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Abstract
Soft interactions with high-energy jets are explored in radial coordinates which exploit the ap-

proximately conformal behavior of perturbative gauge theories. In these coordinates, the jets,

approximated by Wilson lines, become static charges in Euclidean AdS. The anomalous dimension

of the corresponding Wilson line operator is then determined by the potential energy of the charges.

To study these Wilson lines we introduce a “conformal gauge” which does not have kinetic mixing

between radial and angular directions, and show that a number of properties of Wilson lines are

reproduced through relatively simple calculations. For example, certain non-planar graphs involv-

ing multiple Wilson lines automatically vanish. We also discuss the linear growth of the charges’

imaginary potential energy with separation, and a relationship between Wilson line diagrams and

Witten diagrams.
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1. INTRODUCTION

The richness of quantum chromodynamics is hidden in its deceptively simple Lagrangian

L = −1
4
F 2
µν + qiD/ q−mqq. At low energy, the theory has a mass gap ∼ ΛQCD and a discrete

set of bound states. At high temperature it forms a quark-gluon plasma. At high energy,

another phenomenon emerges: jets. The preference for producing collimated jets arises

from logarithmic enhancement due to collinear and soft singularities. The cross section

for production of quarks alone is not infrared safe, but the cross-section for production

of jets, built from quarks accompanied by collinear and soft radiation, is a calculable and

well-defined quantity.

Another way to think about jets is through Sudakov logs. For example, consider the mass

of a jet mJ computed in perturbation theory, assuming massless quarks. At leading order,

the distribution is singular, dσ/dm2
J ∝ δ(m2

J), since there is no radiation. At higher orders,

the distribution contains terms like αs
1

m2

J
ln

m2

J

Q2 where Q is a typical hard scale, like the jet

energy. In terms of the integrated jet mass R(m2
J) =

∫ m2

J

0
dm′2(dσ/dm′2), the series has the

structure

R(m2
J) = 1 + αs ln

2 m
2
J

Q2
+ α2

s ln
4 m

2
J

Q2
+ · · · (1)

The coefficients of these terms and the precise definition of Q depend on the particular

process, and for simplicity, we have only shown the leading large logarithms. These logs

are Sudakov double logs, of the form αn
s ln

2n x. They come from the region of overlapping

soft and collinear divergences and are present in any gauge theory with massless charged

particles. Sudakov logs invalidate the perturbation expansion. However when one re-sums

the series, the final non-perturbative expression, schematically R(m2
J) = exp(−αs ln

2 m2

J

Q2 )

vanishes at m2
J = 0 implying that the cross section for producing massless quarks is zero.

The objects that are produced are jets, of finite mass. The coefficient of the Sudakov log in

this exponential is a function of the coupling constant Γcusp(αs) called the cusp anomalous

dimension.

Sudakov logs and the cusp anomalous dimension are simplest to study in the soft limit of

QCD, where one treats a massless parton (quark or gluon) as a hard charged object plowing

through a background of soft radiation. The soft radiation cannot change the direction or

energy of the hard parton, and so the parton factorizes out as a Wilson line source for soft

gluons. This treatment of soft radiation becomes manifest when using QCD factorization

theorems to describe hard collisions, see the reviews [1, 2], or when using soft-collinear

effective theory (SCET) [3–7] to describe the interaction of soft and collinear partons in

hard collisions. Thus using Wilson line operators the soft interaction properties of jets can

be investigated. Wilson lines also appear in the study of scattering in planar N = 4 SYM,

via a surprising duality relating null polygonal loops to scattering amplitudes [8–15].

A Wilson line is defined as

W(C) = P exp

(

ig

∫

C

Aµdx
µ

)

, (2)

where C is a contour describing the path of the partons and P denotes path-ordering,

along the contour. Typically, one takes C to be a simple closed contour, and makes W
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gauge invariant by taking a trace. We will be creating gauge invariants using W in more

complicated ways. For example, a process like e+e− → hadrons is, to leading order in αs,

described by e+e− → qq with the quarks traveling off in the nµ
1 = (1, ~v) and nµ

2 = (1,−~v)
directions. In this case, we can write W(C) as the product of two Wilson lines from 0 to ∞
along n1 and n2, with one in the fundamental and one in the anti-fundamental representation.

More generally, for N -jet production in e+e− collisions or (N − 2)-jet production in pp

or pp collisions, we are interested in a product of N Wilson lines along directions nµ
i ,

Wd1,··· ,dN (n1, · · · , nN) = tc1,...,cN

N
∏

i=1

(

P exp ig

∫ ∞

0

ds ni ·Aa(s ni)T
a
i

)ci

di

. (3)

The lines here are all outgoing. For an incoming Wilson line we simply replace the path-

ordering, P, by anti-path ordering, P, and replace the ig with −ig. Let us take a moment to

explain the remaining notation. The Ti are gauge generators in the color representation Ri

associated with parton i. They satisfy [Ti,Tj] = 0 for i 6= j, along with the color conservation

relation
∑

i Ti = 0. For light quarks and gluons the directions nµ
i are light-like, n2

i = 0, while

for heavy quarks like the top where mass effects are important, we have n2
i 6= 0. To keep

our discussion general we will mostly work with n2
i 6= 0. Often in the literature the time-like

component of nµ
i is taken to be positive, and the integration along the path extends from

s = 0 to ∞ for outgoing partons and from s = −∞ to 0 for incoming partons. For simplicity

we will always take s = 0 to ∞ and let nµ
i have a negative time-like component for incoming

particles.1

W depends on a tensor tc1,...,cN , where the ci denote the color indices at s = 0. These ten-

sors live in the color-invariant subspace I of the tensor product of representations associated

with each jet

I =
(

R1 ⊗ R2 ⊗ · · · ⊗ RN

)

color singlet subspace
. (4)

In a scattering process, the short-distance physics at the origin specifies the relevant channels

and determines the tc1,...,cN , which are Clebsch-Gordan coefficients.

The di indices on Eq. (3) denote the color indices at s = ∞. Matrix elements of W(ni)

will be infrared divergent unless the di are contracted, as in various physical calculations.

For example, Wilson line matrix elements contribute to matching calculations in SCET, see

eg. [4, 16–20]. Operators describing the hard interaction for N -jet production appear in the

SCET Lagrangian as

L = Cc1,...,cN (sij)Oc1,...,cN (ni)

= C(sij)
[

χdj
nj
· · ·χdk

nk
· · · B⊥dℓ

nℓ
. . .
]

Wdj ,··· ,dk,··· ,dℓ,···(ni) , (5)

where Cc1,...,cN (sij) = tc1,...,cNC(sij) is a Wilson coefficient depending on hard scales sij =

pi · pj, where pi = niQi are the jet four-momenta at leading power (and in general we have

1 Another common convention in the literature is to use tangent vectors to the contour vµi , in place of our

n
µ
i . For a 2-jet Wilson line for e+e− → qq, the relation to our conventions is v1 = −n1 to v2 = n2, where

n1 and n2 have positive time-components.
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a sum over terms of this sort for the possible color structures tc1,...,cN ). In square brackets

are collinear quark (χnj
) and gluon (B⊥

nℓ
) fields that are each contracted in color with the

dj or dℓ indices from the Wilson line. In a matching computation the infrared divergences

from matrix elements of collinear fields and from the soft Wilson lines combine to yield

the same infrared divergences as for the corresponding matrix element in QCD, ensuring

that the Wilson coefficients C(sij) are finite. In this computation there is a cancellation of

overlapping infrared and ultraviolet divergences between the collinear matrix elements and

matrix elements involving the soft Wilson lines.

Alternatively, theWilson line can be used to calculate a soft function (for examples see [19,

21–28]), which appear in physical cross sections for hard processes with jet production,

S(k) = 〈0|Wd1,··· ,dN (ni)M̂(k)W†
d1,··· ,dN

(ni)|0〉 . (6)

In this case, the di indices of the Wilson line are contracted with those of its adjoint and the

product includes a measurement function M(k) which acts on final state soft partons, mea-

suring momentum components k. These soft functions are cross sections for soft radiation

and are infrared finite by themselves.

An important property of Wilson lines is that, even though they are non-local objects,

they are multiplicatively renormalizable. A number of features are known (or conjectured)

about the renormalization of W(C).

1. If the contour C is smooth and not self-intersecting, any ultraviolet divergences in cor-

relators of W(C) are exactly canceled by field strength and coupling constant coun-

terterms.2 For the W(ni) relevant for jet physics, the Wilson line has kinks and

self-intersections in its path at the origin, and C is not smooth. In this case additional

divergences are present and the Wilson line picks up an anomalous dimension Γ. This

anomalous dimension can only depend on the angles βij where the contour abruptly

changes direction or on crossing angles at self-intersections [29]. When the direction

of the contour changes from nµ
i to nµ

j , the cusp angle is

cosh βij =
ni · nj

|ni||nj|
, (7)

where here we consider paths where |ni|2 = n2
i 6= 0. For two jets from e+e− → qq (with

massive quarks), β12 is real. More generally, for e+e− → N jets, all the nµ
i correspond

to final state jets and each βij is real.

2. At order αs, the anomalous dimension is

Γ = −αs

π

∑

i<j

Ti · Tj ((βij − iπ) cothβij − 1) (8)

2 At least this is the case in dimensional regularization. More generally, there can be an overall linear diver-

gence proportional to the length of the Wilson line, which can also be subtracted off with an appropriate

counterterm.
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β12

n2n1

(a) e+e− to dijets

γ12

n2−n1

n1
(b) DIS

FIG. 1: Our definitions for the cusp angles β12 and γ12. β12 is real when both Wilson lines

represent final-state partons, while γ12 is real when one Wilson line represents a final state parton,

and one represents an initial state parton.

where the sum is over pairs of jet directions ni, nj . The color structure Ti ·Tj ≡ T
a
i T

a
j

involves the generators from Eq. (3). These generators allow the anomalous dimension

Γ to mix the different invariant tensors tci in Eq. (3) during renormalization group

flow. Γ is an operator on the space I, which we can write as a general expression with

generators Ti acting on the i-th tensor factor.

3. In situations like jet production in hadron collisions or deep inelastic scattering (DIS),

there are both initial state and final state Wilson lines. Initial state Wilson lines

follow paths that extend backward in time from the origin, nµ = (−1, ~v). For cusps

between initial and final state partons βij is complex, but we can define a real cusp

angle γij = βij − iπ. This alternative definition of the cusp angle is related to the

previous one by a sign

cosh γij = − ni · nj

|ni||nj|
= − cosh βij , (9)

The angles βij and γij are illustrated in Fig. 1. Whether γij or βij are complex

affects the complexity of the anomalous dimension, which has physical consequences.

For example, these factors of iπ can partly explain the large K-factor in the Higgs

production cross section [30].

4. Abelian exponentiation: The anomalous dimension in QED without propagating

quarks is one-loop exact.

5. In the limit that the tangent vectors become lightlike, n2
i → 0 and βij → ∞, the

anomalous dimension becomes linear in the cusp angles βij to all orders in perturbation

theory [29, 31, 32],

Γ = −
∑

i<j

Γij(αs)βij + . . . (10)

where “. . . ” are terms that are constant or go to zero as βij → ∞. The possibility

that Γij(αs) = Ti · TjΓcusp(αs), where Γcusp(αs) is independent of i and j, is known as

Casimir scaling. This has been shown by explicit calculations for two lines at three

loops [33], and by other arguments for multiple lines up to 4-loops [24].
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Exactly at n2
i = 0, βij = ∞ and the anomalous dimension is singular. This

singularity is due to additional overlapping soft and collinear divergences, and induces

dependence of the anomalous dimension on the renormalization group scale µ. For

example, at one loop,

Γ =
αs

π

∑

i<j

Ti · Tj ln
µ2

ni · njΛ2
+ . . . . (11)

Here Λ is another scale with dimension of mass. In matrix elements of Wilson lines,

which are infrared divergent, Λ is related to the infrared regulator. When collinear

graphs are included in the the calculation of Wilson coefficients for a hard scattering

process, as in Eq. (5), the infrared regulator will cancel and Λ will be replaced by a

hard scale Λ2 → ±QiQj . In calculating soft functions, as in Eq. (6), the infrared

divergences will cancel between real and virtual contributions, and the scale will be

replaced by a physical one, relevant to the soft function Λ2 → kikj. At all orders,

the anomalous dimension is linear in lnµ2, for the same reason that Γ is linear in

βij at large cusp angles. Proofs of Eq. (10) for two Wilson lines have been given in

Refs. [16, 31, 34], and for multiple lines in Refs. [24, 35, 36].

6. At 1-loop the anomalous dimension must be a sum over pairs of Wilson lines. Surpris-

ingly some pairwise structure seems to persist to higher orders in perturbation theory.

For example, in the massless case, the anomalous dimension of a 4-jet Wilson line at

2-loops, as a matrix in color space, was found to be exactly proportional to the 1-loop

anomalous dimension, an unexpected result [37].

It has been conjectured that for massless jets the anomalous dimension of the

N -jet Wilson line has a pairwise structure to all orders in perturbation theory for the

lnµ term [24, 35, 38–40]

Γ
?
=
∑

i 6=j

Γij
cusp(αs)Ti · Tj ln

µ2

ni · njΛ2
+ γ(αs, {nk · nℓ}) . (12)

Given Eq. (10), Eq. (12) becomes non-trivial for four or more Wilson lines where

matrices appear for the color structures. If there were a general proof of Casimir

scaling it would imply that Γij
cusp(αs) cannot depend on the representations i and j,

making the coefficient a universal function Γij
cusp(αs) = Γcusp(αs). This was conjectured

in [24, 40].

It has been furthermore conjectured that the regular anomalous dimension γ is inde-

pendent of conformal cross ratios (combinations of cusp angles βij + βkℓ − βik − βjℓ

that approach nontrivial constants as the βij → ∞), so that [24]

γ(αs, {ni · nj}) ?
=
∑

i

γi(αs) . (13)

This is known to be true to O(α2
s). At O(α3

s) and beyond general constraints on the

form of γ(αs, {ni · nj}) were reviewed in Ref. [24, 41]. Dependence on conformal cross
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FIG. 2: A coordinate change maps Minkowski space to R × AdS. In this figure the outgoing

Wilson lines become static charges in AdS, and their tree level energy in AdS is equal to the

original one-loop anomalous dimension for the lines.

ratios appears not to be forbidden by symmetry arguments, but whether this depen-

dence exists is an open question. Possible terms at O(α3
s) which were not obviously

forbidden were suggested in Ref. [41]. Very recently it was argued that these terms

are forbidden by considerations from the Regge limit in Refs. [42, 43].

Most of these results have been shown only through direct, and sometimes laborious calcu-

lations. Even a simple result, such as Abelian exponentiation, requires the use of eikonal

identities and monitoring of combinatoric factors. In this paper, we will show how some of

these results can be understood in a simple way using a mapping inspired by the approximate

conformal invariance of QCD.

At the classical level, QCD is conformally invariant. This symmetry is broken by quantum

effects, but for high energy scattering it continues to have implications for the structure of

perturbative results. Examples of the implications of conformal symmetry for QCD can be

found in Refs. [32, 44–48]. Our main focus here will be on exploiting conformal invariance to

understand properties of the anomalous dimensions of Wilson lines relevant for jet physics.

A Wilson line emanating from the origin in the direction nµ comprises the points xµ =

snµ, for s > 0. A scale transformation is simply a change in s. Scale invariance is made

more manifest by defining a new time coordinate τ ≡ ln |x| where |x| is the (Lorentzian)

distance from the origin. This makes the Wilson lines parallel, as shown in Figure 2. In

terms of τ , rescaling becomes simply time translation, and conformal symmetry becomes

the statement that the physics is time translation invariant in τ . The Wilson lines become

static charges whose energy is the anomalous dimension. Spatial slices in these coordinates

are copies of Euclidean Anti-deSitter space (AdS). In this paper, we describe how many of

the features of Wilson lines enumerated above can be understood in AdS coordinates. For

example, that the Coulomb potential is one-loop exact in QED automatically implies that

the anomalous dimension of multiple Wilson line operators are one-loop exact in QED.

In addition to providing a pleasing physical picture, radial coordinates make a number of

calculations much easier. One of the reasons that the classical conformal invariance of QCD

rarely simplifies diagrammatic computations is that it is broken by standard gauge choices,

such as Feynman gauge. Feynman gauge in flat space leads to kinetic mixing between the

time-like components Aτ and space-like components Ai of the gauge field in R×AdS. Here

we introduce a new gauge, which we call conformal gauge, in which there is no such mixing.

One consequence is that in this gauge, since only Aτ is sourced by the Wilson lines, and
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there is no A3
τ or A4

τ vertex in Yang-Mills theory, many of the non-planar graphs at 2 and

3-loops automatically vanish. This automatically implies that the only graphs at 2-loops

contributing to the anomalous dimension have gluons going between pairs of Wilson lines,

which strongly suggests a pairwise structure. This reasoning alone does not imply that Γ

must be pairwise at 3-loops or higher.

The organization of this paper is as follows. In Sec. 2 we discuss the appropriate mapping

of Minkowski to AdS coordinates and simple implications for multi-Wilson line configura-

tions. In Sec. 3 we compute the one-loop anomalous dimension of W by carrying out a

classical energy computation in AdS, paying special attention to boundary conditions and

differences for incoming and outgoing lines. We repeat this computation using the standard

one-loop diagrams in Sec. 4, but utilizing the AdS coordinates. A discussion of the lightlike

limit and a way to think about the imaginary energy in AdS is given in Sec. 5. In Sec. 6, we

introduce conformal gauges which do not mix the time and spatial components of the gauge

boson propagator in R × AdS, and in Sec. 7 we demonstrate the utility of such gauges by

computing a two-loop contribution to the anomalous dimension of W in a simple way. In

Sec. 8, we mention an interesting formal relation between anomalous dimension calculations

for W and Witten diagrams. We conclude in Sec. 9. Several technical discussions are rel-

egated to appendices. In App. A we construct the most general class of conformal gauges

without auxiliary parameters, and in App. B we give the corresponding Feynman rules for

ghosts.

2. CONFORMAL COORDINATES

Having replaced hard partons by Wilson lines, the soft physics is described simply by

Yang-Mills theory, which enjoys classical conformal invariance in four dimensions. Equiva-

lently, the soft action coupled to a background metric gµν is Weyl-invariant: it is unchanged

under a local rescaling of the metric, SYM[g] = SYM[e
2ω(x)g]. Although this symmetry is

broken by fermion masses and the QCD scale anomaly that generates ΛQCD, it continues to

have important implications for scattering amplitudes at high energies.

One reason conformal invariance can be useful for QCD is that some quantities are

completely insensitive to the breaking of conformal invariance. For example, the one-loop

cusp anomalous dimension Eq. (8) is independent of the matter content of the theory, since

Feynman diagrams contributing to it only involve a single gluon exchanged between Wilson

lines. Consequently, it has a universal form, and we can compute it assuming exact conformal

invariance. In other words, we can compute it in our favorite conformal theory, for instance

N = 4 SYM, and the result will hold in any gauge theory. In the next two sections, we will

use this fact to give a simple and intuitive derivation of Eq. (8).

To the extent that conformal symmetry is a good approximation, it is natural to apply

techniques which have proved useful for studying conformal field theories in other contexts.

In particular, we consider radial quantization around the origin. In Ref. [8] this was used to

study the anomalous dimensions of high spin operators, and has also been used in Ref. [44].

In this section, we review the relevant ideas in the context of N -jet Wilson lines.

7



Consider a Wilson line in the direction nµ. We can write nµ = (cosh β, sinh β n̂), with n̂

a unit vector in R
3, and xµ = eτnµ. The path of the Wilson line is then described by

t = eτ cosh β, r = eτ sinh β, β, θ, φ fixed, (14)

with τ running from −∞ to ∞. Wilson lines in different directions will correspond to

different values of β, θ and φ. In these coordinates, the Minkowski metric becomes

ds2
R1,3 = dt2 − dr2 − r2dΩ2

2

= e2τ
[

dτ 2 − (dβ2 + sinh2 β dΩ2
2)
]

. (15)

Strictly speaking, this metric describes only a patch of R1,3 — namely the interior of the

future light-cone. We will return to this point shortly.

The idea of radial quantization is to interpret τ as a new time coordinate. A näıve

complication in this picture is that the metric Eq. (15) is now time-dependent. However, in

a conformal theory, the dynamics is independent of the local scale, and we can equivalently

consider our theory with any metric related via ds2 → e2ω(x)ds2. Thus, let us drop the

overall e2τ to obtain a simple time translation-invariant product space,

ds2
R×AdS = dτ 2 − (dβ2 + sinh2 β dΩ2

2). (16)

The spatial part of this metric is the 3D hyperboloid, or Euclidean Anti-deSitter space.

With a slight abuse of nomenclature, we call it simply AdS.

In radial coordinates, the origin maps to τ = −∞ and motion along a Wilson line

corresponds to shifts in τ . So to the extent that our theory was scale invariant in Minkowski

space, it is now time-translation invariant in R×AdS. Each Wilson line sits at fixed (β, θ, φ)

and extends from −∞ to ∞ in the time coordinate τ . That is, each Wilson line becomes a

static charge in AdS. For perturbative computations in QCD (where conformal invariance is

broken by the scale anomaly) we may simply adopt the change of coordinates in Eq. (14) as

a method to carry out computations. If the computation involves ingredients satisfying the

conformal invariance then the factors of eτ will cancel out, and the result will be constrained

by properties of the AdS space.

For the sake of doing calculations, a key point is that the dilatation operator in Minkowski

space maps to the Hamiltonian in AdS in radial quantization,

DR
1,3

= xµ∂µ = ∂τ = iHR×AdS. (17)

Consequently, the eigenvalue of dilatation — the dimension (or when acting on classically

scale invariant Wilson lines, the anomalous dimension) — is just i times the energy in AdS.

So we can calculate anomalous dimensions by calculating energies and apply our intuition

from electrodynamics to understand anomalous dimensions of Wilson lines.

What can the energy of two static charges in AdS depend on? Since the space is homo-

geneous, it can depend only on the geodesic distance between the charges. For example,

suppose we have two time-like Wilson lines, pointing in the directions nµ
1 and nµ

2 , normalized

so that n2
1 = n2

2 = 1. We may first go to the rest frame of one, nµ
1 = (1, 0, 0, 0), and then

8



rotate so the other is at nµ
2 = (cosh β12, sinh β12, 0, 0). Then the geodesic distance between

them, using the spatial part of the metric Eq. (16), is just

∆s = β12 . (18)

Considering also that n1·n2

|n1||n2|
= cosh β12, we see that the geodesic distance in AdS is the

cusp angle. Thus, the energy of the two charges, and hence the anomalous dimension

in Minkowski space, can depend only on the cusp angle. This was feature 1 from the

introduction. More succinctly, the original Lorentz symmetry of Minkowski space becomes

the isometry group of AdS in radial coordinates. Just as Lorentz invariance dictates that

the anomalous dimension can depend only on the cusp angle, the isometries of AdS dictate

that the energy can depend only on the geodesic distance.

We can also consider initial state Wilson lines. For example, in deep inelastic scattering

as Bjorken x → 1, the initial state contains an energetic proton in the Breit frame, the

final state contains a jet, and the Wilson line description applies. In our convention, the

spatial vectors for these lines still point out from the origin, and the lines extend to negative

Minkowski times. Instead of Eq. (14), the path of an initial state line is then described by

t = −eτ cosh γ, r = eτ sinh γ, (19)

for fixed real γ. When comparing the coordinates for parallel initial and final state lines we

have n̂ → −n̂ so θ → θ + π and φ → φ + π. In radial quantization, initial state lines map

to static charges in a different copy of R×AdS comprising points in the interior of the past

light-cone (Figure 3). It is useful to think of this second copy of AdS as being related by

analytic continuation to the first. Since from Eq. (9) we have cosh γ = − cosh β, we can

write β = γ+ iπ. Both copies of AdS (along with a copy of deSitter space describing points

at spacelike separation from the origin) are related by analytic continuation to the three-

sphere S3 that one would obtain by repeating the exercise of radial quantization starting

from Euclidean space, R4. This will be a useful tool in the following section.

For most of the remainder of the paper, we will focus on time-like Wilson lines whose

directions are normalized to n2 = 1. Since all the energies and dimensions are independent

of rescaling of the n’s, the dependence on |n| can be put back by dimensional analysis:

nµ
i → nµ

i

|ni|
. We will also have occasion to consider the light-like limit n2 → 0, which is

phenomenologically relevant for the majority of processes at colliders. Many of the properties

of the light-like case can be derived as a limiting case of the general time-like results. In the

light-like limit n2
i → 0, and the charges move towards the boundary of AdS with β → ∞.

Some results simplify for n2 = 0, and when appropriate we will consider this case separately.

3. CLASSICAL ADS ENERGIES

In radial coordinates, we have seen that the anomalous dimension of a collection of Wilson

lines intersecting at a point is proportional to the energy of a collection of static charges in

AdS. This energy can only depend on the geodesic distance between the charges, which is

the same as the cusp angle βij = cosh−1 ni · nj. Now let us calculate that energy.

9



AdS3, β ∈ R

AdS3, γ ∈ R

dS3

initial state

final state

x = 0

FIG. 3: In radial quantization, final state lines map to a copy of AdS3 at positive Minkowski times,

while initial state lines map to a second copy of AdS3 at negative Minkowski times. Points that

are spacelike separated from the origin map to dS3.

The energy of two charges in QCD at leading order is given, as in QED, by solving

Laplace’s equation for the scalar potential Aτ in the presence of point sources Jµ given by

Jτ = δ3(x) and ~J = 0. The homogeneous solutions are

1

sinh2 β
∂β
(

sinh2 β (∂βAτ )
)

= 0 ⇒ Aτ (β) = C1 + C2 coth β (20)

Unfortunately, neither of these is the physically correct answer. This can be seen most

easily by looking at the large β limit, where we expect Aτ (β) to be linear in β. In this limit

Eq. (20) behaves as a constant.

The problem with this potential is that it has the wrong boundary conditions. This is

easiest to understand by analytically continuing to Euclidean space. Defining β = iα, the

metric becomes

ds2 = dτ 2 + dα2 + sin2(α)dΩ2
2 = dτ 2 + dΩ2

3, (21)

which describes a Euclidean cylinder R × S3. The Wilson lines are now static charges at

points on a three-sphere. The general homogeneous solution to Laplace’s equation on R×S3

is the analytic continuation of Eq. (20),

Aτ (α) = C1 + C2 cotα. (22)

Since cotα has a pole at both α = 0 and α = π, Eq. (22) actually describes a configuration

with two charges: a (+) charge at the north pole and a phantom (−) charge at the south

10



+

+

−

−
∆α

(a) phantom charges on S3

+

+

−

−

β

β − iπ

(b) phantom charges on AdS

FIG. 4: The naive solution to Laplace’s equation on the Euclidean cylinder, Eq. (22), represents

the potential in the presence of additional phantom charges at diametrically opposite points on

the sphere, Figure 4(a). After analytic continuation back to Minkowski signature, the phantom

charges map to another copy of AdS, Figure 4(b), corresponding to phantom initial state particles.

pole. If we now consider two physical charges separated by an angle ∆α on the sphere,

we obtain a potential for not just these two charges, but also for two additional phantom

charges, which is incorrect. This is shown graphically in Figure 4(a). The AdS version is

shown in Figure 4(b) and discussed more below.

A nice way to get the correct solution to Laplace’s equation on the Euclidean cylinder is

to add and subtract a constant charge density. On the Euclidean cylinder, a point charge

should correspond to the source current Jτ = δ3(x). Instead, we take Jτ (x) = δ3(x) − 1
2π2

which has a point charge at x = 0 but is neutral overall. If we linearly combine such charge

densities to construct an overall neutral collection of point charges, the constant parts of the

charge density will exactly cancel, but the phantom charges will be absent. The solution to

Laplace’s equation on the Euclidean cylinder with this current is

AEucl.
τ (α) =

1

4π2
(π − α) cotα + constant (23)

where the constant is an overall energy which is not yet fixed. This same result was computed

earlier in Ref. [44] by computing the transition amplitude by summing over classical paths,

and performing an infinite sum of SU(2) characters.

The quantity Aτ (α) in Eq. (23) is the scalar potential on the sphere due to one charge,

assuming an overall neutral distribution. To calculate the total energy for two charges

q1 = −q2 separated by a distance α12, we can compute

EEucl.
pair (α12) =

1

2

∫

Ω3

( ~E1 + ~E2)
2, (24)

where ~E1,2 = ~∇(qAτ )1,2 is the electric field due to each charge. Integrating by parts, using

the equations of motion, and throwing away the infinite self-energy of each charge, this is

11



just

EEucl.
pair (α12) = q1q2Aτ (α12) + constant. (25)

Already, the reader may recognize EEucl.
pair (α) as the α-dependent part of the cusp anomalous

dimension in Euclidean space.

The equivalent of this calculation in AdS gives

Epair(β12) =
q1q2
4π2

[

(π + iβ12) coth β12 + C
]

. (26)

Here C is an undetermined constant setting the zero of energy, which must be fixed by other

considerations. When both Wilson lines are outgoing, as in the process e+e− → qq, β12 is

real and positive. At small β, the charges become closer than the curvature scale, and the

energy reduces to

Epair(β12) →
q1q2
4π

1

β12
. (27)

This is the correct behavior of the energy of two charges as a function of geodesic separation.

Unfortunately, setting β = 0 is singular, so this limit cannot be used to determine the

constant C.

When one Wilson line is outgoing and one is incoming, as in DIS, there is a smooth limit

to zero separation which can be used to fix C. In this configuration, the quantity γ = β− iπ

is real. Expressing the energy in terms of γ12, we obtain

Epair(γ12) = i
q1q2
4π2

(γ12 coth γ12 − iC). (28)

In this case, the limit γ12 = 0 is physical: it corresponds to our two Wilson lines reducing

to a single straight line going from t = −∞ to t = +∞ through the origin. This contour

has no cusp and is in fact a conserved current (occurring in the Isgur-Wise function [49]), so

its anomalous dimension must vanish. This determines the boundary condition Epair(γ12 =

0) = 0, which sets C = −i.

In summary, restoring the color factors, charges, and coupling constant for QCD, and

summing over pairs of charges to compute the total energy, we have found

Etot =
iαs

π

∑

i<j

Ti · Tj

[

(βij − iπ) cothβij − 1
]

. (29)

Taking into account the factor of i in going from the energy to the anomalous dimension,

Eq. (17), this implies

Γ = −αs

π

∑

i<j

Ti · Tj ((βij − iπ) coth βij − 1) (30)

which agrees exactly with the anomalous dimension extracted from the one-loop calculation,

Eq (8). Thus, we have reproduced feature 2 in the introduction with a simple classical calcu-

lation. Note that with nontrivial color factors, the energy of the state in AdS corresponding

to the Wilson line operators becomes a matrix on the space of Wilson lines W described
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in Eq. (3). This is a manifestation of the state-operator correspondence in conformal field

theory [50].3

Before moving on to the other features, it is interesting to think about the “wrong”

solution, Eq. (20) in AdS. On the sphere, the wrong solution had phantom charges on

the antipoles. The location of these phantoms on AdS are shifted from the location of

the physical charges by βphant.
ij = βij − iπ. That is, the phantom is an initial state parton

pointing in same direction as the outgoing one. So, for example, if we were trying to calculate

e+e− → qq, the wrong solution would have corresponded to forward (non)scattering in

qq → qq, depicted in Figure 4(b). In contrast to the e+e− → qq, this process has a smooth

limit in which the S matrix is just 1.

That there is a smooth limit γ → 0 with one incoming and one outgoing Wilson line but

not β → 0, with two outgoing or two incoming Wilson lines is closely related to feature 3

from the introduction, concerning the complexity of the anomalous dimension. The anoma-

lous dimension is real in DIS, since there is no obstruction to flattening the cusp. In the

e+e− → dijets case, one cannot remove the cusp for any geodesic separation – the anomalous

dimension has an iπ for any β. For a single log, the iπ in the anomalous dimension can be

seen to come from ln
(

− µ2

ni·nj

)

, whose real part is the same as ln
(

µ2

ni·nj

)

. For a double log,

Re

[

ln2

(

− µ2

ni · nj

)]

= Re

[

ln2

(

µ2

ni · nj

)]

− π2 . (31)

These π2 terms get exponentiated leading to large factors of e−αsπ2

in cross sections. In

fact, this factor is a significant part of the large ∼ 2 − 3 K-factors in Higgs or Drell-Yan

production at the LHC [30, 51–54]. Roughly, σNLO = σLO exp (γcusp(αs)CAπ
2) ∼ 3σLO,

where the CA = 3 factor comes from these being gg initial states at the LHC, and at leading

order γcusp(αs) = αs

π
∼ 0.04. The AdS picture gives us a way to visualize the situations,

like DIS, where the anomalous dimension is real and situations like Drell-Yan, where it is

complex. Note that, for most processes, the anomalous dimension is a matrix, with some

real and some imaginary parts, so this picture is not tremendously useful in general.

Next, we observe that since the Coulomb potential does not get radiative corrections in

QED (without propagating fermions), the anomalous dimension derived with energies in AdS

is also one-loop exact. This implies that the anomalous dimension of a configuration with

two Wilson lines is 1-loop exact in QED, which is equivalent to Abelian exponentiation which

was feature 4. This same reasoning applies to the potential for N charges in QED. This

classical proof of Abelian exponentiation is more intuitive than the conventional proof [55]

3 In radial quantization, the operators W(ni) with different tci map to states in the Hilbert space I with

a Hamiltonian given by Eq. (29). One usually considers the state-operator correspondence for local

operators, which map to the states on AdS or S3, depending on the signature. In the presence of Wilson

lines in the τ -direction, the Hilbert space changes HAdS → HAdS,W , and we can think of I in Eq. (4)

as the space of lowest-lying states in HAdS,W . Interpreting the Wilson lines as infinitely-massive charged

particles, I is the space of lowest energy “bound states” of these particles, and the anomalous dimension

measures the finite energy differences between different bound states. Additional local operators would

map to excitations on top of the states in I.
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which dissects the relevant Feynman diagrams through repeated use of the eikonal identity

and careful consideration of diagrammatic combinatorics.

Beyond Abelian exponentiation, there are results about non-Abelian exponentiation [56,

57], including recent generalizations to multijet Wilson lines [58, 59]. Non-Abelian expo-

nentiation is not as constraining as Abelian exponentiation, but it does imply that only a

reduced set of web diagrams contribute in perturbation theory. There are also intriguing

results on the exponentiation properties of Wilson lines for quantum gravity [60–62]. It is

natural to expect that there should be a way to understand these results using the AdS

language as well, but we leave this for future consideration.

4. ONE-LOOP RESULTS

For the anomalous dimension at 1-loop, all that is needed is the classical Coulomb energy

between two charges, as calculated in section III. It is helpful to see how this calculation

connects directly to the field theory calculation using propagators, which will also set up

the discussion of conformal gauge and 2-loop results in the next sections. We will perform

most of our calculations in the DIS case, where the cusp angle γ = cosh−1(−n1 · n2) is real,

since that simplifies many of the expressions. We will also use γ in place of β in our AdS

coordinates.

The classical Coulomb potential Aτ (x) can be calculated using the AdS propagator via

Aµ(x) = −i

∫

d4yDµν(x, y)J
ν(y) (32)

with the current Jν(y) of a static charge. Putting the charge at the origin we set Jτ (y) =

δ3(y) and ~J(y) = ~0, and we have

Aτ (τ, γ) = −i

∫ ∞

−∞

dτ ′Dττ (τ, γ; τ
′, 0). (33)

In Minkowski space R
1,3 the position space Feynman propagator is

DF
µν(x, y) =

1

4π2

gµν

(x− y)2
. (34)

Projecting onto the τ direction, this becomes

DF
ττ (x, y) = DF

µν(x, y)
∂xµ

∂τ

∂yν

∂τ
=

1

4π2

x · y
(x− y)2

. (35)

Finally, taking x = eτ (− cosh γ,− sinh γ, 0, 0) and y = eτ
′

(1, 0, 0, 0), we find

DF
ττ = − 1

8π2

cosh γ

cosh(τ − τ ′) + cosh γ
, (36)

so that

Aτ (τ, γ) = −i

∫ ∞

−∞

dτ ′DF
ττ =

i

4π2
γ coth γ. (37)
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Which is the same result we found in the previous section Eq. (28), up to an undetermined

additive constant. We can again fix the constant by specifying which energy we mean by

matching to the case of a conserved current with γ = 0, to get γ coth γ − 1.

The propagator calculation lets us connect the energy directly to the anomalous dimen-

sion. Consider the 1-loop calculation with the gluon exchanged between the two Wilson

lines. In position space, the integral is

I =
g2

(4π)2

∫ 0

∞

ds

∫ ∞

0

dt
n1 · n2

(sn1 − tn2)2
(38)

Pulling out the overall scale and changing to radial coordinates via t = seτ this becomes

I =
g2

2(4π)2

∫ ∞

0

ds

s

∫ ∞

−∞

dτ
cosh γ

cosh τ + cosh γ
(39)

where we have used cosh γ = −n1 · n2 as usual. The first integral is scaleless, resulting from

the fact that our configuration of Wilson lines is rescaling-invariant. In general, one must

break rescaling invariance with UV and IR regulators, and carefully extract the coefficients

of the UV divergences to compute the anomalous dimension. However at 1-loop, we can

be more cavalier. With regulators in place
∫

ds
s

will become log ΛUV

ΛIR

, so that the 1-loop

anomalous dimension is simply the coefficient of this scaleless integral. This is precisely

Eq. (29), the energy of the charges in AdS, as expected. In the field theory calculation the

−1 factor that appears in the energy is correctly reproduced by the self-energy graphs for

n2
i 6= 0. This calculation makes the connection transparent at the level of the integrals.

5. LIGHTLIKE LIMIT

In this section, we consider the lightlike limit n2
i → 0 which was the subject of feature 5.

In this limit the static sources on the AdS space (corresponding to the Wilson lines) move

towards the boundary of AdS, γij → ∞ or βij → ∞. The anomalous dimension becomes

linear in the cusp angles, which diverge as βij → ∞ or γij → ∞. Equivalently, the imaginary

part of the energy becomes linear in the geodesic distance between the charges, while the

real part goes to a constant (see Eq. (28)). This is a qualitatively very different behavior

from flat space, where the energy vanishes as the inverse of the distance.

If we try to actually set n2
i = 0, the cusp angle is infinite and the energy is formally infinite,

indicating new unregulated singularities. The linearly diverging cusp angle is connected to

the appearance of additional collinear divergences that appear in both the ultraviolet and

infrared in the anomalous dimension computation. Effectively in the computation of matrix

elements of W we are forced to introduce a small dimensionful IR regulator Λ. With UV

divergences regulated in dimensional regularization the dimensions are compensated by µ,

so 1/|n| → Λ/µ, giving the form in Eq. (11). Introducing Λ/µ is equivalent to moving

light-like charges away from the boundary of AdS, so that we can still sensibly talk about

the geodesic distance between charges. The dependence on the IR regulator cancels out

in physical cross section computations. For example, eikonal scattering involves a square

of W matrix elements which yields the soft function S(k) in Eq. (6). In this case the IR
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FIG. 5: On the left is the electric field lines for two charges in flat space. The middle shows the

imaginary part of the electric field for two charges in AdS, after projecting to rectangular coordi-

nates with x = β sin θ and y = β cos θ. The right (from [63]), shows the distribution of radiation

from a color singlet scalar decaying to two jets at the LHC. The axes in this case are psuedorapidity

and azimuthal angle, and the contours correspond to factors of two in the accumulated energy dis-

tribution. The rightmost plot is included to remind the reader that a color dipole radiates between

the color charges, which roughly corresponds to the region where the energy density has support

in the AdS picture. The sharp drop-off of the radiation pattern in the effect of color coherence. In

a qualitative sense only, this corresponds to the exponential decay of the radiation away from the

dipole axis in the AdS picture.

divergences cancel between virtual and real emission diagrams and Λ is replaced by the

observed momenta of particles, Λ → k.

To secure a clearer physical picture of what this growing imaginary energy means, consider

the case of two outgoing lightlike partons, such as in dijet production. In Figure 5, we

contrast the electric field of a normal pair of charges, in flat space, with the imaginary part

of the electric field for two charges in AdS. As the total energy grows with separation, the

electric field approaches a constant between the charges. Notice that in the presence of two

opposite Abelian charges, Im(E) is always negative, as should be the case for the energy of

an unstable state. Back in Minkowski space, this corresponds to a roughly constant density

of radiation between the two charges. The third panel of Figure 5, shows this behavior in a

Monte Carlo simulation [64]. To generate this distribution, a 200 GeV dijet event produced

at 7 TeV center of mass energy at the LHC was simulated. The figure shows the accumulated

energy distribution. Note that the radiation is concentrated between the two charges, and

suppressed away from the dipole axis, just as the energy distribution is in AdS.

Linear growth of energy with separation is normally an indication of confining behavior.

In this case, since the energy is imaginary, it is not confinement in the usual sense, but can

still be interpreted as a type of confinement. In a sense, this linear growth of the (imaginary)

energy with separation is related to the fact that high energy quarks always appear with

an accompanying jet, whose dynamics are described with Sudakov factors. Although this

“Sudakov confinement” of quarks inside jets has little in common with confinement in QCD,

it is not an unreasonable phrase for the linearly growing energy in AdS.
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To be specific, consider the case of one incoming and one outgoing Wilson line, as in

deep-inelastic scattering (DIS). In DIS, an electron is scattered off of a proton, with Bjorken

x defined in terms of the momentum transfer qµ and the proton momentum P µ as x =

−q2/2P · q. In the x → 1 limit of DIS at large Q2 = −q2, the outgoing radiation becomes

jet-like, with its mass m2
J = Q2(1 − x)/x getting small. In this limit, the Wilson line

description applies and important physics is encoded in the anomalous dimension. We saw

that when Wilson lines becomes lightlike, the cusp angle γ12 → ∞ and the energy in AdS

becomes

Etot → i
αs

π
γ12 (40)

which is an imaginary energy.

An imaginary energy is indicative of non-unitary time evolution. Since time in AdS is

scale in Minkowski space, this is non-unitary evolution as the scale is changed. One way

to think of the violation of unitary is going from a simple state, with say a single quark,

to a state with a quark and a gluon. The probability for this to happen is given by the

Alterelli-Parisi splitting kernels. The quark-gluon splitting kernel is

Pq→qg(z, pT ) =
αs

π

1 + z2

1− z

1

pT
(41)

where z is the fraction of energy in the quark, which must be close to 1 (the Wilson line

picture only applies in the x → 1 limit) and pT is the transverse momentum of the gluon

with respect to the quark direction. The integral over this splitting function is infrared

divergent. Typically, one imagines the quark starts off at a scale µ ∼ Q characteristic of

the hard scattering; then it evolves down to a scale µ ∼ pT [17, 18]. The probability of not

having emitted a gluon between these scales is

Σ(Q, pT ) = exp

(

−
∫ Q

pT

dµ

∫ 1

Q/µ

dz P (1− z, µ)

)

= exp

(

−αs

π
ln2 Q

pT
+ . . .

)

. (42)

This quantity is known as a Sudakov factor. It is a no-branching probability, and used as a

classical probability in Monte Carlo event generators, which treat the parton as showering

off gluons through a Markov process, see for example [64]. The rate of emission is exactly

proportional to the coefficient of linear growth of the energy in AdS, a quantity known as

the cusp anomalous dimension.

So we see that the non-unitary evolution corresponds to the probability that an off-shell

quark decays into a gluon and a slightly less off-shell quark. The constant energy density in

AdS at large cusp angle corresponds to a constant probability for emission per unit scale. If

we evaluate the Sudakov factor at pT = 0, we see that there is zero probability for a quark

to evolve forever without emitting a gluon. In physical situations, there is always a finite IR

cutoff, such as the hadronization scale ΛQCD or a resolution scale for the jet. Nevertheless,

at late times in AdS, or small momentum scales in Minkowski space, the original state

approaches zero amplitude. Thus, there is no probability that we will find a free quark

at asymptotically late times when produced at a finite scale Q. In other words, there are

no free quarks which are not confined within jets. In fact, the characteristic size of jet is

precisely determined by the cusp anomalous dimension in the Sudakov factor.
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It would be interesting to further explore the analogy between confinement and the lin-

ear growth of (imaginary) energy with distance. For example, one might argue that the

energy can grow at most linearly with separation [65], as expected from the string flux tube

picture. The analogy would connect this directly to Sudakov confinement and the linear

dependence of the anomalous dimensions on log µ for various fields in scattering processes.

Then, perhaps, by reversing the logic, the Sudakov factors could give insight to confining

gauge theories from the study of jets.

6. CONFORMAL GAUGES

We have seen that radial quantization is a useful picture for understanding the one-

loop cusp anomalous dimension. In R × AdS, a cusp maps to a collection of charges, and

Γ1−loop
cusp has an interpretation in terms of static potentials. It makes sense that for higher-loop

computations, we should keep the separation between the τ direction and the AdS directions

manifest. However, this is not done in typical calculations. The reason is that although the

action SYM is conformally invariant, the gauge-fixing terms are not. For example, in Feynman

gauge, we have

S =SYM + Sg.f.,

Sg.f. =

∫

d4x
√−g

1

2
(∇µAµ)

2 + Sghost. (43)

Under a conformal rescaling gµν = e2ωg′µν , the covariant derivative transforms nontrivially,

√−g(∇µAµ)
2 =

√

−g′(∇′µAµ + 2∂µωAµ)
2. (44)

Consequently, a gauge that appears natural in one conformal frame may look somewhat

unnatural in another. For instance, a useful feature of Feynman gauge in flat Minkowski

space is that the propagator does not mix different polarizations between different points:

εµΠµν ∝ εν . However from the point of view of radial coordinates (τ, β, θ, φ), the Feynman

gauge propagator transports polarizations from one point to another in a nontrivial way.

More precisely, transport via the propagator is not proportional to parallel transport in

the R × AdS metric. This is clear from the transformation law (44): plugging in gR1,3 =

e2τgR×AdS, we see that Sg.f. includes kinetic mixing between Aτ and the spatial components

Ai. Throughout this section, we will use i = 1, 2, 3 to denote the directions in AdS.

It is informative to look at the explicit form of the mixing. To decompose the propagator,

first observe that the τ component of the propagator comes from projections onto ∂xµ

∂τ
= xµ.

So that Dτν = xµDµν . Thus we can decompose the polarization gµν in the numerator of the

Feynman propagator as

gµν =
[

gµν − x̂µx̂ν − ŷµŷν + (x̂ · ŷ)x̂µŷν
]

+
[

(x̂ · ŷ)x̂µŷν
]

+
[

x̂µx̂ν + ŷµŷν − 2(x̂ · ŷ)x̂µŷν
]

, (45)
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where x̂ = xµ/|x| and ŷ = yµ/|y|. The first term in brackets vanishes when contracted with

xµ or yν, so it represents the spatial components of the Feynman gauge propagator from the

point of view of AdS, i.e. Dij. This can also be seen by writing it as

gµν − x̂µx̂ν − ŷµŷν + (x̂ · ŷ)x̂µŷν = |x||y| ∂

∂xµ

∂

∂yν

(

x · y
|x||y|

)

, (46)

which vanishes when contracted with xµ or yν since the dilation operator D = xµ∂µ auto-

matically annihilates any scale-invariant function. The second term in Eq. (45) is Dττ , as

in Eq. (36). The third term represents the nonzero Dτi and Diτ mixing present in Feynman

gauge.

Since the Wilson lines only source Aτ , at one-loop only the Dττ component of the prop-

agator contributes. If we try to use the same propagator in higher-loop computations, even

though the Wilson lines only source Aτ , due to the Dτi mixing terms, there will be interac-

tions involving (Ai)
3 vertices which make the calculations complicated. However, we have

seen that anomalous dimensions of Wilson lines are most naturally thought about from the

point of view of R× AdS. In a gauge more suited to this space there should be no mixing,

and Aτ can be treated as a charged scalar. Since there is no scalar cubic or quartic vertex

(Aτ )
3,4 in Yang-Mills theory, the calculation will be significantly simpler. Vertices (Ai)

2Aτ

remain active when we consider Wilson line operators in this gauge and enter for the leading

vacuum polarization effects.

We will refer to gauges with the property that Aτ and Ai do not mix as conformal

gauges, to emphasize the fact that they are most natural in a different conformal frame from

the usual one. This non-mixing is not an overly restrictive condition and there are many

gauges that satisfy it (for example, the condition remains true after any τ -independent gauge

transformation). Perhaps the simplest example of a conformal gauge is temporal gauge in

R×AdS, or equivalently “radial gauge” in R
1,3, in which Aτ = xµAµ = 0 and radial Wilson

lines are actually trivial. We will briefly discuss this gauge in Section 6B. In Sec. 6A we

will focus on a less singular example of conformal gauge, which corresponds to a quantum

average over different gauge-conditions, as in Rξ gauges.

A. Derivation of Conformal Gauge in d-dimensions.

To arrive at a conformal gauge, perhaps the most familiar strategy would be to study

gauge-fixing terms in R×AdS, and then invert the kinetic terms to form the corresponding

propagators. This might be an interesting exercise, but it would be needlessly complicated

for our purposes. Instead, we will adopt the more pragmatic procedure of directly gauge-

transforming the Feynman-gauge propagator and solving for the transformation function

that gives the desired properties. This then implicitly specifies BRST exact gauge-fixing

terms, including a ghost action.

Our goal is to derive a gauge that has no τ -i mixing in d-dimensions that is suitable

for use in dimensional regularization. Our procedure is simple, and powerful enough to

handle this even though Yang-Mills theory is only classically conformally invariant when

d = 4. Instead of sorting out details of conformal anomalies at order ε, we will keep the
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d-dimensional Minkowski metric and flat coordinates xµ, and simply search for a gauge that

respects the foliation of R1,d−1 into R× AdSd−1. Precisely when d = 4, our propagator will

have an interpretation as the propagator in a gauge theory on R×AdS3. However when ε is

nonzero, it will simply be a useful tool that enables computations to be performed without

encountering mixing terms Dτi or Diτ in d-dimensions.

We begin with the position-space Feynman propagator in d dimensions

DF
µν(x, y) = −gµν

κd

[−(x− y)2 + iǫ]d/2−1
(47)

where κd =
Γ(d/2−1)

4πd/2 is a constant. Since the propagator depends only on quadratic terms in

the action, it is sufficient for our discussion here to consider an Abelian theory. In a non-

Abelian theory, the propagator should also include a factor of the identity δab in color space,

and we have the additional Feynman rules involving ghosts which we discuss in Appendix B.

We will consider a class of propagators given by

Dµν(x, y) = DF
µν(x, y) +

∂

∂yν
Λµ(y, x) +

∂

∂xµ
Λν(x, y), (48)

where Λµ(y, x) is a one-form at x, depending on both x and y. Notice that Dµν is still

an inverse for the kinetic term in the space of gauge equivalence-classes, though it differs

from DF
µν along gauge-orbits. Indeed, suppose Jµ is a conserved current, and consider the

associated vector potential

Aµ(x) ≡ −i

∫

dyDµν(x, y)J
ν(y)

= −i

∫

dyDF
µν(x, y)J

ν(y) +
∂

∂xµ

(

−i

∫

dy Λν(x, y)J
ν(y)

)

= AF
µ (x) + ∂µ

(

−i

∫

dy Λν(x, y)J
ν(y)

)

, (49)

where we have integrated by parts and used current conservation. Since Aµ differs from AF
µ

only by a gauge transformation, it still solves Maxwell’s equation ∂µF
µν = Jν .

We would likeDτi to vanish, so that the propagator does not mix time and space directions

in R× AdS. Recalling that τ is the generator of scale transformations, ∂τ = xµ∂µ, a vector

field Aµ(y) will have no τ component if yµAµ(y) = 0. Thus our condition is

xµDµν(x, y)A
ν(y) = 0 whenever yνA

ν(y) = 0. (50)

Likewise, forDiτ to vanish we have the condition Aµ(x)Dµν(x, y)y
ν = 0 whenever xµA

µ(x) =

0. Note that Eq. (50) is not translation invariant, it treats the origin as a special point and

yields propagators that are not simply functions of x − y.4 The general class of confor-

mal gauges which satisfy these no-mixing conditions is derived in Appendix A. Here let us

4 In our setup the origin is special since it is the location of our hard interaction and the place where cusps

occur between Wilson lines. This explains why it is useful to consider non-translationally invariant gauges,

even though the final physical results are gauge independent and translationally invariant.
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consider the ansatz

Λµ(y, x) = κd
xµ

|x|d−2
g(α, β), where α ≡ x · y

|x||y| , β ≡ |y|
|x| , (51)

and g(α, β) is some function to be determined. Equation (50) implies

∂

∂α
g(α, β) = β(2αβ − β2 − 1)1−d/2

g(α, β) =
1

4− d

[

(2αβ − β2 − 1)2−d/2 − f(β)2−d/2
]

, (52)

where f(β) is arbitrary and its 2 − d/2 power produces the correct d → 4 solution. Our

ansatz becomes

Λµ(y, x) =
κd

4− d

xµ

x2

{

[−(x− y)2]2−d/2 − |x|4−df(β)2−d/2
}

. (53)

The conformal gauge propagator is then

Dµν(x, y) =− κd

[−(x− y)2]d/2−1

(

gµν −
xµxν

x2
− yµyν

y2
+

2xµ(x · y)yν
x2y2

)

+ κd
xµyν
x2y2

{

[−(x − y)2]2−d/2 − χ
(

|x|, |y|
)4−d

}

(54)

where χ(|x|, |y|) is any symmetric function of |x| and |y| with dimensions of length. (χ has a

a simple but unenlightening relation to f(β)). Separating out the τ and spatial components,

as in Eq. (45), this can be written

Dµν(x, y) =− κd

[−(x− y)2]d/2−1
|x||y|∂x

µ∂
y
ν

(

x · y
|x||y|

)

− κd
xµyν
x2y2

(

x · y
[−(x− y)2]d/2−1

− [−(x− y)2]2−d/2 + χ
(

|x|, |y|
)4−d

)

. (55)

Here the first term is manifestly “angular”, involving derivatives acting on a scaleless quan-

tity which vanish when contracted with xµ or yν, as in Eq. (46). The second term is “radial”,

involving projection onto the τ -direction with xµ and yν. The mixing terms have been gauged

away, as desired.

A natural choice is to take χ to be d-independent. Then when d = 4 the last two terms of

Eq. (55) cancel, χ drops out, and we have a unique 4D propagator. In fact, this propagator

is identical to the Feynman propagator in 4D, Eq. (36), without the mixing terms. In

particular, the calculation of the Coulomb potential from a static charge in AdS, and hence

the one-loop anomalous dimension of the Wilson line, is identical in Feynman gauge and in

conformal gauge. We see that the entire content of this gauge fixing is to move the mixing

terms in Feynman gauge into non-mixing terms starting at order ε.

Equation (55) is convenient for computations involving non-light-like Wilson lines in d-

dimensions or with dimensional regularization. To consider propagation between points on

two light-like Wilson lines we take xµ = λ1n
µ
1 and yµ = λ2n

µ
2 , and take the limit n2

1 → 0
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and n2
2 → 0. Here nµ

1n
ν
2Dµν(x, y) reduces to the same result as Feynman gauge in 4D. In

d-dimensions the result in Eq. (55) is not convenient because the χ term does not scale

in the same manner as the other terms in the radial part of the propagator. We derive

an alternative conformal gauge with a good scaling limit for light-like Wilson lines in d-

dimensions in Appendix A.

B. Comparison to radial gauge

In conformal gauge, the scalar modes in AdS, Aτ which are produced from the Wilson

lines, have no mixing with the vector modes. This simplifies some loop calculations, as

we will demonstrate in the next section. However, it is natural to ask why we cannot

simplify things even further by choosing temporal gauge Aτ = 0 in AdS. This condition

becomes xµA
µ(x) = 0 in Minkowski space, and gauges satisfying it are called radial (or

Fock-Schwinger) gauges. The origin is again a special point for these gauges and the gauge

boson propagator is not translation invariant.

In radial gauge, our N -jet Wilson lines become trivial, and loop corrections to the ex-

pectation value 〈W〉, and corresponding anomalous dimension, seem näıvely to vanish. Of

course this is too simplistic to be correct. The problem is that an N -jet Wilson line oper-

ator W as defined in Eq. (3) is only invariant by itself under gauge transformations which

vanish at infinity. However, the transformation from, say, Feynman gauge to radial gauge is

nontrivial at infinity, so the expectation value 〈W〉 can change. Indeed, in Ref. [66] it was

shown that the radial gauge propagator Dµν itself carries ultraviolet divergences.

To correctly compute the cusp anomalous dimension, we must either restrict ourselves

to gauges with appropriate behavior at spatial infinity, or “close off” our Wilson loop in

a gauge-invariant way at some large finite distance from the origin, without introducing

additional cusps. (Or with additional cusps whose contribution we then subtract away.) In

the latter case, the cusp divergences are generated by a different part of the calculation. For

example, using a conventional definition of radial gauge, Ref. [66] explicitly demonstrates

that the classic one-loop x = 0 cusp anomalous dimension is correctly reproduced by the

(smooth) “closed off” part of the Wilson loop. The fact that the radial gauge propagator

itself is ultraviolet divergent plays a crucial role in this computation, since otherwise the

closed off part of the loop would not contribute to the anomalous dimension.

To avoid having these complications, we will focus on conformal gauges that do not

have ultraviolet divergences in Dµν . This was true of our construction in Sec. 6A, where

Dµν in Eq. (55) is finite as d → 4, and divergences occur only when interaction points

approach each other. In the limit (x − y)2 → 0, with both x2, y2 6= 0, Dµν approaches

the usual Feynman propagator at leading order. Consequently, power counting shows that

divergences originating near points away from the light-cone are identical in Feynman gauge

and in our conformal gauge. (It would be useful to fully characterize the divergence and

subdivergence structure of multi-loop diagrams in conformal gauge.) In these cases, the cusp

anomalous dimension can be computed by considering only a neighborhood of the cusp.
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7. THREE WILSON LINES AT TWO-LOOPS

As a concrete application of using our conformal gauge, let us compute the two-loop

contribution to the anomalous dimension of a multi-Wilson line operator Eq. (3) that involves

all three lines. The absence of τ -i mixing makes this computation extremely simple, and

elucidates the origin of the previously mysterious pairwise structure of the result, discussed

as feature 6.

When the number N of jet directions is three or more, the anomalous dimension Γcusp(ni)

can in principle depend on arbitrary combinations of the cusp angles γij. Nontrivial combina-

tions involving three γij’s can appear first at two loops in the coefficient F of the “maximally

non-Abelian” color structure fabc
T

a
i T

b
j T

c
k ,

Γ2−loops
cusp (ni) =

(αs

π

)2
(

∑

i<j

T
a
i T

a
j f(γij) +

∑

i<j<k

ifabc
T

a
i T

b
j T

c
k F (γij, γjk, γki)

)

, (56)

due to the presence of diagrams depicted in Figure (6). In particular the non-planar di-

agram 6(a) could näıvely contribute a complicated function of all three cusp angles. The

expression for this graph in Feynman gauge was discussed in the lightlike limit in [37] and

[67], and analyzed numerically in [68]. It was finally computed for general cusp-angles in

[69] in a somewhat technical computation using Mellin-Barnes representations. After all

this, the final result turns out to be remarkably simple,

F
(a)
Feyn. = −1

2
(γij coth γij)γ

2
jk + antisym. (57)

where “antisym.” stands for signed permutations of i, j, k. This is a sum of terms each of

which only depends on two of the cusp angles.

It is less surprising that the planar and counterterm graphs also have a pairwise form.

For the antisymmetric color structure, the result is [69]

F
(b)
Feyn. + F

(c)
Feyn. =

1

2
(γij coth γij)× coth γjk

(

γ2
jk + 2γjk log(1− e−2γjk)− Li2(e

−2γjk) +
π2

6

)

+ antisym., (58)

When all the Wilson lines are lightlike, the sum of graphs actually vanishes in Feynman

gauge, a result which is not immediately obvious. At large γ, the −1
2
γijγ

2
jk asymptotic

behavior of the non-planar amplitude in Eq. (57) is exactly canceled by contributions from

Eq. (58).

Returning to the difficult non-planar graph, the simplicity of the final result F
(a)
Feyn is

easily understood from the AdS picture. In R × AdS, each Wilson line points in the time

direction, and thus sources only the τ component of the gauge field. In conformal gauge

Aτ does not mix with Ai, then the interaction vertex in 6(a) involves three τ -polarized

gauge fields, and thus vanishes identically. In this gauge, only the planar and counterterm

diagrams contribute, and F naturally has a pairwise-factorized form. Note that one of the

factors (γji coth γij) looks just like Γ1−loop
cusp . This is suggestive that the contribution of F

(a)
Feyn
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(a) nonplanar (b) planar

×
(c) counterterm

FIG. 6: 2-loop graphs contributing to the coefficient F (γij , γjk, γki) of the antisymmetric color

structure in Γcusp(vi) (Eq. 56).

should come from the counterterm graph in conformal gauge. We will shortly show that this

is indeed the case.

Let us rephrase the above argument in a way that emphasizes the analogy with our one-

loop computation in Section 3. Notice that each line in 6(a), thought of as a static charge

in AdS, couples only to the τ -independent modes of the gauge field in R×AdS.5 Thus, the

computation of this graph “dimensionally reduces” from R× AdS to AdS, with one overall

τ -integral contributing a logarithmic divergence multiplying the anomalous dimension. The

theory on AdS contains a scalar (coming from Aτ ), and a three-dimensional gauge field. Each

Wilson line sources the scalar, so diagram 6(a) becomes a three-point function of scalars in

AdS. Finally, since there is no three-scalar interaction in the dimensional reduction of Yang-

Mills theory, this correlator vanishes at leading order. The utility of conformal gauge is that

it makes dimensional reduction in the τ -direction much simpler than it would be in Feynman

gauge.

Having understood why F (γij, γjk, γki) should have a simple form, let us proceed to

compute it using conformal gauge. Diagram 6(a) now vanishes, and the entire contribution

comes from the planar and counterterm graphs. All Wilson lines point in the τ -direction,

so we need only the radial part of the gauge-boson propagator which from Eq. (55) is:

D(ττ)
µν (x, y) = −κd

xµyν
x2y2

(

x · y
[−(x− y)2]d/2−1

− [−(x− y)2]2−d/2 + χ
(

|x|, |y|
)4−d

)

. (59)

The first term in parentheses is the same as DF
ττ in Feynman gauge. The second and third

terms are new.

Since we seek the coefficient of the antisymmetric color structure fabcT a
i T

b
j T

c
k , which does

not arise at one-loop, the anomalous dimension is simply the coefficient of the 1/ε pole in

the sum of diagrams 6(b) and 6(c). To separate UV and IR divergences, we must in general

regulate the IR with something other than dimensional regularization. However, here we can

safely ignore this subtlety since the entire divergence structure comes from a single scaleless

integral, and it will be simple to isolate the associated UV divergence. We have checked

that a more careful treatment of the infrared, for instance giving the Wilson lines some finite

length, yields the same results.

5 This is not the case for diagrams involving more than one gluon emission from a single Wilson line.
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To evaluate 6(b), let us first perform the integrals along the lines with only a single gluon

emission. This gives the Coulomb potential from a single Wilson line, which we now need

up to order ε. We have, with the normalization n2
1 = n2

2 = 1,

∫ ∞

0

ds nµ
i n

ν
jDµν(sni, tnj) = κd(−1)ǫ

∫ ∞

0

ds

( −ni · nj

(sni − tnj)2−2ǫ
+

χ(s, t)2ǫ − (sni − tnj)
2ǫ

st

)

= κd
(−1)ǫ

t1−2ǫ

(

E
(0)
F (γij) + εE

(1)
F (γij) + εE

(1)
C (γij)

)

(60)

Here E
(0)
F = Aτ (γij) from Eq. (37) is just the scalar potential from a Wilson line in 4

dimensions:

E
(0)
F (γ) = γ coth γ (61)

E
(1)
F is the next term in the ε expansion of this potential in Feynman gauge, also coming

from the first term in the integral. It is

E
(1)
F (γ) = coth γ

(

γ2 + 2γ log(1− e−2γ)− Li2(e
−2γ) +

π2

6

)

(62)

Finally, E
(1)
C is the new piece present in conformal gauge and not in Feynman gauge, from

the second term in the integral in Eq. (60). It gives

E
(1)
C (γij) =

∫ ∞

0

ds

s
log

χ(s, 1)2

(nis− nj)2
(63)

=

∫ ∞

−∞

dτ log
( cosh τ

cosh τ + cosh γij

)

+

∫ ∞

0

ds

s
log

χ(s, 1)2

1 + s2

= −γ2
ij −

π2

4
+ cχ .

The constant cχ is a gauge-dependent but γ-independent number which will cancel from

the final result (and is exactly zero for χ(|x|, |y|) =
√

x2 + y2). Note that the asymptotic

expansion of E
(1)
C at large γ is −γ2, which cancels the asymptotic expansion of E

(1)
F , leaving

zero contribution to the antisymmetric color structure in the anomalous dimension for the

light-like limit. Two loop graphs involving only two lines do contribute in the light-like limit,

and give an energy which grows linearly with the cusp angle.

With O(ε) parts of the scalar potential calculated, it is now easy to extract the antisym-

metric part of the two-loop anomalous dimension. The counterterm and planar graphs can

be combined into

I(b) + I(c) =

∫ ∞

0

dt1

t1−2ε
1

[

E
(0)
F (γij) + εE

(1)
F (γij) + εE

(1)
C (γij)

]

(64)

×
{

−1

ε
E

(0)
F (γjk) +

∫ t1

0

dt2

t1−2ε
2

[

E
(0)
F (γjk) + εE

(1)
F (γjk) + εE

(1)
C (γjk)

]

}

+ antisym.

After antisymmetrizing, everything vanishes except for the cross term between the coun-

terterm and the ε terms on the first line. Replacing the scaleless t1 integral on the first line
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with 1
2ε

as before, we see that these graphs sum to produce a contribution to the anomalous

dimension of the form

F (b) + F (c) =
1

2
E

(0)
F (γij)

(

E
(1)
F (γjk) + E

(1)
C (γjk)

)

+ antisym.,

=
1

2
γij coth γij coth γjk

(

γ2
jk + 2γjk log(1− e−2γjk)− Li2(e

−2γjk) +
π2

6

)

− 1

2
γij coth γijγ

2
jk + antisym. (65)

which precisely matches F (a) + F (b) + F (c) in Feynman gauge. The difficult non-planar

graph was reproduced with a far simpler calculation involving the O(ε) parts of the con-

formal gauge propagator. Note that the gauge-dependent constant cχ drops out due to the

antisymmetrization.

For three light-like Wilson lines the calculation of the diagrams in Fig. 6 can also be

considered directly using a conformal gauge. To do this we should use the conformal gauge

from Eq. (A8), rather than the one in Eq. (55). This conformal gauge has no Dτi or Diτ

mixing terms and is identical to Feynman gauge for Dττ in d-dimensions. The lack of mixing

terms immediately implies that Fig. 6a is zero, a result that is only seen in Feynman gauge

by direct computation [37]. For the remaining diagrams, Fig. 6b and Fig. 6c, the calculation

is identical to the one in Feynman gauge, so the sum of these diagrams is zero just as it is

there [37, 67].

8. RELATION TO WITTEN DIAGRAMS IN THE LIGHTLIKE LIMIT

Finally, let us comment on an interesting formal similarity between the perturbation

expansion for Γcusp(ni) in the lightlike limit and the Witten diagram expansion for AdS

scattering amplitudes, which has been well studied in the AdS/CFT literature [70–75].

Recall from the previous section that diagrams with at most one gluon attached to each

line involve only τ -independent modes of the gauge field. After performing integrals in the

τ -direction, they become AdS scattering amplitudes in a gauge theory containing an adjoint

scalar, which is sourced by each charge. As the parton directions become lightlike n2
i → 0,

the corresponding charges move off to the boundary of AdS. We are left, at least formally,

with a boundary-to-boundary scattering amplitude — a Witten diagram (Figure 7).

We could have anticipated some relation to Witten diagrams simply from the geometry.

Our realization of AdS3 as a hyperboloid inside R1,3 is known in the AdS/CFT literature as

the embedding space (or sometimes covering space) formalism [76–81]. Its utility is that the

isometries of AdS (and conformal transformations of its boundary) become linearly-realized

Lorentz transformations of the embedding space, an observation that dates back to Dirac

[76]. Here, we arrived at this formalism from the other direction, beginning in Minkowski

space, and finding that AdS geometry appears naturally.

A possible correspondence between Feynman diagrams for Γcusp(ni) and Witten diagrams

is complicated by several issues. Firstly, as we argued extensively in Section 3, choosing

proper boundary conditions in AdS is crucial for capturing the correct physics. For example,
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R×AdS

AdS

n2
i → 0

FIG. 7: After doing all the τ -integrals, the computation of certain diagrams dimensionally reduces

from R × AdS to AdS. In the limit where the charges approach the boundary n2
i → 0, we obtain

a Witten diagram.

our scalar bulk-to-bulk propagator is the potential we computed in Eq. (26),

DBB(n1, n2) =
1

4π2
(π + iβ12) coth β12. (66)

Recall that this solves Laplace’s equation in the presence of a constant charge density, so does

not correspond to the usual bulk-to-bulk scalar propagator, which solves the homogeneous

Laplace’s equation in AdS. In the limit that one of the directions n1 becomes lightlike, we

also obtain an unorthodox boundary-to-bulk propagator,

D∂B(n1, n2) = lim
|n1|→0

DBB(n1, n2) = lim
|n1|→0

i

4π2

(

− log |n1|+ log
n1 · n2

|n2|

)

(67)

This is divergent as |n1| → 0, a reflection of the collinear singularities that arise in this

limit.6

Contributions to Γ also differ from traditional Witten diagrams in their contours of in-

tegration. For Witten diagrams, one performs bulk integrals over AdS, whereas Feynman

integrals involve all of Minkowski space, so should incorporate both copies of AdS and dS

as well (Figure 3).

To use Witten diagrams for computing Γ, one must account for all of the above issues.

Nevertheless, the possible applicability of AdS amplitude technology is encouraging. Witten

6 Its form is perhaps reminiscent of the traditional boundary-to-bulk propagator for a scalar with an in-

finitesimal mass

D∂B(n1, n2)
?∼ lim

∆→0

i

4π2

1

∆

(

n1 · n2

|n2|

)∆

(68)

where the mass is related to ∆ via the usual AdS/CFT dictionary, m2R2
AdS = ∆(∆ − 2). One might

speculate that in a calculation where the − log |ni| singularities are regulated and cancel appropriately,

Eq. (68) might be an acceptable form for the boundary-to-bulk propagator.
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diagrams have been well-studied, and recently new techniques involving Mellin representa-

tions have substantially improved efficiency of computation [82–86].

As an example, the gauge-boson exchange diagram depicted in Figure 7 was first com-

puted with traditional boundary conditions over a decade ago [73–75]. The answer is a

nontrivial sum of so-calledD-functionsD∆1,∆2,∆3,∆4
(u, v), where u and v are conformal cross-

ratios. Formally, this diagram contributes to the regular anomalous dimension γ(αs, {ni·nj})
in Eq. (12) at three-loops, with a color structure fabef cde

T
a
i T

b
j T

c
kT

d
l . While we have under-

stood using conformal gauge why Γcusp(ni) should have a pairwise structure up to two-loops,

we see no a priori reason that this structure should persist to higher orders. We interpret

the fact that the diagram in Figure 7 is nonzero as an indication that γ(αs, {ni · nj}) might

very well have nontrivial conformal cross-ratio dependence. Very recently, two papers have

appeared [42, 43] which propose that additional constraints on the conformal cross ratio

dependence of the soft anomalous dimension follow from consideration of the Regge limit.

Perhaps by using tools developed for Witten diagrams, the 3-loop anomalous dimension can

be calculated exactly, hopefully resolving the controversy in feature 6.

9. CONCLUSIONS

In this paper we have discussed how properties of operators W built from N Wilson lines

can be understood in radial coordinates. These operators appear in high energy collisions

that produce jets, where the lines extend out from the location of the hard interaction,

taken to be the origin. In radial coordinates, R×AdS, the direction of the Wilson lines are

specified by points in Euclidean AdS3 and motion along any of the Wilson lines corresponds

to time-translations of τ ∈ R.

We have demonstrated that many of the key properties of anomalous dimensions of these

operators have an intuitive and simple description in terms of these static charges in AdS.

In particular: the dependence on cusp angles βij just corresponds to the geometric distance

between the lines in AdS; the one-loop anomalous dimension of W is given by a classical

energy computation on AdS (with special care given to boundary conditions).

There is an intuitive physical picture associated to the real and imaginary parts of the

anomalous dimension. This picture leads to an intriguing analogy between the at most

linear growth of imaginary energy with separation in AdS, guaranteed by the at most linear

growth of the anomalous dimensions with cusp angles, and the linear dependence of energy

on separation for charges in gauge theories, which is associated with the flux-tube picture

of confinement.

To fully exploit the physical picture arising in R× AdS we introduced a class of gauges,

referred to as conformal gauges. In these gauges, there is no kinetic mixing between temporal

components of the gauge field, Aτ , and spatial components, Ai. Conformal gauges are

formulated in position space in d-dimensions, so that they are suitable for calculations

using dimensional regularization. Conformal gauges in R×AdS are effectively the analog of

Feynman gauge in flat space, and simplify some perturbative computations involving Wilson

lines. Since all Wilson lines are only sources for Aτ , the absence of mixing directly implies

that one only has to consider scalar exchange at leading orders in perturbation theory.
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In particular graphs involving three gluon or four gluon vertices may vanish simply from

the absence of (Aτ )
3 and (Aτ )

4 interactions in QCD. We have demonstrated this explicitly

by considering a two-loop computation involving three time-like Wilson lines, and showing

that it reduces to a one-loop computation with counterterm insertions. For three light-like

Wilson lines we have also shown that a suitable conformal gauge simplifies this calculation

by making it explicit that the most complicated diagram involving the three-gluon vertex

vanishes.

Many avenues remain open to future exploration, and we have only briefly touched on a

few of them. In the limit where one or more Wilson lines become light-like, extra ultraviolet

and infrared divergences appear, and new features emerge in the anomalous dimension of

W, such as dependence on the renormalization group scale µ. While we have formulated

a suitable conformal gauge for use with light-like lines, we have not explored in detail

many interesting computations, such as the two-loop anomalous dimension from two light-

like lines, or graphs occurring in soft functions that have real radiation. Many interesting

questions only appear forW with four lines taken at three loops and beyond, such as possible

dependence of the anomalous dimension on conformal cross-ratios. We anticipate that the

use of conformal gauges will be a powerful technique for analyses which seek to definitively

answer questions which appear at this order.

We have also observed a relationship between diagrams with multiple Wilson lines and

Witten diagrams, which have been studied extensively in the context of the AdS/CFT

correspondence. There is hope that technology developed for computing these Witten di-

agrams can be used directly for calculations about Wilson lines, with direct application to

jet physics, and possibly also to improved understanding of the structure of amplitudes in

gauge theories.
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Appendix A: General Class of Conformal Gauges

The most general possible form of the gauge transformation one-form is7

Λµ(y, x) =
κd

(|x||y|)d/2−1

[

xµg1(α, β) + yµg2(α, β)
]

, where α ≡ x · y
|x||y| , β ≡ |y|

|x| , (A1)

and g1,2(α, β) are functions to be specified. Eq. (48) yields the propagator

Dµν(x, y) =
κd

(|x||y|)d/2−1

[

gµνA+
xµxν

x2
B +

yµyν
y2

C +
xµyν
|x||y|E +

yµxν

x · y Z
]

, (A2)

where we have

A = −[2α− β − β−1]1−d/2 + g2 + g2 ,

B = β−1g
(1,0)
1 + (1− d/2) g2 − α g

(1,0)
2 + β−1 g

(0,1)
2 ,

C = β g
(1,0)
1 + (1− d/2) g2 − α g

(1,0)
2 + β g

(0,1)
2 ,

E = g
(0,1)
1 + g

(0,1)
1 + (1− d/2)(β−1g1 + β g1)− α

(

β−1g
(1,0)
1 + β g

(1,0)
1

)

,

Z = αg
(1,0)
2 + αg

(1,0)
2 , (A3)

with the definitions gi(α, β) = gi(α, β
−1), g

(1,0)
i = ∂gi(α, β)/∂α, g

(0,1)
i = ∂gi(α, β)/∂β,

g
(0,1)
i = ∂gi(α, β

−1)/∂β−1, etc. The conformal gauge conditions, which ensure there is no

mixing between time and spatial directions in R × AdS, are xµDµν(x, y)A
ν(y) = 0 when

yνA
ν(y) = 0, and Aµ(x)Dµν(x, y)y

ν = 0 when xµA
µ(x) = 0. These require

A +B + Z = 0 , B = C , (A4)

which are two differential equations for the functions g1 and g2. Substituting Eq. (A4) into

Eq. (A2) yields the general result for the conformal gauge propagator

D̃µν(x, y) =
κd

(|x||y|)d/2−1

[

(

gµν −
xµxν

x2
− yµyν

y2
+

x · y xµyν
x2y2

)

A (A5)

+
(yµxν

x · y − xµxν

x2
− yµyν

y2
+

x · y xµyν
x2y2

)

Z +
x · y xµyν

x2y2

(E

α
−A− Z

)

]

.

The first two tensor structures are spatial (angular), while the latter is temporal (radial).

Using Eq. (A4) and Eq. (A3) we can write

E

α
− A− Z = −(2α− β − β−1)1−d/2 +

[

(2− d/2)(g2 + g2) + β g
(0,1)
2 + β−1g

(0,1)
2

]

+ α−1
[

(1− d/2)(β−1g1 + β g1) + g
(0,1)
1 + g

(0,1)
1

]

, (A6)

7 More general forms are possible if we introduce one or more additional fixed vectors in the gauge trans-

formation, such as a vµ where v2 = 1.
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where the first term is the result from Feynman gauge and the last two terms are induced

by the gauge transformation.

To consider the light-like limit for x and y we take xµ = λ1n
µ
1 and yµ = λ2n

µ
2 , where

without loss of generality we take λi > 0 and send n2
1 = n2

2 → 0. This leaves β = λ2/λ1

fixed and sends α → ∞. For the propagator between points on two light-like Wilson lines

only the last term in Eq. (A5) contributes,

nµ
1n

ν
2D̃µν(x, y) = κd n1 · n2 lim

n2

i→∞
(λ2

1λ
2
2n

2
1n

2
2)

1/2−d/4

[

E

α
− A− Z

]

. (A7)

To ensure this gives the same result as Feynman gauge we can choose a conformal gauge

where

g1(α, β) = −αβ g2(α, β) , (A8)

which makes E/α− A− Z = −(2α− β − β−1)1−d/2. Equation (A7) then becomes

nµ
1n

ν
2D̃µν(x, y) = −κd n1 · n2(2n1 · n2λ1λ2)

1−d/2 , (A9)

which is the same as the Feynman gauge result. The A+B + Z = 0 and B = C no mixing

conditions for this case becomes

β g
(0,1)
2 + (2− d/2)g2 = (2α− β − β−1)1−d/2 , (A10)

which implies

g2(α, β) = βd/2−2(α2 − 1)1−d/2 (β − α) 2F1

(1

2
,
d

2
− 1,

3

2
,
(α− β)2

α2 − 1

)

+ βd/2−2h(α) , (A11)

with an arbitrary function h(α) that still must be fixed to fully specify the gauge. Using

Eq. (A3), Eqs. (A8) and (A11) determine the spatial terms in the conformal gauge boson

propagator in Eq. (A5). It is straightforward to verify that the propagator is non-singular

in the limit d → 4.

Appendix B: Ghosts in Conformal Gauge

In position space the Feynman rules for ghosts are more easily represented with a “ghost

field” Gabc
µ which is the product of a ghost propagator and ghost-gluon vertex. For the gauge

transformation in Eq. (48) the appropriate ghost field is [87]

Gabc
µ (y, x) = −igfabc

[

∂ν
yD

F
µν(x, y) + (∂x

µ∂
x
ν − gµν�x)Λ

ν(y, x)
]

, (B1)

where DF
µν is the Feynman gauge gluon propagator from Eq. (47) and Λν(y, x) is the one-

form appearing in the gauge transformed gluon propagator Dµν . This result can be used for

any member of the general class of conformal gauges discussed in App. A.
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