understand how to efficiently exploit these different strategies in a 

clinical setting.

2.5. The physicochemical parameters

The physicochemical parameters of the colloids affect their extravasation by influencing, 

among other things, their diffusivity (Deff) , their permeability through the vascular wall (P 

and Lp), their drag coefficient in the fluid (ρF and φi) and their interactions in the tumor with 

the cells and the ECM (Ri). Furthermore, the physicochemical characteristics of exogenous 

materials used for therapeutic or diagnostic applications also impact on how the host’s 

defense mechanisms clear them from the blood circulation [11, 12]. In fact, because 

individual physicochemical parameters can affect the overall blood circulation kinetics, the 

extravasation processes and the intratumoral diffusion, directly measuring the influence of 

each specific characteristic on the EPR is difficult.

Nevertheless, the total blood exposure to the NP is believed to be a key factor influencing its 

distribution to the tumor in the EPR effect [76]. The diffusive and convective elements 

forces are both influenced by the concentration of colloid in the bloodstream (Cv). 

Maintaining high blood concentrations is also very important to ensure unidirectional 

diffusion towards the tumor and prevent the efflux from the tumor when Ci > Cv [77]. 

Therefore, longer circulation times in the blood result in higher amounts extravasated to the 

tumor interstitium. The tumor deposition of soluble polymers like poly(ethylene glycol) 

(PEG) and N-(2-hydroxypropyl)methacrylamide (HPMA) augments proportionally to blood 

exposure when the molecular weight is increased above the glomerular filtration threshold 

and the polymer cannot be eliminated by the kidney (Fig. 3) [50, 78]. The correlation 
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between the tumor accumulation and the blood circulation kinetics has since then been 

generalized to other polymers [79], liposomes [80, 81] and nanoparticles [82].

2.5.1. Size—The size of the nanomaterial influences the kinetics and extent of tumor 

accumulation. The material needs to be smaller than the cut-off of the fenestrations in the 

neovasculature, but size is also factored in the various parameters affecting extravasation to 

the tumor and diffusion in the interstitium (P, Lp, Deff and, possibly to a lesser extent, ρF and 

φi). In mice xenograft models, when the kinetics of intratumoral accumulation were studied 

over 30 min, smaller macromolecules (3.3 and 10 kDa, RH : 2 and 3 nm) were shown to 

accumulate faster and diffuse deeper in the tumor than larger molecules (70 and 2,000 kDa, 

RH: 7 and 25 nm) [77]. However, this accumulation was transitory as smaller molecules 

would rapidly diffuse back in the vascular compartment [77]. By focusing on a short 

accumulation period during which the blood concentrations of each polymer were relatively 

constant, the authors of this study could somehow alleviate the influence of the distinct 

circulation times on their findings. However, in general, measuring the direct impact of size 

on the EPR is hampered by the effect that size usually has on the circulation kinetics of NPs 

and polymers (see Fig. 3).

A recent article addressed this issue by comparing the tumor deposition of different-sized 

particles which ostensibly showed the same circulation profiles [74]. This study found that 

particles (sizes: 30, 50, 70 and 100 nm) distributed comparably when the tumors were 

hyperpermeable (murine colon adenocarcinoma), but that only NPs smaller than 70 nm 

could accumulate efficiently in poorly permeable tumors (human pancreatic 

adenocarcinoma). In that case, the degree of tumor accumulation of these platinum-loaded 

particles correlated with tumor shrinking efficiency. This study highlights the dual effect of 

the tumor biology and the size of nanomaterial on the endothelial permeability (P and Lp) 

and nanomaterial reflexion coefficient (ρF). Given the relatively small difference in the 

hydrodynamic radii of the NPs, it suggests that the neovasculature wall in this pancreatic 

cancer model acts as an all-or-nothing barrier with a 30 to 70 nm threshold (P and Lp = 0 

above the threshold). This cut-off could be raised above 70 nm when the tumors were 

treated with TGF-β inhibitor (see section 1.3.3). Preferential tumor accumulation of smaller 

particles (i.e., < 50 nm) was confirmed by others, however differences in the blood 

circulation profiles of the compared NPs could not rule out other interfering parameters [83].

Insightful results were also obtained by Wong et al. who developed 90-nm NPs that 

disintegrated into 10-nm quantum dots when degraded by tumor proteinases [84]. The 

evaluation of their novel nanomaterial design emphasized the importance of size on the 

interstitial diffusivity of particles (Deff). The quantum dots loaded in cleavable particles 

showed improved spatial distribution and enhanced penetration depth in the tumor compared 

to quantum dots loaded in similarly-sized, non-cleavable silica NPs.

2.5.2. Charge—Like other physicochemical parameters, the charge of macromolecules 

[85] and nanomaterials [11, 12] can influence the EPR effect by changing the systemic 

circulation times and the intratumoral processes. Once again, it is usually difficult to address 

both phenomenon independently [54]. The presence of surface charge can alter the 

opsonisation profile of the material, its recognition by cells in the organs of the MPS and its 
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overall plasma circulation profile (↓ Cv) [11, 12, 86-92]. Negative surface charges can either 

increase, decrease or have no impact on the blood clearance of NPs [92-97], but positive 

charges are generally recognized as having a negative effect on the plasma exposure to the 

nanomaterial [90,91, 98].

In tumor-bearing animals, despite the reduced blood circulation times, non-PEGylated, 

positively-charged liposomes containing the lipid 1,2-diacyl-trimethylammonium propane 

(DOTAP) display higher ratios of concentration in tumor vs. surrounding tissue compared to 

their negative or neutral counterpart [55, 56, 98]. The preferential distribution to the tumor is 

attributed to localization of the vesicles to the epithelium of the tumor neovasculature, with 

very little extravasation or very shallow interstitial diffusion. The positive charges possibly 

favour interactions of the NPs with the tumor blood vessels and eliminate their 

predisposition to diffuse deeper in the tumor while preventing their redistribution in the 

systemic circulation. This phenomenon has been utilized for therapeutic purposes by 

targeting the tumor vessel endothelium with antiangiogenic drugs in preclinical models [55, 

99] and, very recently, in humans [100, 101].

Sterically-stabilized colloids with positive charges have also demonstrated enhanced tumor 

accumulation [102, 103] while others seem less efficacious [90, 91]. Parameters like the 

degree of ionisation, the relative blood circulation times of the control NPs [102] or the 

architecture of the construct (i.e., charge on the core surface [102, 103] vs. charge on the 

corona [90, 91]) might explain these conflicting findings. Recent work has highlighted that 

the architecture of charge presentation by zwitterionic material influences the type of non-

specific interactions with endothelial cells [104].

Besides the limited extravasation of NPs due to interactions with the tumor endothelium, 

charges can also bind to the ECM and limit diffusion in the interstitium (↑ Ri) [60]. Ex vivo 

studies conducted on ECM isolated from mice sarcoma showed that charges (positive or 

negative) had deleterious effects on the movement of NPs through the matrix. In fact, the 

presence of charge above a certain threshold (> 30 % DOTAP or >60 % 1,2-dioleoyl-sn-

glycero-3-[phospho-rac-(1-glycerol)] (DOPG), i.e., ζ-potential ~ +10 mV and -30 mV, 

respectively) abolished the diffusion of the NPs [60]. This is in accordance with the results 

obtained from the intratumoral injection of neutral and charged NPs, which showed that 

charged colloids interacted with the tumor longer than their neutral counterparts [105, 106]. 

Ex vivo, the mobility of the particles can be restored by masking the surface charges with 

high amounts of salt (e.g., adding 1 M KCl) or, in the case of the positively-charged 

material, small amounts of polyanionic proteins (e.g., 0.5 mM Heparin), suggesting that this 

effect might be the result of ionic interactions between the NPs and the ECM [60].

2.5.3. Shape—The shape of NPs has been shown to influence blood exposure by 

modulating interactions with the MPS [12, 107-109]. Furthermore, single-wall carbon 

nanotubes with high aspect ratio (i.e., from 100:1 to 500:1) were shown to be cleared 

efficiently by the kidneys despite dimensions 10-20 times above the usual glomerular 

filtration threshold (i.e., 100-500 nm), suggesting that elongated shapes could provide 

benefits to the filtration process through porous structures [110]. These factors prompted 
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investigation into the ability of nanomaterials with different aspect ratios to accumulate in 

the tumors.

Recently, the tumor distribution kinetics of nanorods with a length of 44 nm (aspect ratio: 

10) were compared to those of 35-nm nanospheres showing the same hydrodynamic radius 

[111]. Despite similar blood circulation profiles, the nanorods were shown to extravasate to 

the interstitium 4 times faster and to diffuse deeper in the tumor, interacting with a 1.7-fold 

larger volume. Similarly, regardless of their increased splenic clearance and shorter blood 

circulation times, elongated viral nanofilaments derived from plant viruses showed increased 

tumor homing and accumulation compared to other spherical viral constructs [112]. All 

together, these findings suggest that elongated architecture might present beneficial EPR 

properties (possibly by influencing P, Lp and φi) .

2.6. The EPR effect in humans

Although the EPR effect has been observed and studied in many rodent models using 

subcutaneous and orthotopic xenografts, as well as genetically-engineered mouse models, its 

prevalence in human primary and metastatic tumors require further investigations [113, 

114]. This is particularly important since only a few first-generation anticancer 

nanomedicines materially improve overall survival in patient cohorts, conceivably because 

subpopulations with higher susceptibility to NPs might be masked by non-responsive 

patients [27]. Provided that such subpopulations exist, careful patient selection based on the 

degree of EPR could potentially further enhance the effectiveness of nanomedicines in 

clinical practice [27].

Many reasons can account for the paucity of data for the EPR effect in human, the most 

important being that obtaining meaningful biodistribution data in human is challenging. In 

clinical studies, surrogates to the analytical methods employed in animals (i.e., tissue 

extraction and digestion) must be employed [115]. During the initial evaluation of 

PEGylated liposomes as drug carriers for DOX and other drugs, some studies assessed the 

distribution of liposomes and their payload in patients’ tumors [116-121]. These studies 

measured the drug concentration in malignant exudates [116], tumor biopsies [117, 118] or 

using radionuclide-based imaging of modified liposomes (99mTc or 111In) [119-121].

These studies usually report advantageous drug tumor deposition of the liposomes compared 

to the free DOX: the DOX levels achieved in the tumor 3 to 7 days after the administration 

are usually 4 -16-fold higher with the liposomes [116, 117]. This difference might be due to 

preferential accumulation of the liposomes in the tumor by EPR or to fact that liposomes 

maintain higher DOX concentrations in the blood, supplying the tumor for a longer time 

(free DOX t1/2: 10.4 h, liposomal DOX t1/2: 45.9 h).

In opposition to the animal studies where EPR of PEGylated liposomes can be evidenced by 

high tumor-to-blood ratios [122, 123], figure 4 shows that, in humans, the only cancers 

which show preferential tumor accumulation for liposomes (i.e., ratio > 1) are sarcomas 

(with the exception of 1 patient with bone metastases for which plasma and biopsy samples 

were not analyzed at the same laboratory) [118]. Evidently, the direct comparison of these 

studies is imperfect because the data is scarce, the methodologies employed vary and the 
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studies do not provide information on the antitumor response [64, 124]. Also, it is still 

unknown how the data obtained with liposomes translates to other systems; it is probable 

that factors like drug release from the NPs and cellular uptake also affect the drug 

concentrations measured in the tumor. Nevertheless, these observations support the idea that 

diverse cancer types might show distinct predisposition to the EPR effect.

It is also important to note that systemic chemotherapy is usually reserved for patients with 

metastatic cancers, while preclinical models usually focus on primary tumors. Since primary 

and metastatic lesions may exhibit different behavior [113, 114], it is still not clear if the 

deposition of NPs in metastases correlates to that of primary tumors [125]. To further 

complicate the picture, patients enrolled in early clinical phases are rarely naïve to 

therapeutic agents, and most have received multiple treatments that may have altered the 

complex tumor microenvironment.

Finally, another reason why the assessment of the EPR effect in humans is not simple is that 

the optimal parameters to ensure maximum distribution and retention in humans can be 

different to those required in animal models. Both clearance mechanisms and tumor biology 

differ between animals and man [126, 127]. Animal models, especially xenograft models, 

used to study NPs at the preclinical stage, seem to offer limited predictive value of the 

clinical outcome in humans [128]. Furthermore, while the screening of NPs with different 

physicochemical properties in mice is relatively easy, the parallel evaluation of NPs 

candidates in humans remains largely impractical. Phase 0 clinical trials allow the 

concomitant study of multiple drug candidates (including NPs) at sub-therapeutic doses in a 

small number of patients to achieve a proof of principle [129]. However, this approach is 

potentially complex and would require the manufacturing of clinical supplies and suitable 

preclinical toxicology studies for each NP candidate. Furthermore, assessment of tumor 

accumulation would also necessitate the development of robust endpoint assays, with 

adequate sensitivity regardless of the sub-therapeutic doses used and sufficient 

reproducibility considering the low number of patients. Hence, while possible, the parallel 

evaluation of multiple formulations in humans remains a considerable challenge.

In the context of personalized medicine, it therefore becomes very important to identify 

what are the characteristics that predispose cancers to the accumulation of available NPs. In 

animals, iodine-loaded liposomes as EPR imaging modalities were able to determine a 

priori which mice would benefit from the injection of therapeutic nanomaterials [130]. A 

similar strategy in humans may provide useful information by correlating EPR effect with 

biomarkers and response to therapeutic NP. A pilot clinical study was recently initiated to 

ascertain the safety of the concomitant administration of an imaging agent with irinotecan-

loaded liposomes (clinicaltrial.gov, NCT01770353). In this study, ferumoxytol, a clinically 

validated iron-oxide NP approved for the treatment of iron-deficiency, is being administered 

prior to the administration of MM-398, a liposomal irinotecan. Subsequently, intratumoral 

concentration of irinotecan and SN-38 (the active metabolite of irinotecan) will be 

measured. Given that ferumoxytol is efficiently phagocytosed and has been used to image 

tumor-associated macrophages (TAM) in preclinical models of solid tumors [131], this 

study might reveal insightful information about the possible predictive value of iron-oxide 

NP accumulation on the efficacy of MM-398. Similar iron-oxide NPs have been efficiently 
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used in humans for the early detection of lymphatic metastases [132] and to measure 

increased vascular permeability in the context of inflammation [133].

2.7. Future perspective on passive targeting

The last 30 years have shown that EPR plays an important role in the delivery of 

macromolecules and nanomaterials to tumors. Nevertheless, a full understanding of the 

degree of interpatient variability and the importance of tumor heterogeneity in the EPR 

effect in humans has yet to be established [27]. As we unravel which parameters are the 

most important to improve the distribution of chemotherapeutics to tumor cells, the 

individual patients and the cancer types benefiting the most from carrier-mediated drug 

delivery might be identified.

Furthermore, it is now appreciated that the physicochemical properties of the nanomaterial 

are as important as the tumor biology. Meaningful exploitation of the EPR effect in humans 

will require precise understanding and control of the physicochemical properties of 

nanomaterials [134] and, possibly artificial fine tuning of the tumor microenvironment [28]. 

In the era of modern cancer biology, assessing the tumor microenvironment in individual 

patients and predicting their susceptibility to the EPR effect may eventually become the 

mainstay of therapy when choosing between therapeutic regimens. Although it is hard to 

currently predict which markers better correlate with NPs efficacy in humans, relationships 

will most likely delineate as tumor genotyping and bioassays continue to progress. Ideally, a 

broad biomarker correlating the susceptibility of tumors to nanomedicines in general (i. e., 

levels of tumor-associated macrophages; levels of ECM proteins/GAG; tumor infiltration of 

specific proteins/cells; endothelial expression of surface biomarkers) would certainly 

facilitate the screening of patients to optimise therapy.

In parallel, the EPR phenomenon affects the distribution of the drug-carrier to the tumor 

without necessarily increasing the ability of the drug to reach its pharmacological target. The 

optimisation of NPs’ efficacy therefore also involves optimal drug release rates whether 

through controlled diffusional release [135], covalent conjugation of the drug to a polymer 

backbone [136, 137] or environment-triggered release [138, 139]. Without specific affinity 

of the nanomaterial for the cancer cells, the chemotherapeutic payloads will have to reach 

their pharmacological targets by their own means or risk diffusing back into the vasculature 

[77]. In some instances, drugs exhibit sufficient affinity for their pharmacological target to 

remain trapped in the tumor for prolonged periods of time. For example, the high affinity of 

docetaxel for the microtubules translates into very low efflux from the tumor; consequently, 

the elimination half-life of the drug from tumors is approximately 15-20 times higher than 

its elimination from the blood and normal tissue [140]. The behavior of drugs and their 

affinity for the intratumoral environment needs to be taken into account individually when 

designing passively-targeted NPs and the optimal drug release profiles should be optimised 

on a case-by-case basis. In this regard, tools that can assess the interactions between drugs 

and their substrates in tumors will be of particular interest [141].

Similarly, most macromolecular drugs (including nucleic acids and some proteins) cannot 

readily permeate through the cell membrane and reach their pharmacological target. For 

these classes of API the modification of the NPs with targeting ligands may be more 
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appropriate. Active targeting increases the affinity of the NPs for tumor cells, increasing its 

tumor residence times and allowing the drug-loaded NPs to efficiently enter the cells 

through receptor mediated endocytosis. The principles and future development of active 

targeting using affinity ligands on the surface of NPs will be presented in the next section.

3. Active targeting: Toward magic bullet?

Active targeting, also called ligand-mediated targeting, involves utilizing affinity ligands on 

the surface of NPs for specific retention and uptake by the disease cells targeted. To that 

end, ligands are selected to target surface molecules or receptors overexpressed in diseased 

organs, tissues, cells or subcellular domains [6, 33, 142-144]. Actively-targeted material 

need to be in the proximity of their target to benefit from this increased affinity. Therefore, 

the approach is aimed towards increasing interactions between NPs and cell and enhancing 

internalization of drugs without altering the overall biodistribution [6, 145, 146].

The design of actively-targeted NP drug carriers is complex because the NP architecture, the 

ligand conjugation chemistry and the types of ligand available all contribute to the efficacy 

of the system. Other factors like the administration route or the non-specific binding of 

proteins during the NP’s journey through the bloodstream have been shown to affect the 

targeting ability of NPs. [12, 147]. Physicochemical properties like the ligand density [148], 

the size of the NPs [149] or the choice of the targeting ligand [150] might also possibly 

affect the efficacy of the active targeting strategy in vitro and, most importantly in vivo. The 

following section will highlight the strategies, benefits and drawbacks of combining 

targeting ligands with NP drug delivery systems in the targeting of solid tumors.

3.1. The fundamentals of active targeting

The main mechanism behind active targeting is the recognition of the ligand by its target 

substrate. Representative ligands include antibodies, proteins, peptides, nucleic acids, 

sugars, and small molecules such as vitamins [151]. Target molecules can be proteins, 

sugars or lipids present in diseased organs or on the surface of cells [152, 153]. The 

interactions of ligand-functionalized NP systems with their target antigen are enhanced by 

the multivalent nature of the NP architecture: multiple copies of the ligand increase the 

avidity of the NP for its target [154]. The targeting specificity and the delivering capacity 

are two important aspects to evaluate the efficiency of an active targeting system. The 

specificity is determined by the biodistribution of the ligand-functionalized NP and by how 

the conjugated ligand and the NP system interact with off-target molecules and cells; it is 

defined by the ligand and NP properties. The delivering capacity is directly related to the NP 

material and structure [33, 155]. Currently, actively targeted NPs are envisioned as a 

promising complementary strategy to EPR to further augment the efficiency of cancer 

nanomedicines.

Actively-targeted NPs require being in the vicinity of their target antigen to recognize and 

interact with it. That intrinsic characteristic is considered a major challenge to the 

development of actively-targeted NPs [156]. Here again, the systemic clearance of the NPs 

affects the amounts available in the bloodstream supplying the tumor. Because tumor blood 

flow is small compared to those observed in the organs of the MPS [12], the increase in the 
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NPs’ affinity for the targeted tumor-antigens cannot always compensate for the natural 

clearance processes. Actively-targeted NPs need to be designed to have extended blood 

circulation times. Similarly, because molecular targets are usually situated in the 

extravascular space of the tumor, NPs rely on the EPR effect to reach their targets [113, 

114]. Together, these factors explain why active targeting strategies cannot radically change 

the biodistribution profiles of nanomaterials [157-159] and why the blood circulation times 

of ligand-decorated NPs need to be optimized to achieve optimal targeting [4, 33, 160].

Active targeting has been efficiently exploited to increase the NP internalization by the 

target cells and improve the efficacy of their payloads [4, 158, 159, 161]. Evidently, NP 

intracellular trafficking is complex [162] and receptor-mediated internalization can 

qualitatively affect the vesicular transport [163, 164]. Actively targeted NPs that increase 

therapeutic efficacy will circumvent these issues by being capable of sufficient endosomal 

escape or by encapsulating drugs that are impervious to the endosomal/lysosomal 

environment. Anti-HER2 targeting moieties on the surface of liposomes strongly increase 

the uptake of the NPs in HER2-expressing cancer cells [158]. In opposition, non-targeted 

liposomes or targeted liposomes injected to mice bearing non-HER2-expressing tumors 

were shown to accumulate in the perivascular and stromal space in higher proportions [158]. 

In those cases, the liposomes were highly captured by the macrophages and showed reduced 

interactions with the cancer cells. Similarly, the intracellular delivery of nucleic acids can 

also take advantage of active targeting. For example, Bartlett et al. showed that the targeting 

of the transferrin-receptor is essential to the silencing of a luciferase beacon in a 

neuroblastoma xenograft [159].

Recently in vitro works on targeting concomitantly multiple surface receptors with a single 

NP were conducted [165, 166]. The presence of both ligands (ligands targeted to folic acid 

combined to either EGFR antibodies [165] or glucose [166]) seemed to quantitatively 

improve cellular internalization. In vivo evaluation of non-sterically stabilized polystyrene 

nanoparticles functionalized with antibodies (against transferrin and intercellular adhesion 

molecule-1) seemed to show that multiplexed ligand could affect biodistribution [167]. 

However, the nanoparticles in this study being so remote from potential therapeutic NPs (in 

terms of size and hydrophobicity, for example), it remains difficult to predict if such 

approach will really prove beneficial to target cancer cells.

3.2. Ligand Conjugation/Attachment Strategies

Since NP avidity is directly related to the ligand density, the introduction of ligands on the 

surface of the NP is one of the key steps of designing actively-targeted systems. In most 

cases, covalent attachment of the ligand is the preferred strategy, but physical adsorption 

using affinity complexes can also be used effectively [168].

Organic and inorganic materials having different physicochemical properties, the type of 

particle will determine the difficulty of the ligand conjugation step [169]. For example, the 

surface functionalization of gold surfaces can be carried by directly reacting thiols with the 

surface [170], but other inorganic materials need the introduction of functional groups (e.g. 

NH2 and OH) to increase their reactivity [171-173]. Organic polymers require different 
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strategies where side chains or terminal reactive functions are reacted before or after NP 

synthesis.

In all cases, the stability of the ligand-NP bond will dictate how the particle retains the 

targeting moiety on its surface. In that regard, other design considerations must also be taken 

into account. For example, polymer matrices that erode homogenously in bulk [174, 175] 

might be preferable to surface-eroding polymers [176] for which the tethered ligand can 

shed as the polymer degrades. Similarly, ligands that are non-covalently inserted in a lipid 

bilayer might require bulkier hydrophobic anchors to remain stable in vivo [138, 177]. The 

following section will discuss the ligand conjugation/adsorption strategies in detail, with a 

specific emphasis on commonly utilized biodegradable polymers [178].

3.2.1. Pre-conjugation vs. post-formulation strategies—The conjugation of the 

ligand to the NP material is relatively straightforward when it is done before the assembly of 

the NP formulation. Pre-conjugation can be achieved with small molecules [150], peptides 

[179] and aptamers [142]. It is less adapted to native proteins with complex secondary 

structures as the conjugation step usually involves exposure to organic solvents. The pre-

conjugation enables a subsequent one-step formulation procedure that reduces the risks of 

side reactions, forms covalent bonds between the ligands and NPs, and allows greater 

control over NP properties and drug release. Furthermore, this strategy allows the 

introduction of multiple types of ligands to NPs and facilitates the purification steps after NP 

formulation.

The alternative to this pre-formulation strategy is post-formulation conjugation where the 

ligands are reacted with formulated NPs directly to form covalent bonds. This strategy 

works for all types of ligands: antibody, protein, peptide, aptamer and small molecules, and 

might be preferable when the stability of the ligand in organic solvents is an issue, when the 

size of the ligand is too large or when the presence of the ligand changes the 

physicochemical properties of the copolymers. For example, some proteins lose their 

functions in organic solvents and they are too large to participate in the NP polymer self-

assembly process [180]. In other instances, hydrophobic molecules tethered at the end of 

flexible copolymer chains modify their solubility and the ligands end up embedded in the 

hydrophobic core during the self-assembly procedure [150]. In those cases, it can usually be 

beneficial to conjugate these ligands after NP formation, directly onto the NP surface.

3.2.2. Synthetic strategies for conjugation—For the chemical conjugation strategies, 

bifunctional linkers are used to couple the ligand with polymers or NPs via a series of 

chemical coupling reactions. The formation of a peptidic bond between the ligand and the 

NP surface is usually done by activating carboxylic groups (using, for example, N-

hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC)) and reacting it with nucleophilic groups (i.e., amine) on the ligand. 

Although this approach is straightforward and can be carried in both aqueous and organic 

environments, the selectivity of the conjugation depends on the number of reactive amine 

functions on the ligand and the final orientation of the ligand can be compromised if more 

than one reactive group exists on the ligand.
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Similarly, another coupling strategy couples a maleimide group on NP surfaces or polymers 

with a thiol group of ligand (i.e., cysteines in proteins or peptides) to form a stable thioether 

bond. In proteins or peptides, disulfide bonds can be reduced to free thiols to allow the 

reaction, provided that the reduction does not alter the three-dimensional structure and 

affinity of the ligand for its substrate. Similarly, free thiols can be introduced by first 

reacting 2-iminothiolane to primary amines, but this approach introduces a positive charge 

on the NP-ligand construct [181]. Other chemical efforts have also been reported for 

introducing thiols to molecules [182].

Recently, a bioconjugation method called “click chemistry” was developed which is a single 

step reaction that involves heteroatom bonds with or without catalysts [183]. For example, 

alkyne groups on peptides or small molecules will readily form a bond with the azide group 

on the NP surface or polymer backbone without side reactions. This method is very selective 

and provides very good yields. Copper-catalyzed click-chemistry is limited by the strenuous 

purification required to remove the toxic catalyst and by the fact that copper can have 

deleterious effects on the ligand themselves. For these reason, non copper-catalyzed click-

chemistry has been developed using cycloadditions such as cyclooctyne, 

tri(benzyltriazolylmethyl)amine, and sulfonated bathophenathroline [183]. Finally, another 

limitation is that alkyne and cyclooctine groups are artificial chemical moieties and must be 

introduced synthetically to the ligand structure. When the ligand is a peptide, this can be 

easily done by introducing a reactive aminoacid at the C- or N-terminus. This strategy is less 

viable for small molecules where the new, relatively bulky functional groups can 

compromise affinity or for larger, more complex proteins produced through recombinant or 

bioengineering strategies.

3.2.3. Non-covalent approaches—Streptavidin-biotin interaction may be helpful to 

overcome limitations of synthetic bioconjugation [168]. Nanoparticles coated with avidins 

have complementary pairings with biotinylated ligands. Biotin is commonly used due to its 

small molecule size allowing it to not inhibit or change the functions of the ligands [184]. 

This strategy is more versatile in comparison to bioconjugation method and has been applied 

to antibodies, peptides and aptamers [185]. It is particularly useful to establish proof of 

concepts or to screen different ligands without interference from the conjugation chemistry 

or to study fundamental ligand decoration parameters [185, 186]. The weakness of this 

method is that it may cause immunogenicity due to the presence of the exogenous protein on 

the surface and it is not usually suitable for human use [187]. Also, because avidin can bind 

biotin in a multivalent fashion, cross-linking between the NP constituents can also occur.

Alternatives to the avidin-biotin strategy use other high affinity complexes like 

Vancomycin/D-Ala-D-Ala [188] or adamantane-cyclodextrin coupling [189]. For example, 

the later strategy allows the conjugation of ligands to hydrophilic polymers (like PEG) using 

very mild conditions and the subsequent tethering of the PEGylated-ligand on the surface of 

the nanoparticle via non-covalent interactions [190].
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3.3. Influence of the architecture of actively-targeted NPs

The conjugation of ligands on the surface of NPs changes their properties [33, 142]. While 

they lose the rotational and translational freedom bestowed to free molecules, the new 

targeted entity achieves improved avidity because of the increased valency [149, 154, 191]. 

Similarly, the properties of the NP like size, geometry, surface properties (charge and 

hydrophobicity), and composition (NP material) also affect the behavior of the targeted 

constructs (Figure 5). In some cases, NPs have shown benefits that go beyond the simple 

delivery of drug. For example, strands of nucleic acids immobilized on the surface of 

nanomaterial are more resistant to nuclease degradation [192, 193]. To fully understand the 

properties of actively-targeted NPs, it is critical to determine how the physicochemical 

properties of the NPs affect the interactions with the targets.

3.3.1. The ligand density—Because increased valency allows cooperative effects, the 

density of the targeting molecules on the surface of NPs impacts their affinity for the 

substrate. Thermodynamically, the binding of a ligand to its substrate facilitates the 

subsequent binding of its neighbors [191, 194]. Biologically, the multiple interactions of the 

NP with the cell membrane force the clustering and local concentration of receptors. This 

triggers the wrapping of the membrane and leads to internalization [195]. Together, these 

incidences impede the detachment of the NP from the cell surface and result in increased 

avidity.

This allows the use of multiple relatively low affinity ligands to efficiently bind targets with 

high avidity [196]. In vitro, this increasing ligand density usually results into improved 

cellular uptake [148, 197]. However, this increase in affinity is not always linear. In some 

cases, the cooperative effect of the ligand can saturate and further increases in ligand density 

can have deleterious effects on cell binding [197, 198]. This effect can be explained by 

improper orientation of the ligand, steric hindrance of neighboring molecules or competitive 

behaviors for the binding of the receptor. Similar negatively cooperative systems have been 

observed with folic acid-targeted micelles where the ligands are arranged in patchy clusters 

[199]. In these NPs, the display architecture of the targeting ligands influenced the extent of 

receptor-mediated tumor uptake in cancer cells both in vitro and in vivo. In other cases, the 

use of high densities of hydrophobic ligands can increase the macrophage uptake of the NPs 

without providing significant advantages in terms of receptor-mediated internalization [150].

Similar effects are seen in vivo where higher densities do not however always result in 

improved efficacy. The alteration of the NP surface to incorporate the ligands can modify 

the blood circulation and biodistribution profiles of the material. Using aptamers to target 

polymeric NPs to prostate cancer cells, Gu et al showed that increasing the ligand density 

above 5 % caused increased clearance of the NPs by the liver and the spleen and impeded 

the distribution to the tumor [148]. In fact, the increased clearance of targeted NPs by the 

MPS is critical and has been responsible for the demise of most actively targeted systems 

[200].

Finally, it has been observed that tumor selective antibodies could suffer from a binding-site 

barrier preventing their in-depth diffusion in the tumor [201-203]. This phenomenon is 

observed when high affinity molecules rapidly bind perivascular cells upon their 
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extravasation to the tumor (↑ Ri in equation 2) [204-207]. The diffusion of drugs with high 

affinity for tumor cells is limited by the binding-site barrier [208]. This effect has been 

recently detected with 25-nm NPs targeted to the epidermal growth factor which showed 

limited tumor penetration compared to their non-targeted counterpart [209]. Interestingly in 

that case, the binding-site barrier effect was not observed with larger NPs (i.e., 60-nm 

particles), presumably because of differences in the rates of tumor penetration and/or cell 

internalization. Therefore, it seems probable that adequately tuning the ligand density on the 

NP surface could mitigate the binding-site barrier effect and translate into adequate retention 

time and maximal cellular uptake throughout the tumor.

3.3.2. The NP size and shape—Size and shape of the nanomaterial must be taken into 

consideration early in the design of targeted NPs. For spherical particles, smaller sizes 

represent higher curvatures which can be problematic for post-synthesis ligand 

functionalization. For example, when focusing on the adsorption of relatively rigid protein A 

on the surface of gold NPs, very small NPs (5 nm) can result in poor or uneven ligand 

surface densities [210]. In this study, this effect was not observed with larger NPs (i. e., 15 

nm).

In addition, the tethering of high molecular weight ligands (e.g., antibodies, proteins, 

aptamers) on the surface of NPs increase their hydrodynamic radius beyond that of the 

unfunctionalized material [149]. This increase in size must always be considered in light of 

the possible size restrictions involved in tumor accumulation (see section 2.5.1).

Besides the abovementioned effect, size can also affect cellular uptake. Using gold and 

silver NPs targeted with anti-HER2 antibodies, Jiang and colleagues showed in vitro that 

optimum cellular uptake in breast adenocarcinoma cells was obtained with a very narrow 

size range, i.e., 25-50 nm (RH with antibodies: 45 to 80 nm) [149]. Although, the avidity of 

the particle increased with size between 2 to 70 nm (RH with antibodies: 13 to 100 nm), the 

authors explain that maximum uptake is a compromise between high avidity and optimal 

cell membrane wrapping around the NP. As these experiments were conducted in culture, 

these size considerations only took into account interactions with the surface of the cells and 

not convective or diffusive aspects of intratumoral transport. Additionally, it is not clear how 

these conclusions can be expanded to other systems, as NP-cell interactions highly-depend 

on the physicochemical properties of the material [211, 212].

In vivo, Lee and colleagues reported that the size of actively targeted NPs (25 vs. 60 nm) 

could affect the intracellular deposition of the nanomaterial [209]. In that case, although the 

intratumoral distribution of smaller NPs was decreased due to shorter blood circulation 

times, the cytoplasmic and nuclear distribution of the 25-nm NPs was superior to that of the 

60-nm colloids.

Besides the effect on circulation properties and tumor accumulation aforementioned [82, 

109], the shape of NP seems to influences the cell uptake kinetics and internalization 

pathways by modulating the interactions between the nanomaterial and the cell surface [211, 

213]. The internalization of non-spherical targeted NPs has recently been studied [214, 215]. 

Barua et al. showed that, when compared to 200-nm diameter spheres, HER2-targeted 370 × 
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125 nm nanorods improved specific uptake by 1.6 fold while reducing the non-specific 

uptake [215].

3.3.3. Surface and ligand charge—From a synthetic perspective, the charge of the 

unfunctionalized NP and that of the ligand can affect the conjugation yield and the spatial 

display of the ligand on the surface [216]. Repulsive or attractive forces between the surface 

of the NPs and the ligand can interfere with the conjugation [217, 218] or affect the final 

ligand structure and conformation. A chemical spacer with reasonable length, such as PEG, 

can be helpful to reduce the effect, but might simultaneously complicate synthesis and 

increase the final particle size [197].

As discussed in section 2.5.2., the final surface charge will affect the efficacy of the targeted 

NPs. Due to the interaction between cationic NPs and negatively charged cell membranes, 

positively-charged NP show increased cellular binding and uptake, in a non-specific manner 

[219]. As most ligands are charged molecules, the NP surface charge is determined by the 

combinations of ligand densities, materials, and NP formulation strategies. Although recent 

work was recently carried to address how charge density affects interactions of actively 

targeted NPs with cells [220] and how optimization of the ligand densities and NP charge 

can affect cellular uptake [221], it remains unclear what parameters offer the best tumor 

targeting in vivo.

3.3.4. Surface hydrophobicity—Besides surface charge, hydrophobicity can also affect 

the architecture of the ligand display [148]. This can have serious effects since most 

polymeric NPs have hydrophobic cores (e.g., polyesters, polyamides) [222]. Valencia et al. 

showed that during the self-assembly of polymeric hydrophobic particles, folic acid, a model 

hydrophobic ligand, could remain trapped in the particle core without being properly 

displayed on the surface [150]. This resulted in a non-linear rise of NP affinity with 

increased feed-ratios of ligands in the formulation. Since this effect was not observed for a 

more hydrophilic ligand (the RGD peptide), that study highlighted the necessity of thorough 

physicochemical characterization of NPs after synthesis.

The final surface hydrophobicity of the NPs can also affect non-specific interactions with 

cells. On the one hand, actively targeted NPs without steric stabilization seem to lose their 

substrate-binding capacity when proteins adsorb on their surface [223]. Using silica NPs 

functionalized with transferrin, Salvati and colleagues showed that NPs lost their selectivity 

for cells expressing the transferrin-receptor upon plasma incubation. Although raising an 

important issue, these in vitro works are preliminary: these particles were not optimized for 

prolonged blood circulation times, and probably would have faced many other issues in vivo.

On the other hand, while PEG surface-functionalization can delay adsorption of opsonins 

and plasma proteins, the use of long or dense PEG chains can also prevent ligands from 

reaching their targets. This phenomenon has been demonstrated in vitro [197, 224] and in 

vivo where the efficacy is dependent on both circulation times and ligand-substrate 

interactions [225]. Since minimal PEG coverage seems required to maximize circulation 

times and tumor distribution, NPs that lose their PEG protection in the vicinity of cancer 

cells might provide an opportunity worth investigating [139].
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3.4. Targeting Ligands

Choosing the right type of ligand is critical to the efficiency of actively-targeted NPs. The 

first targeted systems centered mainly on the use of antibodies as targeting moieties because 

of their high specificity and wide availability [200]. Since, then other proteins, peptides, 

nucleic acid-based ligands and small molecules have all been described (Table 2). In the 

following section, the current understanding of the benefits and limitations of each system 

will be highlighted. Various issues of ligands that may affect ligand directed NP active 

targeting will also be discussed, including the ligand MW/size, ligand surface property, and 

ligand density on NP surfaces.

3.4.1. Antibodies and their fragments—An antibody (Ab, also called immunoglobulin 

(Ig)) is a large Y-shaped glycoprotein that can recognize the specific parts of a foreign target 

(an antigen). The dimeric functional region (hypervariable region (HVR), also called F(ab’)2 

fragment) at the tip of the antibody can have very large numbers of slightly different 

structures (binding sites), offering the possibility to recognize a variety of antigens. 

Oppositely, the Fc fragment, at the base of the Y-shape, is much less variable and is 

responsible for the recognition of the protein by the MPS and the immune system.

Interest in using Ab as targeting moieties stems from the important role the play in modern 

therapeutics. Since the 1980s, antibodies have been the most widely investigated targeting 

ligands in the clinic and more than 30 types of monoclonal antibodies (mAbs) have been 

approved for clinical use, including rituximab, trastuzumab, cetuximab and bevacizumab 

[30-33]. The conjugation of Abs on the NP surfaces aspires to combine the Ab’s specificity 

and affinity with the unique properties of the NPs themselves. The first reported examples of 

targeted NPs are liposomes decorated with mAbs [30-32]. Although these systems showed 

improved cellular uptake in vitro, antibody-targeted NP delivery systems still face many 

limitations and challenges, which greatly limit their pertinence in vivo.

First, antibodies are large proteins with a molecular weight of 150 kDa and a hydrodynamic 

radius of 15-20 nm. This large size impedes the effective surface conjugation and causes 

notable increases in the diameter of the NPs [159, 244]. To circumvent this problem, smaller 

fragments of Abs were proposed as targeting moieties, but the monomers and dimers of the 

Fab recognition patterns still represent bulky molecules with sizes around 50 and 100 kDa, 

respectively [6, 200].

Second, the physiological role of antibodies is to clear antigens from the circulation by 

facilitating their recognition by immune cells and the MPS. The conjugation of Abs on a 

nanosized carrier therefore results in very effective clearance from the blood [245, 246]. 

Removing the Fc fragment (i.e., using only Fab fragments) resulted in slight improvements 

of blood exposure, but still compromised circulation times compared to undecorated NPs 

[247]. Others have proposed different conjugation strategies using the Abs carbohydrates to 

proper position them on the NPs and minimize the display of the Fc segment on the surface 

of the particle [248], but the results of this novel preparation procedure had mitigated effects 

on the circulation times [249].
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A third limitation of using Ab-decorated NPs is the relative sensitivity of these proteins to 

environmental challenges (temperature, salt concentration and enzyme) and their low 

resistance to organic solvents. This creates technical challenges for the reproducible scale-up 

of NP preparation, affects the cost/efficiency ratio of the preparation, and restricts their 

stability and shelve-lives.

Despite, these challenges, a few Ab-targeted NPs have made it to the clinical stages; 

MCC-465 and SGT-53 are two examples of antibody fragment-targeted NPs (Table 3). 

MCC-465 showed positive results in preclinical studies with adequate biodistribution and 

highly efficient delivery of doxorubicin to stomach cancer cells [250]. Another example of 

an NP with a single chain antibody fragment is SGT-53, which targets transferrin-receptors 

(Tf-R) on tumor cell surfaces by targeted delivery of the p53 suppressor protein [251]. With 

evident tumor growth inhibition in multiple cancers including head and neck, prostate, and 

breast, this platform has great potential for future clinical trials [252]. Finally, a group of 

scientists at the University Hospital of Basel recently published their results of the clinical 

investigation of PEGylated DOX liposomes (Doxil®/Caelyx®) incorporating a F(ab’) 

fragment of cetuximab (Erbitux®, anti-EGFR mAb) in 29 patients with solid tumors [253]. 

Their liposomes, manufactured according to good manufacturing practices at the hospital’s 

pharmacy, showed promising activity including 1 complete response in a patient with head 

and neck cancer.

3.4.2. Other proteins—The three-dimensional shape of proteins provides affinity for 

specific substrates, and therefore non-antibody proteins can be used as targeting moieties. 

Numerous naturally-occurring proteins have endogenous targets that can be exploited for 

therapeutic applications. For example, transferrin (Tf) is a 80-kDa glycoprotein which is one 

of the most abundantly studied targeting ligands [189, 254, 255]. Physiologically, Tf is 

responsible for the transport and regulation of iron concentration in biological environments. 

On the surface of cells, it binds the internalizing transferrin-receptor (Tf-R) with high 

affinity. Because Tf-R is upregulated on the surface of cancer cells, NPs decorated with Tf 

have attracted much attention for the delivery of anticancer therapeutics [256]. The presence 

of Tf-ligands was shown to be essential for the intracellular delivery and gene silencing 

efficacy of siRNA nanocomplexes [159, 189]. The strategy of using Tf to target Tf-R is 

currently under clinical investigation for various NPs [143].

Synthetic proteins can also be exploited as targeting ligands. For example, affibodies [230] 

or ankyrin repeat proteins [229] were developed to decorate NPs. This approach possesses 

the advantage of using high affinity, artificial ligands which do not have to compete against 

highly abundant, naturally-occurring proteins. Peptide aptamers are also synthetic fusion 

proteins where short variable peptide domains are confined by a constant protein scaffold 

[257]. This unique double-constrained structure over a loop of 10-12 amino acids offers 

binding affinities similar to those of antibodies. The protein scaffold may be any soluble 

compact protein, such as bacterial Thioredoxin-A [258]. Peptide aptamer selection can be 

made from combinatorial peptide libraries constructed by phage display and other surface 

display technologies such as mRNA, ribosome, bacterial and yeast displays [259]
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Protein ligands share some limitations with antibodies: their bulky nature results in 

significant increases in size and their patterning on the surface of NPs can trigger immune 

responses. In fact, the conjugation of proteins on polymeric substrates can affect their 

metabolism and elimination pathways [260, 261]. Also, because the amino acid sequences 

are generally more complex, the conjugation procedures are less straightforward. The many 

reactive functional groups in their structure (i.e., amine groups or cysteines) complicate their 

optimal arrangement on the NP surface and can lead to cross-linking between NPs. Also, 

because their tertiary structure is usually essential to their affinity for their antigen, proper 

precautions must be used to ascertain that the conjugation processes does not abolish their 

ligand properties.

3.4.3. Peptides—Peptides are linear or cyclic sequences of amino acids. They are 

typically differentiated from their larger counterparts (i.e., proteins) by having sequences 

limited to less than about 50 residues. These shorter chains lead to smaller molecular sizes 

and simpler three-dimensional structures which result in improved stability and resistance to 

the environment as well as easier synthesis and conjugation. Their smaller sizes also allow 

the use of pre-formulation conjugation techniques for the preparation of NP systems. These 

advantages, combined with improved screening techniques to isolate ligand-substrate 

combinations have contributed to the increased role of peptides as targeting moieties in the 

past decade.

The most widely investigated peptide ligand is RGD (arginine-glycine-aspartic acid) peptide 

family, which can strongly and specifically bind to αvβ3 integrin receptors [33, 142]. Many 

peptide containing RGD sequences have been developed to target both cancer and 

angiogenic endothelial cells expressing the αvβ3 receptors. One example of RGD is the 

cyclic peptide cyclo(-RGDfV-) (Cilengitide) used as an anti-angiogenic agent [262, 263]. 

Despite the widespread applications, the nonspecific targeting of RGD restricts its drug 

delivery applications because αvβ3 integrin is also widely expressed on normal or inflamed 

tissues. Some of the intrinsic properties of RGD may also affect its targeting efficiency, such 

as molecular geometry. Colombo et al. investigated the structure-activity relationship of 

linear and cyclic RGD peptides. In their hands, the cyclic ligand showed more than 10-fold 

higher anti-tumor efficiency than its linear counterpart [264]. In parallel, other new 

generations of RGD analogue ligands with improved targeting potential are underway [33].

For reasons explained earlier, vasculature targeting is an interesting complement to the EPR 

effect. Endothelial cell-penetrating peptides can facilitate the transport of NPs across the cell 

membrane and into specific cell organelles. Some of these penetrating peptides contain a 

specific C-terminal C-end Rule (CendR) sequence [233], (R/K)XX(R/K), which is 

responsible for the penetration activity. These penetrating peptides (e.g. LyP-1 [265], iRGD 

[233], and F3 [266] peptide sequences) can interact with neurophilin-1 to facilitate the cell 

and tissue penetration of NPs [267]. Roth et al. showed that the conjugation of the cyclic 

peptide LyP-1 (Sequence: CGNKRTRGC) on NPs can penetrate through blood vessels 

[267]. Sugahara et al. also reported that iRGD peptide (peptide sequence: CRGDKGPDC) 

could enhance the efficiency of drug delivery [233]. Luo et al. reported that the LyP-1-

functionalized NPs target the lymphatic tumor cells with high binding affinity and increase 

cellular uptake of the NP by 8-folds compared to non-targeted NPs [268]. In addition, Lyp-1 
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is found to be internalized by its targeted tumor cells indicating its cell-penetrating abilities 

[233, 269]. Other cell penetrating peptides for targeted NPs include Cys-Arg-Glu-Lys-Ala 

(CREKA) [270], Asn-Gly-Arg (NGR) [271], and Ile-Thr-Asp-Gly-Glu-Ala-Thr-Asp-Ser-

Gly (LABL) [272].

Finally, peptides can elicit agonist or antagonist pharmacologic activity on their substrate. 

This activity can alter the fate of NPs decorated with such peptides [273]. In this study, the 

targeting of quantum dots to G protein-coupled receptors using peptide agonists led to the 

internalization of the nanomaterial. On the other hand, the use of a small molecule 

antagonist as a ligand commanded the specific binding of the NPs without cellular uptake. 

Presumably, this concept could be further exploited to more closely control the fate of 

targeted NPs.

3.4.4. Nucleic acid based ligands—Nucleic acid-based aptamers are another class of 

ligands with completely different structures from peptide-based aptamers. Nucleic acid 

aptamers (Apts) are single-stranded (usually short) oligonucleotides, such as DNA, RNA or 

modified nucleic acids (xeno-nucleic acids or XNA) [259, 274]. Thanks to their unique 

conformational structures that originate from intramolecular Watson-Crick interactions, 

Apts show high affinity and specificity. Candidates are screened from large oligonucleotide 

libraries with random sequences by taking advantage of the nucleic acid sequences. Binders 

are selected and specifically amplified at the detriment of non-binders using the polymerase 

chain reaction. Apts with strong binding characteristics for various targets, including small 

molecules [275] and proteins [276] have been isolated. Although the relative ease of 

isolating high affinity ligands against a variety of substrates remains the largest advantage of 

Apts, their reproducible synthesis and the simplicity of their chemical derivation are also 

among the other advantages of using Apts as ligands for targeted NPs [259].

Although Apts can exist naturally in riboswitches [277-279], most of the Apts used for the 

design and synthesis of targeted NPs are artificially-engineered. However, although the 

diversity of possible sequences offers virtually unlimited binding options, the key element 

remains in the isolation of successful binders from non-binding candidates. Since the 1990s, 

the isolation of ligands has gone from simple chromatographic separation [280-282], to cell-

based screening methods [283, 284] and in vivo selection [285]. These processes evolved 

with the objective of finding candidates for increasingly complex substrates and specific 

applications. When screening for ligands intended to design actively-targeted NPs, the 

internalization of the target remains an important benchmark. Recently, a method was 

developed to exclude non-internalizing ligands from the enrichment procedure [284].

In vitro feasibility of Apt-decorated NPs to target the prostate-specific membrane antigen 

(PSMA) cancer marker was reported in 2004 [286]. Since then, the proof of concept was 

achieved in vivo for NPs incorporating multiple types of drug [160, 161, 241, 287, 288]. 

Overall, the targeting of PSMA showed improved efficacy in decreasing tumor growth and 

increasing survival. For example, Bagalkot et al. reported that the physical conjugate of Apt-

Dox could result in almost 2-folds increase in survival rates in comparison to non-targeted 

NPs [287]. Similarly, intratumor injections of PSMA-targeted NPs were shown to delay 

tumor growth for more than 3.5 months [161].
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Despite their added promises at the preclinical stage, the clinical development of Apt-

decorated NPs has been impeded by certain limitations. First, because nucleic acids in 

biological environments are easily degraded by nucleases, the stability of the ligand on the 

surface of the NPs is a concern. Although many strategies have been employed to prevent 

the degradation and excretion of free therapeutic Apts in the bloodstream [289], not much 

work has been conducted to specifically address degradation of Apts on the surface of NPs. 

By analogy, the conjugation of the Apt on the surface of NPs should provide steric 

protection similar to that conferred by PEG, sugars and cholesterol modifications [289]. 

Similarly, the use of nucleic acids modified with fluoro, amino, or methoxy groups [259] or 

artificially-locked nucleic acids (LNA) [289] should also delay degradation by nucleases.

Another concern for the surface functionalization of NPs with Apts is the effect that these 

ligands have on the circulation kinetics of the nanomaterial. Given the phosphodiester 

backbone of the nucleic acid chain, Apts have negative charges. The presence of charges on 

the surface of nanomaterial can affect their circulation times [12]. Gu et al. showed that Apt 

densities above 5 % resulted in decreased distribution to the tumor and increased capture by 

the organs of the MPS 24 h after intravenous injection [148].

Besides these fundamental considerations, other technical aspects of using Apts to decorate 

NPs are also important. Like other macromolecular ligands, Apts can increase the 

hydrodynamic radius of NPs. In fact, despite the fact their size is relatively small (around 

10-20 kDa), the stiff chain structure of the nucleic acid chains makes their size (length) 

similar to that of proteins (i.e., from 3 to 10 nm) [259, 290] Furthermore, although the 

production costs have fallen recently due to technological developments and the expiration 

of patents, the selection and large-scale production of Apts on solid phase supports remain 

expensive procedures[192]. The production costs might be partially mitigated by secondary 

selection techniques which delete or shorten the non-critical regions while keeping the 

functional binding domains [259].

3.4.5. Small molecules—Small molecular weight compounds have properties which 

strongly contrast from the targeting ligands presented above: small sizes, low production 

costs, and improved stability. These advantages translate into simple pre-formulation 

conjugation strategies and simple, tunable NP synthesis. Hrkach et al. recently reported the 

preclinical developments leading to the clinical evaluation of PSMA-targeted NPs in an 

article that highlights many of the benefits of using small molecules as targeting agents [4].

In fact, the main challenge with small molecules is the identification of new affinity ligands 

for the substrates of interest. In general, the screening of small molecules is difficult to 

multiplex because selection and signal intensifying mechanisms like bacteriophage-

mediated replication or PCR amplification do not exist. Notwithstanding a few examples of 

DNA-encoded libraries that facilitate the screening of binders using nucleic acid footprints 

[291, 292], the identification of small molecular weight ligands involve serendipity or 

tedious high throughput screening procedures. For that reason, clinically-relevant ligand/

substrate pairs are scarce and most of the examples of actively-targeted NPs rely on using 

widely known ligands.
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Among the synthetic and natural small molecule ligands reported, a common example is 

folic acid (i.e., folates or vitamin B9). Folates have been widely utilized because of their 

very high affinity (KD = ~10-9 M) and specificity for folate receptors (FR) which are 

frequently over-expressed on the surface of a variety of human tumors, including ovarian, 

brain, breast, colon, renal and lung cancers [293, 294]. For example, folate-targeted NPs co-

encapsulating paclitaxel and yittrium-90 showed improved survival in a xenograft model of 

ovarian cancer [242] and folate-targeted fluorescent dyes were investigated in humans to 

improve surgical debulking of tumors using intraoperative tumor-specific visualization 

[295]. On the downside, FR expression seems to be patient-dependent and must be assessed 

individually for each type of cancer [33]. Recently, folate-targeted imaging modalities were 

proposed to identify FR-positive patients [296]. In a personalized medicine setting, such an 

agent would help screen a priori the patients that could benefit from folate-targeted 

therapeutic NPs. More importantly, as opposed to methods based on the ex vivo 

quantification of FR in lysed patient biopsies [297], in vivo imaging modalities might enable 

the quantification of FR on the surface of cancer cells, actually available for interactions 

with folate-decorated NPs. This is particularly valuable as it has been observed that as much 

as 50-75 % of the FR pool can be localized in the endosomal membranes [294, 298]. Finally, 

another limitation of folate-mediated cancer nanomedicines is that FR is constitutively-

expressed in healthy tissues and normal epithelia of many organs, potentially limiting the 

selectivity of the ligand for diseased cells.

Another example of small molecule targeting ligands is triphenylphosphonium (TPP) and its 

derivatives for mitochondria targeting [243, 299]. TPP is a cationic, relatively large and 

hydrophobic molecule that can penetrate easily through the cell membrane. An investigation 

indicated that the positively charged TPP could accumulate several hundred folds within 

mitochondria [299]. An in vitro study recently established the mitochondria targeting 

potential of TPP-decorated NPs [243]. These studies showed that NPs could efficiently be 

internalized and escape the endosomal compartment when their size was around 100 nm and 

their zeta-potential was higher than +22 mV. Although this positive charge, conferred in part 

by TPP, seems important for in vitro performance, it might possibly undermine its blood 

exposure in vivo. This factor will have to be considered in the future developments of this 

targeting strategy.

Carbohydrate moieties [300], including mannose [301], glucose [166], galactose [302], and 

their derivatives, have also been widely utilized as targeting ligands. Carbohydrates target 

lectins, ubiquitous cellular membrane proteins that bind carbohydrates [303, 304]. In fact, 

one of the first actively-targeted anticancer nanomedicines evaluated in humans was a DOX-

conjugate, which incorporated a galactosamine targeting moieties to target primary and 

metastatic liver cancers [305]. Although this product failed in phase II due to lack of 

efficacy [306], it was observed in humans that the ligand conferred some level of liver 

targeting to this polymer-drug conjugate [305].

In order to break away from common small molecule ligands, Weissleder and colleagues 

screened 146 different small molecules to act as targeting ligands [196]. Using highly 

reactive small molecules and magnetic particles to facilitate large-scale synthesis and 

purification, they screened their multivalent particles for cellular uptake in 5 different cell 
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lines. The multivalency of 2 low affinity ligands on the surface of the NPs resulted in 

specific and efficient tumor targeting in vivo, after intravenous administration.

Finally, one of the most successful stories of actively-targeted NPs to date is based on the 

use of ACUPA, a small molecule targeted to PSMA [4, 142]. ACUPA was initially 

identified as part of a prostate cancer specific imaging agent [307]. The decoration of the 

surface of docetaxel-loaded NPs with ~200 molecules of ACUPA resulted in optimal 

targeting of PSMA-positive prostate cancers without interfering with blood circulation 

kinetics [4]. The PSMA-specific, actively-targeted NPs, BIND-014 has now promisingly 

completed its phase I evaluation in humans and is moving toward further clinical 

investigation.

3.5. Active targeting in humans

Although no actively-targeted NPs are currently commercially-available, at least 5 targeted 

liposomes and 2 targeted polymeric nanoparticle therapeutics have made it to clinical 

development stages. Among the NPs studies MBP-426 [308], MCC-465 [309], SGT53 

[310], MM-302 [311, 312], BIND-014 [4], CALAA-01 [2], cetuximad-decorated Doxil®/

Caelyx® liposomes [253] and a retroviral vector [313-315] have results of Phase I/II clinical 

trials available (Table 3). More details about these NPs and others ligand-functionalized 

therapeutics currently under clinical evaluation are examined in details elsewhere, in a very 

good review article published during the preparation of this manuscript [316]. Figure 6 also 

presents some examples of promising technologies currently studied in human. The main 

therapeutic targets of these NPs are the Tf-R [2, 143], the epidermal growth factor receptor 

[253, 317], PSMA [4], the surface of gastric cancer cells [309] and the human epidermal 

growth factor receptor 2 (HER-2) [312]. In the next few years, as the evaluation of these 

NPs in patients continues, our understanding of the parameters governing active targeting 

will hopefully improve. Nevertheless, a few important considerations regarding the use of 

actively-targeted NPs in humans must be highlighted.

3.5.1. The choice of the target—The design of actively-targeted NPs for clinical use 

involves scientific and economic considerations alike. Evidently, all important tumor 

biology and NP design aspects discussed earlier must be accounted for in order to develop 

the most efficient product possible. However, because of the large amount of investment 

involved in the development of therapeutic products, the probability of success, the 

prospective therapeutic impact and many other economic factors must be evaluated before 

choosing the target of interest [143].

The development of targeted drug delivery platforms is often considered to be more costly 

than the development of non-targeted NPs [143]. This belief likely stems from the increased 

complexities associated with the preparation and manufacturing of industrial-scale, clinical-

grade NPs which display targeting ligands. That being said, the financial burden of scaling 

up and manufacturing must be considered in the development of any type therapeutic; while 

it represents a significant proportion of the expenses associated with early development, the 

costs associated with large-scale clinical trials are certainly much more prohibitive. Once the 

engineering obstacles are surpassed and NPs show clinical efficacy, targeted NP platforms 
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present unique designs which possibly confer long-term commercial advantages [318]. All 

things considered, the major challenge in the development of targeted and untargeted NPs 

alike remains to show sufficient efficacy in Phase III clinical trials to warrant 

commercialization. If the presence of the targeting ligand confers better clinical efficacy, the 

risk and expenses related to more complex chemistry, manufacturing and control (CMC) 

procedures might potentially be compensated when the NPs reach commercialization.

Additionally, the population that would eventually benefit from the treatment must be 

considered carefully. Given the wide range of cancer types in which the Tf-R is upregulated 

[319], it is not fortuitous that many NPs currently under study target this specific surface 

protein [33]. The prospect of having one versatile targeted platform that could 

simultaneously treat multiple cancers is very appealing to clinicians and investors alike. The 

shortcoming of this approach however, might emanate from the use of proteins as the 

targeting ligands; large and complex molecules can CMC issues that might hinder or limit 

the large-scale production and commercialization of the NPs. Furthermore, the targeting of 

ubiquitously-expressed proteins increases the risks of non-specific distribution and off-target 

toxicities. Poor tolerability and dose-limiting side-effects restrain the therapeutic regimens 

that can be utilized in patients. Such limitations have been the demise of many drug delivery 

systems (both targeted and non-targeted), when, doses could not be titrated high enough to 

achieve therapeutic efficacy [320-322]. Even for commercially-approved nanomedicine, 

patients in clinical trials experienced unique toxicities associated with the encapsulated form 

of the drug (e.g., hand-foot syndrome or complement activation-related pseudoallergic 

reactions with PEGylated liposomal DOX [323, 324]). Since the clinical experience with 

targeted NPs remains limited, the appearance in clinical trials of non-expected toxicities due 

to the targeting ligand can never be completely ruled-out. As such, improved tolerability of 

anticancer therapeutics should therefore remain one of the main objectives throughout 

development.

In contrast, using molecular targets which are specific to a small population raises the 

hallmarks of required performance. When the number of prospective patients is small, a 

drug needs to be paradigm-shifting and become an unavoidable part of this population’s 

therapeutic regimen to achieve good return on investment. The relative commercial 

successes of some small molecules targeted to very specific cancer metabolic pathways 

exemplify this phenomenon (e.g., crizotinib and the ALK mutation in 3-5% of NSCLC 

patients). On the other hand, a drug that provides only marginal benefits might be 

overlooked and diluted by other comparable treatments. Such problems were encountered by 

SMANCS, a treatment mainly intended for hepatocellular carcinoma [70], and by others 

[305] for which the interest dwindled as clinical hurdles were exposed.

A good compromise is using targets like PSMA which are not constitutively present in 

healthy tissues, but expressed in the neovasculature of multiple types of cancer. Despite its 

name which suggests specificity for prostate cancer, PSMA is found in the vasculature of 

almost all types of solid tumors [325]. From an economic perspective, the versatility of the 

target therefore opens the door to multiple therapeutic indications and potentially higher 

return on investment. This is particularly interesting in the context of developing a high risk 

drug delivery platform. It also explains why, despite the fact that almost all of the preclinical 
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data leading to PSMA-targeted NPs was obtained in prostate cancer models, the initial 

clinical investigation enrolled patients suffering from all types of cancer [4]. The results of 

the Phase 1 clinical trial in 28 patients showed one complete response (cervical cancer), 3 

partial responses (prostate, non-small cell lung carcinoma (NSCLC) and ampullary cancer) 

and 5 stable diseases (pancreatic, colorectal, gall bladder, tonsillar and anal cancers), 

demonstrating that the targeted therapy could be beneficial in a variety of different solid 

tumors. These promising results offer the opportunity to continue further clinical 

investigations by stratifying patients in multiple types of cancer. In the case of BIND-014, 

phase 2 clinical trials will be shortly initiated, simultaneously in 3 independent studies, for 

the 1st line treatment of chemotherapy-naïve, castrate-resistant prostate cancer as well as for 

2nd line treatment of docetaxel-naïve NSCLC and bladder cancer.

3.5.2. Assessing the impact of active targeting—Measuring the impact of active 

targeting in humans is not simple. In preclinical models, each individual component can be 

evaluated distinctively and in an iterative manner by testing different NPs. In humans, 

assessing the efficacy of a treatment requires time and resources; the parallel evaluation of 

matching targeted and non-targeted NPs remains therefore unlikely.

One way of addressing the problem if accurate phenotyping techniques are available [326] is 

by comparing patient cohorts which differ in the expression of the target biomarker. While 

this certainly raises the complexity and the costs associated with a clinical study, it also does 

not provide any significant advantages in the early evaluation of the NPs. In fact, at the 

critical step of assessing the clinical efficacy of a NP, it may be more rational to evaluate 

efficacy in homogenous, target-positive populations if such patients can be identified. 

Especially since in essence, the main criteria leading to failure or success of a drug is not the 

mechanistic aspects behind its performance, but how well it compares to standard 

treatments.

It is likely that the impact of active targeting might only be assessed in post-approval, phase 

4 studies. Products are much less vulnerable to the outcome of mechanistic studies when 

they are commercially-available. This has been observed for approved non-targeted 

nanomedicines: in retrospective investigations establishing correlations between therapeutic 

response and biomarker expression [327] or in prospective pharmacokinetic studies trying to 

predict the performances of nanomedicine [64]. Since ligand-functionalized NPs rely on 

sufficient surface expression of specific makers to exert their effect, resistance could 

theoretically arise from the natural selection of target-negative cell populations less exposed 

to the drug. Nevertheless, there is currently no evidence suggesting that such resistance 

would appear at a faster rate for targeted NPs than for any other anticancer agent. In fact, in 

certain instances, actively-targeted NPs were shown to overcome multidrug resistance, at 

least in vitro {van der Meel, 2013 #337}. Mechanistic studies conducted once actively 

targeted NPs are commercialized and larger patient cohorts start to be treated with them 

should provide some understanding regarding potential resistance mechanisms and how to 

counter them. More importantly, a better understanding of how these nanomedicines work 

will also provide insights how to maximise the benefits for patients.
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4. The near future of cancer nanomedicines

More than 30 years after the first observation of the EPR effect, we are just unravelling the 

mechanisms behind the distribution of macromolecules and nanomaterials inside the tumor. 

At the preclinical level, further investigation on how physicochemical properties affect the 

tumor deposition and intratumoral diffusion of nanomaterials might continue to influence 

the design of future cancer therapeutic NPs. The evolution of chemistry and material 

sciences constantly pushes back the limits of nanomaterial synthesis. As the tumor 

distribution of materials with different sizes, shapes, charges and physicochemical properties 

continue to be evaluated, the body of knowledge on the EPR effect can expand significantly. 

The key to improve our understanding lies in the adequate design of studies with respect to 

the current animal models and their limitations. The clinical development of future 

anticancer NPs also requires strict toxicological validation; it is therefore probable that 

biodegradable and biocompatible materials might continue to play a major role in the future 

development of cancer therapeutic NPs.

Thanks to the experience acquired on already approved nanomedicines, it is now appreciated 

that the susceptibility of patients to nanosized drug carriers depends on the type of cancer, 

but also on individual tumor biology aspects. Until now, the most successful treatments 

resulted from increased tolerability to the NPs (e.g., the maximum tolerated dose of Nab-

PTX is 1.5 that of solvent-formulated PTX). For PEGylated liposomal DOX, the major 

survival benefit was witnessed as a second-line treatment for recurring ovarian cancer where 

the altered toxicity profile of the drug allows repeated administrations over multiple cycles. 

In a clinical setting, relying on the EPR effect alone to significantly impact the efficacy of 

cancer nanomedicines in all patients seems increasingly unrealistic; strategies must therefore 

be investigated to improve the tumor distribution of the drugs and their efficacy.

To that end, screening patients a priori for their susceptibility to the EPR effect and 

preserving nanomedicines for those who would benefit the most from them might seem a 

viable, short term approach. It is also important to fully understand what dictates this 

increased predisposition to the EPR effect in humans. Ideally, clinical studies would 

evaluate nanomedicines in combination with biomarker screening and patient phenotyping 

to assess which characteristics are good predictors of efficacy. For this purpose, the clinical 

imaging community might provide useful, minimally-invasive tools. The ability to image in 

real-time what is happening in the tumor will probably prove very valuable in studying the 

tumor distribution of nanomaterials. Clinical initiatives trying to correlate tumor uptake of 

imaging nanomaterials with clinical efficacy of therapeutic NPs might answer many 

persisting questions. In parallel, recent advances suggest that tumor remodelling can be 

achieved with commercially-available drugs (e.g., antiangiogenic bevacizumab or 

antifibrotic losartan). Therefore, minimal additional preclinical work could provide the bases 

for a pilot study to compare the combination of such treatment with cytotoxic nanocarriers 

in patients. If successful, these studies might provide viable clinical regimens to better fight 

tumors with the current available tools.

Active targeting is another tool that could modify the paradigm of our fight against cancer 

using nanotechnologies. Given the difficulties of immediately ascertaining the impact of 
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active targeting in humans, comprehensive work to really highlight the advantages of using 

NPs decorated with surface ligands might need to be conducted at the preclinical stage. To 

that end, the development of animal models which offer good predictive values for what is 

observed in the clinics is paramount and the standards of preclinical research might have to 

shift towards the use of orthotopic or genetically engineered models. Such models might 

help understand the impact of each physicochemical property on the cellular uptake and 

efficacy of the NPs. Since the tumor distribution of actively-targeted NPs seems strongly 

associated with the EPR effect, it will be interesting to see how insights obtained by 

studying both passive and active targeting strategies might converge to lead to more 

efficacious treatments. Active targeting strategies might possibly show added benefits as a 

means for active ingredients to cross physiological barriers, whether they are as simple as 

cell membranes, or as complex as the gastrointestinal epithelia or the blood brain barrier. In 

parallel, as tumor biology progresses to expose new molecular targets on cancer cells, 

improvements in ligand screening techniques should facilitate the isolation of highly specific 

ligands with strong affinities. While antibodies and proteins will probably continue to be 

beneficial to establish proof-of-concepts because of their availability, efficiency and 

applicability, aptamers, peptides and small molecules might play an increasing role in the 

development of more advanced NPs.

The next few years will hopefully demonstrate the clinical validation of actively-targeted 

NPs. Here again, in the context of personalized medicine, the challenge will be to clearly 

identify the patients who might benefit from actively-targeted treatments. When assessing 

the efficacy of a novel treatment in a cohort, it is crucial to make sure that receptive 

populations are not concealed by more abundant nonresponsive phenotypes. The risks of 

having the patients’ characteristics impact response rates increases with the complexity of 

the given therapy. When treatments highly depend on specific metabolic pathways or the 

presence of a surface receptor to be efficacious, mutations and changes in phenotypes must 

be closely monitored to ascertain that optimal characteristics are maintained throughout the 

treatment. In this regard, advances in genotyping and phenotyping techniques should prove 

very insightful towards novel blueprints for more advanced clinical trials. Hence, there is 

good hope that the NPs currently under study might reveal very useful tools to fight cancer. 

Such breakthroughs might contribute to the blooming of cancer nanomedicines in general 

and actively-targeted platforms, in particular.
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Figure 1. 
The EPR effect results from 2 distinct phenomena: the extravasation of the colloid from the 

blood vessels and their subsequent movement in the tumor extracellular matrix (ECM) by 

diffusion and convection.
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Figure 2. 
After intratumoral injection in melanoma xenografts (Mu89), the diffusion coefficient of 

macromolecules and nanomaterial in the ECM is inversely proportional to the hydrodynamic 

radius. Diffusion of bovine serum albumin (BSA, circles), 70-kDa dextran (squares), 

immunoglobulins (IgG, triangles), 2-MDa dextran (diamonds) and liposomes (inverted 

triangles) follows 2 phases with fast (closed symbols) and slow colloid populations (open 

symbols). Adapted with permission from [61].
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Figure 3. 
In murine S-180 sarcoma, the tumor accumulation levels of macromolecules (○) are in 

direct relation with the total body exposure (AUC, ▲) and inversely proportional to their 

renal clearance (●). This holds true for other types of tumors and nanomaterials. Used with 

permission from [76]
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Figure 4. 
In human, the accumulation of liposomes in tumors is different in each type of cancer. 

Sarcomas seem to be the sole cancers for which the accumulation of liposomes in tumor is 

superior to that in plasma or surrounding tissue. (●) from [116], DOX concentration in 

malignant infusion vs. plasma concentration, using Doxil®. (□) from [119], 111In-DTPA-

labelled liposomes in tumor ROI vs. plasma concentration. (◇) from [121], 99mTc-DTPA-

labelled Doxil® tumor ROI vs. skull bone marrow. (▲) from [117] DOX concentration in 

tumor biopsies vs. plasma concentration, using DOX-containing PEGylated liposomes. (○) 

from [120], 99mTc-DTPA-labelled liposomes tumor ROI vs. surrounding tissue (■) from 

[118], DOX concentration in bone metastases vs. plasma concentration, using Doxil®. All 

ratios are given for concentrations measured at the same time-point and individual patients 

are presented when possible; the doses of DOX used are labeled on the figure (closed 

symbols); open symbols represent the use of empty liposomes.
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Figure 5. 
The physicochemical properties of the ligand and the NP affect their blood circulation 

profiles, their biodistribution and their ability to be internalized by cancer cells.
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Figure 6. 
Actively-targeted NPs have shown promises in early clinical trials. A. BIND-014, a PSMA 

targeted, docetaxel-containing polymeric NP has shown impressive anticancer response in 

heavily-pretreated patients; the regression of lung metastases experienced by one patient 

suffering from cholangiocarcinoma after two cycles of BIND-014 is evidenced here by CT 

scans. B. SGT53, a TfR-targeted liposomes containing plasmid DNA for the p53 gene were 

shown to allow expression of the exogenous p53 gene by DNA PCR; tumor biopsies were 

taken 100 (T1) and 26 hours (T2) after administration of different doses in 2 different 

patients. C. CALAA-01, a TfR-targeted polymeric NPs encapsulating siRNA was shown to 

reduce mRNA (77 %) and protein expression (32 %) compared to baseline (C2pre) in one 

patient receiving 30 mg/m2 of siRNA (C2post); mRNA expression was assessed by qRT-

PCR while protein expression was evidenced by western blotting. Figures are used with 

permissions from [4], [310] and [2], respectively.
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Table 1

Extravasation as well as interstitial diffusion and convection can be affected by the tumor biology and the 

various characteristics of the colloid.

Tumor biological properties Parameters potentially affected

Vessel architecture (e.g., fenestrations, blood flow) P, A, Pv, Lp, σ, σF, Black box (endothelial uptake)

Interstitial fluid composition πi, Black box (protein adsorption)

Extracellular matrix composition Deff, Ri, πi, Black box (adsorption)

Phagocyte infiltration (e.g., TAM, dendritic cells) Ri, Black box (cellular uptake)

Presence of necrotic domains Pi, πi, Deff, Ri, Black box (protein adsorption, colloidal stability)

NP properties

Blood circulation times Cv, Ci

Size P, Lp, Deff, σF, φi, Ri, Black box (colloidal stability, cellular uptake)

Charge P, Lp, Deff, Ri, Black box (colloidal stability, cellular uptake)

Shape P, Lp, Deff, σF, φi, Ri, Black box (adsorption, cellular uptake)

Surface characteristics (e.g., hydrophobicity, ligands) P, Lp, Ri, Black box (adsorption, cellular uptake)
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Table 2

Various examples of targeting ligands used in preclinical studies. EpCAM: epithelial cell adhesion molecule; 

EDB: extra-domain B.

Ligand type System Target Indication Ref

Antibodies and fragments

 Full antibody Quantum dots PSMA Cancer (imaging) [226]

 F(ab’)2 Liposome GAH Gastric cancer [227]

 F(ab’) Liposome HER2 Breast cancer [228]

 scFv Liposome HER2 Breast cancer [158]

Proteins

 Transferrin Polymeric NPs Tf receptor Cancer [159]

 Ankyrin repeat protein siRNA complexes EpCAM Cancer [229]

 Affibodies Polymeric NPs HER2 Breast cancer [230]

Peptides

 CGNKRTRGC (LyP-1) Protein NPs gC1qR (p32) Cancer [231]

 F3 peptide Iron oxide NPs Nucleolin Cancer (imaging) [232]

 iRGD Iron oxide NPs αvβ3/5 Cancer (imaging) [233]

 iRGD Polymeric NPs αvβ3/5 Cancer [234]

 KLWVLPKGGGC Polymeric NPs Collagen IV Inflammation [235]

 KLWVLPK Polymeric NPs Collagen IV Vascular wall [236, 237]

 Aptides Liposomes Fibronectin Cancer [238]

Nucleic acid-based ligands

 A10 aptamer Polymeric NPs PSMA Prostate cancer [161, 239]

 A9 CGA aptamer Gold NPs PSMA Prostate cancer [240]

Small molecules

 Folic acid Gold nanorods FA receptor Cancer [241]

 Folic acid Polymeric NPs FA receptor Cancer [242]

 TPP Polymeric NPs Mitochondria Various [243]

 ACUPA Polymeric NPs PSMA Cancer [4]
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