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ABSTRACT: The earliest forms of cellular life would have
required a membrane compartment capable of growth and
division. Fatty acid vesicles are an attractive model of protocell
membranes, as they can grow into filamentous vesicles that
readily divide while retaining their contents. In order to study
vesicle growth, we have developed a method for immobilizing
multilamellar fatty acid vesicles on modified glass surfaces and
inducing filamentous membrane growth under flow. Filament
formation strictly depended on the presence of freshly
neutralized fatty acid micelles in the flow chamber. Using
light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid
molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of
flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including
membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow
studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids.

■ INTRODUCTION

We have been studying a model for the origin of cellular life in
which a membranous compartment capable of self-replication
encapsulates a functional and genetic biopolymer that is also
capable of self-replication.1 The processes of protocell
membrane growth and division are thought to have relied on
the self-assembly and self-organization properties of primitive
membranes, as it is implausible to assume the existence of
complicated cell division machinery at the time of the origin of
life.2,3 Fatty acid membranes are an attractive model for early
cell membranes for several reasons beyond their likely prebiotic
availability.4,5 First, fatty acids form membranes spontaneously,
given a neutral to slightly basic pH of around 7−8.5 (depending
on the length of the aliphatic chain) and a concentration above
the critical aggregate concentration.6,7 A second important
aspect is that fatty acid membranes are more permeable than
modern diacyl lipid membranes, even allowing for the passive
diffusion of charged small molecules like nucleotides across the
membrane.8,9 This high permeability would have been essential
in primitive cells prior to the evolution of membrane transport
machinery.10 Another argument for fatty acids as components
of early cell membranes is the existence of a simple biochemical
pathway leading from fatty acid precursors to phospholipids.
Moreover, phospholipids are miscible with fatty acids in
membranes, and the presence of phospholipids confers a
demonstrable selective growth advantage to membranes of
mixed composition.11,12 Finally, our lab has previously shown
that fatty acid vesicles exhibit a peculiar growth behavior:

instead of growing spherically in the fashion of an inflating
balloon, multilamellar fatty acid vesicles grow through the
formation of filamentous membrane tubes.13 Because this
complex self-organized growth is currently not well understood,
we set out in this study to examine filamentous growth under
controlled conditions.
Whereas phospholipids possess two aliphatic chains and a

polar headgroup, fatty acids are composed of only a single
aliphatic chain connected to a carboxyl group. This chemical
difference leads to several important biophysical differences
between fatty acid and phospholipid membranes. Fatty acids
are much more water-soluble than phospholipids. While
phospholipid vesicles are typically in equilibrium with
subnanomolar concentrations of free phospholipid, fatty acids
have critical aggregate concentrations of 0.1−100 mM,
depending exponentially on chain length.11,14 The desorption
and flip-flop rates of fatty acids are also significantly greater
than those of phospholipids, leading to membranes that are
much more dynamic than phospholipid membranes, with
average residence times of fatty acids in the membrane in the
range of milliseconds to seconds.11,15 Net-neutral phospholipid
membranes are relatively robust to changes in pH, whereas fatty
acid membranes form over a restricted pH range, when roughly
half of the carboxylic acid groups are charged, resulting in
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hydrogen bonds between headgroups.16 Fatty acid membranes,
however, do not form at the pKa of free carboxylic acids;
instead, the pKa of fatty acids at the membrane surface is shifted
upward by about 4 pH units to a pKa of about 7−8.5,
depending on chain length.14,17 This effect has been explained
as the result of a local decrease of pH close to the membrane
due to the local enrichment of hydronium cations close to
polyanionic surfaces.18,19 Additionally, hydrogen bonding
between protonated and deprotonated carboxylates increases
the pKa of the fatty acids in a membrane context.20 At low pH
fatty acids are fully protonated and form an oil phase, whereas
at high pH they are fully deprotonated and form micelles.21

Fatty acid vesicles grow when alkaline micelles (the aggregate
form of fatty acids at high pH) are added to a buffered solution
of lower pH.22−24 The pH drop causes the micelles to
transform into vesicles, and during that transition micelles can
also drive the growth of preformed vesicles. This growth-
promoting potential declines over time as micelles transform
into de novo vesicles and lasts for roughly 20 min in the absence
of preformed vesicles.22 When exposed to such a solution,
preformed small, unilamellar vesicles (100 nm) grow in two
phases: a rapid phase lasting 1−2 s followed by a slow phase
lasting roughly 1 min.22 When observing the growth of larger
vesicles in the microscope, an interesting growth mechanism
was observed: instead of growing into larger spheres, vesicles
grew as filamentous membrane tubes.12,13 This mode of growth
is a consequence of the multilamellarity of the initial vesicles
and begins with the formation of a thin unilamellar filamentous
protrusion from the outermost bilayer membrane, presumably
due to increased lateral pressure within this membrane as it
absorbs additional fatty acid monomers. Over time, the filament
grows in length, and the contents of the initial vesicle
equilibrate throughout the length of the filamentous vesicle.
The filamentous shape results from the faster increase of
surface area relative to volume, which is osmotically con-
strained. Eliminating osmotic constraints and therefore also
removing the imbalance between surface area and volume
growth abolishes filamentous growth.13 Interestingly, filamen-
tous growth due to a surface area/volume imbalance has also
been observed in vivo in L-form bacteria, which lack a cell
wall.25

The membrane tubes that are generated during the growth of
large fatty acid vesicles are interesting not only because they
illustrate the remarkable self-organizing behavior of small
amphiphilic molecules but also because they predispose the
vesicle for division by mechanical or photochemical pro-
cesses.13,26 This filamentous growth, however, has to date been
difficult to observe in detail due to rapid Brownian motion of
vesicles during growth. Here, we developed an assay that allows
for the immobilization of fatty acid vesicles on the surface of
glass slides and thus makes long-term observation of growing
vesicles possible. In this configuration, vesicle growth can be
observed under constant flow. Furthermore, it is possible to
change the outside solution surrounding the vesicles without
disrupting the membrane. We report here the use of this assay
to study the effects of salt concentration, flow rate and fatty acid
concentration on vesicle growth as well as the effects of osmotic
stress on filamentous vesicles.

■ EXPERIMENTAL SECTION
Vesicle and Micelles. Fatty acid vesicles were prepared by mixing

10 mM liquid oleic acid (Nu-Check, Elysian, MN), 20 nM biotin-
PEG(5K)-DSPE (biotin−poly(ethylene glycol)−distearoylglycero-

phosphoethanolamine, Nanocs, Boston, MA, 100 μM stock in
water), 10 mM HPTS (8-hydroxypyrene-1,3,6-trisulfonate, Sigma-
Aldrich, St. Louis, MO, 200 mM stock in water), 5 mM NaOH, and
buffer (as described, default is 50 mM bicine (Sigma-Aldrich, St. Louis,
MO), 75 mM NaCl, pH 8.5 adjusted with NaOH) and rotating the
mixture overnight at room temperature at 6 rpm. Before the
experiments, the vesicles were filtered over a short (1 cm) Sepharose
4B (Sigma-Aldrich, St. Louis, MO) size exclusion column and then
diluted 1:3 in buffer containing 1 mM unlabeled oleic acid vesicles
(containing neither biotinylated lipid nor HPTS) to achieve optimal
binding density.

Micelles were prepared by mixing 1 equiv of NaOH with 1 equiv of
liquid oleic acid in water and rotating the solution overnight at room
temperature (default concentration: 8 mM).

Surface Chemistry. 15 mm round #1 and #1.5 coverslips were
purchased from Warner Instruments, Hamden, CT. Surface
functionalization was performed by a combination of two previously
established protocols.27,28 Briefly, the coverslips were etched for 30
min with piranha solution (7 parts concentrated H2SO4 mixed with 3
parts 30% H2O2), washed extensively with water, and then dried using
a spin dryer (Technical Video, Woods Hole, MA). The bottom
coverslip (#1) was then incubated in 3% (v/v) (trimethoxysilyl)-
propylethylenediamine (Sigma-Aldrich, St. Louis, MO) dissolved in
95% methanol/5% acetic acid (v/v) for 60 min. Coverslips were then
washed extensively with acetone and again spin dried. Next, coverslips
were incubated in a 25% (w/v) solution of PEG (10% Biotin-
PEG(3K)-NHS, 90% methoxy-PEG(2K)-NHS, both Rapp Polymere,
Tübingen, Germany) in 0.1 M sodium bicarbonate overnight. The
following day, the functionalized coverslips were washed extensively
with water, spin dried, and stored at 4 °C. The top coverslip (#1.5)
was incubated after etching with 10% Cytop-silane in CT solvent 180
(both AGC, Tokyo, Japan) overnight, washed in CT solvent, spin
dried, and stored at 4 °C.

Flow Chamber and Setup. Experiments were performed in a
custom flow chamber built by Warner Instruments on the basis of their
PFC1 flow chamber. The design differs in the use of a #1 15 mm
coverslip at the bottom and the possibility to use 100 μm gaskets. The
overall flow chamber volume with a 100 μm gasket is 18 μL. The
diameter of the flow chamber is 10 mm. Therefore, a flow rate of 1
μL/min at the pump is equivalent to an average flow velocity of 1
mm/min. The flow velocity at the surface where the vesicles are
immobilized is lower due to the characteristic velocity distribution of
laminar flow. The approximate fluid shear stress at the surface can be
calculated as τ = 6μQ/wh2, where μ is the viscosity, Q is the flow rate,
w is the chamber width, and h is the chamber height.29 With an
assumed viscosity of 1 cP, the approximate shear stress at our standard
flow rate of 20 μL/min is 0.02 Pa (0.2 dyn/cm2). At the highest flow
rates used during growth (100 μL/min), the shear stress is
approximately 0.1 Pa (1 dyn/cm2).

The flow chamber was connected to an electric PC controlled six-
channel valve (Idex, Oak Harbor, WA) connected in turn to four
manual syringe pumps, a single syringe motorized pump (Kats
Scientific, Grand Prairie, TX), and an independently controllable two-
syringe motorized pump (Harvard Apparatus, Holliston, MA) that is
connected to a static mixing tee (Upchurch Scientific, Oak Harbor,
WA). For a typical experiment, the flow chamber was prepared with
the following solutions: (1) 200 μL of buffer, (2) 200 μL of 0.05 mg/
mL Streptavidin (Sigma-Aldrich, St. Louis, MO) in buffer, incubation
for 5 min, (3) 500 μL of buffer with 1 mM oleic acid, incubation for 5
min, (4) 200 μL of labeled, gel-filtered, prediluted vesicles, incubation
for 5 min, and (5) 500 μL buffer with 1 mM oleic acid. The
experiment was started by flowing through a continuously freshly
created mixture of buffer (typically at 18 μL/min) and micelles
(typically at 2 μL/min) using the two-channel pump and the mixing
tee.

Microscopy and Data Analysis. Images and movies were
recorded with a TE-2000 microscope (Nikon, Tokyo, Japan) equipped
with a motorized filter turret (Nikon, Japan), standard fluorescence
filter cubes (Nikon, Tokyo, Japan), shutters (Sutter, Novato, CA), an
EMCCD camera (Andor, Belfast, UK) and using a 20× ELWD

Langmuir Article

dx.doi.org/10.1021/la503933x | Langmuir 2014, 30, 14916−1492514917



objective (to achieve a large depth of field). The microscope was
controlled by Micro-Manager.30 Image analysis was performed with
using ImageJ.31 For the determination of growth velocities, kymo-
graphs from a representative sample of the growing vesicle population
were produced manually, and the rate (inverse slope) was measured by
manually approximating a line to the kymograph. At each time point,
images were exposed twice: once briefly, with low exposure, to avoid
saturation and accurately determine vesicle diameter and once for a
longer time to clearly visualize the vesicle thread (typically 20 and 200
ms). Data were analyzed using Excel (Microsoft) and Origin
(OriginLab). In box plots, the box limits are the 25th and 75th
percentile, and whiskers are outliers within 1.5 interquartile ranges

from the box limits. The median is marked by a central line and the
mean by an open square. Small crosses mark the 1st and 99th
percentile, and small bars mark the maximal/minimal values. Figures
were assembled with Illustrator (Adobe).

■ RESULTS

We wished to follow the growth of filamentous membrane
tubules following the addition of free fatty acids in an
environment that would allow us to control the growth
conditions while being compatible with detailed microscopic
observations. We therefore set up a flow chamber that would

Figure 1. Filamentous growth of immobilized fatty acid vesicles. (A) Scheme of the experimental setup. The flow chamber (above the objective) is
connected to a motorized valve, which is connected to several manual syringe pumps, a motorized pump, and a mixing tee, which is in turn
connected to a motorized two-channel syringe pump. (B) Scheme of immobilized fatty acid vesicles. The glass surface (gray) is covalently modified
with aminosilane (green), to which a dense layer of poly(ethylene glycol) (PEG) is coupled. A fraction of the PEG is modified with biotin (yellow
squares). Vesicles consisting of 50% charged (red) and 50% neutral fatty acids also contain a small fraction of Biotin-PEGylated phospholipids (blue/
black/yellow). The biotin molecules on the surface are cross-linked to those on the vesicle by tetrameric streptavidin (yellow). (C) Filamentous
growth of immobilized vesicles (containing 10 mM HPTS) at 75 mM NaCl, 50 mM Bicine/NaOH pH 8.5, and 0.8 mM oleic acid micelles at a flow
rate of 20 μL/min. Flow is already present at t = 0 s, but there is a delay before the growth starts due to the dead volume between valve and flow
chamber, which illustrates the immobilization of vesicles (panels 1 and 2). Filamentous growth starts once the buffer/micelle mixture reaches the
vesicles (panel 3). Scale bars are 30 μm. The panels are frames of Movie M1.
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allow for the microscopic observation of immobilized vesicles
under continuous flow, with the ability to switch the
composition of the solutions flowing over the vesicles. The
chamber contained a modified glass surface that allowed for the
immobilization of preformed vesicles (Figure 1A). To prepare
this surface, we covalently modified the surface of glass
coverslips with Biotin-PEG molecules that both contributed
to the passivation of the surface and allowed us to use the
biotin−streptavidin system for immobilization (Figure 1B). We
prepared oleic acid vesicles containing a small percentage
(0.0002 mol %) of a biotinylated lipid (DSPE-PEG-Biotin) by
overnight tumbling in a buffered solution (see Experimental
Section). These vesicles contained the water-soluble fluorescent
dye hydroxypyrene trisulfonate (HPTS), which is highly
charged and thus cannot diffuse across intact membranes,
ensuring that only intact, pre-existing vesicles were visible in the
microscope. The function of the biotin was to bind to
streptavidin, a homotetrameric protein with four strong biotin
binding sites that could act as cross-linker between membrane-
bound biotin and glass-surface bound biotin molecules. To
immobilize vesicles, we first incubated the flow chamber with
streptavidin, washed out unbound streptavidin, and then flowed
the HPTS/biotin labeled vesicles into the flow chamber. After
another wash to remove unbound vesicles, we observed the
stable immobilization of the remaining vesicles on the surface
using fluorescence microscopy (Figure 1C, panels 1 and 2;
Movie M1, first minute). Similar immobilization techniques
have been used in the past to immobilize phospholipid vesicles
or cytoskeletal filaments.32,33

We then examined the behavior of immobilized vesicles
when exposed to a continuous flow of the growth-promoting
micelle solution. Because the alkaline micelle solution must be
neutralized to avoid dissolving the immobilized vesicles and to
allow growth to occur, we flowed a solution of freshly
neutralized oleate micelles (which are thus in the process of
transforming into vesicles) through the flow chamber. These
freshly neutralized micelles were prepared by continuous
mixing of alkaline micelles with buffer just before entering
the flow chamber. In this way the concentration and growth-
promoting potential of the freshly neutralized micelles are kept
constant over time, as freshly mixed solution passes over the
surface of immobilized vesicles at a constant flow rate. Based on
a typical flow rate of 20 μL/min and the 60 μL dead volume of
the system, the oleate micelles would reach the immobilized
vesicles approximately 3 min after neutralization. Under these
conditions, we observed that most vesicles exhibited
filamentous growth that could be sustained for long periods
of time, e.g. 30 min or more, resulting in filament lengths of 500
μm or longer. The newly generated filaments extended from
the initial point of attachment to the biotinylated surface, to the
parental spherical vesicle which was carried downstream by the
flowing fluid. It was easy to observe and measure growth since
the filaments were aligned by the flow (Figure 1C and Movie
M1). In previous experiments done in the absence of flow it
was unclear how many filaments could grow per vesicle,13 while
with flow almost all vesicles we observed (>99%) had only a
single filament connecting the point of surface attachment to
the spherical vesicle.
Vesicles prepared by lipid hydration are multilamellar and

very heterogeneous in size, ranging at least from 0.1 to 10 μm
in diameter.21 We used this property to test whether the growth
rate depended on vesicle size. For example, in a simple scenario,
in which free fatty acid uptake occurs over the surface, and in

which filamentous protrusions initiate as unilamellar structures
of the same diameter, one would expect the initial growth rate
to depend on the vesicle surface area. To test this idea, we
measured initial vesicle sizes and initial growth velocities (i.e.,
change in filament length vs time) for vesicles growing in 0.8
mM oleic acid micelles, freshly neutralized in 50 mM Na+-
bicine pH 8.5, 75 mM NaCl at a flow rate of 20 μL/min.
We observed that the initial growth velocity does indeed

depend on the initial size of the vesicle, although with a large
degree of inherent noise (Figure 2A and Figure S1).

Furthermore, many small vesicles (but also some large ones)
did not grow filaments during the course of the experiments.
This variability might be a consequence of the large variability
of the polydisperse vesicles in lamellarity and/or internal
structure.14,34 In velocity measurements derived from kymo-
graph analysis, we measured the initial velocity over the first 60
s of filament growth, during which the increase in filament
length was nearly linear with time. It is clear that on average
filaments extending from larger vesicles elongated more rapidly
than filaments extending from smaller vesicles. However,
because of the high degree of variability, it was not possible
to distinguish between a growth rate proportional to the square
of vesicle diameter, as expected from the incorporation of new
fatty acids throughout the vesicle surface (along with constant
filament diameter), vs growth linearly proportional to vesicle
diameter, as expected from incorporation of new fatty acids
over the entire surface, but with filament diameter proportional
to initial vesicle diameter. In many instances, we observed an
acceleration of growth velocity at late times in the experiment

Figure 2. Size dependence of vesicle growth velocity. (A) Vesicle size
correlates with tubule growth velocity. Initial filament growth velocities
(as measured by kymograph analysis) of vesicles at 75 mM NaCl, 50
mM Bicine pH 8.5 (with NaOH), and 0.8 mM oleic acid micelles with
a flow rate of 20 μL/min are plotted against vesicle diameter. (B)
Kymograph (time−space plot) of a growing vesicle (from Figure 1).
The slope is becoming steeper over time, indicating an acceleration of
growth. Scale bars: 20 μm (horizontal); 60 s (vertical).
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(Figure 2B). The acceleration in growth velocity supports the
argument for a dependence of growth velocity on the overall
area of the membrane and suggests that fatty acids are
incorporated into the filament surface as well as the original
vesicle surface (see Figure S2A for additional examples).
To test whether the availability of fatty acids was rate-limiting

for filamentous vesicle growth, we varied the concentration of
micelles in the freshly mixed growth solution. In order to have a
semiquantitative measure for comparing different experimental
conditions, we binned the vesicles into small (<2.4 μm) and
larger vesicles (≥2.4 μm) and calculated the average growth
velocity for each. We observed that varying the concentration of
free micelles between 0.8 mM (roughly 8-fold the critical
aggregate concentration at pH 8.5) and 8 mM did not
significantly influence the filament growth velocity (Figure 3A).
This is in accordance with previous measurements of small
(100 nm) vesicles in bulk solution22 and suggests that over this
concentration range fatty acids in micelle form are not rate-
limiting for vesicle growth.

The flow of buffer alone does not cause the appearance of
filaments, and their formation and growth depend strictly on
the arrival of freshly mixed micelle/buffer solution in the flow
chamber. Prior to the arrival of the micelle/buffer solution, the
immobilized vesicles are exposed for ∼3 min to fluid flow in
buffer containing unlabeled vesicles (1 mM oleate) to maintain
the concentration of free fatty acid at the critical aggregate
concentration. No filaments appear during this phase of the
experiment, which is due to a dead volume of ∼60 μL and a
flow rate of 20 μL/min; part of this period is visible in Movies
M1−M4. Our experiments are therefore fundamentally differ-
ent from the pulling of membrane tubules from vesicles by
pipet aspiration, molecular motors, or viscous drag
forces.29,35−38 Having ruled out flow as the underlying cause
for membrane tubule formation, we were nevertheless curious
to see if varying the flow rate would affect the growth process.
For example, stretching of the filaments by viscous drag could
alter the apparent growth rate; alternatively, the on-rate of fatty
acids onto the filaments could vary with membrane tension.
When we varied the flow rate from 20 μL/min (our standard

Figure 3. Impact of different conditions on vesicle growth velocity. (A) Box plots of the growth velocity of small (left, diameter below 2.4 μm) and
large vesicles (right, diameter above 2.4 μm) at different concentrations of feeding micelles. (B) Box plots of the growth velocity of small and large
vesicles at different flow rates. (C) Box plots of the growth velocity of small and large vesicles at different concentrations of sodium chloride. Our
standard condition (0.8 mM micelles, 75 mM NaCl, 20 μL/min flow rate) is identical in all three sets of graphs and plotted as a reference. Source
data are presented in Figure S1 (see Experimental Section for details on box plots). (D) At high flow rates (here: 100 μL/min), the vesicles are
initially rapidly stretched, and then growth stalls until the filament becomes visible. Then the tubule growth continues. Note that the initial stretching
is dependent not on the flow rate, but on the presence of the growth solution, as there is no stretching in the first minute (first two panels). Panels
are excerpts from Movie M2. Scale bars are 10 μm.
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Figure 4. Effect of osmotic stress on filamentous vesicles. (A) Lowering the external salt concentration (75 mM NaCl to 25 mM NaCl) leads to an
influx of water into the tubule, which therefore contracts, causing pearling. Panels are from Movie M3. For better visibility of the filament, a nonlinear
contrast adjustment (gamma value 0.6) was applied to these images. Scale bars are 10 μm. (B) Increasing the external salt concentration (75 mM
NaCl to 175 mM NaCl) leads to an efflux of water from the tubule. This causes a rapid elongation in long filaments and an increase in width in
shorter filaments (under loss of the spherical vesicle part) (panel 3). This state is however unstable and leads to rapid collapse of the filaments
(panels 4−6). Panels are from Movie M4; scale bars are 30 μm. Inset, right: the large vesicle pregrowth and postcollapse at nonsaturating imaging
conditions. At the beginning of the experiment, the vesicle has homogeneous fluorescence; after the collapse internal structures are discernible. The
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condition) to 60 μL/min, we observed an increase in average
growth velocity of roughly 3-fold, which could be due to either
of the above mechanisms. However, when we further increased
the flow rate to 80 or 100 μL/min, we observed a qualitative
change in the growth process (Figure 3B). At these high flow
rates a thin tube formed very rapidly, then growth stalled as the
tube slowly filled with the soluble dye, and then growth
continued (Figure 3D and Movie M2). We interpret this as the
rapid formation of a very thin membrane tubule whose growth
was initially accelerated by viscous drag as the spherical initial
vesicle was swept downstream; this rapid growth phase may be
analogous to the formation of thin tubules by micropipet
aspiration. However, even under these high flow rates, the
formation of the tubule depended on the presence of freshly
neutralized micelles, as there is no growth observed in the
initial 50 s, followed by very rapid growth in the following 10 s
(Figure 3D and Movie M2). Thus, the growing filament may be
more sensitive to shear forces than the spherical vesicles.29 The
thin filament then slowly expanded in diameter as vesicle
contents diffused into the tubule and then filament growth
continued. At extremely high flow rates exceeding 500 μL/min,
we observed the detachment of filamentous vesicles from the
surface, probably reflecting tearing of the membrane (Movie
M5).
Next we investigated the effect of the concentration and

identity of the fatty acid counterionfactors that directly affect
the dynamics of fatty acids and therefore of membrane growth.
In the presence of sodium ions, fatty acid membrane growth is
accompanied by the stoichiometric flip-flop of fatty acids both
in the neutral protonated state and in the form of the sodium
salt, so that the inner leaflet of the membrane can grow in
concert with the outer leaflet.39 First we asked whether the
concentration of sodium ions in solution would influence
tubule growth velocity by affecting either the flip-flop rate or
the osmotic balance during vesicle growth. We varied the
sodium chloride concentration in the buffer (50 mM Na+-
bicine pH 8.5) from 0 to 175 mM NaCl. We found that
increasing the sodium chloride concentration accelerated the
size-normalized growth velocity, modestly in small vesicles but
by a factor of 3 in larger vesicles (Figure 3C). To differentiate
between charge and osmotic effects, we also tested the growth
velocity of vesicles prepared and observed in buffers consisting
of 50 mM Na+-bicine (pH 8.5) with 350 mM sucrose or 50
mM bicine + 175 mM arginine + 25 mM NaCl adjusted to pH
8.5 with HCl. We observed negligible growth in sucrose,
whereas vesicles in arginine grew very slowly at rates of 1.3/3.3
μm/min (small or large vesicles, respectively) compared to 5.7/
25.5 μm/min in our standard conditions with no added salt or
osmolyte. As increasing osmolarity by itself did not lead to the
same acceleration of growth as observed with sodium chloride,
we suggest that the increased growth rate may reflect an
increased concentration of sodium oleate in the outer leaflet,
leading to faster inward flipping of sodium oleate complexes
and thus faster overall membrane growth. The larger increase of
growth rate for larger vesicles may be indicative of a relatively
larger volume between the two outermost membrane layers in
larger vesicles (with regards to surface area), allowing relatively

more sodium oleate adducts to flip-flop into larger vesicles than
into smaller vesicles.
In addition to studying the effects of environmental

conditions on the growth of filamentous vesicles, our flow
system can be used to examine the effects of changing
conditions on preformed filamentous vesicles. We hypothesized
that changes in salt or osmolyte concentration should have
strong effects on existing filamentous vesicles due to the
semipermeable nature of fatty acid membranes. To test this, we
grew oleic acid vesicles into filaments and then switched the
flow solution from freshly neutralized micelles to a solution
containing unlabeled vesicles (at 1 mM oleate, to maintain free
oleate at the critical aggregate concentration) and varying
concentrations of salt. When we switched the flow solution to
iso-osmotic vesicles, the preformed filaments stopped growing,
and slowly shortened over a period of roughly 30 min, possibly
due to a slow loss of fatty acid from the filament to the flow
solution. In contrast, when we changed the flow solution to a
hypo-osmotic vesicle solution, we observed a rapid and
simultaneous shortening and widening of the membranous
tubules (Figure 4A). During this shape transition, we observed
the transformation of the initially smooth filament to a
connected string of small spherical vesicles (Figure 4A and
Movie M3). This phenomenon has been termed “pearling” and
was originally observed when filamentous vesicles were subject
to stretching forces.40 The size of the “pearls” formed in our
experiments varied between trials and conditions, but they
appeared in every experiment of this kind (n > 10).
Interestingly, this process could be repeated several times by
changing between buffer and micelle solutions, with the second
growth rate being faster than the initial rate (Movie M3 and
Figure S2B). The initial rapid shortening and thickening of the
filament is consistent with a rapid influx of water into the
vesicle, causing a decrease in the surface to volume ratio and
thus the formation of a shorter, wider tubule (see scheme
Figure 4C). The resulting induced membrane tension could
then initiate the pearling instability, as previously seen.40,41

When we performed the converse experiment of transferring
preformed filamentous vesicles into a flow solution of 1 mM
oleate vesicles with a higher salt concentration, we observed an
initial rapid extension of the tubule. This is consistent with
water exiting from the interior of the tubular vesicle, leading to
an increase in the surface to volume ratio and hence the
formation of a longer, thinner tubule (see Figure 4C).
However, these extended tubules were unstable and rapidly
collapsed into a spherical vesicle (Figure 4B and Movie M4).
The internal structure of the vesicles changed during this
process with almost no loss of content, suggesting membrane
invagination during the contraction and the formation of
compound vesicles (Figure 4B, inset).

■ DISCUSSION

The growth of initially spherical fatty acid vesicles into greatly
elongated but still closed filamentous structures is a compelling
property that makes these vesicles an attractive system for
model protocell membranes because of the ease of division of
filamentous vesicles into smaller daughter vesicles.13 A detailed

Figure 4. continued

overall fluorescence intensity changed only slightly (2115 ± 7 AU to 1928 ± 7 AU, background corrected measurement over five frames). Scale bars
are 5 μm. (C) Scheme of the effect of surface area change (first step) and volume change (second step) on fatty acid vesicles.
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understanding of the growth and general properties of
filamentous vesicles would therefore be helpful in under-
standing the conditions under which fatty acid-based protocells
could grow and divide. We have presented a novel approach
that allows for the observation of filamentous growth under
defined conditions of continuous flow as well as the observation
of changes in filamentous vesicle morphology in response to
changes in environmental conditions. Because growing
filaments are aligned by flow, our system greatly simplifies
the measurement of membrane tubule length vs time. We used
this filament length assay to measure the influence of flow rate,
micelle concentration, and salt concentration on the rate of
filamentous vesicle growth and identified a strong contribution
of initial vesicle size to growth velocity.
When fatty acid micelles are shifted from a high pH, at which

they are the stable aggregate form, to a lower pH, at which
bilayer membranes are the stable phase, they transform into
vesicles over a period of minutes.22 At early stages in this
transformation, pH-neutralized micelles can also drive the
growth of pre-existing vesicles. The mechanism of this effect
remains unclear, but it seems likely that following the pH drop
either the micelles themselves (or possibly sheetlike inter-
mediates) are in a transient high-energy state. In this state fatty
acid monomers may exist in solution at a concentration
exceeding the critical aggregate concentration, thereby driving
the growth of pre-existing membranes. Alternatively, the high-
energy state of the micelles or sheetlike intermediates may lead
directly to membrane growth by a process akin to membrane
fusion.22 Previous experiments have shown that fatty acid
monomers can rapidly form micelles whereas formation of
vesicles is much slower.42 Our finding that the concentration of
freshly neutralized micelles in the flow solution did not
influence the growth velocity significantly suggests that
monomer insertion is the rate-limiting step for vesicle growth,
assuming that the monomer concentration above the critical
aggregate concentration remains approximately constant. The
direct addition of fatty acid aggregates to vesicles is less likely
because the concentration of such intermediates should linearly
increase with the total concentration of fatty acids in the
system, and one therefore should observe faster growth at
higher micelle concentrations. The observed acceleration of
vesicle growth velocity over time suggested that new fatty acid
monomers were incorporated not only into the spherical vesicle
surface but also into the growing filament. We were not able to
detect an initial rapid growth phase as previously observed by
stopped flow fluorescence measurements.22 This might be due
to the fact that the growth promoting potential of the freshly
neutralized micelles is kept constant due to flow and that there
is a delay of approximately 3 min between neutralization and
the arrival of freshly neutralized micelles in the flow chamber.
Our observations are consistent with filamentous growth

resulting from an imbalance between surface area growth and
volume growth due to osmotic constraint13 (see also Figure
4C). This especially held true for the change of osmotic
pressure experiments, where changes of osmotic constraints
and therefore volume immediately affected tubule length.
Despite reacting to osmotic shifts with dramatic shape changes,
filamentous fatty acid vesicles were remarkably resistant to
osmotic stress and did not leak contents during these shape
rearrangements (Figure 4B, inset). In the context of the origin
of life, this is an important quality for a scenario where
protocells were exposed to cycles of concentration by
evaporation and dilution due to rain.

Previously our lab has shown that filamentous vesicles can
divide spontaneously by agitation of the liquid surface.13 In
light of this, it is noteworthy that in the flow chamber system
the membrane tubes were difficult to fragment by tearing and
very high flow rates were necessary to achieve fragmentation
(Movie M5). Membrane fission thus can be difficult even for
fatty acid membranes, which makes research into prebiotic
abscission mechanisms highly relevant.43 Our lab has previously
demonstrated the possibility of photochemically induced
membrane fission,26 whereas research in L-form bacteria has
directly highlighted the importance of membrane fluidity for
abscission in the absence of a protein-based cell division
machinery.44

The assay we developed here has the potential to be useful in
many other scenarios for the study of vesicles and model
protocells. Recently our lab reported the use of a dialysis device
to feed nutrients to model protocells in intervals.45 In the flow
chamber system, such a device would be unnecessary as
nutrients can be flowed directly over the vesicles, providing a
continuous source of fresh molecules. The immobilization of
vesicles also enables long-term observation of individual
protocells. Paired with a fluorescent readout of RNA
replication,46 membrane growth and genome replication
could be observed simultaneously in individual vesicles.
Finally, it is truly remarkable that all the complex behavior

described in this paper stems from the interaction of a very
simple chemical, a fatty acid, with its aqueous environment.
This extraordinary self-organization behavior of fatty acids47 is a
strong paradigm for how complexity could have emerged
spontaneously at the origin of life.

■ CONCLUSION

Fatty acid vesicles are important models of protocell
membranes in origin of life research and characteristically
exhibit very dynamic behavior. In order to study one such
dynamic behavior, namely the growth of spherical fatty acid
vesicles into long filaments, we immobilized vesicles on a glass
surface and observed them during exposure to fluid flow. Using
fluorescence video microscopy, we could measure the rate of
growth of the membrane tubules that form when a vesicle
comes into contact with freshly neutralized alkaline micelles.
We used this assay to study the impact of different
environmental conditions on the tubule growth process. We
were also able to observe the drastic effects of changes in the
external conditions on tubular fatty acid vesicles, including
strong but reversible pearling effects. We expect the
experimental approach established here to be useful for the
study of more complex protocell models as well as further
research into fundamental membrane biophysics.
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d’un eĺectrolyte. J. Phys. Theor. Appl. 1910, 9 (1), 457−468.
(20) Kanicky, J. R.; Shah, D. O. Effect of premicellar aggregation on
the pKa of fatty acid soap solutions. Langmuir 2003, 19 (6), 2034−
2038.

(21) Walde, P.; Namani, T.; Morigaki, K.; Hauser, H. Formation and
Properties of Fatty Acid Vesicles (Liposomes). In Liposome Technology,
3rd ed.; Informa Healthcare: New York, 2006; Vol. 1, pp 1−19.
(22) Chen, I. A.; Szostak, J. W. A kinetic study of the growth of fatty
acid vesicles. Biophys. J. 2004, 87, 988−98.
(23) Rasi, S.; Mavelli, F.; Luisi, P. L. Cooperative micelle binding and
matrix effect in oleate vesicle formation. J. Phys. Chem. B 2003, 107
(50), 14068−14076.
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