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METHODOLOGY

Using Gini coefficient to determining 
optimal cluster reporting sizes for spatial  
scan statistics
Junhee Han1, Li Zhu2* , Martin Kulldorff3, Scott Hostovich4, David G. Stinchcomb5, Zaria Tatalovich2, 
Denise Riedel Lewis2 and Eric J. Feuer2

Abstract 

Background: Spatial and space–time scan statistics are widely used in disease surveillance to identify geographical 
areas of elevated disease risk and for the early detection of disease outbreaks. With a scan statistic, a scanning window 
of variable location and size moves across the map to evaluate thousands of overlapping windows as potential clus-
ters, adjusting for the multiple testing. Almost always, the method will find many very similar overlapping clusters, and 
it is not useful to report all of them. This paper proposes to use the Gini coefficient to help select which of the many 
overlapping clusters to report.

Methods: The Gini coefficient provides a quick and intuitive way to evaluate the degree of the heterogeneity of the 
collection of clusters, which is useful to explain how well the cluster collection reveal the underlying true cluster pat-
terns. Using simulation studies and real cancer mortality data, it is compared with the traditional approach for report-
ing non-overlapping clusters.

Results: The Gini coefficient can identify a more refined collection of non-overlapping clusters to report. For exam-
ple, it is able to determine when it makes more sense to report a collection of smaller non-overlapping clusters versus 
a single large cluster containing all of them. It also fulfils a set of desirable theoretical properties, such as being invari-
ant under a uniform multiplication of the population numbers by the same constant.

Conclusions: The Gini coefficient can be used to determine which set of non-overlapping clusters to report. It has 
been implemented in the free SaTScan™ software version 9.3 (www.satscan.org).

Keywords: Scan statistic, SaTScan, Cluster detection, Cancer mortality, Log likelihood ratio, Cluster reporting size, Gini 
coefficient, Spatial statistics, Disease surveillance
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Background
Spatial and spatio-temporal scan statistics play an 
increasingly important role in public health surveil-
lance. Cluster-detection tools based on these statistics 
have been broadly utilized in identifying geographic 
patterns and clusters of chronic diseases [1], detect-
ing outbreaks of communicable diseases [2, 3], as well 
as linking possible risk factors to disease outcomes [4]. 

A likelihood-based approach allows the scan statistic to 
identify clusters and evaluate if they are statistically sig-
nificant, adjusting for the multiple testing inherent in the 
many potential cluster locations and sizes.

A variable sized candidate area (scanning window) lit-
erally scans across the study region. For each window, 
the likelihood is calculated and the candidate area with 
the maximum likelihood defines the most likely cluster. 
Several methods have been proposed in this class. This 
includes circular and elliptic spatial scan statistics [5, 6], 
as well as non-parametric spatial scan statistics that aim 
to detect irregular shaped cluster. The latter are non-
parametric in terms of the spatial cluster shapes, not in 
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terms of the likelihood functions, and they include e.g. 
Duczmal and Assunção’s [7] simulated annealing scan 
statistic, Tango’s [8] flexibly shaped spatial scan statistic, 
Patil and Taillie’s [9] upper-level set scan statistic, Gang-
non and Clayton’s [10, 11] likelihood-based method, 
Costa et  al.’s [12, 13] spanning tree scan statistics, and 
Duczmal et al.’s [14] genetic algorithm scan statistic.

Many studies have been conducted on the statistical 
power of scan statistics with predefined varying shapes 
and sizes. As one would intuitively expect, the circular 
spatial scan statistic has best power for compact clusters 
while non-parametric scan statistics have best power for 
irregularly shaped clusters [15–19]. Specifically, Huang 
et  al. [17] performed an intensive simulation study on 
power and sample size requirements for tests with differ-
ent spatial patterns in terms of geographic locations and 
relative risks. They found that the elliptic version per-
forms well for cluster detection in data with a variety of 
spatial patterns. Based on their findings, we focus on the 
elliptic purely spatial scan statistic but the principles and 
theory described here applies to other likelihood-based 
methods and the space–time scan statistics as well.

The spatial scan statistic requires a maximum spatial 
window size (MSWS). In the SaTScan™ software, this can 
be defined based on the size of the population or the geo-
graphic area of the study region. The maximum spatial 
window size is often defined to be less than or equal to 
50 % of the total population at risk (Table 1). Ribeiro and 
Costa [20, 21] explored different values for the maximum 
cluster size and suggested that performance is sensitive 
to the maximum cluster size chosen by the user. This is 
natural. With a larger maximum, a much larger set of 
potential clusters are evaluated, so there is more multi-
ple testing to adjust for. More importantly, with a smaller 
maximum, larger clusters are not evaluated and cannot 
therefore be found. A general guideline is to select the 
maximum so that any clusters larger than that maximum 
is of no public health interest. While it has sometimes 
been done (Table  1), one should never run the analysis 
multiple times using different values for the maximum. 
If that is done, then those analyses performed with a 
smaller maximum will not adequately adjust for the 

multiple testing that was done when also evaluating the 
larger clusters. If multiple maxima were used by mistake, 
one should report the p values from the largest maximum 
used.

When rejecting the null hypothesis in a spatial scan 
statistic analysis, there are almost always multiple sta-
tistically significant clusters that overlap each other and 
the number can be in the thousands. While the SaTScan 
software can provide all of these overlapping clusters, 
it is not meaningful to report all of them, since many of 
them are almost identical. As the default, SaTScan has 
reported clusters hierarchically, first reporting the clus-
ter with the maximum likelihood, and then reporting the 
one with the maximum likelihood among the remaining 
clusters that do not overlap an already reported cluster. 
When using a large maximum window size, the maxi-
mum likelihood will sometimes be obtained for a large 
cluster that contains several smaller clusters, and it is 
not always clear whether it is better to report one large 
cluster or several smaller ones. The decision on which 
collection of clusters better represents the underlying 
patterns is currently very subjective due to a lack of sys-
tematic ways to evaluate the cluster models. Specifically, 
as we will see later, the hierarchical approach may turn 
up with unnecessarily large and less informative clusters. 
Within a pre-determined maximum cluster size such as 
50 % of the population at risk, the goal of the Gini coef-
ficient, which we propose in this paper, is to determine 
the best collection of non-overlapping statistically signifi-
cant clusters to report, from among the many thousands 
of statistically significant and highly overlapping clusters 
that the spatial scan statistic finds.

Most likely cluster and statistical inference
Suppose we have a geographical region partitioned into 
sub-regions such as counties or census tracts. The areas 
are represented either by their geometrical or population 
weighted centroids using the longitude and latitude coor-
dinates, their age and gender specific population at risk, 
and the number of cancer cases in each area. Centered at 
each centroid, the spatial scan statistic uses a very large 
collection of overlapping circles of continuously varying 

Table 1 Selection of maximum spatial window size in 81 recent publications

Using Google Scholar, we ran a search of publications with both words “SaTScan” and “cancer” published during 2015 and yielded 156 results. Restricting the search to 
scientific papers published in peer-reviewed journals in English, we found a total of 81 papers using the SaTScan™ software (www.satscan.org). This table summarizes 
the maximum spatial window size (MSWS) used in these 81 papers. 8 papers (10 %) erroneously (see reason in “Maximum spatial window size of reported clusters” 
section) used multiple MSWS ranging from 2 to 4 choices, with 50 % always included as one of them

Maximum spatial window size <5 % 10 % 15 % 25 % 30 % 50 % Multiple maxima Distance based Not specified Total

# of pub. 5 3 1 5 1 22 8 13 23 81

% of pub. 6 4 1 6 1 27 10 16 28 100

http://www.satscan.org
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radius to define a set of potential clusters. Alternatively, 
the method uses a collection of ellipses with continuously 
varying lengths and widths for a predefined set of shapes 
and directional angles. An MSWS is defined in terms of 
geographical area or as a percentage of total population 
at risk. To define a cluster, the maximum is never chosen 
as more than 50 % of the total population at risk.

Let Z be the collection of all the geographic units in 
study region S. Zone z consists of neighboring geo-
graphic units (e.g. counties) and can have varying shapes 
and sizes. Let cz and nz be the observed number of cases 
and the expected number of cases (or population) in 
zone z, respectively. Then C =

∑

z cz and N =
∑

z nz 
will be the total number of cases and the total number of 
expected cases in S. For cancer incidence and mortality, a 
Poisson model is typically chosen. The likelihood ratio [5] 
of a zone z is then given by

If there is interest in scanning for ‘negative clusters’ 
with a lower rate than expected, the indicator func-
tion is replaced by I(cz  <  nz) and if the interest is in 
clusters of both higher and lower rates, the indicator 
function is removed. It is equivalent but numerically 
easier to work with the logarithm, and the test statistic 
is T = maxz log(LR(z)) = maxz LLR(z). That is, the most 
likely cluster is the scanning window z ∈ Z, which maxi-
mizes the log likelihood ratio.

The test statistics T follows approximately an extreme 
value distribution [22, 23], but the exact distribution is 
unknown, so statistical significance is evaluated using 
Monte Carlo hypothesis testing. This is done by creat-
ing a large number of random data sets generated under 
the null hypothesis that there is no cluster, and calculat-
ing the value of the test statistic for each of those random 
data sets. The Monte Carlo p value is then calculated as r/
(1 + m) where r is the rank of the test statistic from the 
real data set among all the random data sets and m is the 
number of random data sets. For example, with a statis-
tical significance level of α = 0.05, the cluster will cause 
a rejection of the null hypothesis if its likelihood ratio 
is within the highest 5 % among all the maximum likeli-
hood ratio from the one real and the m random data sets.

Calculations were performed using SaTScan™ version 
9.3.

Secondary clusters
In addition to the most likely cluster, it is also of inter-
est to know if there are additional clusters present in 
the data. The secondary clusters in the real data are also 
compared to the most likely clusters in the random data 

(1)LR(z) =

{

(

cz

nz

)cz
(

C − cz

N − nz

)C−cz
}

I(cz > nz)

sets. In this way, they are only statistically significant if 
they can reject the null hypothesis on their own strength, 
irrespective of whether the more likely clusters are true 
clusters or not. Most secondary clusters overlap with and 
some only differ slightly with a more likely cluster. While 
these secondary clusters are always evaluated as part of 
an analysis, it is not meaningful to report all of them. 
The SaTScan software has several options on how to 
report overlapping clusters. In version 9.1 and earlier, the 
default was a hierarchical option of only reporting clus-
ters that do not overlap with an already reported more 
likely cluster. A consequence of this is that a large most 
likely cluster can hide several smaller distinct clusters, 
and the hierarchical approach is not necessarily the best 
way to select a set of non-overlapping clusters to report.

Maximum spatial window size of reported clusters
Since the spatial scan statistic evaluates clusters of differ-
ent window sizes, it is critically important to adjust for 
the multiple testing generated by all the different window 
sizes considered. This means that it is incorrect to run 
the scan statistic multiple times with different values for 
the MSWS, and then select the clusters with the lowest p 
value. When doing so, one does not properly adjust for 
all the multiple testing conducted, and the p values will 
be biased. It is not always the most likely cluster that is 
of primary importance though, and a set of smaller sub-
clusters can sometimes be of greater interest. It is per-
fectly fine to report only those and their corresponding 
p values, as long as proper multiple testing adjustment 
is made for all the smaller and larger clusters that were 
also evaluated in the analysis. One way to do this in the 
SaTScan software is to rerun the analysis and request that 
it only report clusters of a certain maximum size, while 
still adjusting for the multiple testing inherent in all the 
sizes considered in the other prior analyses of the same 
data, by keeping the MSWS fixed at a larger value. This 
is an advanced feature in the SaTScan software, and mul-
tiple analyses can be done repeatedly on the same data 
with the same fixed MSWS (e.g. 50 %) but with different 
maximum reported cluster sizes (MRCS, e.g. 5, 10, 20, 
and 50 %).

As the sizes of reportable clusters increases, SaTS-
can often reports a bigger cluster with a size close to the 
MRCS rather than clusters of smaller or medium size. 
This is because two or three small clusters close to each 
other may have a larger likelihood when combined into 
one big cluster even if there are few observed cases in 
between the clusters. An example is given in Figs. 1 and 
2 where the 2006 U.S. female lung cancer mortality data 
are used to illustrate the phenomenon. The cancer mor-
tality data were provided by the National Vital Statistics 
System [24] and accessed through the SEER*Stat software 
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[25]. In both Figures, SaTScan is run with the MRCS at 
various levels expressed as percentage in the population. 
Under each user-provided MRCS, clusters are reported 
in SaTScan and presented here. Figure  1 shows the 
MRCS (expressed as a percentage in population) as the 
horizontal axis. The vertical axis represents the percent-
age of population in each reported cluster, over the total 
U.S. female population in 2006. The dashed line is the ref-
erence that the percentage of cluster population equals 
to the MRCS. Each dot represents a cluster detected at 
the corresponding MRCS. Figure 2 selects four levels of 
MRCS, i.e., MRCS =  2, 15, 25, and 50  % of population, 
and maps the clusters detected at the corresponding 
MRCS. Each cluster is illustrated with a difference colour 
and the relative risk (RR) is labelled on the cluster. When 
the MRCS is restricted at 2  % of population, SaTScan 
detects a total of 16 clusters with RR ranging between 
1.18 and 2.81 (Fig.  2). Every cluster has a population 
below the level of MRCS, i.e. 2  % of the total popula-
tion (Fig. 1). When the MRCS increases, smaller clusters 
merge into larger ones and the RR’s in the larger clusters 
tend to be smaller as more and more areas are merged 
into them. When the MRCS is set at the SaTScan default 
of 50 % of population, a cluster that accounts for 47 % of 
U.S. female population is detected with RR of 1.2, along 
with a small cluster in the northwest of U.S. with RR of 
1.24. Figure 1 also shows that at each level of the MRCS, 
SaTScan always reports a large cluster with the percent-
age of population very close to the level of MRCS, and 
the smaller clusters are simply merged into larger ones 
when the MRCS increases. This observation is true not 

only for female lung cancer mortality but also for many 
other cancer sites that we examined, including female 
breast cancer, prostate cancer, ovary cancer, bladder can-
cer, and cervical cancer (data not shown), although obvi-
ously not for all data sets.

With the Gini coefficient, we will try to find a suitable 
and informative collection of non-overlapping clusters 
to report, avoiding overly large clusters with relatively 
small RR (such as the cluster with 47  % of population 
and RR = 1.2), as well as many tiny clusters that may blur 
the big picture of the geographic pattern. The proposed 
methods in this paper will help to identify clusters with 
meaningful RR as well as distinct geographic distribution 
pattern.

An important question is whether there is more evi-
dence for a few larger clusters or several smaller ones. 
Another question is which clusters to present in a pub-
lic health or epidemiological research study, if we only 
want to report non-overlapping clusters. In this paper, we 
propose a criterion for selecting a set of non-overlapping 
clusters to report based on the Gini coefficient. Findings 
from both simulated data and real cancer mortality data 
show that the Gini coefficient is able to determine when 
it makes more sense to report a collection of smaller non-
overlapping clusters versus a single large cluster con-
taining all of them. It will sometimes avoid overly large 
clusters with relatively small relative risk (RR), such as the 
cluster with 47 % of population and RR = 1.2, in favour of 
a few smaller clusters with higher RR. Compared to using 
a small MRCS, it will sometimes avoid reporting many 
tiny clusters that may blur the big picture of the geo-
graphic pattern.

Methods
Lorenz curve and Gini coefficient
In economics, the Lorenz curve [26] is often used to 
explain and measure the heterogeneity of the wealth dis-
tribution. It is a graphical representation of the cumulative 
distribution function of the empirical probability distri-
bution. The basic format of the graph is a square divided 
into two symmetric isosceles right triangles (as illustrated 
in Fig. 3). In this illustration, point Ai(ci, ni) denotes that 
the bottom ni % of population own ci % of total wealth and 
point Ai’s are ordered so that the ni are in non-decreasing 
order. Line OC in the triangle (line y = x) depicts a per-
fectly equal wealth distribution and is used as the refer-
ence line. The two legs of the triangle, OB and BC, depict 
the perfectly unequal wealth distribution, i.e., no house-
hold owns any wealth except for the very last one which 
owns all the wealth in the whole society. Curve OA1A2A3C 
inside the triangle is called the Lorenz curve and describes 
the observed wealth distribution. The Lorenz curve is 
then compared to the reference line OC, the line for the 

Fig. 1 Sizes of clusters by the maximum spatial window size (U.S. 
Female Lung Cancer Mortality, 2006)



Page 5 of 11Han et al. Int J Health Geogr  (2016) 15:27 

perfectly equal wealth distribution. The Gini coefficient 
[27, 28] is a common measure to describe the behaviour 
of the Lorenz curve. It is simply the ratio of the areas 
OA1A2A3C and OBC. Since area OBC accounts for ½ of 
the whole square, the denominator in the Gini coefficient 
is often taken as ½, hence the value of the Gini coefficient 
of a Lorenz curve is two times the shaded area. The Lor-
enz curve and Gini coefficient were originally developed to 
measure wealth inequality, and have been extended in the 
area of health disparity in the recent decade. [29–31].

Here we apply the methods of the Lorenz curve and the 
Gini coefficient to describe collections of disease clusters. 
If there is a significant cluster in the study region, then 
the distribution of disease cases tends to be concentrated 
in the cluster, pushing the Lorenz curve further away 
from the reference line, and the value of the Gini coeffi-
cient will be higher. In Fig. 3, the cumulative percentages 
of expected cases are on the x-axis and the cumulative 
percentages of diseases (for example, new cases from 
cancer) are on the y-axis. The reference line is present-
ing a perfect equality (or randomness) in the distribution 
of the deaths, when the cumulative percentages of new 
cases are exactly the same as the cumulative percent-
ages of the expected cases, i.e. there are no statistically 
significant clusters. When comparing several competing 

collections of non-overlapping clusters, the one with the 
highest Gini coefficient value should be chosen as the 
cluster collection to report.

Fig. 2 Spatial clusters and the relative risks at various maximum spatial window sizes (U.S. Female Lung Cancer Mortality, 2006; Clusters are identi-
fied in colour with relative risks labelled on clusters.)

Fig. 3 Illustration of Lorentz curve and Gini coefficient for a cluster 
model with three clusters
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In the illustration of Fig.  3, the x- and y-axes repre-
sent the cumulative percentages of observed cases and 
expected cases, respectively. Each cluster Ai has coordi-
nates (ci, ni). The origin point O’s coordinates are (0, 0) 
and point C has coordinates (cI+1, nI+1) = (1, 1). The rela-
tive risk for cluster Ai is calculated as ci−ci−1

ni−ni−1
. The clusters 

are sorted so that the relative risks of cluster Ai’s are non-
increasing. Note that

and

By definition, the Gini coefficient is two times of the 
shaded area, and can be expressed as

where c0 = n0 = 0 and cI+1 = nI+1 = 1. With some alge-
bra, Gini coefficient can also be expressed as

Theoretical features of Gini coefficient
The value of the Gini coefficient is between 0 and 1, with 
higher values indicating higher disparity in the clus-
ters. In selecting clusters to report, the cluster set with 
the highest Gini coefficient value is picked. A nice prop-
erty of the Gini coefficient is that it is unchanged if the 
population in all locations are multiplied by the same 
constant. There are four other important theoretical fea-
tures that we think that any reasonable selection criterion 
should have, and we show that the Gini coefficient satis-
fies all of them. The four features can be expressed as: (1) 
If two sets of clusters have the same number of clusters 
and same expected number of cases, the set with more 
cases should be selected; (2) If two sets of clusters have 
the same number of clusters, and one set has more cases 
and expected cases than the other and the excess num-
ber is the same for both cases and expected cases, then 
one should select the cluster set with fewer expected 
cases; (3) If one set of clusters contain all the clusters in 
the other set, then the set with more clusters should be 
selected; and (4) If one set has fewer clusters than the 
other but the total number of cases and expected cases 
are the same for the two clusters, the set with fewer clus-
ters should be selected.

To prove that Gini coefficient has all the four features, 
the following notation is used. Two sets of clusters, set 
1 and set 2, are being considered, with the number of 

(2)ci ≥ ni

(3)
ci − ci−1

ni − ni−1
≥

ci+1 − ci

ni+1 − ni

(4)G = 1−

I+1
∑

i=1

(ni−1 + ni)(ci − ci−1)

(5)G =

I+1
∑

i=1

(nici−1 − ni−1ci)

clusters being I1 and I2, respectively. In each cluster i, 
the number of expected cases are ni,1 and ni,2, and the 
number of observed cases are ci,1 > ni,1 and ci,2 > ni,2. The 
Gini coefficients are G1 and G2 for cluster set 1 and set 2 
respectively. Here we will show that the Gini coefficient 
satisfies the following theoretical criteria.

Theorem 1 If I1 = I2 = I, ni,1 = ni,2 = ni for all i, ci,1 ≥ ci,2 
for all i, and ci,1 > ci,2 for at least one i, then G1 > G2. This 
criterion guarantees that when comparing two sets of 
clusters with the same number of clusters and the same 
expected counts, the set with uniformly more cases is 
selected to be reported.

Proof It can be shown that the difference in the Gini 
coefficients for the two sets of clusters, G1 and G2, is cal-
culated as

Using similar algebra, we can prove the following fea-
tures are also true for Gini coefficients.

Theorem 2 If I1 = I2, ni,2 = ni,1 + k and ci,2 = ci,1 + k 
for all i, and k ≥ 0, then G1 ≥ G2. This feature means that 
when comparing two sets of clusters with the same excess 
count (ci − ni), the selection rule will favour the set with 
the smaller expected counts.

Theorem 3 If I1 > I2, ni,j = n and ci,j = c for all clusters 
i in both sets j, then G1 > G2. This criterion means that if 
there are multiple identical clusters in the two sets to be 
considered, the one with more clusters will be picked.

Theorem  4 If I1 ≤ I2, 
∑I1

i=1 ci,1  = 
∑I2

i=1 ci,2 and 
∑I1

i=1 ni,1 =
∑I2

i=1 ni,2, then G1 ≥ G2. This criterion states 
that if there are multiple clusters, and they can be joined 
into a fewer number of clusters without adding anything 
else, then the set with the joined clusters is preferred.

Data and simulation examples
In order to evaluate the performance of the Gini coef-
ficient, we use both actual cancer mortality data and 
simulated data on selected cancer sites. To gain a com-
plete understanding of the performance of the proposed 

G1 − G2 =

I+1
∑

i=1

[(ni,1ci−1,1 − ni−1,1ci,1)− (ni,2ci−1,2 − ni−1,2ci,2)]

=

I+1
∑

i=1

[(nici−1,1 − ni−1ci,1)− (nici−1,2 − ni−1ci,2)]

=

I+1
∑

i=1

[(ni(ci−1,1 − ci−1,2)− ni−1(ci,1 − ci,2)] > 0
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criteria, we select cancer sites of various levels of fre-
quency. For rare cancers, the total number of deaths in a 
single year will be too small to produce reliable estimates 
of relative risks, so multiple years of data are aggregated 
to mitigate this problem. Table  2 lists the selected can-
cer sites, the total number of deaths for these cancers in 
year 2006, and the time span the mortality data are aggre-
gated. In addition to the actual cancer mortality data, for 
each cancer site, simulated data are created to evaluate 
the proposed criterion. The simulated cancer mortality 
data are created based on the Gini chosen clusters for the 
actual mortality data, with the same level of relative risks 
for the clusters.

The other simulated data are from the Northeastern 
USA benchmark data sets published on the SaTScan 
website www.satscan.org/datasets.html and described 
in detail before [15]. We use several simulated data sets 
from this source with both 600 and 6000 cases. Three 
different sets of local clusters are constructed in a rural, 
urban, and mixed urban/rural area respectively. Within 
each of these three sets, cluster sizes vary with 1, 2, 4, 8, 
and 16 counties respectively. The data sets rural, urban 
and mixed contain single hot-spot clusters around Grand 
Isle, New York City, and Pittsburgh respectively.

In situations that one big cluster or several small clus-
ters exist in a study area, the hierarchical way of report-
ing clusters in SaTScan will usually detect one big cluster 
in both situations when 50 % is set as the maximum spa-
tial window size. The Gini coefficient may perform better 
and settle on one big cluster in the first case and a few 
smaller ones in the other. To evaluate this, the third sim-
ulated data is created using the same geographical area as 
the Northeastern USA benchmark data. Large and small 
clusters are created in the same area, as shown in Fig. 4. 
Configuration A (urban center with small rural clus-
ters) consists of a large cluster of counties with an urban 
area in its center (Albany, NY) and three smaller clus-
ters within the same area that consist of rural counties. 

Configuration B (rural center with small urban clusters) 
consists of a large cluster of counties with a rural area in 
its center and three smaller clusters within the same area 
that consist of urban counties (Albany, NY, Syracuse, NY, 
and Scranton, PA).

Results
Table 3 shows the optimal maximum reported cluster size 
(MRCS) chosen based on the Gini coefficient for both 
actual and simulated cancer mortality data. The clusters 
reported with either the best MRCS, or the second best 
MRCS when a 50 % MRCS is identified as the optimal, are 
used to create the simulated data. The second best MRCS 
is shown in parentheses under the “Actual Data” column. 
With the total number of cases fixed as in Table  2, we 
generate simulated datasets for each of the eight cancer 
sites. For male lung cancer mortality, Gini reports 50 % 
as the optimal MRCS, and the second best MRCS is of 
size 10 %. The simulated male lung cancer mortality data 
is then created using the cluster model reported at the 
10  % MRCS level. Gini coefficient correctly identifies 
10  % as the optimal MRCS for the simulated data. For 
the actual female lung cancer mortality data in 2006, Gini 
coefficient picks 15 % as the optimal MRCS. In the simu-
lated female lung cancer mortality data, Gini coefficient 
correctly identifies 15  % as the optimal MRCS as well. 
Actually, the Gini coefficient always identifies the cor-
rect MRCS for all the eight simulated data in Table 3. For 
actual female lung cancer mortality data in 2006, Fig.  5 
plots the value of Gini coefficient at the various MRCS 
levels. MRCS with the highest Gini value, at 15 % of pop-
ulation, is the optimal cluster reporting size.

Another simulation study is based on the Northeast-
ern USA benchmark data sets. Data sets rural, urban, 
and mixed contain one cluster in a rural, urban, or mixed 
urban/rural area, respectively. Table 4 shows the optimal 
MRCS determined by the Gini coefficient values using 
the Northeastern USA Benchmark data with either 600 
or 6000 total cases. As shown in the table, as the num-
ber of counties in the cluster increases, the percent of 
population in the “true” cluster increases, and the MRCS 
picked by the Gini coefficient varies, depending on the 
location of the cluster. If the true cluster is located in a 
rural area, then the MRCS required to pick the right clus-
ter is 1 or 2 % in most cases, because the percentage of 
population in the true cluster is always below 2 %. If the 
true cluster is in an urban area, then as the number of 
counties increase in the cluster, so does the population in 
the cluster (from 2.7 to 25.8 % of all the population in the 
study area). The optimal MRCS increases from 3 to 40 % 
in the scenario of 600 cases and from 3 to 30 % in the sce-
nario of 6000 cases. If the true cluster is located in a mix 
of rural and urban areas, the optimal MRCS remains in 

Table 2 Cancer sites of  the actual US cancer mortality 
data, 2006

Cancer site Total number  
of deaths

Years of data 
aggregation

Lung, male 88,791 2006

Lung, female 69,037 2006

Breast 40,600 2006

Prostate 28,256 2006

Ovary 14,781 2002–2006

Bladder, male 9368 2000–2006

Bladder, female 4049 2000–2006

Cervical 3953 2000–2006

http://www.satscan.org/datasets.html


Page 8 of 11Han et al. Int J Health Geogr  (2016) 15:27 

Fig. 4 Simulated cluster configurations with one large cluster and three smaller clusters. a Urban center with small rural clusters. b Rural center 
with small rural clusters
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the level close to the percent of population in the true 
cluster. In the case of two or multiple clusters (data not 
shown), there is not much difference in the MRCS as the 
number of counties increase in the cluster.

In the third simulation study, we examine the behavior 
of the Gini coefficient when a large cluster or three small 
clusters exist in the same regions. The hierarchical way 
of reporting clusters in SaTScan will more likely report 
the single large cluster in both situations, while the Gini 
coefficient can identify the correct large or small clusters 
more often. Table 5 presents the details of the simulated 
data, which includes number of counties, the population 

size, percent of population over the study area, and rela-
tive risk in each of the large or small clusters in the two 
configurations described in Fig.  4. The relative risks are 
calculated using the algorithm in Kulldorff [15] to guar-
antee a statistical power of 0.999 under the alternative 
hypothesis of significant disease clusters. A total of 1000 
replications of each configuration are created. Table  5 
shows that for the Gini coefficient and the SaTScan hier-
archical approach, what percent of the 1000 replications 
report 1, 2, 3, or 4+ clusters in each of the “One Large 
Cluster” or “Three Small clusters” scenarios. A better 
criterion will show higher percentage for 1 cluster in the 
“One Large Cluster” columns and 3 clusters in the “Three 
Small clusters” columns. If only one large cluster exists, in 
both urban center and rural center scenarios, the SaTS-
can hierarchical approach always identifies 1 large cluster, 
while Gini detects 1 large cluster 90 % of the time in the 
urban center and only 76 % of the time in the rural center. 
When 3 small clusters exist, SaTScan correctly detects 3 
small clusters 46  % of the time in the urban center and 
only 11 % of the time in the rural center scenarios. Gini 
coefficient outperforms the hierarchical approach with 85 
and 56  % correct reporting respectively. While the hier-
archical approach does slightly better when there is one 
large cluster, the Gini coefficient does a lot better when 
there are many small clusters. Generally, Gini coefficient 
tends to report smaller multiple clusters while the hierar-
chical approach tends to report fewer and larger clusters.

Table 3 Optimal maximum reported cluster size (MRCS, 
in  percent of  population) chosen by  the Gini coefficient 
for actual cancer mortality data and simulated cancer mor-
tality data

a Numbers in parentheses are the second best MRCS chosen by Gini coefficient

Cancer site Year(s) Actual dataa Simulated data

Male lung 2006 50 (10) 10

Female lung 2006 15 (10) 15

Breast 2006 30 (25) 30

Prostate 2006 10 (2) 10

Ovary 2002–2006 25 (30) 25

Male bladder 2000–2006 5 (10) 5

Female bladder 2000–2006 50 (15) 15

Cervical 2000–2006 5 (10) 5

Fig. 5 Values of Gini and CLIC at various maximum spatial window 
sizes for U.S. Female Lung Cancer Mortality, 2006

Table 4 Optimal MCRS identified by  the Gini coefficient 
in the Northeastern USA benchmark data

# counties % pop in cluster Optimal MRCS (%)

600 cases 6000 cases

Rural

 1 0.01 1 1

 4 0.5 1 1

 8 0.7 1 2

 16 1.2 1 2

Urban

 1 2.7 3 3

 4 3.6 10 10

 8 10.0 20 25

 16 25.8 40 30

Mixed

 1 2.4 6 3

 4 2.8 5 5

 8 3.8 6 6

 16 5.7 6 6
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Discussion
The spatial scan statistic will almost always find multi-
ple overlapping statistically significant clusters, and it 
is not useful to report all of them. Some users have uti-
lized multiple different maximum spatial window sizes 
(MSWS) in an attempt to find most important clusters, 
but that is invalid from a statistical perspective since 
it does not appropriately account for the multiple test-
ing. Keeping the MSWS fixed, it is valid to try different 
maximum reported cluster sizes (MRCS), but there has 
not been an objective criterion for deciding which collec-
tion of clusters to present. In practice, the MRCS is either 
determined arbitrarily in an ad-hoc manner or set at 50 % 
of the population. We found that setting MRCS at 50 % 
often results in unnecessarily large and less informative 
clusters.

Conclusions
We propose to use the Gini coefficient as a more intui-
tive and systematic way to determine the best collec-
tion of clusters to report. It is not intended to evaluate 
the statistical significance of disease clusters; instead, it 
is developed to select a suitable and informative collec-
tion of non-overlapping cluster to report, among the 
many overlapping clusters identified by the spatial scan 
statistics. Hence, instead of replacing the spatial scan sta-
tistics, Gini coefficient enhances the spatial scan statistics 
by providing a criterion to select the collection of non-
overlapping clusters to report. It identified the correct 
clusters in simulation studies and performed better than 
the hierarchical cluster reporting option. It also has the 
important property of being invariant under a uniform 

multiplication of the population numbers by the same 
constant. Gini coefficient is also shown to satisfy other 
important theoretical features.

The Gini coefficient has been implemented in the free 
SaTScan™ software version 9.3 (www.satscan.org).
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Table 5 Comparison of the Gini coefficient and the hierarchical cluster reporting criteria using the simulated cluster con-
figurations in the Northeastern USA

(A) Urban centre with small rural clusters (B) Rural centre with small urban clusters

One large cluster Three small clusters One large cluster Three small clusters

# counties 57 11 40 6

Total population in clusters (%) 4,344,150 (14.7) 681,984 (2.3) 2,736,674 (9.3) 780,451 (2.6)

Relative risk 1.18 1.46 1.23 1.43

Gini

 1 90 % 0 76 % 15 %

 2 1 % 12 % 13 % 28 %

 3 0 85 % 4 % 56 %

 4+ 9 % 2 % 7 % 1 %

Hierarchical

 1 100 % 2 % 100 % 64 %

 2 0 52 % 0 25 %

 3 0 46 % 0 11 %

 4+ 0 0 0 0

http://www.satscan.org
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